
Monitoring of the AUTOSAR Timing Ex-
tensions with TeSSLa
Überwachung der AUTOSAR Timing Exten-
sions mittels TeSSLa

Bachelorarbeit
im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Hendrik Streichhahn

ausgegeben und betreut von
Prof. Dr. Martin Leucker

mit Unterstützung von
Dr. Martin Sachenbacher und
Daniel Thoma

Lübeck, den 22.1. 2021

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Benutzung
der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

(Hendrik Streichhahn)
Lübeck, den 22.1. 2021

iii

Abstract Satisfying given timing requirements is essential for the correct behavior of em-
bedded real-time systems. In the automotive domain, the AUTOSAR timing extensions are a
widely used and accepted standard for specifying timing requirements. Previous work, such as
the TIMMO-2-USE project, has focused on defining timing constraints in a mathematically
rigorous way while sharing the same base concepts as the AUTOSAR Timing Extensions.
This offers the possibility to check these constraints with offline system analysis tools such as
automated model-checking and verification.
Because of computational problems, model-checking and offline verification are limited to
relatively small-scale systems. Furthermore, not all types of specification violations can be
detected at system development time, and sporadic, rare events typically require a capability
for long-term observations. Runtime verification is a more lightweight method that lies at
the boundary between formal verification and testing. Runtime verification checks properties,
expressed in temporal logic, on-the-fly during the operation of the system using finite-state
monitors generated from logical specifications. In this thesis, an analysis of the 18 TADL2
timing constraints defined in the TIMMO-2-USE project is made to examine, whether they
can be expressed as finite-state monitors, thus making them monitorable by runtime verifica-
tion. Further, a monitor for each TADL2 timing constraint is implemented in the temporal
stream-based specification language TeSSLa.

v

Kurzfassung Die Einhaltung von Zeitschranken ist essentiell wichtig für das korrekte Ver-
halten von eingebetteten Echtzeitsystemen. In der Automobilindustrie sind die AUTOSAR
Timing Extensions (etwa AUTOSAR Zeiterweiterungen) weit verbreitet, mit denen das Zeit-
verhalten von Hard- und Softwarekomponenten beschrieben werden kann. Andere Arbeiten,
wie zum Beispiel das TIMMO-2-USE Projekt, haben daran gearbeitet, formal definierte Alter-
nativen für die AUTOSAR Timing Extensions zu erarbeiten und somit einen Grundbaustein
dafür zu legen, diese Definitionen vom Zeitverhalten automatisiert zu kontrollieren, etwa durch
Model Checking. Ein Problem von Model Checking und ähnlichen Ansätzen ist, dass diese
aufgrund der großen Laufzeit auf kleinere Systeme beschränkt sind.
Runtime Verification ist eine leichtgewichtigere Methode der Analyse von Systemkomponen-
ten, die einen Mittelweg zwischen formaler Analyse und Testen geht, wobei formal definierte
Eigenschaften des Systems während der Laufzeit geprüft werden.
Im Rahmen dieser Arbeit werden die 18 TADL2 Timing Constraints, welche im Rahmen des
TIMMO-2-USE Projekt erarbeitet wurden, dahingehend überprüft, ob sie mittels Runtime
Verification auf unendlichen Strömen überwacht werden können. Darauf aufbauend wird für
jeden dieser Constraints ein Monitor in der Sprache TeSSLa, welche für die Überwachung von
Zeiteigenschaften auf Strömen entwickelt wurde, implementiert.

vii

Contents

1 Introduction 1

2 Timing Constraints 3
2.1 AUTOSAR Timing Extensions . 3
2.2 Timing Augmented Description Language[BFL+12] 8

2.2.1 Parenthesis - Simple and Flexible Timing Constraint Logic 9
2.2.2 TADL2-Timing Constraints . 11
2.2.3 Comparison TADL2 - AUTOSAR Timing Extension 26

3 Monitoring Timing Constraints on possibly infinite Streams 33
3.1 Related Work . 33

3.1.1 Runtime Verification . 33
3.1.2 TeSSLa . 33
3.1.3 LOLA[DSS+05] . 34
3.1.4 Semantics of LTL3[ABLS05] and RV-LTL[BLS07] 34
3.1.5 Transducer Models . 35

3.2 Monitorability . 36
3.2.1 Simple Monitorability . 37
3.2.2 Simple Monitorability With Delay . 38
3.2.3 Not Simple Monitorable . 40

4 Analysis of the Monitorability of Timing Constraints 43
4.1 Monitorability of the TADL2 Timing Constraints 43

4.1.1 DelayConstraint . 43
4.1.2 StrongDelayConstraint . 44
4.1.3 RepeatConstraint . 44
4.1.4 RepetitionConstraint . 45
4.1.5 SynchronizationConstraint . 45
4.1.6 StrongSynchronizationConstraint . 46
4.1.7 ExecutionTimeConstraint . 46
4.1.8 OrderConstraint . 47
4.1.9 ComparisonConstraint . 47
4.1.10 SporadicConstraint . 47
4.1.11 PeriodicConstraint . 47
4.1.12 PatternConstraint . 48
4.1.13 ArbitraryConstraint . 48
4.1.14 BurstConstraint . 48
4.1.15 EventChains . 49
4.1.16 ReactionConstraint . 49
4.1.17 AgeConstraint . 50
4.1.18 OutputSynchronizationConstraint . 50
4.1.19 InputSynchronizationConstraint . 50

ix

Contents

4.2 Conclusion . 50

5 Implementation 53
5.1 Implementation of the TADL2 Constraints . 53

5.1.1 DelayConstraint . 54
5.1.2 StrongDelayConstraint . 54
5.1.3 RepeatConstraint . 54
5.1.4 RepetitionConstraint . 55
5.1.5 SynchronizationConstraint . 55
5.1.6 StrongSynchronizationConstraint . 56
5.1.7 ExecutionTimeConstraint . 57
5.1.8 OrderConstraint . 58
5.1.9 ComparisonConstraint . 58
5.1.10 SporadicConstraint . 58
5.1.11 PeriodicConstraint . 59
5.1.12 PatternConstraint . 59
5.1.13 ArbitraryConstraint . 59
5.1.14 BurstConstraint . 60
5.1.15 ReactionConstraint . 60
5.1.16 AgeConstraint . 60
5.1.17 OutputSynchronizationConstraint . 61
5.1.18 InputSynchronizationConstraint . 62
5.1.19 EventChain . 63

5.2 Conclusion . 63
5.3 Performance Analysis . 65

5.3.1 Conclusion . 76

6 Summary and Outlook 79
6.1 Summary . 79
6.2 Future Work . 79

7 References 89

x

1 Introduction

Timing behavior is one of the most important properties of computer systems. Especially in
safety-critical applications, wrong timed actions or reactions of the system can have disas-
trous consequences, for example, in the Electronic Stability Control of a vehicle. Almost all
car manufacturers use the AUTOSAR (AUTomotive Open System ARchitecture) standards
[AUT]. With AUTOSAR, development processes and components are standardized, which
increases productivity, interoperability and exchangeability of these components.
To describe the timing behavior of soft- and hardware components of cars, the AUTOSAR
Timing Extensions were developed. The goal of this thesis is to implement a monitoring tool
for the timing constraints defined in this standard.
Some of the constraints defined in the AUTOSAR standard are written informally and can be
misunderstood, which will be described as part of this thesis. This is problematic for moni-
toring because the implementation of a monitor must not be based on ambiguous definitions.
To solve this problem, the timing constraints defined in the Timing Augmented Description
Language Version 2 (TADL2)[BFL+12] are used as the basis for the monitoring tool. TADL2
was created as part of the TIMMO project, which had similar goals to AUTOSAR, but the
definitions are written more formally. The AUTOSAR Timing Extensions are comparable
and partly compatible with the TADL2 timing constraints. Most of the constraints defined
in the AUTOSAR standard can be described as an equivalent combination of TADL2 timing
constraints and vice versa.
The monitoring tool is written in TeSSLa (Temporal Stream-based Specification Language),
which is made for stream runtime verification and is capable of non-intrusive observation and
can be run as a Java program or on specialized embedded hardware, like FPGAs.

In the first part of this thesis, an overview of the AUTOSAR Timing Extensions and an
example of the informal and ambiguous definitions will be given. Next, the TADL2 timing
constraints will be listed and the relations between these constraints and the AUTOSAR
Timing Extensions will be described. In the next chapter, TeSSLa, its fundamental function-
ality and other prerequisites needed to understand the theoretical part of this thesis will be
explained. The term simple monitorability is introduced, which ensures that a property on
infinite streams can always be monitored with finite time and memory resources. Then, each
of the TADL2 timing constraints is checked, if it simple monitorable or not. After that, the
TeSSLa implementations of these constraints are described and evaluated in a theoretical and
practical way.
In the end, an overview of the accomplished work is given and ideas for further work will be
discussed.

1

2 Timing Constraints

2.1 AUTOSAR Timing Extensions

AUTOSAR is a development partnership in the automotive industry. The main goal is to de-
fine a standardized interface and increase the interoperability, exchangeability and re-usability
of parts and therefore simplifying development and production.
The AUTOSAR Timing Extension are describing timing constraints for actions and reactions
of components. The constraints are defined via events, which consist of a time value and, if
needed, a data value of an arbitrary type. To describe the logical relationship between groups
of events, event chains are defined, consisting of stimulus and response events. The response
event is understood as the answer to the stimulus event.
The AUTOSAR Release 4.4.0 ([AUT18]) is used for this thesis. There are 12 timing con-
straints defined in this version of the AUTOSAR Timing Extensions.

1. The subset of 5 EventTriggeringConstraints is describing, at which points in time
specific events may occur.

1 The PeriodicEventTriggering defines repetitions of events with the same time dis-
tance and offers the possibility to set an allowed deviation from this pattern. Addi-
tionally, the minimal distance between two subsequent events can be defined.

2 The SporadicEventTriggering specifies sporadic event occurrences by defining the
minimal and maximal distance between subsequent events. Optionally, periodic rep-
etitions and allowed deviations from the period can be described.

3 With the ConcreteEventTriggering, offsets between a set of subsequent events
in a time interval can be described. These intervals may not overlap, and periodic
repetitions of them can be defined optionally.

4 The BurstPatternEventTriggering describes non-overlapping event clusters with
a minimal and maximal number of events. Optionally periodic repetitions of these
clusters can also be described.

5 The ArbitraryEventTriggering defines the distance between subsequent events by
defining ConfidenceIntervals, which describe the probability in which time interval
the following event will occur.

2. The LatencyTimingConstraint specifies the minimal, nominal and maximal time
distance between the stimulus and response events of an event chain.

3. The AgeConstraint is a simpler form of the LatencyTimingConstraint by defining the
minimal and maximal age an event may have at the point of time when it is processed.

4. The SynchronizationTimingConstraint is used to describe events of different kinds
that occur synchronized in a time interval of a specific length.

3

2 Timing Constraints

5. The SynchronizationPointConstraint defines two sets of executables and events.
Every element of the first set must have finished or occurred before the first element of
the second set may start or occur.

6. The OffsetTimingConstraint specifies the minimal and maximal time distance be-
tween the corresponding source and target events.

7. The ExecutionOrderConstraint defines the order in which a list of executables must
start and finish.

8. The ExecutionTimeConstraint defines the minimal and maximal runtime of an ex-
ecutable, including or excluding the runtime of external functions and interruptions.

In this simplified form, some constraints are redundant. The semantic differences will be
shown in section 2.2.3.

Problematic with the AUTOSAR Timing Extensions is that the constraints are not formally
defined and have room left for different interpretations. As an example, the BurstPattern-
EventTriggering will be analyzed in the following. This constraint describes events clusters,
with events that occur with short time distances, with larger time distances between the
clusters. These following attributes define how the events may occur:

• maxNumberOfOccurrences (positive integer)
Maximal number of events per burst

• minNumberOfOccurrences (positive integer)
Minimal number of events per burst (optional)

• minimumInterArrivalTime (time value)
Minimal distance between subsequent events

• patternLength (time value)
Length of each burst

• patternPeriod (time value)
Time distance between the starting points of subsequent burst(optional)

• patternJitter (time value)
Maximal allowed deviation from the periodic pattern (optional)

As example, we set:

• maxNumberOfOccurrences = 3

• minNumberOfOccurrences = 1

• minimumInterArrivalT ime = 1

• patternLength = 3

• patternPeriod = 3.5

• patternJitter = 1.5

4

2.1 AUTOSAR Timing Extensions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

Bursts
Events

period
jitter

period
jitter

period
jitter

Figure 2.1: BurstPatternEventTriggering patternPeriod and patternJitter accumulating

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

Bursts
Events

period
jitter

period
jitter

period
jitter

period
jitter

Figure 2.2: BurstPatternEventTriggering patternPeriod and patternJitter non-accumulating

The combination of patternPeriod and patternJitter can be interpreted in an accumulating
way, as seen in figure 2.1, or in a non-accumulating way, as seen in figure 2.2. In the accumu-
lating interpretation, the reference for the periodic occurrences is only the start point of the
previous burst. In the non-accumulating way, there is a global reference point for the periodic
repetitions.

With the definition of patternPeriod (”time distance between the beginnings of subsequent
repetitions of the given burst pattern”[AUT18]), you would think that the accumulating vari-
ant is meant. Against that, the period attribute in the PeriodicEventTriggering constraint is
defined as ”distance between subsequent occurrences of the event”[AUT18] in the text. Hence
it is also understandable the accumulating way. However, there is the formal definition

∃treference∀tn : treference + (n+ 1) ∗ period ≤ tn ≤ treference + (n− 1) ∗ period+ jitter,

where tn is the time of the n-th event and treference is a reference point from which the periodic
pattern starts, so the PeriodicEventTriggering constraint is meant to be understood in the
non-accumulating way. It remains unclear in which way the BurstPatternEventTriggering
is meant to be understood.

Another problem with the AUTOSAR Timing Extensions is that they were made for de-
sign purposes. Monitoring them can be difficult, as a monitor may need time and memory
resources, which continuously grow with every input event. This makes online monitoring
unsuitable in nearly all scenarios (more on monitorability in chapter 3). As an example, we
will use the BurstPatternEventTriggering again. This time we use the attributes

• maxNumberOfOccurrences = INT_MAXor any significant large number

• minNumberOfOccurrences = 1

5

2 Timing Constraints

• minimumInterArrivalT ime = 0

• patternLength = 3

• patternPeriod unused

• patternJitter unused

Figure 2.3 shows the application of the BurstPatternEventTriggering constraint with the given
parameters on a stream with events at the timestamps 3, 3.5, 4, 4.5. The development of
possible burst clusters with ongoing time is visualized. The gray bars show the range in
which the burst cluster can lay. The black lines show where they definitely are. In timestamp
3, with only one event so far, only one burst has to be considered and it can lay between
timestamp 0 and 6. The only limitation is that it must include timestamp 3 with the event
at that point. In Timestamp 3.5, there are two events (at 3 and 3.5) so far, and there are
two possibilities for burst placements. The first possibility is with only one burst with both
events in it, and the second possibility, where the events are in different bursts. The third
graphic shows the trace in timestamp 4 with three different events so far (3, 3.5, 4) and three
different possibilities for burst placements to consider. One possible burst contains all three
events, the second possibility has one burst with the event at timestamp 3 and one burst with
the events at 3.5 and 4 and the third possibility has one Burst with the events at 3 and 3.5
and one burst with the event at 4. The possible bursts in graphic 4 are analog to the third
graphic, one possibility with one burst containing all 4 events and 3 possibilities with the
first burst containing the first event, the first and second event or the first, the second and
the third event and the second burst containing the remaining events. Because the minimal
distance between subsequent events is not specified, an arbitrarily large number of events can
be placed in any interval with the length patternLenth.
In this example, we see that it is possible to create an unlimited number of possibilities for
burst placements within one burst length when the minimumInterArrivalTime-attribute is 0,
which results in infeasible resource consumption because unlimited memory and time is needed
to check the constraint in following events. Therefore, online monitoring of this constraint is
unsuitable in most cases.

6

2.1 AUTOSAR Timing Extensions

0 1 2 3 4 5 6 7 8 9 10
timetimestamp

Events

Possible
Burst
ranges

0 1 2 3 4 5 6 7 8 9 10
timetimestamp

Events

Possible
Burst
ranges

0 1 2 3 4 5 6 7 8 9 10
timetimestamp

Events

Possible
Burst
ranges

0 1 2 3 4 5 6 7 8 9 10
timetimestamp

Events

Possible
Burst
ranges

Figure 2.3: BurstPatternEventTriggering Possible bursts, ↑ shows the current time

7

2 Timing Constraints

2.2 Timing Augmented Description Language[BFL+12]

As timing extension to EAST-ADL(Electronics Architecture and Software Technology-
ArchitectureDescription Language), the TIMMO (TimingModel) project, and its successor,
TIMMO-2-USE, were initiated. A part of this project was theTimingAugmentedDescription
Language V2 (TADL2), were created. TADL2 has similar goals as the AUTOSAR Timing
Extensions, but the definitions are written in a more formalized fashion. While the defini-
tions of the AUTOSAR Timing Extensions are only textually described often, the TADL2
definitions are defined more formally. They offer a formal definition of each constraint in
the timing constraint logic TiCL [BFL+12]. EAST-ADL is much less used in the automotive
industry, but the EAST-ADL Timing Constraints are partly compatible with the AUTOSAR
Timing Extensions, as they are sub- or supersets of each other. Many of the AUTOSAR
Timing Extensions can be defined via a combination of TADL2 Constraints, as explained in
section 2.2.3.
The timing constraints are defined on events or event chains, similar to the AUTOSAR Tim-
ing Extensions. In TADL2, all events of an event chain have a color attribute, which shows
the logical connection of associated events. This attribute is defined as an abstract and pos-
sibly infinite datatype. The only restriction is that an equality test on these color values
must be defined. TADL2 offers 18 timing constraints, which will be briefly explained in the
following.

• The StrongDelayConstraint defines the minimal and maximal time distance of the
events from two event sets (source and target).

• The DelayConstraint is a less strict variant of the StrongDelayConstraint because
it allows additional events in the target events.

• The RepeatConstraint, RepetitionConstraint, PeriodicConstraint,
SporadicConstraint and ArbitraryConstraint describe the time distance between
subsequent events, whereby they have small semantic differences. An exact distinction
between these constraints will be given in section 2.2.2.

• The SynchronizationConstraint and StrongSynchronizationConstraint define
groups of event sets, whose events occur in common time intervals. The Synchro-
nizationConstraint allows more than one event of each group per interval, while the
StrongSynchronizationConstraint does not.

• The ExecutionTimeConstraint sets a minimum and a maximum for the runtime of
a task, not counting interruptions in the execution.

• The OrderConstraint defines that the nth event of one event set must occur before or
at the nth event of a second event set.

• The ComparisonConstraint is used to describe ordering relations of timestamps.

• The PatternConstraint defines the time distance between periodic points in time and
several events.

• The BurstConstraint regulates the maximum number of events in time intervals of a
specific length.

8

2.2 Timing Augmented Description Language[BFL+12]

• The ReactionConstraint describes the minimal and maximal time a response event
must occur after the associated stimulus event. Additional response events are allowed,
additional stimulus events are not.

• The AgeConstraint is similar to the ReactionConstraint, but it is defined the other
way around. Therefore, it describes the minimal and maximal time a stimulus event
must occur before the associated response event. Additional stimulus events are allowed,
additional response events are not.

• The OutputSynchronizationConstraint is used to describe groups of event chains,
which all have the same response events. The response events of the event chain must
occur in common time intervals, like in the SynchronizationConstraint. In the In-
putSynchronizationConstraint, the roles of the stimulus and response events are
swapped.

2.2.1 Parenthesis - Simple and Flexible Timing Constraint Logic

The formal definitions of the TADL2 timing constraint are written in Timing Constraint
Logic (short: TiCL), which was developed as part of the TIMMO-2-USE project. TiCL was
formally introduced in [LN12]. For better understanding, the key aspects of this paper will
be explained in the following.
The main goal of TiCL is to be formal and expandable and offering the possibility of defining
finite and infinite behaviors of events. In TiCL, only points in time in which events occur are
considered. Therefore every event only consists of a real number as a timestamp, without the
possibility of adding a data value. There are seven syntactic categories in TiCL.

R(arithmetic constants)
Avar(arithmetic variables)
AExp(arithmetic expressions)

Svar(set variables)
SExp(set expressions)

TV ar(time variables)
CExp(constraint expressions)

Arithmetic expressions can be defined as arithmetic constants, as arithmetic variables, as an
application of +,−, ∗, / on arithmetic expressions, as an application of the cardinality op-
erator on a set (|E|, E ∈ SExp) or as measure λ(E) (E ∈ SExp). λ(E) is defined as the
Lebesgue measure, which is figuratively speaking, the length of all continuous intervals of
E. In figure 2.4, an example of the measure operator λ is visualized. The set E contains
all Events between the timestamps 1 and 9. The set F contains the events at the times-
tamps between 2 and 4 and 6 and 7. Therefore E \ F contains the events at the timestamps
{1, 1.5, 4.5, 5, 5.5, 7.5, 8, 8.5, 9}. E consists of one continuous interval from timestamp 1 to 9
with the length of 8, F consists of two continuous intervals from 2 to 4 with the length of 2
and from 6 to 7 with the length of 1, therefore λ(F) = 3. E \ F consists of three continuous
intervals, the first from 1 to 1.5 (length = 0.5), the second from 4.5 to 5.5 (length = 1) and the
last from 7.5 to 9 (length = 1.5). Consequently, the total length of the continuous intervals

9

2 Timing Constraints

0 1 2 3 4 5 6 7 8 9 10

E

F

E \ F

λ(E) = 8

λ(F) = 3

λ(E \ F) = 3

Events

Figure 2.4: Graphical example of λ(E), λ(F) and λ(E \ F)

of E \ F is 3.
Set expressions can be defined as set variables or as a set of time variables that fulfill a given
constraint expression.
Constraint expressions can be defined as an application of the ≤ operator on time or arith-
metic expressions, the ∈ operator on time variables and set expressions, the logical conjunction
(∧) on constraint expressions, the negation of constraint expressions and the ∀-Quantifier on
arithmetic, set and time variables over a constraint expression.
As an extension to this definition, well known syntactic abbreviations like true ≡ 0 ≤ 1 or
the ∃-quantifier are defined. There are also some TiCL-specific syntactic abbreviations, such
as interval constructors, which will be defined and explained in the following.
Let x, y ∈ Tvar and E,F ∈ SExp.

• The interval constructor [x <]([x ≤]) is defined as {y : x < y}({y : x ≤ y}), therefore
the interval contains all points in time laying behind of x (including x).

• [≤ x]([< x]) is defined as complement of [x <]([x ≤]) and contains all timestamps laying
before x.

• [x..y] is defined as [x ≤] ∩ [< y], so all points of time after x and before y, including x
but not y, are part of this interval.

• [E ≤] is defined as {y : ∃x ∈ E : x ≤ y}, this interval contains all points in time at and
after the first timestamp in E.

• [E <] is equal to {y : ∀x ∈ E : x < y}, therefore it defines the interval containing all
timestamps after the latest point of time in E. Please note the use of ∀ instead ∃ in the
definition.

• [≤ E] ([< E]) is defined as [E <]C ([E ≤]C), analogous to the operators on time
variables.

• [E] is equal to [E ≤] ∩ [≤ E]. It defines the time interval between the first and last
element of E, including these points in time.

10

2.2 Timing Augmented Description Language[BFL+12]

• Ex<(E<x) is defined as E ∩ [x <](E ∩ [< x]). This operators filters the timestamps in
E so that only the points in time before (after) x remain.

• [x..E] equals [x ≤] ∩ [< (Ex<)]. The interval begins at x and ends right before the first
element of E after x.

• [E..F] is defined as {x : ∃y ∈ E : x ∈ [y..F]} and describes the intervals, where the
previous operator is applied on every element of E.

• E(i) is ith timestamp in E, starting at zero.

• E ≤ F describes, that E is a sub sequence of F , which means that between the earliest
and latest element in E all elements of F are in E.

2.2.2 TADL2-Timing Constraints

For a better understanding of the following chapters, the TADL Constraints will be presented
next. As abbreviation and unification, all timing expressions are defined over set T, which
is understood as real numbers but expanded with ∞ and −∞ in this chapter. Other value
ranges for time expressions are possible and will be used later in this thesis.
We define an event as a time value, possibly combined with a data value. The range of the data
values is arbitrary. Infinite data types are possible, as well as empty data types when only the
point in time is relevant for the constraint. All TADL constraints are defined with attributes,
which can be events, timing or arithmetic expressions or sets of them. Also, EventChains can
be used as attributes. An EventChain consists of two sets of events (stimulus and response),
which are causally related. All events in an EventChain must have a color value in their
data field. This color possibly has an infinite type and an equality check on the datatype of
the color must be defined. It is used to check which events of an EventChain are directly
related.

DelayConstraint

The DelayConstraint has four attributes

source event set
target event set
lower T (time expression)
upper T

and is defined as

DelayConstraint(source, target, lower, upper)
⇔ ∀x ∈ source : ∃y ∈ target : lower ≤ y − x ≤ upper.

For all events x in source, there must be an event y in target, so that the time distance between
x and y is between lower and upper. Note that lower and upper can have negative values and
that additional events in target without an associated source event are allowed.
Figure 2.5 shows a visualized example of the DelayConstraint with the attributes lower = 2,
upper = 3, source = {1, 5, 6} and target = {2, 3.5, 5, 7, 8.2, 9}. The first element of source

11

2 Timing Constraints

source
lower
upper

lower
upper lower

upper
target

0 1 2 3 4 5 6 7 8 9 10

Figure 2.5: Example DelayConstraint - lower = 2, upper = 3

source
lower
upper

lower
upper lower

upper
target

0 1 2 3 4 5 6 7 8 9 10

Figure 2.6: Example StrongDelayConstraint - lower = 2, upper = 3

at timestamp 1 results in a required event in target between the timestamp 3 and 4 that is
fulfilled by the event at 3.5. The second event of source requires a target event between 7 and
8, fulfilled by the event at 7. The last event of source is satisfied by the target event at 8.2
and 9.

StrongDelayConstraint

The StrongDelayConstraint has four attributes

source event set
target event set
lower T
upper T

and is defined as

StrongDelayConstraint(source, target, lower, upper)
⇔ |source| = |target| ∧
∀i : ∀x : x = source(i)⇒ ∃y : y = target(i) ∧ lower ≤ y − x ≤ upper.

The StrongDelayConstraint is a stricter version of the DelayConstraint, as it requires a bi-
jective assignment between the source and target events. Therefore additional events in
target without matching source event are not allowed. Figure 2.6 shows an example of the
StrongDelayConstraint. The example is the same as in the previous constraint, but without
the additional target events at 2, 5 and 8.2.

12

2.2 Timing Augmented Description Language[BFL+12]

Event

lower
upper

lower
upper

lower
upper

lower
upper

0 1 2 3 4 5 6 7 8 9 10 11

Figure 2.7: Example RepeatConstraint - lower = 2, upper = 2, span = 1

Event upper

lower

upper

lower
upper

lower

upper

lower

upper

lower
upper

lower

0 1 2 3 4 5 6 7 8 9 10 11

Figure 2.8: Example RepeatConstraint - lower = 4, upper = 5, span = 2

RepeatConstraint

The RepeatConstraint also has four attributes

event event set
lower T
upper T
span integer

and is defined as RepeatConstraint(event, lower, upper, span)
⇔ ∀X ≤ event : |X| = span+ 1⇒ lower ≤ λ([X]) ≤ upper.

As a reminder, the ≤-operator over two sets of events A,B describes that A is a subsequence
of B, the λ(A)-function calculates the total length of all continuous intervals in A and [A] is
the time interval between the oldest and newest event in A.

The definition of the RepeatConstraint specifies that the length of each time interval con-
taining span+ 1 subsequent events must be between upper and lower.
The idea behind this constraint is to define repeated occurrences of events, with the possibility
of overlapping, specified by the span attribute. After any event x, there are span− 1 events
and then the next event must be between lower and upper after x.
Figure 2.7 shows an example of the RepeatConstraint with the attributes event = {3, 5, 8, ...},
lower = upper = 2 and span = 1. Because lower is equal to upper and span is 1, the events
follow a strictly periodic pattern after the first event. Figure 2.8 shows a more complex exam-
ple with events at {0, 2, 4, 7, 9, 11, ...}, lower = 4, upper = 5 and span = 2. The span-attribute
is 2, so the time distances between all subsequent events with an even index are considered,
as well as the distances between subsequent events with an uneven index.

13

2 Timing Constraints

0 1 2 3 4 5 6 7 8 9 10 11

event

X
jitter jitter jitter jitter jitter

lower
upper

lower
upper

lower
upper

lower
upper

lower
upper

Figure 2.9: Example RepetitionConstraint - lower = 4, upper = 5, span = 2, jitter = 1

RepetitionConstraint

The RepetitionConstraint has five attributes

event event set
lower T
upper T
span integer

jitter T

and is defined via the RepeatConstraint and the StrongDelayConstraint as

RepetitionConstraint(event, lower, upper, span, jitter)
⇔ ∃X : RepeatConstraint(X, lower, upper, span) ∧

StrongDelayConstraint(X, event, 0, jitter)

where X is a set of arbitrary timestamps that follow the structure of the RepeatConstraint
(various(span) loose periodic repetitions). The actual points in time of event lay between
the timestamps of X and jitter after that. For each point of time there is exactly one,
corresponding timestamp in X. Figure 2.9 shows an example of the RepetitionConstraint
with the attributes event = {0.5, 3.3, 4.7, 7.6, 9.9, ...}, lower = 4, upper = 5, span = 2 and
jitter = 1. The shown timestamps of X are only one possibility and may change due to later
elements of event.

SynchronizationConstraint

The SynchronizationConstraint has two attributes

event set of event sets, |event| ≥ 2
tolerance T

and is defined via the DelayConstraint as

14

2.2 Timing Augmented Description Language[BFL+12]

0 1 2 3 4 5 6 7 8 9 10 11

event1

event2

event3

X

tolerance tolerance
tolerance

Figure 2.10: Example SynchronizationConstraint - tolerance = 1

SynchronizationConstraint(event1, ..., eventn, tolerance)
⇔ ∃X : ∀i : DelayConstraint(X, eventi, 0, tolerance) ∧

DelayConstraint(eventi, X,−tolerance, 0)

X is a set of timestamps, and there must be at least one timestamp between an element of
X and tolerance after that in each set of event. Also, there must be a matching element of
X for each element in any set of event.
In figure 2.10 is an example of the SynchronizationConstraint with the attributes event =
{{0.5, 3, 7, 7.5}, {0.7, 2.5, 7.3, 7.8}, {1.2, 3.2, 3.3, 3.4, 7.6, 8.4}} and tolerance = 1. The first
points in time of each element of event form the first cluster, the corresponding element
of X can be between 0.2 and 0.5. For simplification, only the latest possible value for the
element of X is shown, which is the first event of the synchronization cluster. In the second
cluster of events, it can be seen that multiple timestamps from one element of event can be
associated with a single element of X. The third and fourth clusters show that overlapping
is also possible.

StrongSynchronizationConstraint

The StrongSynchronizationConstraint has the same two attributes as the Synchronization-
Constraint

event set of event sets, |event| ≥ 2
tolerance T

and is defined as

StrongSynchronizationConstraint(event1, . . . , eventn, tolerance)
⇔ ∃X : ∀i : StrongDelayConstraint(X, eventi, 0, tolerance)

This constraint is a stricter variant of the SynchronizationConstraint, as it requires a bijective
assignment between the elements of X to one element of each set of event. For every x ∈ X,
only one corresponding timestamp per set in event is allowed, as seen in figure 2.11, which
shows the same example as the one for the SynchronizationConstraint, but the excess time
stamps at 3.2 and 3.3 have been removed.

15

2 Timing Constraints

0 1 2 3 4 5 6 7 8 9 10 11

Event1

Event2

Event3

X

tolerance tolerance
tolerance

Figure 2.11: Example StrongSynchronizationConstraint - tolerance = 1

ExecutionTimeConstraint

The ExecutionTimeConstraints takes six attributes

start set of events
stop set of events

preempt set of events
resume set of events
lower T
upper T

and is defined as

ExecutionT imeConstraint(start, stop, preempt, resume, lower, upper)
⇔ ∀x ∈ start : lower ≤ λ([x..stop] \ [preempt..resume]) ≤ upper

The interval constructor ∀x ∈ start : [x..stop] defines the time interval between each point in
time of start until the next element of stop, excluding the stop timestamp. [preempt..resume]
defines the intervals between each event of preempt and the next timestamp of resume. These
intervals are removed from the considered interval length. The Idea behind this constraint is
to define the runtime of a task without counting interruptions.
Figure 2.12 shows an example of the ExecutionTimeConstraints with start = {1}, end = {7},
preempt = {2, 5} and resume = {3, 6.5}. Therefore, [start..end] spans the interval from time
1 to 7 with the length of 6 and [preempt..resume] spans two intervals, 2 to 3 and 5 to 6.5
with the lengths 1 and 1.5. As a result, λ([x..stop] \ [preempt..resume]) for x = 1 is 3.5 and
the constraint is fulfilled, if, and only if, lower is equal or lower than 3.5 and upper is greater
than that.

16

2.2 Timing Augmented Description Language[BFL+12]

0 1 2 3 4 5 6 7 8 9 10 11

start
end

preempt
resume

[start..end]
[preempt..resume]

Figure 2.12: Example ExecutionTimeConstraint

0 1 2 3 4 5 6 7 8 9 10 11

source
1 2 3 4

target
1 2 3 4

Figure 2.13: Example OrderConstraint

OrderConstraint

The OrderConstraint takes two attributes

source set of events
target set of events

and is defined as

OrderConstraint(source, target)
⇔ |source| = |target| ∧ ∀i : ∃x : x = source(i)⇒ ∃y : y = target(i)∧ < x ≤ y

This constraint ensures the order of events so that the ith event of target occurs after the ith
event of source. Also, the number of events in source and target must be equal.
Figure 2.13 visualizes an example of the OrderConstraint with source = {1, 4, 6, 7} and
target = {3, 5, 9, 9.5}. The constraint is fulfilled because the number of elements is equal
and each ith timestamp in target is later than the ith timestamp of source.

ComparisonConstraint

The ComparisonConstraint is significantly different from all previous and following con-
straints, as it does not describe the behavior of events and only compares two time expressions.
It takes three attributes

17

2 Timing Constraints

leftOperand T
rightOperand T

operator comparisonOperator(∈ {LessThanOrEqual, LessThan,
GreaterThanOrEqual,GreaterThan,Equal})

The definition is pretty straight forward as it only applies the given operator to the operands:

ComparisonConstraint(leftOperand, rightOperand, LessThanOrEqual)
⇔ leftOperand ≤ rightOperand
ComparisonConstraint(leftOperand, rightOperand, LessThan)
⇔ leftOperand < rightOperand

ComparisonConstraint(leftOperand, rightOperand,GreaterThanOrEqual)
⇔ leftOperand ≥ rightOperand
ComparisonConstraint(leftOperand, rightOperand,GreaterThan)
⇔ leftOperand > rightOperand

ComparisonConstraint(leftOperand, rightOperand,Equal)
⇔ leftOperand = rightOperand

Due to the simplicity of this constraint, no explicit example is given.

SporadicConstraint

The SporadicConstraint takes 5 attributes

event set of events
lower T
upper T
jitter T

minimum T

and is defined as combination of the RepetitionConstraint and the RepeatConstraint as

SporadicConstraint(event, lower, upper, jitter,minimum)
⇔ RepetitionConstraint(event, lower, upper, 1, jitter)
∧RepeatConstraint(event,minimum,∞, 1)

The second part of the definition, using the RepeatConstraint, ensures that all events in event
lay at least minimum apart. The application of the RepetitionConstraint generates a set of
events X that lay between lower and upper apart from each other. For each point in time in
X, there must be exactly one timestamp in event that is not before the corresponding element
of X and not later than jitter after that.
Figure 2.14 shows a application of the SporadicConstraint with the attributes lower = 2,
upper = 2.5, jitter = 1, minimum = 2 and event = {1, 3.5, 6, 8.2, 10.5, ...}. Like in the
RepetitionConstraint, the exact position of the timestamps in X is variable and may need to
be changed due to later entries in event.

18

2.2 Timing Augmented Description Language[BFL+12]

0 1 2 3 4 5 6 7 8 9 10 11

event min. min. min. min. min.

X
jitter jitter jitter jitter jitter

lower
upper

lower
upperlower

upper
lower
upper

Figure 2.14: Example SporadicConstraint - lower = 2, upper = 2.5, jitter = 1, minimum = 2

0 1 2 3 4 5 6 7 8 9 10 11

event
min. min. min. min.

X
jitter

period

jitter

period

jitter

period

jitter

period

Figure 2.15: Example PeriodicConstraint - period = 3, jitter = 1, minimum = 2.5

PeriodicConstraint

The PeriodicConstraint takes 4 attribute

event set of events
period T
jitter T

minimum T

and defines a specialized form of the SporadicConstraint

PeriodicConstraint(event, period, jitter,minimum)
⇔ SporadicConstraint(event, period, period, jitter,minimum)

The variable timestamps in the set X are following a strictly periodic pattern, where subse-
quent elements of this set lay exactly period apart. Each element of event lays between one
element of X and jitter after that. Again, there must be a bijective mapping between the
elements of event and X.
In figure 2.15, the PeriodicConstraint with the attributes period = 3, jitter = 1, minimum =
2.5 and event = {1.2, 4.0, 8, 10.6, ...} is visualized. The timestamps of X lay exactly period
apart and the events behind that in the previously described way. Also, the minimum time
distance between all points of time in event is minimum.

19

2 Timing Constraints

PatternConstraint

The PatternConstraint takes 5 attributes

event set of events
period T
offset set of T
jitter T

minimum T

and is defined as

PatternConstraint(event, period, offset1, ..., offsetn, jitter,minimum)
⇔ ∃X : PeriodicConstraint(X, period, 0, 0)
∧ ∀i : DelayContraint(X, event, offseti, offseti + jitter)
∧RepeatConstraint(event,minimum,∞, 1)

This constraint can be understood as a modification of the PeriodicConstraint, as it describes
periodic behavior, but not from single events, but from groups of |offseti| subsequent events,
that follow specific time distances (specified by offset) after the strictly periodic timestamps
of X.
There is a major weak spot in the definition of this constraint because the set X can be set
to the empty set. In this case, the part of the definition, which uses the PeriodicConstraint
and the DelayContraint, is always satisfied, irrespective of the events in event. Therefore, the
PatternConstraint only ensures the minimal distance between two events, which should not
be the purpose of this constraint. The obvious countermeasure to this problem would be to
restrict X in a way that ensures that it is not empty and the first element of X must lay before
the first event occurrence. The textual description of the constraint, which says literally the
”PatternConstraint requires the constrained event occurrences to appear at a predetermined
series of offsets from a sequence of reference points” contradicts this countermeasure because
the DelayConstraint allows additional events in the target events with no matching source
event. Therefore, any event occurrences besides the events following the offset scheme would
be allowed, which conflicts with the citation. Because of this problem, the PatternConstraint
is redefined as

PatternConstraint(event, period, offset1, ..., offsetn, jitter,minimum)
⇔ ∃X : PeriodicConstraint(X, period, 0, 0)
∧ ∀i : StrongDelayContraint(X, event, offseti, offseti + jitter)
∧RepeatConstraint(event,minimum,∞, 1)

for the scope of this thesis. The usage of the StrongDelayConstraint, instead of the Delay-
Constraint, ensures that each event occurrence is following the time distances defined by the
offsets. This notion of the PatternConstraint is also carried by the described relations between
the TADL2 timing constraints and the AUTOSAR Timing Extensions, which were done as
part of the development of TADL2[BFL+12]. These descriptions equate the PatternConstraint
and AUTOSARs ConcretePatternEventTriggering, which is clearly defined in the way of this
redefinition.
Figure 2.16 shows an application of the PeriodicConstraint with the attributes period = 5,
offset = {1, 2, 2.5}, jitter = 0.5, minimum = 0.5 and

20

2.2 Timing Augmented Description Language[BFL+12]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

event
min. min.min. min. min. min. min.min.min.

X

offset1
jitter

offset2
jitter

offset3
jitter

offset1
jitter

offset2
jitter

offset3
jitter

offset1
jitter

offset2
jitter

offset3
jitter

period period period

Figure 2.16: Example PatternConstraint - period = 5, offset = {1, 2, 2.5}, jitter = 0.5,
minimum = 0.5

event = {1.2, 2.2, 2.8, 6, 7, 8, 11.5, 12, 12.5, ...}. Like in the previously described constraint, the
exact position of all points in time of X may change due to later timestamps of event.

ArbitraryConstraint

The ArbitraryConstraint takes 3 attributes

event set of events
minimum set of T
maximum set of T

where |minimum| = |maximum|. It is defined as

ArbitraryConstraint(event,minimum1, ...,minimumn,maximum1, ...,maximumn)
⇔ ∀i : RepeatConstraint(event,minimumi,maximumi, i)

The idea behind the ArbitraryConstraint is to describe the time distance between each event
and several following events. The first entry of minimum and maximum defines the distance
between every event and its direct successor. The second entry, where the span attribute
of the RepeatConstraint is 2, defines the distance between one event and its next but one
successor and so on.
Figure 2.17 shows an example of the ArbitraryConstraint with the attributes minimum =
{1, 2, 3}, maximum = {5, 6, 7} and event = {1, 2, 3, 5, 8, 10, ...}. The time distances between
subsequent events with 0, 1, 2 and more skipped events are shown in table 2.1. The relevant
distances are written in bold font. The time distances are matching the ranges given by the
minimum- and maximum attributes.

21

2 Timing Constraints

1 2 3 5 8 10
1 0 1 2 4 7 9
2 0 1 3 6 8
3 0 2 5 7
5 0 3 5
8 0 2
10 0

Table 2.1: Time distances as seen in figure 2.17

0 1 2 3 4 5 6 7 8 9 10 11

event

minimum1

maximum1

minimum2

maximum2

minimum3

maximum3

Figure 2.17: Example ArbitraryConstraint - minimum = {1, 2, 3} and minimum = {4, 5, 6}

22

2.2 Timing Augmented Description Language[BFL+12]

0 1 2 3 4 5 6 7 8 9 10 11

event
min. min. min. min. min. min.

length

Figure 2.18: Example BurstConstraint - length = 5, maxOccurences = 3 minimum = 0.8

BurstConstraint

The BurstConstraint takes 4 attributes

event set of events
length T

maxOccurrences integer

minimum T

and is defined as

BurstConstraint(event, length,maxOccurrences,minimum)
⇔ RepeatConstraint(event, length,∞,maxOccurrences)
∧RepeatConstraint(event,minimum,∞, 1)

This constraint defines the maximum number of events in a time interval of the given length.
Additionally, all subsequent events must be at least minimum apart. Therefore, the intuition
is different from the AUTOSAR BurstPatternEventTriggering, where clusters of events are
described. A complete comparison of these constraints will be made in section 2.2.3.
In figure 2.18, an application of the BurstConstraint with the attributes length = 5,
maxOccurrences = 3, minimum = 0.8 and event = {1, 2, 3, 7, 8, 9} is visualized. In every
interval of length 5, there are three or fewer events. Also, all subsequent events lay at least
0.8 apart. Therefore, the constraint is fulfilled.

ReactionConstraint

The ReactionConstraint takes 3 attributes

scope EventChain

minimum T
maximum T

and is defined as

23

2 Timing Constraints

0 1 2 3 4 5 6 7 8 9 10 11

stimulus
min. min.

min.

min.
max. max.

max.

max.

response

Figure 2.19: Example ReactionConstraint - minimum = 1, maximum = 3

ReactionConstraint(scope,minimum,maximum)
⇔ ∀x ∈ scope.stimulus : ∃y ∈ scope.response :
x.color = y.color
∧ (∀y′ ∈ scope.response : y′.color = y.color ⇒ y ≤ y′)
∧minimum ≤ y − x ≤ maximum

The definition says that after every event x of scope.stimulus, there is an event y in scope.res-
ponse with the same color. The time distance between these events must be at leastminimum
and at most maximum. Additional events with the same color as y in scope.response are
allowed if they lay behind y. The definition implies that additional events with other colors
are allowed in scope.response, but not in scope.stimulus.
A visualized example with the attributes minimum = 1, maximum = 3, scope.stimulus =
{(1, red), (5, green), (5.5, purple), (8, orange)} and scope.response = {(0.8, blue), (2.1, red),
(4.5, blue), (6.6, purple), (6.7, purple), (9.5, purple), (7.5, green), (10, orange)} can be seen in
figure 2.19. The red stimulus event is followed by the red response-event at 2.1, the green
stimulus event at 5 by the response event at 7.5 and so on. The blue response events at 1
and 4.5 are additional events without an associated stimulus event. The purple events at 6.7
and 9.5 are the second and third events of this color in scope.response Therefore, their time
distance to the stimulus event with the same color is irrelevant.

AgeConstraint

The AgeConstraint takes 3 attributes

scope EventChain

minimum T
maximum T

and is defined as

AgeConstraint(scope,minimum,maximum)
⇔ ∀y ∈ scope.response : ∃x ∈ scope.stimulus :
x.color = y.color
∧ (∀x′ ∈ scope.stimulus : x′.color = x.color ⇒ x′ ≤ x)
∧minimum ≤ y − x ≤ maximum

24

2.2 Timing Augmented Description Language[BFL+12]

0 1 2 3 4 5 6 7 8 9 10 11

stimulus
min. min.

min. min.
max. max.

max. max.
response

Figure 2.20: Example AgeConstraint - minimum = 1, maximum = 3

The AgeConstraint is a turned around counterpart to the ReactionConstraint. For every event
of scope.response, there must be an event with the same color in scope.stimulus. The time
distance between these events must be between minimum and maximum. Additional events
are only allowed in scope.stimulus and only before the event that matches with a response
event, which is implied by the correctness of the event chain.
Figure 2.20 shows an application of the AgeConstraint with the attributes minimum = 1,
maximum = 3, scope.stimulus = {(0.8, blue), (1, red), (2, green), (4.5, green), (5, green),
(5.5, purple), (8, orange)} and scope.response = {(3.5, red), (7.5, green), (6.6, purple),
(10, orange)}. The blue timestamps are additional events without matching events in
scope.response.

OutputSynchronizationConstraint

The OutputSynchronizationConstraint takes 2 attributes

scope Set of EventChain
tolerance T

where all elements of scope have the same stimulus event set. It is defined as

OutputSynchronizationConstraint(scope1, ..., scopen, tolerance)
⇔ ∀x ∈ scope1.stimulus : ∃t : ∀i : ∃y ∈ scopei.response :
x.color = y.color
∧ (∀y′ ∈ scopei.response : y′.color = y.color ⇒ y ≤ y′)
∧ 0 ≤ y − t ≤ tolerance

The definition says that after each event x in scope1.stimulus, there must be an interval with
the length of tolerance, in which every scopei.response must have an event y with the same
color as x. Additional response events with this color are only allowed after y. Figure 2.21
shows an example of the OutputSynchronizationConstraint with the attributes tolerance = 1,
scope[1].stimulus = scope[2].stimulus = scope[3].stimulus = {(1, red), (4, green), (5, purple)},
scope[1].response = {(2, red), (6, purple), (6.2, purple), (8.2, green)},
scope[2].response = {(2.6, red), (6.2, purple), (8, green), (10.5, green)},
scope[3].response = {(2.3, red), (6.5, purple), (8.5, green)}.

25

2 Timing Constraints

0 1 2 3 4 5 6 7 8 9 10 11

scope[1].stimulus

scope[1].response
scope[2].response
scope[3].response

t & tolerance

Figure 2.21: Example OutputSynchronizationConstraint - tolerance = 1

InputSynchronizationConstraint

The InputSynchronizationConstraint takes 2 attributes

scope Set of EventChain
tolerance T

where all elements of scope have the same response event set. It is defined as

InputSynchronizationConstraint(scope1, ..., scopen, tolerance)
⇔ ∀y ∈ scope1.response : ∃t : ∀i : ∃x ∈ scopei.stimulus :
x.color = y.color
∧ (∀x′ ∈ scopei.stimulus : x′.color = x.color ⇒ x ≤ x′)
∧ 0 ≤ x− t ≤ tolerance

The InputSynchronizationConstraint is a counterpart of theOutputSynchronizationConstraint,
as the stimulus events must be synchronized, not the response events.
Figure 2.22 contains an example of the InputSynchronizationConstraint with the attributes
tolerance = 1
scope[1].stimulus = {(1, red), (1.5, green), (4.6, green), (8, purple)}
scope[2].stimulus = {(1.2, red), (4, green), (8.3, purple), (8.5, purple)}
scope[3].stimulus = {(1.5, red), (4, green), (8.9, purple)}
scope[1].response = scope[2].response = scope[3].response = {(2.5, red), (6, green), (10, purple)}

2.2.3 Comparison TADL2 - AUTOSAR Timing Extension

As said before, the TADL2 Timing Constraints and the AUTOSAR Timing Extensions are
compatible in parts. Many of the AUTOSAR Timing Extension can be expressed as equiva-
lent combinations of the TADL2 Timing Constraints. In [BFL+12], the relationship between
these constraints is shown, but this comparison is based on an outdated AUTOSAR version.
Therefore each AUTOSAR Timing Extensions will be listed in this chapter, and it will be
explained if and how they can be expressed using TADL2 Timing Constraints.
The types used in the AUTOSAR Timing Extension are similar to the ones in TADL2. TADL2

26

2.2 Timing Augmented Description Language[BFL+12]

0 1 2 3 4 5 6 7 8 9 10 11

scope[1].stimulus
scope[2].stimulus
scope[3].stimulus

scope[1].response

t & tolerance

Figure 2.22: Example InputSynchronizationConstraint - tolerance = 1

Events are called TimingDescriptionEvent in AUTOSAR. The same goes for EventChains,
which are called TimingDescriptionEventChains. A larger difference can be seen in the def-
inition of time. While TADL2 defines time as real numbers, the time definition used in the
AUTOSAR Timing Extension can also be multidimensional, for example, when the real time
and the crankshaft angle are regarded. For simplification, all timestamps are considered as
real numbers in the following, but an extension to multidimensional time stamps is possible, as
AUTOSAR requires a strict order between all time stamps. Some of the AUTOSAR Timing
Extensions are defined on Executable Entities, which describe things, that can be executed.
An example of this is a program routine, which starts and finishes at certain times. In the
analysis of their timing, only striking points in time of these entities are relevant, like the
start and endpoints or interruptions. Therefore Executable Entities can be transformed into
events if needed.

It should be noted that the set of TADL2 timing constraints are not equal to the AUTOSAR
Timing Extension and that there are constraints that cannot be expressed using the corre-
sponding counterpart.

PeriodicEventTriggering

The PeriodicEventTriggering defined in AUTOSAR with the attributes
(event, period, jitter,minimumInterArrivalT ime) is equivalent to the TADL2
PeriodicConstraint with the same attributes.

SporadicEventTriggering

AUTOSARs SporadicEventTriggering with the attributes
(event, jitter,maximumInterArrivalT ime,minimumInterArrivalT ime, period) is equiva-
lent to the TADL2 SporadicConstraint, except for the names of the attributes:
lower=̂period
upper=̂maximumInterArrivalT ime
jitter=̂jitter
minimum=̂minimumInterArrivalT ime

27

2 Timing Constraints

ConcretePatternEventTriggering

The idea behind the ConcretePatternEventTriggering from AUTOSAR is the same as behind
TADL2s PatternConstraint, but some details are different. Both constraints define a periodic
behavior and offsets that describe time distances between the periods and the actual events.
The main difference is the jitter attribute. In AUTOSARs ConcretePatternEventTriggering,
the patternJitter attribute defines the allowed deviation from the start points from the peri-
odic repetitions. In TADL2, the jitter value describes the deviation between the offsets and
the actual event.
The ConcretePatternEventTriggering from AUTOSAR also defines the attribute pattern-
Length, which defines the intervals’ length, in which the clusters of events will occur. It
is constrained by

0 ≤ max(offset) ≤ patternLength
∧ patternLength+ patternJitter < patternPeriod

The patternLength attribute can not be described with TADL2 timing constraints, as it would
require to determine the distance of filtered events, which is not possible with the TADL2
constraints.
TADL2 defines the minimum attribute for the PatternConstraint that describes the minimal
time distance between subsequent events. In AUTOSAR, this must be described by using the
ArbitraryEventTriggering, where minimumDistance1 is minimum and maximumDistance1
is ∞.

BurstPatternEventTriggering

The BurstPatternEventTriggering defined in AUTOSAR and the BurstConstraint defined in
TADL2s share the same target. They define a maximal number of events in time intervals
of a specific length and the minimal distance of events. Additionally to the attributes of the
BurstConstraint, the BurstPatternEventTriggering define more attributes. Periodic repeti-
tions of burst clusters and the minimal number of events in each cluster can also be defined,
which are no part of the TADL2 definition.
A stream fulfilling the TADL2 BurstConstraint also fulfills the AUTOSAR BurstPattern-
EventTriggering, if the attributes are renamed to the AUTOSAR equivalents (length →
patternLength, maxOccurences → maxNumberOfOccurences, minimum → minimum-
InterArrivalT ime), and the other attributes remain undefined. A stream fulfilling AU-
TOSARs BurstPatternEventTriggering does not necessarily fulfill the BurstConstraint. The
reason for this is that the bursts always start at events in the BurstConstraint. In the Burst-
PatternEventTriggering, those can start at any point in time.

ArbitraryEventTriggering

AUTOSARs ArbitraryEventTriggering is similar to the ArbitraryConstraint as defined in
TADL2, but the ArbitraryEventTriggering allows to set a list of ConfidenceIntervals, to de-
scribe the probability, how far the events may lay apart. These probabilities can not be
expressed in TADL2.

28

2.2 Timing Augmented Description Language[BFL+12]

LatencyTimingConstraint

The LatencyTimingConstraint of AUTOSAR takes 5 attributes, a latency type latencyConstr-
aintType ∈ {age, reaction}, three time values maximum, minimum and nominal and an
event chain scope, consisting of the stimulus and response events. The nominal-value is not
defined in the TADL2 constraint. If this attribute is not required for the specification, the
LatencyTimingConstraint can be expressed with the AgeConstraint defined in TADL2 if the
latencyConstraintType is age. If the latencyConstraintType is reaction, it can be expressed
by the reactionConstraint.

AgeConstraint

The goal of the AgeConstraint in AUTOSAR is to define a minimal and maximal age of an
event at the point in time when it is processed. There is no counterpart to this in the TADL2
constraints because the point in time when the event is processed is unknown. If this point in
time is known, AUTOSARs AgeConstraint can be expressed using TADL2s AgeConstraint,
but in that case, it could also be expressed using AUTOSARs LatencyTimingConstraint.

SynchronizationTimingConstraint

The SynchronizationTimingConstraint is similar to TADL2s SynchronizationConstraint, Strong-
SynchronizationConstraint, OutputSynchronizationConstraint, InputSynchronizationConstraint
or combinations of them, depending on the attributes. Table 2.2 shows with which attributes
the SynchronizationTimingConstraint is equivalent to which TADL2 Constraint(s).

SynchronizationPointConstraint

The SynchronizationPointConstraint describes that a list of executables and a set of events
or executable entities, defined in sourceEec and sourceEvent, must finish and occur before
the executables and events in targetEec and targetEvent will start or occur. There is no
counterpart to this in the TADL2 constraints.

OffsetTimingConstraint

The OffsetTimingConstraint, defined in the AUTOSAR Timing Extensions, is semantically
the same as the TADL2 DelayConstraint, just some attributes are named differently. The
maximum attribute of the OffsetTimingConstraint is named upper and theminimum attribute
lower in the DelayConstraint.

29

2 Timing Constraints

event
Occurrence-

Kind

scope/
scopeEvent

synchronization-
ConstraintType tolerance TADL2 Constraints

multiple
Occurrences scopeEvent not set tolerance SynchronizationConstraint

(scopeEvent, tolerance)

single
Occurrences scopeEvent not set tolerance

Strong-
SynchronizationConstraint

(scopeEvent, tolerance)

multiple
Occurrences scope response

Synchronization tolerance

Output-
SynchronizationConstraint

(scope, tolerance)
∧ SynchronizationConstraint

(scope.response, tolerance)

single
Occurrences scope response

Synchronization tolerance

Output-
SynchronizationConstraint

(scope, tolerance)
∧ Strong-

SynchronizationConstraint
(scope.response, tolerance)

multiple
Occurrences scope stimulus

Synchronization tolerance

Input-
SynchronizationConstraint

(scope, tolerance)
∧ SynchronizationConstraint

(scope.stimulus, tolerance)

single
Occurrences scope stimulus

Synchronization tolerance

Input-
SynchronizationConstraint

(scope, tolerance)
∧ SynchronizationConstraint

(scope.stimulus, tolerance)

Table 2.2: SynchronizationTimingConstraint ⇔ TADL2 Constraints

30

2.2 Timing Augmented Description Language[BFL+12]

ExecutionOrderConstraint

The goal of ExecutionOrderConstraint of the AUTOSAR Timing Extensions is used to de-
scribe the order of events or the execution order of executable entities, defined as ordere-
dElement attribute. There is no constraint in TADL2 that describes exactly this, but if the
ExecutionOrderConstraint is used to describe only the order of events, it can be described as

OrderConstraint(orderedElement1, orderedElement2)
∧ ... ∧
OrderConstraint(orderedElementn−1, orderedElementn)

If the ExecutionOrderConstraint is used for executable entities, each executable entity must
be turned into one or more events to be described via TADL2 Constraints, depending on
the other attributes. For example, if the attribute executionOrderConstraintType is set to
ordinaryEOC, the start and finish points of the entities define the observed events.

ExecutionTimeConstraint

The idea behind the ExecutionTimeConstraint is similar in AUTOSAR and TADL2. Both
describe the minimal and maximal allowed runtime of an executable entity, not counting
interruptions. AUTOSARs ExecutionTimeConstraint is defined directly on an executable
entity and the TADL2 constraint on events describing the start, stop, preemption and resume
timestamps. Therefore the executable entity must be turned into these events to express the
AUTOSAR ExecutionTimeConstraint via TADL2 constraints. The start and stop points of
the executable must be turned into these events, the start and stop points of the interruptions
must be turned into the events in the preempt and resume event sets. If external calls should
be excluded from the runtime (which can be set in AUTOSARs ExecutionTimeConstraint),
they must also be transferred into the preempt and resume event sets.

31

3 Monitoring Timing Constraints on possibly
infinite Streams

The goal of this thesis is to implement online monitors for the TADL2 Timing Constraints on
possibly infinite streams. An online monitor checks the current execution of a system, parallel
to its execution. Because every computing system has finite memory resources and the online
monitor should be able to process at least as many events as occur in the stream in a specific
amount of time, not every property can be monitored in an online monitoring setting. In this
chapter, the term Simple Monitorability will be introduced, which ensures that monitoring a
property on infinite streams is possible with finite memory resources and finite runtime per
event. As an introduction into the setting, some related work will be described, inter alia
TeSSLa, the programming language which is used for the implementation.

3.1 Related Work

3.1.1 Runtime Verification

As monitoring plays a major role in runtime verification, a short overview of this will be
given. The definitions of [LS09] are used, in which Runtime Verification is a technique that
can detect deviations between the run of a system and its formal specification by checking
correctness properties. A run, which might also be called trace, is a sequence of system states,
which might be infinite. An execution is a finite prefix of this run. A monitor reads the trace
and decides whether it fulfills the correctness properties or violates them.
A distinction is made between offline and online monitoring. Offline monitoring is using a
stored trace that has been recorded before. Therefore, the complete trace (or the complete
part of the trace that should be analyzed) is known in the analysis. Online monitoring checks
the properties while the system is running, which means that the analysis must be done
incrementally on a growing prefix of the trace. Because of memory and time limitations, not
all previous states can be reread in online monitoring. More detailed contemplations on the
limitations of online monitors will be given later in this chapter.

3.1.2 TeSSLa

TeSSLa (Temporal Stream-based Specification Language) [LSS+18] is a specification lan-
guage built for stream-based runtime verification. In TeSSLa, all streams in one specification
must have a common global clock. Events or changes in a signal may occur in streams ir-
regularly, independent of events in other streams. The verified streams are either considered
as a signal, which remains unchanged for a certain amount of time (called piecewise constant
signals), or they are event streams, in which each event consists of a timestamp and a data
value. Both variants can be transferred into each other, as described in [LSS+18]. A formal

33

3 Monitoring Timing Constraints on possibly infinite Streams

definition of the TeSSLa language core can be found in [CHL+18]. A short overview of the
formal definition of event streams will be given next.
An event stream is defined over a time domain T and a data domain D and is a possibly
infinite sequence s = a0a1... ∈ SD = (T · D)ω ∪ (T · D)+ ∪ (T · D)∗ · (T∞ ∪ T · {⊥}) where
a2i < a2(i+1) for all i with 0 < 2(i + 1) < |s| (0 < 2(i + 1) < ∞ if the sequence is infinite).
While the data domain D can be bounded (e.g., boolean or integer) or unbounded (e.g., maps
or lists), the time domain T is a totally ordered semi-ring (T, 0, 1,+, ∗,≤) that is not negative.
In TeSSLa, computations are done in timestamps, in which new events are arriving. Based
on the specification, output streams are generated with events on the same timestamps as the
used input streams, but filtering is possible, where not all input events produce output events.
With the delay-operator, it is possible to create new timestamps. If the delay-operator is not
used in a specification, the output streams only contain events in timestamps, which also had
events in the input streams. These specifications are called timestamp conservative.
From a memory perspective, streams may be understood as piecewise constant signals. Only
the timestamp and the data value of the youngest event of one stream can be directly ac-
cessed. This event is available until the next event of this stream occurs. With the use of
the last-operator, which can be used recursively, the data value of the previous event can be
accessed. Another important operator is the lift-operator, which applies a function on data
values (for example, the + operator) on the data value of every event of one or more streams
and creates a new stream with events at the same timestamps and the results of the function
as data values.

3.1.3 LOLA[DSS+05]

[DSS+05] introduces LOLA, a specification language for the observation of synchronous event
streams, comparable to TeSSLa. The main difference between these languages is that TeSSLa
is designed to monitor input streams, which are not synchronized, which means their events
may occur independently from each other. Because the events of the timing constraints defined
in TADL2 and AUTOSAR are also not synchronized, TeSSLa is more suitable for monitoring
them.
[DSS+05] also defines the term of Efficiently Monitorable Specifications, which describes that
the worst case-memory requirement of a LOLA Specification is independent of the length of
the observed trace.
Another main difference to TeSSLa is that in the standard variant of LOLA, it is not possible
to create new time stamps like in TeSSLa.

3.1.4 Semantics of LTL3[ABLS05] and RV-LTL[BLS07]

In Runtime Verification, the output of a monitor is based on a finite prefix on a possibly
infinite trace of system states. On many of these prefixes, it cannot be finally decided if
this run the system fulfills a given property. Because of this, a binary boolean output of a
monitor may be misleading because it cannot express if the output is final or may change due
to upcoming system states.

Definition 1 (LTL3[ABLS05]). [ABLS05] introduces a three-valued semantic for Runtime
Verification and LTL (Linear Temporal Logic). This semantic, LTL3 called, is defined on a
finite trace u = a0...an−1 ∈ Σ∗ of length n. A LTL3 formula φ on trace u at position i < n is

34

3.1 Related Work

defined as:

[u, i |= ϕ]3 =


> if ∀σ ∈ Σω : uσ, i � ϕ
⊥ if ∀σ ∈ Σω : uσ, i 2 ϕ
? otherwise

If the prefix σ fulfills the formula φ, [u, i |= φ] is >. If it doesn’t fulfill the formula, [u, i |= φ]
is ⊥. In any other case, [u, i |= φ] is defined as ?.

[BLS07] introduces a four-valued semantic called RV-LTL. It is defined as an extension of
LTL3, where the ?-value is further split.

Definition 2 (RV-LTL). Again, let u = a0...an−1 ∈ Σ∗ be a finite trace of length n, i < n,
and ϕ be a RV-LTL formula. The truth value of this formula is defined as:

[u, i |= ϕ]RV =


> if [u, i � ϕ′]3 = >
⊥ if [u, i � ϕ′]3 = ⊥
>p if [u, i � ϕ′]3 =? ∧ [u, i � ϕ]F = >
⊥p if [u, i � ϕ′]3 =? ∧ [u, i � ϕ]F = ⊥

where φ′ is a modified form of φ, in which the weak next-state operator is replaced by the strong
next-state operator. [u, i � ϕ]F , as defined in [LPZ85], is the binary (two valued boolean) truth
value of the formula ϕ over u at position i.

> and ⊥ are final truth values, which will not change due to upcoming symbols of u. >p and
⊥p may change based on upcoming symbols of u, but on the prefix u of the length i, ϕ is
(not) fulfilled.

3.1.5 Transducer Models

In section 3.2, some transducer models are used, which will be introduced next.

Definition 3 (Deterministic Finite State Transducer[Ber79]). A Deterministic Finite State
Transducer(DFST) is a 5-Tuple (Σ,Γ, Q, q0, δ), where

• Σ is an input alphabet

• Γ is an output alphabet

• Q is a finite set of states, with initial state q0

• δ : Q× Σ→ Q× Γ is a state transition function

The run of a DFST for an input word w = w0w1w2... ∈ Σ∞ is a sequence s0
w0/o0−−−−→ s1

w1/o1−−−−→
s2..., where s0 = q0, δ(si, wi) = (si+1, oi), i ≥ 0 and the output word o = o0o1o2... ∈ Γ∞.

35

3 Monitoring Timing Constraints on possibly infinite Streams

DFSTs are similar to deterministic finite automata, with two major differences. First, the
transition function outputs a symbol of Γ at every transition and second, the states of a
DFST are not accepting. The transducer transduces an input word, not accepting or rejecting
it.

Timed Deterministic Finite State Transducers(TDFST) are an extension of DFST. The exten-
sion from DFST to TDFST is done analogous to the extension of automata to timed automata
in [AD92].

Definition 4 (Timed Deterministic Finite State Transducer). Timed Deterministic Finite
State Transducers(TDFST) are a 6-Tuple (Σ,Γ, Q, q0, C, δ), where

• Σ is an input alphabet

• Γ is an output alphabet

• Q is a finite set of states, with initial state q0

• C is a set of clocks

• δ : Q×Σ×Θ(C)→ Q×2C×Γ is a state transition function, where for all (qa, σa, ϑa, q
′
a, Ra, γa),

(qb, σb, ϑb, q
′
b, Rb, γb) ∈ δ the conjunction ϑa ∧ ϑb is unsatisfiable.

Let vi : C → R be functions that map each clock to its current value.

The run of a TDFST for an input word w = (w0, t0)(w1, t1)(w2, t2)..., wi ∈ Σ∞ is a sequence
s0, v0

(w0,t0),ϑ0,r0−−−−−−−−→
o0

s1, v1
(w1,t1),ϑ1,r1−−−−−−−−→

o1
s2, ... with output o = o0o1o2... ∈ Γ∞, if, and only if,

• s0 = q0

• ∀c ∈ C : v0(c) = 0

• ∀i ≥ 0 :

– δ(si, wi, ϑi) = (si+1, ri, oi)

– ∀c ∈ ri : vi+1 = vi[c← ti]

– ti, vi |= ϑi

In addition to DFSTs, the state transition function of TDFSTs takes a set of clock constraints
into account when defining the next state of the transducer.

3.2 Monitorability

In this section, the term Simple Monitorability is introduced. It represents a stricter alter-
native to Efficiently Monitorable Specifications mentioned above by also restricting the al-
lowed runtime per timestamp with events. Simple Monitorability ensures that the worst-case
memory consumption and the worst-case runtime per input event of a monitor are bounded
independently of the input streams.

36

3.2 Monitorability

Preliminary - Timestamps

As we consider possibly infinite streams, the time value of events can also grow into infinity.
This is problematic because it leads to infinite memory requirements, which cannot be met,
especially not in the context of online monitoring. Therefore, the time domain T is restricted
by the following constraints:

1. The first used timestamp has the value t0 = 0

2. All used timestamps must be smaller than tmax.
tmax must be big enough, so it is not reached in practical use 1.

3. The distance between two subsequent time values is predetermined but arbitrarily small.

4. The number of possible timestamps is significantly larger than the number of events.

Because of the restrictions in 2., 3. and 4., the possible number of events in a specific time
interval remains unaffected.

3.2.1 Simple Monitorability

The concept behind the definition of Simple Monitorability is that a monitor for event streams
is defined by three parts, a state transition function, a state defining the memory of the mon-
itor and an output function. At each timestamp containing input events, the new state is
created by applying the state transition function to the previous state and the input events
of the current timestamp. The output function is applied to the new state and the previous
output and evaluates whether the specification is met until this timestamp.
All following definitions of streams and functions follow the syntax and semantic from [CHL+18].
The left half of figure 3.1 visualizes the definitions, which will be done now.

Definition 5 (Simple Monitorability). A property is called Simple Monitorable if a monitor,
which monitors the property correctly, can be constructed in the following way:

Input Streams Let S1, S2, ..., Sn be the input streams with
∀i : Si = (T · Di)ω ∪ (T · Di)+ ∪ (T · Di)∗ · (T∞ ∪ T · {⊥})

State Let Sstate with Sstate = (T · Dstate)+ ∪ (T · Dstate)∗ be the state stream of the monitor.
The cardinality of Dstate is finite, the worst-case memory requirement is bounded inde-
pendently of the input streams.
Further let f : S1 × S2 × ...× Sn × Sstate → Sstate be a state transition function, which
defines the state stream in an incremental fashion:
∀t ∈ T∃i ∈ {1, 2, ..., n} : Si(t) ∈ Di :
Sstate(t) = f(S1(t), S2(t), ..., Sn(t), last(Sstate,merge(S1, S2, ..., Sn))(t))
The worst-case runtime of f is bounded independently of the input streams.

Output Stream Let Soutput = (T · {>,>p,⊥p,⊥})+ ∪ (T · {>,>p,⊥p,⊥})∗
be the output stream of the monitor, which is defined via a function
g : Sstate × Soutput → Soutput

which incrementally defines the output stream:

1for example, a 64-bit unsigned integer variable is enough to cover nanoseconds for 584.55 years

37

3 Monitoring Timing Constraints on possibly infinite Streams

∀t ∈ T∃Sstate(t) ∈ Di :
Soutput(t) = g(Sstate(t), last(Soutput, Sstate)(t))
The worst-case runtime of g is bounded independently of the input streams.

In every timestamp with input events, the state transition function f is applied to the current
youngest input events and the previous event of the state stream Sstate. The output of f ,
combined with the timestamp of the latest input event, defines the new event in Sstate. The
output of function g is applied to the current state and the previous output and produces
the new output. It should be noted that a monitor, which follows this scheme is timestamp
conservative.
For any monitor created in the way described above, a Deterministic Finite State Transducer
(DFST) can be constructed, which is equivalent to the combination of a finite state and the
state transition function. For that, let

• Q = Dstate be the finite set of possible states with initial state q0

• Σ = ((D1 × T), ..., (Dn × T)) be the input alphabet

• Γ = Dstate be the output alphabet and

• δ : Q× Σ→ Q× Γ be the transition function.

For the output stream in combination with the output function, an equivalent DFST can be
constructed too. For that, let

• Q′ = {>,>p,⊥p,⊥} be the states with initial state q ∈ Q′

• Σ′ = Dstate × T be the input alphabet

• Γ′ = {>,>p,⊥p,⊥} be the output alphabet and

• δ′ : Q′ × Σ′ → Q′ × Γ′ be the transition function.

It should be noted that both transducers could be combined into one transducer without
changing the expressiveness. This is not done in order to keep analogies to the following
definition.

3.2.2 Simple Monitorability With Delay

Most of the TADL2 constraints cannot be monitored correctly in a timestamp conservative
way. For example, the RepeatConstraint with the attributes lower = upper = 4 and span = 1
expects subsequent events to have a time distance of 4. If one event is missing, the output of a
timestamp conservative monitor will remain >p, until the next input event arrives. Therefore,
the monitor cannot check the constraint correctly. Because of this problem, the definition of
Simple Monitorability is expanded by the ability to introduce exactly one new timestamp.
The following definitions are visualized in the right half of figure 3.1.

Definition 6 (Simple Monitorability With Delay). A property is called Simple Monitorable
With Delay if a monitor, which monitors the property correctly, can be constructed in the
following way:

Input Streams Let S1, S2, ..., Sn be the input streams with
∀i : Si = (T · Di)ω ∪ (T · Di)+ ∪ (T · Di)∗ · (T∞ ∪ T · {⊥})

38

3.2 Monitorability

State Let Sstate with Sstate = (T · Dstate)+ ∪ (T · Dstate)∗ be the state stream of the monitor.
The cardinality of Dstate is finite, the worst-case memory requirement of the state is
bounded independently of the input streams.
Further let f : S1 × S2 × ...× Sn × Sstate → Sstate be a state transition function, which
defines the state stream in an incremental fashion: ∀t ∈ T∃i ∈ {1, 2, ..., n} : Si(t) ∈ Di :
Sstate(t) = f(S1(t), S2(t), ..., Sn(t), last(Sstate,merge(S1, S2, ..., Sn))(t))
The worst-case runtime of f is bounded independently of the input streams.

Statetimeout Let Sstatetimeout with Sstatetimeout = (T · (Dstate ∪ {timeout}))+ ∪ (T · (Dstate ∪
{timeout}))∗ be a second state stream, which is defined via a delay generator DelayGen :
Sstate → Sstatetimeout. DelayGen has two tasks. First, it copies each input event to the
output. Second, a timer is started at every input timestamp. The duration of this
timer is dependent on the input. If the next input comes before the timer runs out,
the timer is reset and started again. If the timer runs out once, the Delay Generator
outputs the timeout signal, which is repeated at every following input and the timer is
not started again. The worst-case runtime for calculating the required delay must be
bounded independently of the input streams.

Output Stream Let Soutput = (T · {>,>p,⊥p,⊥})+ ∪ (T · {>,>p,⊥p,⊥})∗
be the output stream of the monitor, which is defined via a function
g : Sstate × Soutput → Soutput

which defines the output stream in an incremental fashion:
∀t ∈ T∃Sstate(t) ∈ Di :
Soutput(t) = g(Sstatetimeout(t), last(Soutput, Sstatetimeout)(t))
The worst-case runtime of g is bounded independently of the input streams.

A monitor, which is Simple Monitorability With Delay, is not timestamp conservative anymore
because one new timestamp can be created. Because of this characteristic, the monitor cannot
be described via (Timed) Deterministic Finite State Transducers. A modification to TDFST
is introduced to solve this problem, which allows ε-transitions, which are guarded by a clock
constraint but do not consume an input symbol to perform a state transition.

Definition 7 (Delay Generator). Let tmr : D→ T a function, which determines the required
delay period.
A Delay Generator is a 6-Tuple (Σ,Γ, Q, q0, C, δ), where

• Q = {qstart, qtimeout} ∪ {qwait,i|∀i ∈ D0} is a finite set of states with initial state qstart

• Σ = Dstate is an input alphabet

• Γ = Dstate ∪ {timeout} is an output alphabet

• C = {c} is a set of exactly one clock and

• δ : Q× (Σ ∪ {ε})×Θ(C)→ Q× 2C × Γ a state transition function. δ is defined as:

∀i ∈ Dstate : δ(qstart, i, ∅) = (qwait,i, {c}, i)
∀i, i′ ∈ Dstate : δ(qwait,i′ , i, {c ≤ tmr(i′)}) = (qwait,i, {c}, i)
∀i ∈ Dstate : δ(qwait,i, ε, {c > tmr(i)}) = (qtimeout, ∅, timeout)

∀i ∈ Dstate : δ(qtimeout, i, ∅) = (qtimeout, ∅, timeout)

39

3 Monitoring Timing Constraints on possibly infinite Streams

The definition of the Delay Generator is visualized in figure 3.2.2. On the left side is the
initial state qstart. The first input leads to a transition to the wait state of the corresponding
input symbol. The clock c is reset in this transition.
In the figure’s middle column are the wait states, one for each possible state of the monitor.
|DI |+ 1 transitions leave each wait state. One is the ε-transition introduced above, which is
constrained in a way that the value of clock c must be equal or greater than the corresponding
delay time. This ε-transition leads to qtimeout and outputs the timeout symbol. All other
transition leaving the waiting states are done at input symbols, while the value of clock c
is less than the corresponding delay time. In these transitions, the input symbol i ∈ Dstate

is used as output and clock c is reset. In the timeout state, each input symbol leads to a
repetition of the timeout symbol.

A monitor, which monitors a property that is Simple Monitorability With Delay, is equivalent
to a combination of two DFSTs and a Delay Generator. The first DFST depicts, like before,
the combination of state and state transition function. For this transducer, let

• Q = Dstate be the finite set of possible states with initial state q0

• Σ = ((D1 × T), ..., (Dn × T)) be the input alphabet

• Γ = Dstate be the output alphabet and

• δ : Q× Σ→ Q× Γ be the transition function.

The output of this DFST is the input of the Delay Generator introduced above. The output
of the Delay Generator is the input of the second DFST, which represents the output stream
in combination with the output function, which is defined in the following way:

• Q′ = {>,>p,⊥p,⊥} are the states with initial state q ∈ Q′

• Σ′ = (Dstate ∪ {timeout})× T is the input alphabet

• Γ′ = {>,>p,⊥p,⊥} is the output alphabet and

• δ′ : Q′×Σ′ → Q′×Γ′ is the transition function, where delta(q, (timeout, t)) = false for
each possible q and t.

The output transducer is nearly the same as before. The difference is that it additionally
takes the timeout symbol as input and, in this case, always returns ⊥.

The restrictions made to the timestamps and the fact that at most one new timestamp can be
introduced in the monitor ensure that properties, which are Simple Monitorable With Delay,
can be monitored with finite resources.

3.2.3 Not Simple Monitorable

Disproving one of the characteristics of Simple Monitorability does not necessarily mean that
a property of infinite streams can not be monitored with finite resources. For example, a
property, where all parts of Simple Monitorability are fulfilled, except the worst-case runtime
of the state transition function, which is dependent on the input streams, but the average
runtime of this function over every possible trace of this function is not2. In these cases,

2In other words, the runtime over the entire trace is linear dependent on the length of the trace

40

3.2 Monitorability

D1 × T, ...,Dn × T

f

Dstate × T

DelayGen

Dstate ∪ {timeout} × T

g

{>,>p,⊥p,⊥} × T

Simple Monitorability
with Delay

D1 × T, ...,Dn × T

f

Dstate × T

g

{>,>p,⊥p,⊥} × T

Simple Monitorability

Figure 3.1: Overview Simple Monitorability - with or without delay

qstartstart

qwait,d1

...

qwait,dn

qtimeout

(d1, ∅, {c}, d1)

(dn, ∅, {c}, dn)

(ε, {c > tmr(d1)}, ∅, timeout)

(ε, {c > tmr(dn)}, ∅, timeout)

(d1, {c ≤ tmr(d1)}, {c}, d1)

A

B

(dn, {c ≤ tmr(dn)}, {c}, dn)

∀di ∈ DI : (di, ∅, ∅, timeout)

Figure 3.2: Visualization of the Delay Generator. Description A means (dn, {c <
tmr(d1)}, {c}, dn) and description B means (d1, {c < tmr(dn)}, {c}, d1).

41

3 Monitoring Timing Constraints on possibly infinite Streams

a monitor with finite resources can be constructed, which can observe arbitrary long input
traces.
If you can prove that a limitation of the memory consumption, which is required to monitor a
property correctly, cannot be given independently of the input streams or their events, it can
be safely said that a property cannot be monitored correctly on arbitrary input traces with
finite resources. This is because the memory of a computation system is always finite. If the
required storage space is dependent on the input trace, a set of input streams can always be
constructed, which requires an arbitrarily large amount of storage space, which is larger than
the available memory.
Not all TADL2 constraints are simple monitorable properties, even with delay, because they
may require memory resources, which are not independent of the events of the observed trace.
As stated before, correct online monitoring of these constraints is impossible for arbitrary
traces because infinite memory resources may be required. On the other hand, many of these
problems are solved using finite resources, hoping that the available resources are enough
to cover ”real world” inputs. A distinction is useful in these cases, because the memory or
time requirements of some properties grow continuously with every input event, and other
constraints only require infinite resources in worst-case scenarios. The ones with continuous
requirement growth will be called Always Not Simple Monitorable and the others Worst-Case
Not Simple Monitorable for the rest of this thesis.
Obviously, the constraints with continuous resource requirement growth cannot be monitored
infinitely, but the constraints that only need infinite resources in worst-cases can be monitored
in many cases.

42

4 Analysis of the Monitorability of Timing
Constraints

4.1 Monitorability of the TADL2 Timing Constraints

In this chapter, each of the TADL2 constraints will be classified into the classes Simple Mon-
itorable, Simple Monitorable with Delay and Not Simple Monitorable, as defined in chapter 3.
For the last class, it will be demonstrated if the constraint is not simple monitorable in any
cases or just in worst-case scenarios.

4.1.1 DelayConstraint

The DelayConstraint is defined as

∀x ∈ source : ∃y ∈ target : lower ≤ y − x ≤ upper.

It describes there is at least one target event for each source event, which occurs between
lower and upper after the source event. Therefore, the state that needs to be stored to
monitor the DelayConstraint is the set of source events that are younger than upper and did
not have a matching target event yet. If this information is not stored, the constraint cannot
be monitored correctly. Updates to this state and output of the monitor are done at source
and target events and at delay timestamps upper after the oldest stored source event.
The maximal required storage size of the state depends on the number of source events, which
can occur in any time interval of the length upper. An example of this worst-case situation
can be seen in figure 4.1. The attributes in this example are lower = upper = 5, source events
occur in the timestamps {1, 1.1, ..., 5.9} and target events in the timestamps {6, 6.1, ..., 11}.
At timestamp 6, all 49 source events must be stored because they are all required to generate
the correct output in this and in the following timestamps. At this timestamp, the oldest
source event can be removed from the storage because the matching target event occurs in
this timestamp. Other timestamps cannot be removed from the storage because they are
younger than lower. With every following target event, the oldest event can be removed from
the storage until every source had its matching target event at timestamp 11.
Because the time domain is understood as real numbers in TADL2, a possibly infinite number
of events can be placed in any interval of the length upper. This means that the required
storage space can grow infinitely. Therefore, the worst-case memory requirement is dependent
on the events in the trace. Consecutively, the DelayConstraint is not simple monitorable.
Because the source events are removed from the state when a matching target event occurs,
the required storage space does not grow continuously and infinite resources are only required
in worst-case scenarios. Therefore, the DelayConstraint is worst-case not simple monitorable.

43

4 Analysis of the Monitorability of Timing Constraints

source

lower=upper

target

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.1: DelayConstraint or StrongDelayConstraint with lower = upper = 5

4.1.2 StrongDelayConstraint

The difference between the DelayConstraint and the StrongDelayConstraint is that for every
source event, there must be exactly one matching target event in the StrongDelayConstraint.
Therefore, the state of the monitor is nearly the same. Like before, all source events that
did not have a matching target event yet must be stored, but at matching target events,
only one source event can be removed from the storage. The worst-case memory requirement
remains unchanged and is still dependent on the number and the placement of the input
events. Therefore the StrongDelayConstraint is worst-case not simple monitorable with the
same argumentation as for the DelayConstraint.

4.1.3 RepeatConstraint

The RepeatConstraint defines the time distance between each event and its spanth successor.
Therefore, the state that must be stored for monitoring consists of the timestamps of the
span+1 latest events. The state is updated at every event, the oldest stored event is removed
and the timestamp of the current event is placed in the storage. The output function checks if
the time distance between the oldest stored event and the current timestamp is between lower
and upper. To monitor this constraint, a delay is required because a missing event, or an event
that occurs too late, would not be determined in the earliest possible timestamp otherwise.
The delay offset can be calculated by the time distance between the current timestamp and
the timestamp that lays upper behind the oldest stored event.
Because the memory requirements are fixed (span + 1 timestamps must be stored) and the
state transition and output function can be programmed in a way that they are in O(1) (e.g.,
if double linked lists are used), the RepeatConstraint is simple monitorable with delay.

44

4.1 Monitorability of the TADL2 Timing Constraints

4.1.4 RepetitionConstraint

The RepetitionConstraint is defined as

RepetitionConstraint(s, lower, upper, span, jitter)
≡ ∃X ⊂ T : RepeatConstraint(X, lower, upper, span)
∧ StrongDelayConstraint(X, s, 0, jitter)

The elements of the set X follow the RepeatConstraint and the events, which should be mon-
itored, are following in an interval of the length jitter after the elements of X. For each
element of X, there is exactly one event in s and vice versa.
The monitoring algorithm for this constraint, which will be explained in detail in 5, stores the
upper and lower bounds for the next span elements of X. These borders are stored in a list
and calculated by

lowerBound := List_append(last(List_tail(LowerBound), s), lowerBoundNow + lower)
for the lower bound and
upperBound := List_append(last(List_tail(UpperBound), s), upperBoundNow + upper)
for the upper bound.

The oldest items in these lists (the head of these lists) are removed and the newly calculated
bounds for the span next element of X is inserted at the end of the lists. lowerBoundNow
and upperBoundNow are the describing limitations of the element of X right before the cur-
rent event. They are calculated using the list mentioned above and the timestamp of the
current event by the following definition:

lowerBoundNow := max(List_head(last(LowerBoundX, s)), time(s)− jitter)
upperBoundNow := min(List_head(last(UpperBoundX, s)), time(s))

If the timestamp of the current event is between lowerBoundNow and upperBoundNow, the
output of the monitor is >p, in any other case, or when the delay ran out, it is ⊥.
The size of these lists has a fixed upper limit (span) and the state transition and output func-
tions are in O(1). Therefore they are independent of the trace and the RepetitionConstraint
is a property, which is simple monitorable with delay.

4.1.5 SynchronizationConstraint

The SynchronizationConstraint describes groups of streams, which events occur in common
clusters. Each of these streams must have at least one event in each of these intervals. Any
events that lay outside of these intervals are prohibited.
Figure 4.2, which is similar to the example for the DelayConstraint, shows an example of this
constraint, which is the worst-case scenario in terms of monitoring. The tolerance interval
is 5 timestamps long, the event set s1 contains the events {1, 1.1, ..., 5.9} and s2 is contain-
ing {6, 6.1, ..., 11}. Each of the events of s1 must be stored until the end of the tolerance
interval. Otherwise, it would be impossible to check the constraint correctly. As described in
section 4.1.1, an arbitrary number of events can be placed in this interval and the memory
requirements are dependent on the input streams. The required storage space is not growing
continuously because the stored events can be removed at the end of the tolerance interval.
Therefore the SynchronizationConstraint is worst-case not simple monitorable.

45

4 Analysis of the Monitorability of Timing Constraints

s1

tolerance

s2

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.2: SynchronizationConstraint or StrongSynchronizationConstraint with tolerance = 5

It should be noted that the illustration of the constraint in figure 4.2 may be misleading
because the tolerance intervals are only shown after the events of s1, not after the events of
s2. Every implementation of a monitor for this constraint must also store the events of s2 for
the length of tolerance, as they could be important for events following after them.

4.1.6 StrongSynchronizationConstraint

The difference between the StrongSynchronizationConstraint and the SynchronizationCon-
straint is that in the StrongSynchronizationConstraint, only one event per stream is allowed
per synchronization cluster. Overlapping of these clusters is still possible. Therefore, this
constraint can be classified as worst-case not simple monitorable following the same argumen-
tation as the previous constraint.

4.1.7 ExecutionTimeConstraint

The ExecutionTimeConstraint ensures that the time distance between the stop and start
events, not counting interruptions (specified by the preempt and resume events), is between
lower and upper.
Under the assumption that the input events are in a logical order (every execution is started
by a start event and finished by a stop event, every preempt event is followed by a resume
event with no other event in between and no preempt or resume events occur outside of the
intervals spanned by start and stop events), three time values must be stored to monitor this
constraint. First, the timestamp of the latest start event. Second, the timestamp of the latest
preempt event and third, the sum of the time distances between the resume and preempt
events. This sum is reset at every start event.
These values are updated on events in start, preempt and resume.

46

4.1 Monitorability of the TADL2 Timing Constraints

For the output function, the runtime can be calculated by
runtime = time(now)− time(start)− (sum(time(resume)− time(preempt)).
This value must be smaller or equal to upper at any event. Additionally, at events in stop,
the runtime must be greater or equal to lower.
To monitor this constraint correctly, a delay is required when a stop event is late or missing.
The delay duration is the distance between the current timestamp and upper minus runtime
after the current timestamp.
The required storage space is fixed(remind that we limited the memory size of timestamps
in 3.2), and also the runtime of the state transition and output function can be implemented
in constant runtime. Consecutively the ExecutionTimeConstraint is simple monitorable with
delay.

4.1.8 OrderConstraint

The OrderConstraint describes that an ith target event must exist if an ith source event exists
and that the ith target event occurs after the ith source event. Because an arbitrarily large
number of source events may occur before the first target event, a possibly arbitrary large
distance between the number of events must be stored. Therefore, the required storage space
is dependent on the input streams. Because this is only a worst-case scenario and the size
of the stored number can be decreased, when a target event occurs, the OrderConstraint is
worst-case not simple monitorable.

4.1.9 ComparisonConstraint

The ComparisonConstraint defines an ordering relation between two single timestamps and
does not describe relations of streams or their events. Therefore, the definition of simple
monitorability is not applicable. However, because of the restrictions to timestamps made in
section 3.2, the maximal required storage space and the runtime of the operators ≤, <,≥, >,=
have a fixed upper limit.

4.1.10 SporadicConstraint

The SporadicConstraint is defined via the Repetition- and RepeatConstraint without introduc-
ing any new timestamps in the definition of the SporadicConstraint. These Constraints are
simple monitorable with delay. Therefore the SporadicConstraint is also simple monitorable
with delay.

4.1.11 PeriodicConstraint

The PeriodicConstraint is a special application of the SporadicConstraint. Therefore it is also
simple monitorable with delay.

47

4 Analysis of the Monitorability of Timing Constraints

4.1.12 PatternConstraint

The PatternConstraint was redefined to

∃X : PeriodicConstraint(X, period, 0, 0)
∧ ∀i : StrongDelayContraint(X, event, offseti, offseti + jitter)
∧RepeatConstraint(event,minimum,∞, 1)

in section 2.2.2. The input events occur after the strictly periodic timestamps of X. The
distances between the elements of X and the following events are defined by offset.
This constraint can be monitored by storing the upper and lower limit of the current latest
element of X and the number of event occurrences, reset to 0 at every |offset|th event. The
limits of the elements of X can be narrowed down at every event occurrence because the valid
distance between the event and the element of X is known by offset and jitter. At every
|offset|th event occurrence, the limitations of the current X must be increased by period. The
validity of the constraint can be tested by checking that the current event has the correct
distance to the limitations of the current latest element of X. To be able to recognize late
or missing events, a delay is required. The timestamp, where the delay must occur, can be
calculated by adding jitter and the entry of offset for the next expected event to the current
upper limit of latest X.
Because the memory requirements (two timestamps and an integer) are constant and the
mentioned state transition, delay calculation and evaluation functions can be implemented in
constant time, the PatternConstraint is simple monitorable with delay.

If the redefinition of the PatternConstraint is not done, the constraint can be reduced to

RepeatConstraint(event,minimum,∞, 1)

as stated before in section 2.2.2. Because the RepeatConstraint is simple monitorable with
delay and the upper parameter is ∞, the constraint is simple monitorable (without delay) in
this variant.

4.1.13 ArbitraryConstraint

The ArbitraryConstraint is defined as a combination of the RepeatConstraint:

ArbitraryConstraint(event,minimum1, ...,minimumn,maximum1, ...,maximumn)
⇔ ∀i ∈ 1, ..., n : RepeatConstraint(event,minimumi,maximumi, i).

The RepeatConstraint is simple monitorable with delay. Therefore the ArbitraryConstraint is
also simple monitorable with delay.

4.1.14 BurstConstraint

The BurstConstraint is defined as as combination of the RepeatConstraint:

RepeatConstraint(event, length,∞,maxOccurrences)
∧RepeatConstraint(event,minimum,∞, 1)

48

4.1 Monitorability of the TADL2 Timing Constraints

stimulus

response

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.3: Event Chain example

The RepeatConstraint is simple monitorable with delay. The upper parameter in both applica-
tions of the RepeatConstraint is ∞. Therefore, the timeout always occurs infinite timestamps
after the latest input events, which means the timeout is dispensable and the BurstConstraint
can be monitored without any delay or timeout operator. Consecutively, the BurstConstraint
is a simple monitorable property.

4.1.15 EventChains

The ReactionConstraint and all following Constraints are defined on EventChains, defined
as stimulus and response stream. Each event of these streams has a color attribute, which
describes the causal connection of individual events. It is required that any stimulus event
of a specific color must occur before the first response event with the same color. Further
restrictions are not defined. The data type of this attribute is not specified, except that it
may be infinite and an equality test must exist.
Monitoring this property is difficult because it is required to store every color which has
occurred in response. The reason for this can be seen in figure 4.3. In the interval between
the timestamps 1 and 2, there are 5 events of different colors in stimulus. Their counterparts
in response occur in the interval between 4 and 5. In timestamp 6, there is an event in
response of the color black. After that, not black is allowed in stimulus. To check this
properly for all colors, the color of all events, which occurred in response must be stored until
the end of the observation.
The memory consumption to monitor this property is growing continuously with any event
that introducing a new color in response. Therefore the correctness of EventChains is an
always not simple monitorable property.

4.1.16 ReactionConstraint

If we assume the correctness of the EventChains, a monitor would be similar to a monitor of
the DelayConstraint. The only difference is that the color attribute of the stored stimulus
events must also be stored. Removing events from the storage is only possible when the time
distance and the color between the stimulus and response events are correct. Like for the
DelayConstraint, the required worst case storage space is dependent on the input streams.
Therefore the ReactionConstraint is worst case not simple monitorable if the correctness of
the EventChain is assumed.

49

4 Analysis of the Monitorability of Timing Constraints

4.1.17 AgeConstraint

Similar to the analysis of the ReactionConstraint, we assume the correctness of the EventChain.
The AgeConstraint is very similar to the ReactionConstraint. The main difference is that ev-
ery response event requires a stimulus event in a matching color in the right distance, not the
other way around. Because the response events always occur after the stimulus event(s) in
the same color, no delay is required, but the number of events in stimulus that must be stored
in worst cases remains the same as in the ReactionConstraint. Therefore, the AgeConstraint
is worst-case not simple monitorable if the correctness of the EventChain is assumed.

4.1.18 OutputSynchronizationConstraint

Again, the correctness of the EventChain is assumed in the analysis.
The definition of the OutputSynchronizationConstraint does not limit the time distance be-
tween stimulus events and their associated synchronization clusters in the response streams,
but the first occurrences of the color of the stimulus event in the response streams must
form a valid synchronization cluster. The correctness of these synchronization clusters is
not simple monitorable, which is argued the same way as in the simple SynchronizationCon-
straint. An arbitrarily large number of new synchronization clusters can be placed in a time
interval with the length tolerance, which has to be stored until all response streams have
fulfilled this cluster. A key difference to the SynchronizationConstraint is that only the first
occurrence of each color must form a synchronization cluster. After this cluster, events of
this color may occur independently. Because of this characteristic, the color of any finished
synchronization cluster must be stored for the entire rest of the observation, which means the
OutputSynchronizationConstraint is an always not simple monitorable property.

4.1.19 InputSynchronizationConstraint

Like before, the correctness of the EventChains is assumed.
In the InputSynchronizationConstraint, synchronization clusters in the stimulus streams must
only be fulfilled if the associated events are the last of their color in their streams before
an associated response event. This means, at least some information for every color, which
occurred in the stimulus streams, must be stored until the response color with the same color.
Because several response events of this color may occur, the information about a fulfilled
or unfulfilled synchronization cluster may not be removed from the storage. Otherwise, it
could not be checked correctly if there was a synchronization cluster with a matching color.
Consecutively, the required storage space grows continuously with every new stimulus color
and the constraint is always not simple monitorable.

4.2 Conclusion

Figure 4.4 gives an overview, which TADL2 timing constraints are simple monitorable and
which are not. The ComparisonConstraint is not defined on streams. Therefore the defini-
tion of simple Monitorability is not applicable. All simple monitorable constraints, except the
BurstConstraint require the creation of new timestamps. The other constraints are not simple

50

4.2 Conclusion

Figure 4.4: Overview over constraints - Simple Monitorable - Not Simple Monitorable

monitorable, of which the Input- and OutputSynchronizationConstraint are always not simple
monitorable. If the correct order of the EventChains is assumed, the Reaction- and AgeCon-
straint are only not simple monitorable in worst cases, like the other not simple monitorable
constraints.
The arrows show which constraint is defined via other constraints. For example, the Repeti-
tionConstraint is defined via the StrongDelay- and RepeatConstraint. It should be noted that
constraints, which are defined via not simple monitorable constraints, can be simple moni-
torable because of further restrictions, which limit the required storage space or runtime.

51

5 Implementation

5.1 Implementation of the TADL2 Constraints

In this chapter, the implementation of the monitor of each constraint will be explained. This
is done by giving a short documentation of each monitor. Additionally, the worst-case memory
usage and the worst case and average runtime per event are shown. In section 5.3, each monitor
is run on traces, which were generated to match the constraints with specific parameters, to
evaluate which performance can be expected in practical usage of the implementation.
All implementations have in common that they consist of 2 or 3 sections, similar to the state
transition, delay (if needed) and output as defined in chapter 3. These sections are the basis
for the computational complexity analysis because the generated state defines the required
memory capacity and the state transition function, the output function and the calculation
of the required delay define the required time per timestamp with input events.
The implementations are programmed and tested for version 1.2.2 of the TeSSLa interpreter.

Output of the monitors

The monitors output RV-LTL truth values (>,⊥,>p,⊥p), which are represented as two
boolean variables. One of these variables is showing the truth value on the prefix, which was
processed until this point in time. The other variable shows if the output possibly changes in
upcoming timestamps. These two variables are packed inside of the type fourValuedBoolean.
The individual values are mapped in the following way:

fourValuedBoolean.value fourValuedBoolean.final RV-LTL
true true >
true false >p

false false ⊥p

false true ⊥

Additionally to the state of the monitor, the previous output of the monitor is stored. If the
previous output was ⊥, the new output of the monitor is ignored and the output stays ⊥.
This is done to simplify the state and state transition of the monitor. For example, in the
OrderConstraint, the number of events, which occurred in the input streams, are stored as
state. In the individual input timestamps, the correct order of the events can be checked in
combination with the previous output of the monitor. If the previous output is unknown, the
state must be defined more complex.

53

5 Implementation

5.1.1 DelayConstraint

The implementation of the DelayConstraint monitor stores a list of source events, which did
not have a matching target event yet as the monitors’ state. This list is expanded by every
source event, which is appended at the end of the list. If a target event occurs, all matching
source events (possibly none) are removed from the list. As stated in section 4.1.1, this list
can grow infinitely long in worst-cases when the time domain is defined in an uncountable
way. In these worst-cases, an infinite number of source events may occur before any event
can be removed from the list when a matching target event occurs.
The used TeSSLa version is using integer values as time domain. Therefore it is countable and
the list cannot grow infinitely because at most upper stimulus events need to be stored and
the largest possible length of the list is linear dependent on the parameter upper. Because
this list is the only growable memory usage, the algorithm is in O(upper) in terms of memory.
In timestamps with a target event, all events in the list, which are in the right time distance,
are removed from the list. In worst-cases, all events in the list must be checked and removed,
which means the worst-case runtime of the state transition is linear dependent on the length of
the list and therefore isO(upper). The output function checks if the updated list of unmatched
source events is either empty or the event in the head of the updated list is not older than
upper. In the first case, there is no source event without a matching target event. Therefore
the output is >p. If the list is not empty and the entry in the head of the list is younger
than upper, the constraint is currently unsatisfied, but a satisfying state can still be reached.
In this case, the output is ⊥p. If the entry in the head of the list is older than tolerance,
there cannot be a matching target event. Therefore the output of the monitor is ⊥. All these
checks are done in constant time. Therefore the output function is in O(1).
The required delay period is calculated by adding upper to the timestamp of the head of the
list of unmatched source events, subtracted by the timestamp of the current event (O(1)).

5.1.2 StrongDelayConstraint

The StrongDelayConstraint is implemented very similarly to the DelayConstraint. The only
difference in the state transition is that exactly one event, which is the head of the list of
unmatched source events, is removed when a matching target event occurs. Therefore, the
maximal memory usage is the same (O(upper)), but the runtime of the state transition is
constant per input timestamp because only the head of the list has to be considered in the
transition.
The output function is nearly the same as in the previous constraint. The only difference is
that in timestamps containing target events, it is checked if this event has a source event in
the right distance. If not, the output is ⊥. This check is also done in constant time. Therefore
the output function still is in O(1). The calculation of the delay period remains unchanged.

5.1.3 RepeatConstraint

The implementation of the RepeatConstraint stores the timestamps of the span+ 1 previous
events as the state in a list. At every event, its timestamp is appended to the previous tail of
the previous list if already more than span events occurred. If less than span events occurred
before this timestamp, the timestamp is added to the entire list, not to the tail. The runtime
for appending to the list is constant and the list is at most span+ 1 items long.

54

5.1 Implementation of the TADL2 Constraints

The required delay period is calculated by adding upper to the spanth oldest event (or the
first event, if there have been less than span events before) minus the current timestamp.
Again, this is done in constant time because the timestamps required for this calculation are
the first or second in the list.
The output function checks if the spanth oldest event is not older than upper and not younger
than lower. If there have not been span events before, it is checked if the first event is not
older than upper. If this property is fulfilled, the output is >p and in any other case, it is ⊥.
Like in the calculation of the required delay period, the runtime is constant. Therefore, the
entire implementation is in O(span) in terms of memory and in O(1) in terms of time per
event.

5.1.4 RepetitionConstraint

The RepetitionConstraint is defined as

RepetitionConstraint(s, lower, upper, span, jitter)
≡ ∃X ⊂ T : RepeatConstraint(X, lower, upper, span)
∧ StrongDelayConstraint(X, s, 0, jitter)

The implementations of the Repeat- and the StrongDelayConstraint cannot be used to imple-
ment this constraint because the timestamps of X are unknown.
Relevant for the monitoring are the upper and lower bounds of the elements of X, which pre-
cede the actual events in the event stream s. The bounds are stored as two lists with the length
of span. One list contains the lower bounds for the next span X, and the other list contains
the upper bounds. At every input event, the new boundaries for the spanth next X are calcu-
lated, the lower bound by max(List_head(last(LowerBoundX, e)), time(e)− jitter) and the
upper bound by min(List_head(last(UpperBoundX, e)), time(e)). These new boundaries
are appended to the end of the lists, while the oldest entries in the lists’ head are removed.
These two lists with the size of span are the only growing storage. Therefore the algorithm
is in O(span) in terms of memory. The runtime of the state transition function is constant
(removing the lists head and appending an entry to the lists).
The output function checks if the current timestamp is between the lower bound for the cur-
rent timestamp of X and jitter behind the upper bound for that value. If this is the case, the
output is >. In any other case, it is ⊥. Because the upper and lower bound for the current
X value can be directly accessed (they are the head of the lists), the output function is in
O(1).

5.1.5 SynchronizationConstraint

The SynchronizationConstraint is defined via an application of the DelayConstraint, but the
application uses a set of unknown timestamps(∃X : ...). Therefore the DelayConstraint cannot
be used for the implementation of this constraint.
Because TeSSLa does not allow to define macros or functions with a variable number of input
streams, events of each input timestamp must be placed into an integer list, which contains the
index (starting at 1) of all streams, which have an event in this timestamp. This list is then
used as a parameter for the implementation. The creation of this list is already implemented
for up to 10 streams.

55

5 Implementation

The implementation of the SynchronizationConstraint stores all events that occurred not
longer than tolerance ago in a list. In each entry, this list contains the stream in which the
event occurred, the timestamp of the event occurrence and a boolean variable that expresses
if a fulfilled synchronization cluster for this event has already been found.
This list is updated in every input timestamp in three steps. First, each event occurrences
in this timestamp are appended to this list. Second, the list is separated into two parts, one
with the events older and one with the events younger than tolerance. The part of old events
is still stored in this timestamp but removed after it. The younger events form the state that
is stored for the next event occurrences. Third, it is checked if at least one event of every
stream is part of the list of younger events. In this case, a fulfilled synchronization cluster has
been found and the boolean variable that states if a synchronization cluster is found for this
event is set to true for all events in this list.
Like in the DelayConstraint, this list can grow infinitely when the time domain is uncountable,
which is not the case in the used TeSSLa version. Because the TeSSLa uses integers as time
domain, at most |event|1 ∗ tolerance events can occur in the tolerance interval. Therefore,
the algorithm is in O(|event| ∗ tolerance) in terms of memory. The first step of the state
transition is in O(|event| ∗ tolerance) because at most |event| events must be appended to
the list and the list has the maximum length tolerance. In worst cases, every event in the
list(which is in ascending order) is older than tolerance. Therefore, the worst-case runtime of
the separation in the second step of the state transition is in O(|event|∗ tolerance) in terms of
time. In the third step, the complete stored list of young events must be examined to check if
the cluster is fulfilled and, if needed, every event in the list must be set to fulfilled. Therefore
the third step is in O(|event| ∗ tolerance) in terms of time.
The output function checks first if there are any entries in the list of stored events, which were
not part of a synchronization cluster yet. If this is not the case, the output is >p, because
there are no unsatisfied synchronization clusters in this case. If there are entries without
a synchronization cluster so far, it is checked if all list entries, which were removed in this
timestamp (and therefore are older than tolerance), had a synchronization cluster. If one of
these removed entries did not have a synchronization cluster, the constraint is unsatisfied and
the output is ⊥. If all of them were part of at least one cluster, the output is ⊥p, because
there are still entries without cluster in the list (see first check), but they still can be satisfied.
Because the list can have the size |event| ∗ tolerance and all of the entries are considered in
the first check of the output function, the output function is in O(|event|∗ tolerance) in terms
of time.
The required delay is calculated by adding tolerance to the timestamp of the oldest stored
unsatisfied event, subtracted by the timestamp of the current timestamp. The list is in
ascending order, but the only unsatisfied events are relevant for the delay, which means the
entire list must be checked in worst cases. Therefore, the calculation of the required delay is
in O(|event| ∗ tolerance).

5.1.6 StrongSynchronizationConstraint

The StrongSynchronizationConstraint is defined as an application of the StrongDelayCon-
straint, but this application cannot be used for the implementation, like in the previous
constraint.
Similar to the implementation of the SynchronizationConstraint, the events of each timestamp

1|event| is the number of streams, not the number of events.

56

5.1 Implementation of the TADL2 Constraints

must be merged into a list containing the indices of the streams, which contain the events.
The difference between the Synchronization- and the StrongSynchronizationConstraint is that
each event is part of exactly one synchronization cluster in the StrongSynchronizationCon-
straint. Therefore, the implementation is different from the implementation of the previous
constraint. Not every event is stored separately, but information about synchronization clus-
ters, containing their start time and in which stream an event occurred in this cluster, is
stored.
The information of which the state consist is stored in a list of synchronization clusters. The
list entries consist of a time expression containing the latest possible start point of the cluster
and a map. This map has one entry for every input stream and uses the indices of the streams
as keys and boolean variables as values. The map shows which of the streams already had an
event in this synchronization cluster.
For the state transition, every event occurring in this timestamp is either inserted into an
existing cluster or a new cluster is appended at the end of the list. Two conditions must be
fulfilled to insert an event into a cluster. First, the cluster must not be older than upper.
Second, the boolean variable in the map entry of this stream must be false, which shows that
there was no event of this stream in this cluster before. If these conditions are not fulfilled
for all existing clusters, a new cluster is created and appended at the end of the list. This
ensures that the list is always in chronological order.
For the search of a matching cluster, each entry of the list is considered in worst-cases. There-
fore the runtime of this part of the state transition is linear to the number of active clusters.
In worst-cases, this number is tolerance when one event occurs in every timestamp in always
the same stream.
In the second step of the state transition, it is checked for every stored cluster if it is fulfilled.
If so, it is removed from the list. To check, if a cluster is fulfilled, one boolean check must
be done for every input stream, therefore at most boolean tolerance ∗ |event| checks must be
done and the worst-case runtime of the state transition is in O(tolerance∗ |event|). When the
events occur in timewise separated synchronization clusters, the list is significantly shorter
than tolerance and the runtime can be expected to be linear to the number of input streams.
The list storing the clusters is at most tolerance long and the size of individual entries of
the list is linear dependent on the number of streams because they store a boolean vari-
able for every stream. Because of these length restrictions of the list, the algorithm is in
O(|event| ∗ tolerance) in terms of memory.
The output function checks first if the list of stored synchronization clusters is empty. If this
is the case, the output is >p, because there are no unsatisfied synchronization clusters. If
the list is not empty, it is checked if the oldest unsatisfied cluster, which is always in the
head of the list, is younger than tolerance. If so, the output is ⊥p, because the constraint
is unsatisfied but can be satisfied with upcoming events. If the oldest cluster is older than
tolerance, the constraint is unsatisfied and cannot be satisfied with upcoming events, therefore
the output us ⊥. All these checks are done in constant time. The required delay is calculated
by adding tolerance to the timestamp of the oldest stored unsatisfied cluster, subtracted by
the timestamp of the current timestamp (O(1)).

5.1.7 ExecutionTimeConstraint

The implementation of the ExecutionTimeConstraint is using TeSSLa’s runtime operator on
the start and stop events, which calculates the absolute runtime without any interruptions.
The time of interruptions is also calculated by this operator and then summed up. The sum

57

5 Implementation

of these interruptions is reset at every start event. For the calculation of this sum with resets,
a macro called resetSum was programmed, which is a modified version of TeSSLas resetCount
operator.
TeSSLa’s runtime operator subtracts the timestamps of the events of the second parameter
(in this case stop and resume) from the timestamps of the events of the first parameter(start
and preempt). Therefore it stores the timestamps of the start and preempt events are stored,
additionally to the sum of the preemptions. For the output, the runtime can be calculated
by subtracting the second application (with preempt and resume as parameters) of TeSSLa’s
runtime operator from the sum of the first applications (with start and stop as parameters)
of this operator. If the runtime should be checked in timestamps without a stop event, the
second parameter of the first application of the runtime operator must be replaced by a
current event. In the implementation, this is done by merging all input streams and the delay
stream.
The resulting runtime must be smaller or equal to upper at any point of time and greater or
equal to lower at stop events. If this is the case, the output is >p, in any other case, it is ⊥.
The required delay is calculated by subtracting the runtime so far from upper. All of these
operations are simple arithmetic functions on timestamps. Therefore the algorithm is in O(1)
in terms of time. The required storage space is fixed. Therefore it is also in O(1) in terms of
memory.

5.1.8 OrderConstraint

The implementation counts the number of events in the source and target stream and stores
these numbers as the monitors state. This update is done in constant time and the required
storage space is also constant. The output function compares the number of source and
target events. If the number is equal, the constraint is fulfilled until this point in time and
the output is >p. If the number source events is larger, the constraint is unsatisfied but can
be satisfied with upcoming events. Therefore ⊥p is the output. If the number of target events
is larger, the order of the events is invalid, the constraint is unsatisfied and cannot be satisfied
anymore. Therefore, the output is ⊥ in these cases. The checks of the output function are
also done in constant time.
The introduction of new timestamps is not required for this constraint. Therefore no delay
period must be calculated.

5.1.9 ComparisonConstraint

The ComparisonConstraint defines comparisons between timestamps. These functionalities
are already defined in TeSSLa. Therefore no implementation is given as part of this thesis.

5.1.10 SporadicConstraint

The SporadicConstraint is defined as an application of the Repetition- and the RepeatCon-
straint. Therefore the SporadicConstraint is also implemented as an application of them. The
implementations of the Repetition- and the RepeatConstraint are both in O(span) in terms of
time and memory. Because span is fixed to 1 in the SporadicConstraint, the implementation
is in O(1) in terms of memory and time.

58

5.1 Implementation of the TADL2 Constraints

5.1.11 PeriodicConstraint

The PeriodicConstraint is defined as an application of the SporadicConstraint and is also
implemented like this. Because the SporadicConstraint is in O(1) in terms of memory and
time, the PeriodicConstraint is also.

5.1.12 PatternConstraint

The PatternConstraint is defined as an application of the Periodic-, Delay- and RepeatCon-
straint. Because of the set of unknown timestamps X, the Periodic- and DelayConstraint
cannot be used for the implementation. The set X is not used in the application of the Re-
peatConstraint. Therefore its implementation is used as part of the output function.
The implementation of the RepeatConstraint is in O(span) in terms of time memory. The
span attribute is set to 1 in the application. Therefore the runtime and memory usage are
constant in this part.
In the implementation of the PatternConstraint, the lower and upper bound for the current
timestamp of X is stored. At every event, these bounds are further enclosed, taking the
previously known bounds and the bounds implied by the current event

x ∈ X :time(event)− offsetcount(event) mod |offset| − jitter ≤ x
≤ time(event)− offsetcount(event) mod |offset|

into account. The new lower bound is set by using the maximum of the previous lower bound
and the lower bound implied by the current event, the new upper bound by using the minimum
of the previous upper bound and the upper bound implied by the current event. At every
|offset|th event, period is added to the current bounds. The access of the map entries is done
in constant time. Therefore the calculation of these new borders is also done in constant time
and the state transition function in O(1) in terms of time.
The output function checks if the timestamp of the current event is between the lower bound
plus offsetcount(event) mod |offset| and the upper bound plus
offsetcount(event) mod |offset| plus jitter. If so, the output is >p, if not, it is ⊥. The previously
defined output is conjuncted with the output of the application of the RepeatConstraint. The
comparisons of timestamps are done in constant time and monitoring the RepeatConstraint
with span = 1 if likewise. Therefore, the output function is in O(1).
The required delay is defined by the time distance between the current timestamp and the
upper bound for X, plus the expected offset of the following event, plus the allowed deviation
(jitter).
The only state stored in the implementation are the upper and lower bound for the current
x-value. Therefore the implementation itself is in O(1) in terms of memory, but the size of the
offset-parameter, which is a map, is not limited in size and the complete algorithm, including
the parameters, is O(|offset|) in terms of memory.

5.1.13 ArbitraryConstraint

The ArbitraryConstraint is defined as multiple applications of the RepeatConstraint and is
also implemented this way. The number of applications of the RepeatConstraint is dependent
on the number of elements in the minimum and maximum parameters. The runtime of the

59

5 Implementation

RepeatConstraint is in O(1) per application and event. Therefore the ArbitraryConstraint is in
O(|minimum|) in terms of time. The memory usage of the RepeatConstraint is in O(span).
In the application of the RepeatConstraint, the span parameter increases for each of the
|minimum| = |maximum| applications. Therefore, the implementation is in O(

∑|minimum|
i=1 i)

in terms of memory, which equals O(|minimum|2 + |minimum|).

5.1.14 BurstConstraint

The BurstConstraint is defined as a twofold application of the RepeatConstraint and is also
implemented this way. The RepeatConstraint is in O(span) in terms of memory and in O(1) in
terms of time. Because the span attribute is set to 1 and maxOccurrences in the applications
of the RepeatConstraint, the implementation of the BurstConstraint is in O(maxOccurrences)
in terms of memory and in O(1) time.

5.1.15 ReactionConstraint

The correctness of the EventChain is assumed in the implementation. If this property is un-
known, it must be checked individually.
The implementation of the ReactionCostraint stores a map, which maps the color of stimulus
events, which did not have a matching response event yet, to their timestamps. This state
is updated at every input event. Stimulus events are inserted into the map, response events
remove, if possible, an event from the map called above. Similar to the DelayConstraint(the
ReactionCostraint can be seen as an extension of the DelayConstraint, that additionally con-
siders the color of events), the maximal number of entries in the map is the maximal number
of stimulus events that could possibly occur in an interval of the length maximum, which
is maximum. Therefore, the algorithm is in O(maximum) in terms of memory. The state
transition (insertion, lookup and possibly remove in a map) is in O(1) in terms of time.
The required delay is calculated by adding maximum to the timestamp of the oldest entry
in the map mentioned above and subtracting the current timestamp. Because the map is
unsorted, every entry of the map must be considered for this. Therefore, the calculation of
the required delay is in the time complexity class O(maximum).
The output function first checks if the map of unmatched stimulus events is empty. If so,
the constraint is satisfied and the output is >p. If there are entries in the map and the oldest
entry is older than tolerance, the constraint is unsatisfied and cannot be satisfied by upcom-
ing events. In this case, the output is ⊥. If the oldest entry is younger than tolerance, the
constraint is currently unsatisfied but can be satisfied by upcoming events. Therefore, the
output is ⊥p. To find the oldest entry in the map, all entries must be considered. Therefore,
the output function is linear dependent on the size of this map, which is at most maximum.

5.1.16 AgeConstraint

Like before, the correctness of the EventChain is assumed in the implementation. If this
property is unknown, it must be checked individually.
Similar to the implementation of the ReactionCostraint, the AgeConstraint monitor stores a
map containing the latest stimulus event, which is younger than maximum. The color value
is used as map key and the timestamp is used as map value. This map has the maximum size

60

5.1 Implementation of the TADL2 Constraints

maximum and is updated at every input event. Stimulus events are inserted or updated,
and entries that are older than maximum are removed. To make this update faster, a list
containing the colors of the events in the map is stored additionally. The maximal size of this
list is also maximum and the colors are stored in chronological order so that the color that
occurred the longest time ago is in the head of the list. The update is done by looking at the
head of the list and removing this entry from the list and the corresponding entry with the
same color from the map if the entry is older than maximum. These operations are done in
constant time but need to be repeated, as long as the color in the head of the map is too old,
so at most maximum times. Inserting or updating the stimulus event to the map is done
in constant time, but inserting or updating the list requires to remove any previous entry
with the color of the current event. For this, every entry in the map has to be processed,
which means this operation takes maximum steps in worst-cases. Consecutively, the state
and the state transition are in O(maximum) in terms of memory and time. The creation
of new timestamps is not needed in this constraint because only previous events need to be
considered, upcoming events not.
In timestamps containing a response event, the output function checks if a stimulus event
with the same color is in the map and if the time distance between them is greater or equal
to minimum and smaller or equal to maximum. If so, the output is >p. If not, it is
⊥. Timestamps without response events cannot lead to a violation of the constraint. The
lookup in the map and the comparisons are done in constant time.

5.1.17 OutputSynchronizationConstraint

Similar to the Synchronization- and StrongSynchronizationConstraint, the input streams can-
not be directly used as a parameter. For the OutputSynchronizationConstraint, a stream of
maps must be created, representing the events of each timestamp. The key of each entry is
the index of the stream (0 for the stimulus stream, 1, 2, ... for the response streams), in
which the event occurred and the value is the color of the event. Again, the creation of this
map is already implemented for up to 10 response streams.
In the OutputSynchronizationConstraint, there must be one synchronization cluster of the
length tolerance for each stimulus event. Each response stream must have at least one event
of the same color as the stimulus event in this cluster. There is no time distance between
this cluster and the stimulus event defined.
The implementation of the OutputSynchronizationConstraint is storing three different infor-
mation as the state of the monitor. First, a set of the stimulus colors, which did not have a
response event in the same color yet. This set is updated at every input event, the color of
stimulus events is inserted and the colors of the response events in the current timestamp
are removed from the set. These updates are done in constant time. In worst-cases, where no
matching response events occur, the required storage space is linear depending on the number
of stimulus events.
The second information is a map containing information about all synchronization clusters
that were not finished before this point in time. This map is using the color attribute as
key and the start timestamp and a map as value. This inner map uses the indices of the
response streams as keys and a boolean variable as value. This value shows whether there
was an event for this synchronization cluster in this stream or not. This map is updated at
every response event. For each of these response events, it is checked if a synchronization
cluster with a matching color exists. If not, a new synchronization cluster with the color of
the event is created if the color of this event was in the set of stimulus colors of the previous

61

5 Implementation

timestamp. The check per event (two lookups in maps, one in a set) is done in constant
time. Therefore the entire update of this map is in O(|response|) in terms of time per input
timestamp. In worst-cases, each event results in creating of a new synchronization cluster,
which must be stored at least for the length of tolerance. The size of each information about
one synchronization cluster is linear dependent on the number of response streams and in
each interval of the length tolerance, tolerance∗|response| events can occur and create a new
synchronization cluster. Therefore this information is in O(tolerance ∗ |response|2) in terms
of memory.
The third stored information is similar to the second, but the clusters that are either older
than tolerance or fulfilled are removed from the map. Therefore, the worst-case memory con-
sumption is also O(tolerance∗ |response|2). To remove fulfilled clusters, it is checked for each
cluster in the map if there was at least one event in each response stream of the color of the
cluster. Therefore, this update is in O(tolerance ∗ |response|2) in terms of time.
In combination, the runtime of the state transition is in O(tolerance ∗ |response|2) and the
memory usage is in O(count(stimulus) + tolerance ∗ |response|2).
The required delay is calculated by adding tolerance to the start time of the oldest unfinished
cluster and subtracting the current timestamp. To get the oldest unfinished synchronization
cluster, all map currently active clusters must be considered, which means the runtime is
linear dependent on the number of currently active clusters (at most tolerance ∗ |response|).
The output function checks first if the set of unmatched stimulus and the map of stored
synchronization clusters are empty. If this is the case, not stimulus events had a fulfilled
synchronization and the constraint is fulfilled until this point in time. The output is >p. If
the set or the map is not empty, it is checked if all synchronization clusters are younger than
tolerance. If so, the constraint is currently unsatisfied but can be satisfied by future events.
In this case, the output is ⊥p. If the oldest synchronization cluster is older than tolerance, the
constraint is unsatisfied and no future events can change this. Therefore, the output is ⊥ in
this case. The first check is done in constant time, and the second check requires considering
each stored synchronization cluster. Therefore, the runtime of the output is linear dependent
on the number of stored events, which is at most tolerance ∗ |response|.

5.1.18 InputSynchronizationConstraint

The input streams must be transformed into a map[Int, Int] stream, similar to the previous
constraint, but this time the index 0 indicates the response stream and the indices 1, 2, ...
are indicating the stimulus streams.
The InputSynchronizationConstraint is defined very similar to the OutputSynchronization-
Constraint. The difference is that the synchronization occurs in a set of stimulus events, not
in response events.
Despite the similarities, the implementation of the InputSynchronizationConstraint is different
from the implementation of the OutputSynchronizationConstraint. As the monitors state, a
map that uses the numbers 1 to |stimulus| as keys and as values a second map that uses colors
(integer) as key and the timestamp of the latest occurrence of this color in the stream as value.
This map is updated at every stimulus event, at which either the timestamp of the latest
occurrence of this color in this stream is updated, or a new inner map entry is created for this
color. The lookup, if there already is a matching entry in the map for this color in this stream
and possibly its update is done in constant time, but the time for initializing a new entry is
linear dependent on the number of stimulus streams. Because |stimulus| events may occur
and introduce a new color in each timestamp, the state transition is in O(|stimulus|2) in terms

62

5.2 Conclusion

of time. The worst-case memory size of this information is in O(|stimulus|∗count(stimulus))
because the map described above possibly stores every input event of the stimulus streams
when they introduce a new color and therefore, a new entry in the inner map of the stream
must be created. Response events are not considered for the state of the monitor.
The creation of new timestamps is not needed in this constraint because only previous events
need to be considered. Therefore, the calculation of a delay span is not required.
In timestamps containing a response event, the output function checks if the last occurrences
of the corresponding color in the stimulus stream form a valid synchronization cluster. This
is done by searching the youngest and oldest event with this color in the map of the latest
stimulus events. If an event of this color is missing, the age is interpreted as∞ or −∞, which
leads to a length of the synchronization cluster that is definitely longer than tolerance. If the
synchronization cluster is longer than tolerance, the constraint is violated and the output is
⊥. If the cluster is not longer than tolerance, the output is >p. In timestamps without a
response, the output remains unchanged. Because the color value is the key of the inner map,
the time for searching the oldest and youngest event of this color is linear to the number of
stimulus streams. Therefore, the output function is in O(|stimulus|) in terms of time.

5.1.19 EventChain

Additionally to the 18 TADL2 timing constraints, a monitor, which checks the correctness
of EventChains was implemented. An EventChain is defined on a stimulus and a response
stream as

∀x ∈ stimulus : ∀y ∈ response : x.color = y.color ⇒ x < y

As a state, a set containing all colors that previously occurred in reponse is stored. This set
is updated at each response event by an insertion into a set (O(1)). The maximal size of this
map is the number of events in response. Therefore the state is in O(count(response)) in
terms of memory.
The output function checks if the color of every occurring stimulus event is not in the set
of response colors, which is checked in constant time. If the color is in the set of response
colors, the output is ⊥. Otherwise, it is >p.

5.2 Conclusion

Table 5.2 gives an overview of the worst-case memory consumption and the worst-case runtime
per input timestamp. The worst-case memory requirement and the runtime per input times-
tamp of the Repeat-, Repetition-, ExecutionTime-, Sporadic-, Periodic-, Pattern-, Arbitrary-
and BurstConstraint, which are the simple monitorable constraints, is either constant, or they
are only limited by the parameters of the constraint, not by the input traces. The imple-
mentations of the Delay-, StrongDelay-, Synchronization-, StrongSynchronization-, Reaction-
and AgeConstraint are limited by the events, which may occur in time intervals of a specific
length. Monitoring the correctness of EventChains, the OutputSynchronization- or the Input-
SynchronizationConstraint with these implementations require continuously growing memory
resources and in the OutputSynchronizationConstraint, the runtime per input timestamp is
continuously growing too. The implementation of the OrderConstraint is in O(1) in terms
of memory and time per event, although it is classified as Not simple monitorable. This is

63

5 Implementation

Memory Runtime per Input
Timestamp

DelayConstraint O(upper) O(upper)
StrongDelayConstraint O(upper) O(1)

RepeatConstraint O(span) O(1)
RepetitionConstraint O(span) O(1)

SynchronizationConstraint O(|event| ∗ tolerance) O(|event| ∗ tolerance)
StrongSynchronizationConstraint O(|event| ∗ tolerance) O(|event| ∗ tolerance)

ExecutionTimeConstraint O(1) O(1)
OrderConstraint O(1) O(1)

SporadicConstraint O(1) O(1)
PeriodicConstraint O(1) O(1)
PatternConstraint O(1) O(1)

ArbitraryConstraint O(|minimum|2
+|minimum|) O(|minimum|)

BurstConstraint O(maxOccurrences) O(1)
ReactionConstraint O(maximum) O(maximum)

AgeConstraint O(maximum) O(maximum)

OutputSynchronizationConstraint O(count(stimulus)
+tolerance ∗ |response|2)

O(tolerance
∗|response|2)

InputSynchronizationConstraint O(|stimulus|
∗count(stimulus)) O(|stimulus|2)

EventChain O(count(response)) O(1)

Table 5.1: Worst-Case Runtimes of the Implementations

because integers of a fixed length are used for the implementation of the constraint and only
a finite subset of all streams that fulfill the constraint can be monitored correctly.

64

5.3 Performance Analysis

5.3 Performance Analysis

To get an overview of the performance of the monitor implementations, each of them was run
on at least 100 traces with 10.000 events, which were generated by following specific parame-
ters to show which of these parameters result in faster or slower runtimes. For this evaluation,
the TeSSLa interpreter version 1.2.2 was used and it was run on a computer with an i5-6600k
processor running on 4.3 GHz. The operating system was Windows 10.0.19041.0.
The runtimes were measured as the time between the input of all events of one timestamp and
the associated output of the TeSSLa interpreter. For that, a program2 was written, which gen-
erates traces for each constraint and then measures the time between the input of the events
of one timestamp and the output of the TeSSLa interpreter. The communication between the
test program and the TeSSLa interpreter is done via the standard input and standard output
stream of the interpreter. The time is measured by the java function System.nanoTime()
immediately before the events of one timestamp are written into the input stream and imme-
diately after a reaction was received on the output stream. It must be noted that this time
measurement is not completely accurate because neither the used java runtime environment
nor the operating system was built to fulfill real-time requirements. Therefore, unpredictable
delays may occur in the test program, in the java interpreter or between them. However, the
averages of the results show what the monitors are capable of and on which input parameters
the runtime significantly rises.
A shortened version of the results will be shown here. The complete results of the runtime
measurement can be accessed at Github3.

DelayConstraint

The DelayConstraint was evaluated with 100 Traces of 10.000 events. The traces fulfilled
the constraint with the parameters lower ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}
and upper = lower. The distance of subsequent source event was 2i, with i ∈ {0, 1, ..., 10},
while the distance between subsequent source events in each trace was smaller than 2∗ lower.
The shorter the distances between the source event are, the more (at most upper, when the
distance is 1) events are stored as state.
Figure 5.1 shows the monitor’s average runtime in dependency of lower and upper for traces
with event distances of 1, which means that upper events are stored as the state of the mon-
itor. The runtime is nearly constant because the trace generator does not create worst-case
scenarios and only one event must be removed from the list at every target event.
Figure 5.2 shows the average runtimes for this constraint with the parameters lower = upper =
800 in dependency of the distance of subsequent source events. Two clusters can be observed.
The average runtimes of traces with event distances of 20, 21, 22, 23, 24 and 25 are higher than
the runtimes of the other traces. This is because there are timestamps with two events in the
first six traces, and in the traces, each timestamp has at most one event. This can be shown
by by the following equation. For that:
Let lower = upper be the distance between source events and their associated target event.
Let s ∈ N0 be the first timestamp with a source event in the trace.
Let dist ∈ N be the distance between subsequent source events.

2This program can be found at https://github.com/HendrikStreichhahn/TeSSLa-Autosar-Timing-
Extensions/tree/master/runtimeMeasure

3https://github.com/HendrikStreichhahn/TeSSLa-Autosar-Timing-Extensions/tree/master/runtimeMeasure/results

65

https://github.com/HendrikStreichhahn/TeSSLa-Autosar-Timing-Extensions/tree/master/runtimeMeasure
https://github.com/HendrikStreichhahn/TeSSLa-Autosar-Timing-Extensions/tree/master/runtimeMeasure
https://github.com/HendrikStreichhahn/TeSSLa-Autosar-Timing-Extensions/tree/master/runtimeMeasure/results

5 Implementation

time(ms)

0.2
0.25
0.3
0.35
0.4

100 ∗ upper
1 2 3 4 5 6 7 8 9 10

Figure 5.1: Average runtimes of the Delay-
Constraint with event distances of 20 = 1

time(ms)

0.2
0.25
0.3
0.35
0.4

Distance source events
20 21 22 23 24 25 26 27 28 29 210

Figure 5.2: Average runtimes of the Delay-
Constraint with the parameters
lower = upper = 800

The placement of all source events is given by: s+ x ∗ dist with x ∈ N
The placement of all target events is given by: s+ y ∗ dist+ upper with y ∈ N, y < x
All placements of source and target events, which occur in common timestamps, fulfilled the
equation:

s+ x ∗ dist = s+ y ∗ dist+ upper

x ∗ dist = y ∗ dist+ upper

x = y + upper

dist

When upper = 800, there is no integer solution for x and y for dist ∈ 64, 128, 256, 512, 1024,
all events occur in individual timestamps for these distance between source events.
When dist ∈ {1, 2, 4, 8, 16, 32}, there is an integer solution for x and y, so there multiple
events in individual timestamps.

StrongDelayConstraint

The traces for the evaluation of the StrongDelayConstraint were generated with the same
parameters as for the previous constraint. Figure 5.3 shows the average runtimes with a fixed
distance between subsequent source events of 1. The results are nearly constant. Figure 5.4
shows the average runtimes for traces, where lower and upper is fixed at 700 and the distance
between subsequent source events is varying. It can be seen that the runtimes for the traces
are separated into two areas, one cluster containing the traces with a source event distance
of 20, 21 and 22 and one containing the other traces. This clustering has the same reason as
in the DelayConstraint. It occurs because there are many timestamps with multiple events in
some traces and in some traces, all timestamps have at most one event.

RepeatConstraint

The RepeatConstraint was evaluated with 100 Traces of 10.000 events. The traces were cre-
ated with the attributes span ∈ {1, 101, 201, 301}, lower = {5000, 6000, 7000, 8000, 9000} and

66

5.3 Performance Analysis

time(ms)

0.2
0.25
0.3
0.35
0.4

100 ∗ upper
1 2 3 4 5 6 7 8 9 10

Figure 5.3: Average runtimes of the Strong-
DelayConstraint with event distances of 20 = 1

time(ms)

0.2
0.25
0.3
0.35
0.4

Distance source events
20 21 22 23 24 25 26 27 28 29 210

Figure 5.4: Average runtimes of the Strong-
DelayConstraint with the parameters
lower = upper = 700

time(ms)

0.225
0.25
0.275
0.3

span

1 101 201 301

Figure 5.5: Average runtimes of the
RepeatConstraint with the
parameters lower = 6000, upper = 9000

time(ms)

0.225
0.25
0.275
0.3

upper

6000

7000

8000

9000

10000

Figure 5.6: Average runtimes of the
RepeatConstraint with the parameters
lower = 5000, span = 1

upper = lower + x, x ∈ {1000, 2000, 3000, 4000}. Figure 5.6 shows the average runtime with
fixed span and lower parameters and a variable value for upper. Figure 5.5 shows the average
runtimes in dependency of the span parameter. As expected by the analysis, the runtime was
nearly constant and the constraint parameters did not influence the runtime.

RepetitionConstraint

The traces for this constraint were created with the parameters span ∈ {1, 100, 250, 500},
lower = {500, 600, 700, 800, 900} upper = lower+x, x ∈ {400, 500, 600, 700, 800} and jitter =
lower

2 .
Figure 5.7 and 5.8 show the average runtimes of the monitor with the parameters lower =
500(700) and upper = 900(1100) with different values of the span parameter. Figure 5.9 shows
the average runtime in dependency on the upper parameter. As expected in the analysis, the
parameters did not influence the runtimes and the runtimes are nearly constant.

67

5 Implementation

time(ms)

0.2
0.25
0.3
0.35

span
1 100 250 500

Figure 5.7: Average runtimes of the
RepetitionConstraint with the
parameters lower = 500, upper = 900

time(ms)

0.2
0.25
0.3
0.35

span
1 100 250 500

Figure 5.8: Average runtimes of the
RepetitionConstraint with the parameters
lower = 600, upper = 1000

time(ms)

0.2
0.25
0.3
0.35

upper
900 1000 1100 1200 1300

Figure 5.9: Average runtimes of the RepetitionConstraint with the parameters span =
1, lower = 500

SynchronizationConstraint

The traces for the time measurement were created with two to 32 event streams, tolerance
values from one to 155 and distances between subsequent synchronization clusters from two
to 200.
Figure 5.10 shows the average runtimes of the SynchronizationConstraint monitor, which was
checking traces with two events in each synchronization cluster and stream, a distance between
subsequent clusters of 64 and a tolerance value of 2. The number of input streams increases
from two to 32. The runtime grows linearly, which was expected by the analysis of the source
code in the previous section.
Figure 5.11 shows the average runtimes of the monitor with traces of four streams, a cluster
distance of 200 and half as many events per cluster and stream as the tolerance value. The
tolerance value rises from five to 145. As expected by the analysis, the runtime increases
linearly.

StrongSynchronizationConstraint

The StrongSynchronizationConstraint monitor was evaluated on traces generated with tolerance
values from 5 to 145, distances between synchronization clusters of 64 and 200 and two to 32
event streams.
Figure 5.12 shows the average runtime of the monitor with the parameter tolerance set to
two and a distance between subsequent synchronization clusters of 64. It can be seen that

68

5.3 Performance Analysis

time(ms)

2.5
5.0
7.5
10.0

|event|

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Figure 5.10: Average runtimes of the
SynchronizationConstraint with two events
per cluster, tolerance = 2 and a cluster distance
of 64

time(ms)

2
4
6
8
10

tolerance
5 25 45 65 85 105 125 145

Figure 5.11: Average runtimes of the
SynchronizationConstraint with four event
streams, b tolerance

2 c events per cluster and a
cluster distance of 200

time(ms)

0.5
1
1.5
2

|event|

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Figure 5.12: Average runtimes of the
StrongSynchronizationConstraint with
tolerance = 2 and a cluster distance of 64

time(ms)

0.125
0.25
0.375
0.5
0.625

tolerance
5 25 45 65 85 105 125 145

Figure 5.13: Average runtimes of the
StrongSynchronizationConstraint with four
event streams and a cluster distance of 200

the runtime increases linearly when more input streams are used. This behavior was expected
because the more input streams are considered, the more events need to be processed and the
larger is the information about synchronization clusters, which are stored in the monitor.
In Figure 5.13, a fixed number of input streams was used and the cluster distance was 200.
The runtime was nearly constant because the synchronization clusters did not overlap and
therefore, only one cluster must be considered in each timestamp. The linear growth, as
described in the analysis, is only reached in worst-cases, where the events do not occur in
clusters, so the measured runtimes matches the expectation.

ExecutionTimeConstraint

The runtime evaluation of the ExecutionTimeConstraint monitor was done by traces, which
fulfill the constraint the parameters lower ∈ {100, 300, 500, 700, 900} and upper = lower + x,
x ∈ {100, 600, 1100, 1600, 2100}. For each combination of these parameters, one trace with 1,

69

5 Implementation

time(ms)

0.175
0.2

0.225

preemptions
1 11 21 31

Figure 5.14: Average runtimes of the
ExecutionTimeConstraint with the
parameters lower = 100, upper = 1700

time(ms)

0.175
0.2

0.225

upper
200 700 1200 1700 2200

Figure 5.15: Average runtimes of the
ExecutionTimeConstraint with the parameters
lower = 100, preemptions = 11

time(ms)

0.1

0.2

0.3

distance(sourcei, sourcei+1)
1 11 21 31 41 51 61 71 81 91

Figure 5.16: Average runtimes of the Order-
Constraint with a distance between source
events and their associated target events of 5
in dependency of the distance between
subsequent source events

time(ms)

0.1

0.2

0.3

distance(sourcei, targeti)
0 5 10 15 20 25 30 35 40 45

Figure 5.17: Average runtimes of the Order-
Constraint with a distance between subsequent
source events of 21 in dependency of the
distance source events and their associated
target event

11, 21 and 31 preemptions between the start and end event were created. In figure 5.14, the
average runtime with fixed lower and upper can be seen. In figure 5.15, lower and the number
of preemptions is fixed. A correlation between the input parameters and the runtimes can
not be observed, which was expected, because the runtime is independent of the parameters
or the placement of events, like stated in chapter 5.

OrderConstraint

The OrderConstraint monitor was evaluated on traces with distances between subsequent
source events between 1 and 91 in steps of 10 and maximal distances between the ith source
and target event between 0 and 45 in steps of 5. In traces, where the distance between the
source events and their associated target events was 0, or the distance between subsequent
source events was 1, the runtime was significantly larger as in the other traces. The reason for
this is that the smaller the distance between the source and target events are, the more often
two events occur in the same timestamp, which means that two events must be processed in
one timestamp instead of one, which requires more time.

70

5.3 Performance Analysis

time(ms)

0.3
0.35
0.4
0.45

jitter
1 11 21 31

Figure 5.18: Average runtimes of the
SporadicConstraint with the
parameters lower = 500, upper = 600

time(ms)

0.3
0.35
0.4
0.45

100 ∗ upper
6 7 8 9 10

Figure 5.19: Average runtimes of the
SporadicConstraint with the parameters
lower = 500, jitter = 21

time(ms)

0.3
0.35
0.4
0.45

jitter
0 1 2 3 4 5 6 7 8 9

Figure 5.20: Average runtimes of the
PeriodicConstraint with a period of 70 and
variable jitter

time(ms)

0.3
0.35
0.4
0.45

period
10 20 30 40 50 60 70 80 90 100

Figure 5.21: Average runtimes of the Periodic-
Constraint with a jitter of 6 and variable period

SporadicConstraint

The traces, that were used for the evaluation fulfill the constraint with the parameters jitter ∈
{1, 11, 21, 31}, lower ∈ {500, 600, ..., 900} and upper = lower + x, x ∈ {100, 200, ..., 500}.
The average runtime per timestamps of the monitor with the parameters lower = 500 and
upper = 600 with different values for the jitter parameter can be seen in Figure 5.18. Similar
to the runtimes with varying upper values (figure 5.19), the runtimes are nearly constant. As
expected by the analysis of the implementation in the previous section, the parameters did
not influence the runtime.

PeriodicConstraint

The runtime evaluation was done on traces, which fulfill the PeriodicConstraint with the
parameters period ∈ {10, 20, 30, .., 100} and jitter ∈ {0, 1, .., 9}. In figure 5.20, the average
runtimes of the monitor with a constant period and a variable jitter can be seen, in figure 5.21,
jitter is fixed and period is variable. Despite some fluctuations, the runtime is constant and
independent of the input parameters. This behavior was expected by the analysis of the
source code.

71

5 Implementation

time(ms)

0.6
0.65
0.7
0.75

period
11 31 51 71 91

Figure 5.22: Average runtimes of the
PatternConstraint with the parameters
offset= [0, 1] and jitter = 0

time(ms)

0.6
0.65
0.7
0.75

period
15 35 55 75 95

Figure 5.23: Average runtimes of the
PatternConstraint with the parameters
offset = [1, 3, 5] and jitter = 1

time(ms)

0.6
0.65
0.7
0.75

|offset|
10 20 30 40 50 60 70 80 90 100

Figure 5.24: Average runtimes of the PatternConstraint with the parameters period = 200
and jitter = 0

PatternConstraint

The monitor of the PatternConstraint was first evaluated on traces with lengths of the |offset|
parameter of 1, 2 and 3 and varying values for the parameters period and jitter. Also, the
values inside of |offset| were changing. Figure 5.22 and 5.23 show some of these results,
which were nearly constant at around 0.65ms per input timestamp. After these runtime
measurements, the runtime was measured on traces with the parameters jitter = 0 and
period = 200. The offset parameter had an increasing length from 1 to 100 and was filled
with offset= [0, 1, 2, 3, ...]. The results of this measurement can be seen in figure 5.24. It can
be seen that the average runtimes were nearly constant, besides some measurement deviations.
This behavior was expected by the analysis in the previous section.

ArbitraryConstraint

Similar to the previous constraint, multiple runs were done for the runtime measurement.
First, with small lengths of the minimum and maximum parameter and changing values for
the values inside of these parameters, and then with a length of the minimum and maximum
parameter of 1 to 60. Figure 5.25 and 5.26 are showing some of the results with short
minimum and maximum parameters. It can be seen that the results with the same length
of these parameters are nearly constant, but the traces with a minimum length of 3 took
slightly more time. Figure 5.27 shows the average runtimes in dependency of the length of

72

5.3 Performance Analysis

time(ms)

0.35
0.4
0.45
0.5

maximum

[10,20]
[20,40]
[30,60]
[40,80]
[50,100]
[60,120]
[70,140]
[80,160]
[90,180]
[100,200]

Figure 5.25: Average runtimes of the
ArbitraryConstraint with the
parameter minimum = [10, 20]

time(ms)

0.35
0.4
0.45
0.5

maximum

[40,80,120]
[50,100,150]
[60,120,180]
[70,140

,210]
[80,160

,240]
[90,180

,270]
[100

,200
,300]

[110,220
,330]

[120,240,360]
[130,260

,390]

Figure 5.26: Average runtimes of the
ArbitraryConstraint with the
parameter minimum = [40, 80, 120]

time(ms)

2.5
5
7.5

|maximum|
5 10 15 20 25 30 35 40 45 50 55 60

Figure 5.27: Average runtimes of the ArbitraryConstraint with |maximum| = 1..60

the minimum parameter. The graphic shows a linear growth of the runtime, which matches
the expectation in the analysis.

BurstConstraint

Figure 5.28 shows the average runtime per input timestamp with increasing the number
of occurrences per burst. The runtime was nearly constant, which was expected because
the BurstConstraint is defined as an application of the RepeatConstraint, which also has a
constant runtime.

ReactionConstraint

The runtime evaluation of the ReactionConstraint was done on traces with the parame-
ters minimum ∈ {100, 200, ..., 1000} and maximum = minimum, while the distances be-
tween subsequent stimulus event were in {1, 2, 4, 8, ..., 1024}, so that minimum, dminimum

2 e,
dminimum

4 e, ..., dminimum
1024 e events must be stored and considered at every event in the monitor.

Figure 5.29 and 5.30 are showing the average runtimes of the monitor with increasingminimum

73

5 Implementation

time(ms)

0.3
0.35
0.4
0.45

maxOccurrences

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
100

Figure 5.28: Average runtimes of the BurstConstraint with increasing occurrences per
burst and a length of 2000

time(ms)

8
16
24
32

maximum

100
200
300
400
500
600
700
800
900
1000

Figure 5.29: Average runtimes of the Reac-
tionConstraint with a distance between
subsequent stimulus events of 1 (worst case)
and variable maximum

time(ms)

0.2
0.4
0.6
0.8

maximum

100
100
200
300
400
500
600
700
800
900
1000

Figure 5.30: Average runtimes of the
ReactionConstraint with a distance between
subsequent stimulus events of 64 and
variable maximum

and maximum parameters but a fixed distance between subsequent stimulus events. The
first figure shows the runtimes with stimulus distances of 1, which is the worst-case because
maximum events must be stored and considered for the correct decision of the monitor. As
expected by the analysis, the runtime is increasing linearly with larger maximum values.
This behavior can also be seen in the second figure, where the distance between the events
is 64, but the runtimes are much shorter here. This is because between 2 (= d100

64 e) and 16
(= d1000

64 e) were considered in each timestamp with events, not between 100 and 1000 in the
previous case.

AgeConstraint

The runtime of the AgeConstraint monitor was measured on traces with the same parameters
as the previous constraint. Figure 5.31 shows the runtimes with event distances of 1, which
is the worst case in terms of monitoring, in dependency of the maximum parameter. With
increasing maximum values, the average runtime grew linear, like expected in the analysis.
The average runtimes with the same maximum values and a distance between subsequent
stimulus events of 64 are shown in figure 5.32. The runtime is growing nearly linear again,
but smaller, because only between 2 and 6 events had to be considered in each timestamp,

74

5.3 Performance Analysis

time(ms)

4
8
12
16

maximum

100
200
300
400
500
600
700
800
900
1000

Figure 5.31: Average runtimes of the
AgeConstraint with a distance between
subsequent stimulus events of 1 (worst case)
and variable maximum

time(ms)

0.3
0.35
0.4
0.45

maximum

100
100
200
300
400
500
600
700
800
900
1000

Figure 5.32: Average runtimes of the
AgeConstraint with a distance between
subsequent stimulus events of 64 and
variable maximum

time(ms)

0.85
0.9
0.95
1

tolerance
10 12 14 16 18 20 22 24

Figure 5.33: Average runtimes of the
OutputSynchronizationConstraint with 3
response streams and a cluster distance of 2

time(ms)

1

2

3

|response|

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Figure 5.34: Average runtimes of the
OutputSynchronizationConstraint with a cluster
distance of 64 and tolerance = 2

not between 1 and 1000 like before.

OutputSynchronizationConstraint

The traces for the evaluation of the OutputSynchronizationConstraint were generated with
2,3, 4 and 5 stimulus streams, tolerance values of 10 to 25 in steps of 3 and a distance
between synchronization clusters of 2, 4, 8, 16 or 32. In a second run, the runtimes for traces
with 2, 4, . . . , 32 response streams were measured.
Figure 5.33 shows the runtime with a cluster distance of 2 and 4 response streams. As
expected, the growth of the runtime is linear with larger values for the tolerance parameter.
Figure 5.34 the average runtimes with a fixed cluster distance of 2 and tolerance = 64. The
runtimes are increasing linearly. This is because the synchronization clusters do not overlap,
which means and the worst-case, in which is the runtime grows squarely, is not reached.

75

5 Implementation

time(ms)

0.5
0.6
0.7
0.8

tolerance
10 12 14 16 18 20 22 24

Figure 5.35: Average runtimes of the
InputSynchronizationConstraint with 3
stimulus streams and a cluster distance of 2

time(ms)

25
50
75
100
125

|stimulus|
8 16 24 32 40 48 56 64 72 80 88 96

104
112
120
128

Figure 5.36: Average runtimes of the
InputSynchronizationConstraint with a cluster
distance of 2 and tolerance = 64

InputSynchronizationConstraint

The traces for the evaluation of the InputSynchronizationConstraint were generated with 2,3,
4 and 5 stimulus streams, tolerance values of 10 to 24 in steps of 2 and a distance between
synchronization clusters of 2, 4, 8, 16 or 32. Similar to the previous constraint, traces with
up to 128 stimulus streams were tested in a second run.
Figure 5.35 shows the runtime of the monitor with the traces with three stimulus streams
and a fixed cluster distance of 2. The runtimes are nearly constant, which was expected by
the analysis of the source code. Figure 5.36 shows the average runtime with a fixed cluster
distance and tolerance and an increasing number of stimulus streams. As expected, the
runtimes are increasing by the square of the number of stimulus streams. The square growth
only became visible by a larger number of input streams, which is why the monitor was tested
with 128 input streams instead of 32, like in the other synchronization constraints.

EventChain

The runtimes of the monitor for the correctness of event chains were also measured. The traces
were generated with the same parameters as for the ReactionConstraint. Figure 5.37 and 5.38
show the results of this measurement, with fixed distances between subsequent stimulus
events of 1 and 128 timestamps and distances between stimulus events and their associated
response event of 100, 200, ..., 1000. The runtimes in both cases are nearly constant, but the
runtimes are slightly larger in figure 5.37. This is because the stimulus and response events
occur in the same timestamps here, but not in figure 5.38.

5.3.1 Conclusion

The implementations offer the possibility to check if the timing constraints defined in TADL2
on input traces. Most of the implementations have acceptable runtimes. In the setting used
for the runtime measurement, the implementations of the StrongDelay-, Repeat-, Repetition-,

76

5.3 Performance Analysis

time(ms)

0.05
0.1
0.15
0.2
0.25

maximum

100
200
300
400
500
600
700
800
900
1000

Figure 5.37: Average runtimes of the
EventChain check with a distance between
subsequent stimulus events of 1 and variable
maximum(ReactionConstraint parameter)

time(ms)

0.05
0.1
0.15
0.2
0.25

maximum
100
200
300
400
500
600
700
800
900
1000

Figure 5.38: Average runtimes of the
EventChain check with a distance between
subsequent stimulus events of 128 and variable
maximum(ReactionConstraint parameter)

ExecutionTime-, Order-, Sporadic-, Periodic-, Pattern- and BurstConstraint were processing
more than one event per millisecond. It was shown that the constraint parameters of these
constraints did not influence the runtime. This was expected by the analysis of the source
code, in which a constant runtime of these implementations was predicted.
The runtimes of the Delay-, Arbitrary-, Synchronization- and the StrongSynchronization-, Age-
and ReactionConstraint are linear dependent on the constraint parameters and the runtimes
per input timestamp was larger than one millisecond for certain constraint parameters and
event constellations.
The runtimes of the OutputSynchronization- and InputsynchronizationConstraint monitors
are growing by the square of the number of input streams. While the average runtimes with a
small number of input streams were below 1ms per input timestamp, it increased significantly
when the number of input streams was increased.
The runtime for the check of the correctness of EventChains was constant at around 0.15ms
per input event, therefore ca. 6600 events were processed per second. It must be noted
that the memory usage of the OutputSynchronization-, InputsynchronizationConstraint and
the check for the correctness of EventChains is linear dependent on the number of events,
which previously occurred in the streams. Consequently, the system’s memory will be filled
at some point when infinite long traces are observed, which means they cannot be monitored
infinitely.

77

6 Summary and Outlook

In this chapter, a summary of the presented work is given. Additionally, some ideas for future
work will be presented.

6.1 Summary

In this thesis, it has been shown that implementing a monitor for the AUTOSAR Timing
Extensions is problematic due to informal definitions. Because of this, the timing constraints
defined in the Timing Augmented Description Language v2 (TADL2) were considered for the
implementation of a monitoring tool. The TADL2 Timing Constraints were presented and
the relations between them and the AUTOSAR Timing Constraints were described.
After the relations between the AUTOSAR Timing Extensions and the timing constraints de-
fined in TADL2 were explained, the term simple monitorable, which ensures that a property
on a possibly infinite trace can be monitored with finite resources were introduced. This term
was expended by the possibility of creating new timestamps, which ensures that a violation
of a constraint can be detected as early as possible. These terms were applied to the TADL2
timing constraints, with the result that eight of the constraints are simple monitorable with or
without delay and nine constraints are not simple monitorable. Seven of the not simple mon-
itorable constraints have memory requirements, which can be infinite in worst-cases. Two
of them always have infinite memory requirements when monitoring infinite streams. The
term simple monitorable is not applicable to one constraint because it is not defined on event
streams.
After the theoretical part, an implementation for all of the TADL2 timing constraints in
TeSSLa was given, except for the ComparionConstraints, whose functionality was already
implemented in TeSSLa. The worst-case runtime per timestamp with input events and the
memory usage were analyzed. In the end, the runtime of the implementations was measured
on large, generated traces.
The timing constraints defined in TADL2 are not equal to the AUTOSAR Timing Extensions.
However, some constraints have equal semantics and the implemented monitors can be used
for the TADL2 constraints and the AUTOSAR Timing Extensions. Other TADL2 constraints
have a less strict semantic than their AUTOSAR counterparts. For these constraints, the im-
plemented monitors can check the correctness of a trace in parts, but not entirely.

6.2 Future Work

For a real-world use of the monitors, more work on this topic is required. It is possible to map
TeSSLa-specifications to reconfigurable hardware like FPGAs [DDG+18]. Because of memory
and recursion restrictions, this is not possible for all specifications. The possibility of mapping

79

6 Summary and Outlook

the implementations on reconfigurable hardware would significantly increase the performance
and opens the gate for real-world usage in embedded systems in the automotive industry.

Some constraints were classified as not simple monitorable but could be restricted so that they
are simple monitorable. For example, the InputSynchronization- and OutputSynchronization-
Constraint are classified as always not simple monitorable because they need to store every
occurring color and therefore have a continuously growing memory usage. If all events have a
minimal distance and the color attribute is defined as integers, which occur strictly ordered,
a monitor with a fixed memory limit could be built. Restrictions of this kind may be possible
to many of the timing constraints classified as not simple monitorable. Further work on these
possible restrictions is needed because it must be ensured that the monitored system also
fulfills the restrictions.

80

List of Figures

2.1 BurstPatternEventTriggering patternPeriod and patternJitter accumulating . 5
2.2 BurstPatternEventTriggering patternPeriod and patternJitter non-accumulating 5
2.3 BurstPatternEventTriggering Possible bursts, ↑ shows the current time 7
2.4 Graphical example of λ(E), λ(F) and λ(E \ F) 10
2.5 Example DelayConstraint - lower = 2, upper = 3 12
2.6 Example StrongDelayConstraint - lower = 2, upper = 3 12
2.7 Example RepeatConstraint - lower = 2, upper = 2, span = 1 13
2.8 Example RepeatConstraint - lower = 4, upper = 5, span = 2 13
2.9 Example RepetitionConstraint - lower = 4, upper = 5, span = 2, jitter = 1 . . 14
2.10 Example SynchronizationConstraint - tolerance = 1 15
2.11 Example StrongSynchronizationConstraint - tolerance = 1 16
2.12 Example ExecutionTimeConstraint . 17
2.13 Example OrderConstraint . 17
2.14 Example SporadicConstraint - lower = 2, upper = 2.5, jitter = 1, minimum = 2 19
2.15 Example PeriodicConstraint - period = 3, jitter = 1, minimum = 2.5 19
2.16 Example PatternConstraint - period = 5, offset = {1, 2, 2.5}, jitter = 0.5,

minimum = 0.5 . 21
2.17 Example ArbitraryConstraint - minimum = {1, 2, 3} and minimum = {4, 5, 6} 22
2.18 Example BurstConstraint - length = 5, maxOccurences = 3 minimum = 0.8 . 23
2.19 Example ReactionConstraint - minimum = 1, maximum = 3 24
2.20 Example AgeConstraint - minimum = 1, maximum = 3 25
2.21 Example OutputSynchronizationConstraint - tolerance = 1 26
2.22 Example InputSynchronizationConstraint - tolerance = 1 27

3.1 Overview Simple Monitorability - with or without delay 41
3.2 Visualization of the Delay Generator. Description A means (dn, {c < tmr(d1)}, {c}, dn)

and description B means (d1, {c < tmr(dn)}, {c}, d1). 41

4.1 DelayConstraint or StrongDelayConstraint with lower = upper = 5 44
4.2 SynchronizationConstraint or StrongSynchronizationConstraint with tolerance =

5 . 46
4.3 Event Chain example . 49
4.4 Overview over constraints - Simple Monitorable - Not Simple Monitorable . . . 51

5.1 Average runtimes of the Delay-
Constraint with event distances of 20 = 1 . 66

5.2 Average runtimes of the Delay-
Constraint with the parameters
lower = upper = 800 . 66

5.3 Average runtimes of the Strong-
DelayConstraint with event distances of 20 = 1 67

81

List of Figures

5.4 Average runtimes of the Strong-
DelayConstraint with the parameters
lower = upper = 700 . 67

5.5 Average runtimes of the
RepeatConstraint with the
parameters lower = 6000, upper = 9000 . 67

5.6 Average runtimes of the
RepeatConstraint with the parameters
lower = 5000, span = 1 . 67

5.7 Average runtimes of the
RepetitionConstraint with the
parameters lower = 500, upper = 900 . 68

5.8 Average runtimes of the
RepetitionConstraint with the parameters
lower = 600, upper = 1000 . 68

5.9 Average runtimes of the RepetitionConstraint with the parameters span =
1, lower = 500 . 68

5.10 Average runtimes of the
SynchronizationConstraint with two events
per cluster, tolerance = 2 and a cluster distance
of 64 . 69

5.11 Average runtimes of the
SynchronizationConstraint with four event
streams, b tolerance

2 c events per cluster and a
cluster distance of 200 . 69

5.12 Average runtimes of the
StrongSynchronizationConstraint with
tolerance = 2 and a cluster distance of 64 . 69

5.13 Average runtimes of the
StrongSynchronizationConstraint with four
event streams and a cluster distance of 200 . 69

5.14 Average runtimes of the
ExecutionTimeConstraint with the
parameters lower = 100, upper = 1700 . 70

5.15 Average runtimes of the
ExecutionTimeConstraint with the parameters
lower = 100, preemptions = 11 . 70

5.16 Average runtimes of the Order-
Constraint with a distance between source
events and their associated target events of 5
in dependency of the distance between
subsequent source events . 70

5.17 Average runtimes of the Order-
Constraint with a distance between subsequent
source events of 21 in dependency of the
distance source events and their associated
target event . 70

82

List of Figures

5.18 Average runtimes of the
SporadicConstraint with the
parameters lower = 500, upper = 600 . 71

5.19 Average runtimes of the
SporadicConstraint with the parameters
lower = 500, jitter = 21 . 71

5.20 Average runtimes of the
PeriodicConstraint with a period of 70 and
variable jitter . 71

5.21 Average runtimes of the Periodic-
Constraint with a jitter of 6 and variable period 71

5.22 Average runtimes of the
PatternConstraint with the parameters
offset= [0, 1] and jitter = 0 . 72

5.23 Average runtimes of the
PatternConstraint with the parameters
offset = [1, 3, 5] and jitter = 1 . 72

5.24 Average runtimes of the PatternConstraint with the parameters period = 200
and jitter = 0 . 72

5.25 Average runtimes of the
ArbitraryConstraint with the
parameter minimum = [10, 20] . 73

5.26 Average runtimes of the
ArbitraryConstraint with the
parameter minimum = [40, 80, 120] . 73

5.27 Average runtimes of the ArbitraryConstraint with |maximum| = 1..60 73
5.28 Average runtimes of the BurstConstraint with increasing occurrences per burst

and a length of 2000 . 74
5.29 Average runtimes of the Reac-

tionConstraint with a distance between
subsequent stimulus events of 1 (worst case)
and variable maximum . 74

5.30 Average runtimes of the
ReactionConstraint with a distance between
subsequent stimulus events of 64 and
variable maximum . 74

5.31 Average runtimes of the
AgeConstraint with a distance between
subsequent stimulus events of 1 (worst case)
and variable maximum . 75

5.32 Average runtimes of the
AgeConstraint with a distance between
subsequent stimulus events of 64 and
variable maximum . 75

5.33 Average runtimes of the
OutputSynchronizationConstraint with 3
response streams and a cluster distance of 2 . 75

83

List of Figures

5.34 Average runtimes of the
OutputSynchronizationConstraint with a cluster
distance of 64 and tolerance = 2 . 75

5.35 Average runtimes of the
InputSynchronizationConstraint with 3
stimulus streams and a cluster distance of 2 . 76

5.36 Average runtimes of the
InputSynchronizationConstraint with a cluster
distance of 2 and tolerance = 64 . 76

5.37 Average runtimes of the
EventChain check with a distance between
subsequent stimulus events of 1 and variable
maximum(ReactionConstraint parameter) . 77

5.38 Average runtimes of the
EventChain check with a distance between
subsequent stimulus events of 128 and variable
maximum(ReactionConstraint parameter) . 77

84

List of Tables

2.1 Time distances as seen in figure 2.17 . 22
2.2 SynchronizationTimingConstraint ⇔ TADL2 Constraints 30

5.1 Worst-Case Runtimes of the Implementations 64

85

Abbreviations

AUTOSAR Automotive Open System Architecture
EAST-ADL Electronics Architecture and Software Technology-Architecture Descrip-

tion Language
TIMMO Timing Model (EAST-ADL)
TIMMO-2-USE Updated version of TIMMO
TADL2 Timing Augmented Description Language V2
DFST Deterministic Finite State Transducer
TDFST Timed Deterministic Finite State Transducer
LTL Linear Temporal Logic
RV Runtime Verification

87

References

[ABLS05] Arafat, Oliver ; Bauer, Andreas ; Leucker, Martin ; Schallhart, Christian:
Runtime verification revisited. (2005)

[AD92] Alur, Rajeev ; Dill, David: The theory of timed automata. In: Bakker, J. W.
(Hrsg.) ; Huizing, C. (Hrsg.) ; Roever, W. P. (Hrsg.) ; Rozenberg, G. (Hrsg.):
Real-Time: Theory in Practice. Berlin, Heidelberg : Springer Berlin Heidelberg,
1992. – ISBN 978–3–540–47218–6, S. 45–73

[AUT] Current Partners - AUTOSAR. https://www.autosar.org/about/
current-partners/, . – Accessed: 2020-11-13

[AUT18] AUTOSAR: Specification of Timing Extensions. 2018

[Ber79] Berstel, Jean: Transductions and Context-Free Languages -. Wiesbaden :
Vieweg+Teubner Verlag, 1979. – ISBN 978–3–519–02340–1

[BFL+12] Blom, Hans ; Feng, Dr. L. ; Lönn, Dr. H. ; Nordlander, Dr. J. ; Kuntz,
Stefan ; Lisper, Dr. B. ; Quinton, Dr. S. ; Hanke, Dr. M. ; Peraldi-Frati, Dr.
Marie-Agnès ; Goknil, Dr. A. ; Deantoni, Dr. J. ; Defo, Gilles B. ; Klobedanz,
Kay ; Özhan, Mesut ; Honcharova, Olha: TIMMO-2-USE Language syntax,
semantics, metamodel V2. 2012

[BLS07] Bauer, Andreas ; Leucker, Martin ; Schallhart, Christian: The Good, the
Bad, and the Ugly, But How Ugly Is Ugly? In: Sokolsky, Oleg (Hrsg.) ;
Taşıran, Serdar (Hrsg.): Runtime Verification. Berlin, Heidelberg : Springer
Berlin Heidelberg, 2007. – ISBN 978–3–540–77395–5, S. 126–138

[CHL+18] Convent, Lukas ; Hungerecker, Sebastian ; Leucker, Martin ; Scheffel,
Torben ; Schmitz, Malte ; Thoma, Daniel: TeSSLa: Temporal Stream-Based
Specification Language. In: Massoni, Tiago (Hrsg.) ; Mousavi, Mohammad R.
(Hrsg.): Formal Methods: Foundations and Applications. Cham : Springer Inter-
national Publishing, 2018. – ISBN 978–3–030–03044–5, S. 144–162

[DDG+18] Decker, N. ; Dreyer, B. ; Gottschling, P. ; Hochberger, C. ; Lange, A.
; Leucker, M. ; Scheffel, T. ; Wegener, S. ; Weiss, A.: Online analysis of
debug trace data for embedded systems. In: 2018 Design, Automation Test in
Europe Conference Exhibition (DATE), 2018, S. 851–856

[DSS+05] D’Angelo, B. ; Sankaranarayanan, S. ; Sanchez, C. ; Robinson, W. ;
Finkbeiner, B. ; Sipma, H. B. ; Mehrotra, S. ; Manna, Z.: LOLA: run-
time monitoring of synchronous systems. In: 12th International Symposium on
Temporal Representation and Reasoning (TIME’05), 2005, S. 166–174

89

https://www.autosar.org/about/current-partners/
https://www.autosar.org/about/current-partners/

References

[LN12] Lisper, Björn ; Nordlander, Johan: A Simple and flexible Timing Constraint
Logic. In: In 5th International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA), 15-18 October 2012, Amirandes,
Heraklion, Crete. (2012)

[LPZ85] Lichtenstein, Orna ; Pnueli, Amir ; Zuck, Lenore: The glory of the past. In:
Parikh, Rohit (Hrsg.): Logics of Programs. Berlin, Heidelberg : Springer Berlin
Heidelberg, 1985. – ISBN 978–3–540–39527–0, S. 196–218

[LS09] Leucker, Martin ; Schallhart, Christian: A brief account of runtime verifica-
tion. In: The Journal of Logic and Algebraic Programming 78 (2009)

[LSS+18] Leucker, Martin ; Sanchez, Cesar ; Scheffel, Torben ; Schmitz, Malte ;
Schramm, Alexander: TeSSLa: runtime verification of non-synchronized real-
time streams, 2018, S. 1925–1933

90

	Abstract
	Kurzfassung
	Contents
	Introduction
	Timing Constraints
	AUTOSAR Timing Extensions
	Timing Augmented Description LanguageTIMMO2USE
	Parenthesis - Simple and Flexible Timing Constraint Logic
	TADL2-Timing Constraints
	Comparison TADL2 - AUTOSAR Timing Extension

	Monitoring Timing Constraints on possibly infinite Streams
	Related Work
	Runtime Verification
	TeSSLa
	LOLALOLA
	Semantics of LTL31157 and RV-LTL10.1007/978-3-540-77395-511
	Transducer Models

	Monitorability
	Simple Monitorability
	Simple Monitorability With Delay
	Not Simple Monitorable

	Analysis of the Monitorability of Timing Constraints
	Monitorability of the TADL2 Timing Constraints
	DelayConstraint
	StrongDelayConstraint
	RepeatConstraint
	RepetitionConstraint
	SynchronizationConstraint
	StrongSynchronizationConstraint
	ExecutionTimeConstraint
	OrderConstraint
	ComparisonConstraint
	SporadicConstraint
	PeriodicConstraint
	PatternConstraint
	ArbitraryConstraint
	BurstConstraint
	EventChains
	ReactionConstraint
	AgeConstraint
	OutputSynchronizationConstraint
	InputSynchronizationConstraint

	Conclusion

	Implementation
	Implementation of the TADL2 Constraints
	DelayConstraint
	StrongDelayConstraint
	RepeatConstraint
	RepetitionConstraint
	SynchronizationConstraint
	StrongSynchronizationConstraint
	ExecutionTimeConstraint
	OrderConstraint
	ComparisonConstraint
	SporadicConstraint
	PeriodicConstraint
	PatternConstraint
	ArbitraryConstraint
	BurstConstraint
	ReactionConstraint
	AgeConstraint
	OutputSynchronizationConstraint
	InputSynchronizationConstraint
	EventChain

	Conclusion
	Performance Analysis
	Conclusion

	Summary and Outlook
	Summary
	Future Work

	Abbildungsverzeichnis
	Tabellenverzeichnis
	Abkürzungsverzeichnis
	References

