
Structured Assertion Language for Temporal Logic

Language Reference and Compiler Manual

Version 1.0.1 — April 2006

Jonathan Streit
Institut für Informatik

Technische Universität München
http://salt.in.tum.de

Contents

1 General Information 1
1.1 The Salt language . 1
1.2 Licensing and Contact . 1
1.3 Typographical conventions . 2
1.4 Salt version history . 2

2 Installation 3

3 Usage 5
3.1 Command line parameters . 5
3.2 Extending the Salt compiler . 7

4 Getting started with Salt 8
4.1 First steps . 8
4.2 Salt for Ltl users . 9
4.3 Scope operators . 10
4.4 Regular expressions . 10
4.5 Exception operators . 11
4.6 Macros . 11
4.7 Iteration operators . 11
4.8 Further steps . 12

5 Salt Language Reference 13
5.1 General structure . 13
5.2 Propositional layer . 15
5.3 Temporal layer . 17

5.3.1 Simple temporal operators 17
5.3.2 Scope operators . 20
5.3.3 Exception operators . 24
5.3.4 Regular expressions . 25
5.3.5 Counting quantifiers . 27
5.3.6 Past operators . 28

5.4 Timed layer . 30
5.5 Macros and parameterised expressions 33

5.5.1 Parameterised expressions 33
5.5.2 Macros . 33
5.5.3 Iteration . 35

i

6 Translation schema 37
6.1 Replacement of non-core Salt operators 38

6.1.1 never . 38
6.1.2 releases . 38
6.1.3 nextn . 38
6.1.4 occurring . 39
6.1.5 holding . 39
6.1.6 Regular expressions, part I 40
6.1.7 Iteration operators . 40

6.2 Translation of core Salt into Salt-- 41
6.2.1 until . 41
6.2.2 upto . 42
6.2.3 from . 43
6.2.4 between . 43
6.2.5 Exception operators . 43
6.2.6 Regular expressions, part II 43

6.3 Translation of Salt-- into Ltl 44
6.3.1 acc . 44
6.3.2 rej . 45
6.3.3 stopincl . 45
6.3.4 stopexcl . 46

6.4 Optimisation . 46
6.5 Operator replacement . 46
6.6 Translation of timed operators 47

6.6.1 Timed Salt into timed Salt-- 47
6.6.2 Timed Salt-- into extended Tltl 48
6.6.3 Extended Tltl into pure Tltl 48

7 Examples 49

Bibliography 52

Index 53

ii

Chapter 1

General Information

1.1 The Salt language

Salt (Structured Assertion Language for Temporal Logic) is a high-level tem-
poral specification language designed for the comfortable creation of concise
specifications to be used in model checking and runtime verification. Unlike
other specification languages, Salt does not target a specific domain.

Besides the common temporal operators, Salt provides exception operators,
counting quantifiers and support for simplified regular expressions, as well as
scope operators, allowing to express that a property has to hold before, after
or in between some events. Frequently occurring patterns can be defined as
parameterisable macros and can be used in a similar way as operators of the
language. A timed extension allows to express real-time constraints.

In contrast to many proprietary specification languages, Salt can be trans-
lated into Ltl (Linear Temporal Logic)—or in the case of real-time properties
into Tltl—and thus be used as a front end to existing verification tools. The
Salt compiler generates optimised formulae, that are usually at least as efficient
as hand-written ones, often even better.

1.2 Licensing and Contact

The Salt language and compiler are Open Source Software released under the
terms of the GNU GPL. The full license text can be found in the file LICENSE.

Salt language and compiler. Copyright c© 2006
This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 51
Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

1

CHAPTER 1. GENERAL INFORMATION 2

Developers: Jonathan Streit

Contributions from: Andreas Bauer, Martin Leucker

Example specifications from: Matthew B. Dwyer, George S. Avrunin,
James C. Corbett, Laura Dillon, Leonid Kof

Third party software used: ANTLR parser generator by Terence Parr

Contact. The authors can be contacted at
salt AT mailbroy.informatik.tu-muenchen.de .
Feedback—positive as well as critical—is greatly appreciated.

The Salt compiler can be downloaded from http://salt.in.tum.de
as binary or source distribution. There is also a web interface available that
allows to translate a Salt specification without having to install the compiler.

Additional information on the development and theoretical background of
Salt can be found in [Str06, BLS06].

1.3 Typographical conventions

In this manual, Salt specifications are written in typewriter style with bold
keywords (e. g., variable , until), while mathematical style and symbols
(e. g., ∨, U) are used for Ltl expressions. Placeholders for boolean propositions
are denoted with italic lower case letters (e. g., a, b). Temporal formulae are
denoted with Greek letters (e. g., ϕ,ψ).

Product names, registered names and trademarks may appear in this manual
without being marked as such. This does not imply that they can be freely used.

1.4 Salt version history

0.7 Preliminary version

1.0 Revised manual, AutoFocus support

1.0.1 Bugfix: additional parentheses in output needed for Cadence SMV

Chapter 2

Installation

This chapter describes how to install the Salt command line compiler. Most of
its features can also be accessed using the web interface on the Salt homepage,
without having to install the compiler.

The Salt compiler can be used on Windows, Linux and Unix systems. The
following software is needed in order to install and run the compiler:

• The Salt compiler binaries. Binaries as well as the corresponding source
code can be downloaded from http://salt.in.tum.de . The same
binaries can be used for all platforms. There is no need for the average
user to build the Salt compiler themselves, although this is possible with
the source distribution.

• A Java Runtime Environment. The Salt compiler works with JRE version
1.3 or higher (preferably 1.5). The latest JRE can be downloaded from
http://www.java.sun.com .

• A Haskell interpreter. The Salt compiler works with the Hugs 98 Haskell
interpreter as well as with the Glasgow Haskell Compiler GHC, although
Hugs is preferable as it is smaller and faster. The Salt compiler has
been tested with Hugs November 2003 and GHC 6.4.1 on Windows 2000
and SuSE Linux. Hugs 98 can be downloaded from www.haskell.org/
hugs . GHC can be downloaded from www.haskell.org/ghc .

Installation procedure

1. Install the Java Runtime Environment unless you already have it installed.
Set the environment variable JAVA HOMEso that it points to the directory
where Java is installed (which normally contains a subdirectory called
bin with the executable java). See your operation system manual for
information on how to set environment variables.

2. Install the Haskell interpreter of your choice unless you already have it
installed.

3. The Salt compiler comes as a zip archive. Unzip the archive to the
directory of your choice. This directory will be referred to as the Salt
home directory. On a Linux or Unix system, you may have to make the
file salt.sh executable by running the command chmod +x salt.sh .

3

CHAPTER 2. INSTALLATION 4

4. Rename the file SALT HOME/config/hs.properties.template to
SALT HOME/config/hs.properties and open it with a text editor to
edit the following values:

• hs.interpreter must be set to either hugs or ghc , depending
on the Haskell interpreter to be used.

• hs.tempfile may optionally be set. The file named here will be
used for the intermediate Haskell code. This option may help if
your system-wide temp directory’s name contains spaces and Hugs is
unable to find the intermediate code.

• hugs.path must be set if you want to use Hugs. It must point to
the directory where Hugs is installed. Hugs on Windows seems to
have problems with spaces in the directory name, so you may have
to use the 8-letter DOS name.

• hugs.command must be set if you want to use Hugs. It is the
name of the executable to be used (runhugs.exe for Windows
and runhugs for Linux). hugs.command is interpreted relative
to hugs.path .

• hugs.librarypath must be set if you want to use Hugs. It is
the name of the directory (relative to hugs.path) where the Hugs
library files are located, usually called libraries .

• hugs.options may optionally be set if you want to use Hugs.
These are additional options that can be passed to Hugs.

• ghc.path must be set if you want to use GHC. It must point to the
directory where the GHC binaries are located (normally a directory
bin relative to where GHC is installed).

• ghc.command must be set if you want to use GHC. It is the name of
the executable to be used (runghc.exe for Windows and runghc
for Linux). ghc.command is interpreted relative to ghc.path .

• ghc.options may optionally be set if you want to use GHC. These
are additional options that can be passed to GHC.

5. If you want to call the Salt compiler from a directory different than the
Salt home directory, you have to set the environment variable SALT HOME
accordingly.

6. Typing salt.bat -f "assert always a" in a DOS box or
./salt.sh -f "assert always a" in a Linux shell should output
the following:
LTLSPEC G a

Chapter 3

Usage

This chapter describes the usage of the Salt compiler command line tool. It is
called via the shell scripts salt.bat (for Windows) and salt.sh (for Linux).
The compiler assumes that you either call it from its home directory or that
you have set the environment variable SALT HOME.

3.1 Command line parameters

The following parameters can be provided to the compiler:

• file
Sets the input file to be read. The Salt specification will be read from
the given file. If no input file is provided, the specification is read from
standard in (normally the console). This allows the usage of Unix pipes.

• -f " spec"
Processes a specification from the command line. This option allows to
translate small specifications provided on the command line.

• -o file
Sets the output file to be used. The result is written to the given file.
If this option is not present, the result will be written to standard out
(normally the console). This allows the usage of Unix pipes.

• -e
Switches to embedded Salt mode. This is useful when a Salt specifica-
tion forms a part of another file, for example an SMV model. The compiler
searches the input for Salt specifications delimited by BEGINSALT and
ENDSALT. The rest of the file is copied to the output, with the Salt
specifications replaced by the resulting Ltl formulae. See chapter 4 for
an example.

• -parser module
Enables a custom proposition parser plugin. The proposition parser is
called to check and/or transform atomic propositions. For information on
how to provide a custom implementation see section 3.2.

5

CHAPTER 3. USAGE 6

• -smv
Chooses SMV syntax for the output (default). SMV syntax uses ! & |
-> <-> for boolean and G F U V X H O S T Y Zfor temporal oper-
ators. It is understood by SMV model checkers.

• -spin
Chooses SPIN output syntax. SPIN output syntax uses ! && || ->
<-> for boolean and [] <> U V X for temporal operators. It is under-
stood by the SPIN model checker. SPIN does not allow past operators in
Ltl formulae.

• -latex
Chooses LATEX output syntax. LATEX syntax allows to include Ltl formu-
lae easily into LATEX documents. The packages amsmath and amssymb
have to be included.

• -printer module
Enables a custom printing function plugin. The printing function is used
to print the final Ltl formula in the desired output syntax. For informa-
tion on how to provide a custom implementation see section 3.2.

• -ltl
Chooses Ltl generation (default). The result will be an Ltl formula.

• -rltl
Chooses intermediate Salt-- generation. The result will be a formula that
contains rej , acc and stop operators in addition to the standard Ltl
operators. This option exists mainly for troubleshooting.

• -hs
Chooses intermediate Haskell code generation. The result will be a Haskell
program. The Haskell interpreter is not invoked. This option exists mainly
for troubleshooting.

• -tltl
Chooses Tltl for timed operators (default). Timed Salt operators will be
translated using an event predicting (|>) and event recording (<|) operator,
as defined in State Clock Logic [RS99].

• -xtltl
Chooses extended Tltl for timed operators. In addition to the event
predicting and event recording operator, timed U, W, � and ♦ as well
as the corresponding past operators will be used in the result. Extended
Tltl is much easier to read than pure Tltl.

• -notimed
Don’t allow timed operators. The use of timed operators will produce an
error message.

• -nopast
Don’t allow past operators. The use of past operators will produce an
error message. Note that past operators are not allowed anyway in SPIN
output syntax.

CHAPTER 3. USAGE 7

• -nonext
Don’t allow next operators. The use of the next operator as well as of
other Salt operators that are translated using the next operator (e. g.,
regular expressions) produces an error message. This ensures that the
formula is stutter-invariant.

• -v
Choose verbose mode. The compiler will output some more status mes-
sages.

• -h or -?
Show help screen.

3.2 Extending the Salt compiler

Plugins. The Salt compiler can be extended via a plugin mechanism. Plugins
are Haskell modules stored in the directory hs . They have to be enabled with
a command line parameter.

Proposition parsing plugins allow to perform checks or transformations on
the atomic propositions that are used in a Salt specification. The default
proposition parser checks that if a declare -statement is present, all propo-
sitions used in the specification are listed. For custom implementations, copy
and modify the file hs/PropositionCheck.hs . Custom implementations
are enabled using the command line parameter -parser . All implementations
have to define a function parseProposition . Custom proposition parsing
is particularly interesting for quoted propositions that may contain arbitrary
text. For example, a custom proposition parser could check whether the atomic
propositions are valid Java boolean expressions.

Printing function plugins allow to define a custom output syntax for Ltl
formulae. The default implementations hs/LTL2 xxx.hs provide SMV, SPIN
and LATEX syntax. For custom implementations, copy and modify the file
hs/LTL2SMV.hs . Custom implementations are enabled using the command
line parameter -printer . All implementations have to define a function
printLTL .

Further modifications. In order to extend the compiler beyond the plugin
mechanism, you have to download the Salt source distribution and use ANT
with the file build.xml to build it. JUnit is required for the compiler self-
tests.

Chapter 4

Getting started with Salt

This chapter provides a short tutorial helping you to learn Salt. You should
however have some basic knowledge of temporal logic. In chapter 5, you will find
a detailed language reference. Chapter 7 contains some example specifications.
See the index if you want to know about a specific operator.

This chapter assumes that you have the Salt compiler installed, as described
in chapter 2, or that you have access to the Salt web interface.

4.1 First steps

We start with a very simple specification. Imagine some kind of client-server
constellation, where we want to specify that every request is eventually an-
swered. The Salt specification for this is

assert always (request implies eventually answer)

The keyword assert starts an assertion. There can be more than one assertion
in a Salt specification, and each of them is translated into a formula of its own.
always , implies and eventually are keywords. Their names should make
clear what their meaning is. request and answer represent two boolean
variables in the model to be checked. Any identifier that is not a keyword is
automatically interpreted as a boolean variable by the compiler.

When we run the compiler on the specification, we obtain

LTLSPEC G (request -> (F answer))

which corresponds to the Ltl formula

�(request→ ♦answer)

The compiler is by default set to SMV output syntax, and therefore uses Gand
F for � and ♦ and begins each formula with the keyword LTLSPEC.

If we prefer the SPIN model checker instead, we have to call the compiler
with the option -spin and obtain

[] (request -> (<> answer))

We can also write Salt specifications as embedded part of another file, like
the following SMV file:

8

CHAPTER 4. GETTING STARTED WITH SALT 9

MODULE main
VAR
erroroccured : boolean;
ASSIGN
init(erroroccured) := ...

BEGINSALT
assert never erroroccured

ENDSALT

The model checker can then be invoked using a piping command like
salt -e test.salt | nuSMV .

4.2 Salt for Ltl users

We have seen in the previous example that a Salt expression has a similar
structure as an Ltl formula. Experienced Ltl users probably want to know
how to denote the common Ltl operators in Salt. Here they are:

Ltl Salt
¬ ! or not
∧ & or and
∨ | or or
→ -> or implies
↔ <-> or equals
U until
W until weak
R releases
� always
♦ eventually
◦ next
S since or untilinpast
W since weak or untilinpast weak
T triggered or releasesinpast
� historically or alwaysinpast
� once or eventuallyinpast
• previous or nextinpast
•W previous weak or nextinpast weak

The difference between symbolic and textual boolean operators (e. g., | and
or) is that the symbolic operators have a higher precedence. Furthermore,
unary operators have a higher precedence than binary operators. If you do not
want to care about operator precedences, just set enough parentheses to avoid
any ambiguity. It is a good idea to use symbolic operators to create purely
propositional formulae and textual operators to combine temporal expressions.

The following three expressions all have the same meaning:

assert always a | b or eventually c | d
assert always (a or b) or eventually (c or d)
assert (always a | b) | (eventually c | d)

CHAPTER 4. GETTING STARTED WITH SALT 10

4.3 Scope operators

Until now, all we have done is to define a different syntax for Ltl. Let’s benefit
a bit more from using Salt. Assume we want to specify that a program returns
a result before terminating. We can do this by writing

assert (eventually result) before term

However, we will get an error message from the compiler saying

ERROR:
Operator must be used with inclusive/exclusive and

required, optional or weak at line 1:30

Our specification is ambiguous. For example, it is not clear what happens if
result and term become true at the same time. Also, the specifications
does not clarify what is expected if the program never sends a term . When
writing temporal specifications, one often forgets these special cases. In order
to avoid erroneous specifications, the compiler requires us to specify exactly
what we mean. We add the keyword exclusive to emphasise that the step
when term becomes true does not any more belong to the denoted interval
and that therefore result has to become true before that step. We also add
the keyword required that states that term has to occur at some point. If
this seems annoying to you, think of the time you might have needed to find
out that your specification was expressing the wrong requirement (and not that
your model was wrong).

The correct specification looks like this:

assert (eventually result) before exclusive required term

The keywords inclusive , optional or weak would have lead to a differ-
ent meaning. Note that there are also other scope operators, like from and
between .

4.4 Regular expressions

Specifying sequences of consecutive events in Ltl requires a lot of nested ∧◦(. . .)
or ∧♦(. . .). Salt allows to describe such sequences in a concise way: by regular
expressions. In the following, we again specify the data flow between a client
and a server, this time a bit more in detail. The request consists of a begin
signal, followed (in the next step) by an optional header and one or more data
signals, and finally an end signal. The answer consists of a begin signal, any
number of data signals and an end signal.

assert always (/request_begin;
request_header?;
request_data+;
request_end /

implies eventually
/answer_begin;

answer_data*;
answer_end /)

CHAPTER 4. GETTING STARTED WITH SALT 11

Consecutive expressions are separated by the concatenation operator ; . The
+ operator states that an element is repeated one or more times, while the *
operator allows any number of repetitions. Note that the specification given
above does not prevent request_begin or any other of the signals from oc-
curring again at a step where they are not named explicitly. For example,
request_begin might remain true throughout the whole communication.

More operators and details about the usage of regular expressions can be
found in the language reference. In particular, some restrictions have to be
taken into account when using the * operator.

4.5 Exception operators

Let’s take the example a little further. Imagine that the communication can be
aborted by the client at any moment by sending a reset signal. The implication
for our specification is that it must be satisfied by any communication that
begins correctly and is then interrupted by the reset signal. In Salt, we can
use exception operators to express this:

assert always ((/request_begin;
...
answer_end /

) accepton request_reset)

4.6 Macros

Have a look again at the first specification in this tutorial. It states that each re-
quest to a server is eventually answered. However, the implies eventually
does not really tell us in an intuitive way what behaviour it expects. We there-
fore extract it into a macro definition that encapsulates the expression “is an-
swered by”:

define answeredby(x, y) := x implies eventually y
assert always (request answeredby answer)

Note how we can use our macro like the predefined operators in infix nota-
tion.

4.7 Iteration operators

Specifications often contain similar requirements for a set of signals or variables.
In order to deal with this, Salt allows to instantiate a parameterised expression
with a list of concrete values and to combine the resulting expressions in a
certain way. For example, the following specification states that eventually all
four processes must send a termination signal p_i_finished .

assert allof enumerate [1..4] as i in
eventually p_i_finished

CHAPTER 4. GETTING STARTED WITH SALT 12

4.8 Further steps

You have reached the end of this short tutorial. You might start to write some
specifications of your own now, or have a look at the example specifications in
chapter 7. There are also various operators in Salt that are not covered by this
tutorial. You can read more about them in chapter 5.

Chapter 5

Salt Language Reference

This chapter describes the Salt language in detail. Formal semantics are de-
fined in chapter 6 via a translation schema. See chapter 4 for a tutorial if you
want to learn Salt and chapter 7 for some example specifications.

5.1 General structure

Assertions

A Salt specification contains one or many assertions. An assertion formulates
a requirement that is expected to be satisfied by the system under scrutiny.
Each assertion is translated into a separate formula, which can then be used in
a model checker or another verification tool.

Syntax

The syntax of Salt is described in this manual as an EBNF grammar, meant
to provide an overview of the syntactical structure. An actual parsing grammar
might be more complicated, as for example operator precedences have to be
respected.

For better readability, the grammar has been separated into several frag-
ments related to different concepts of the language. Each of the sections in this
chapter contains one fragment of the grammar.

<specification> ::= (<variable_declaration>)*
(<macro_definition>)*
(<assertion>)+

<assertion> ::= ’assert’ <expression>

<expression> ::= ’(’ <expression> ’)’
| <propositional_expression>
| <temporal_expression>
| <timed_expression>

Figure 5.1: Salt syntax: general structure

13

CHAPTER 5. SALT LANGUAGE REFERENCE 14

Comments in Salt start with -- and end at the end of the line. Keywords
and identifiers are case-sensitive. The following operator precedences apply
(from high to low):

1. () parentheses

2. ! symbolic unary boolean operators

3. & | -> <-> symbolic binary boolean operators

4. * + ? repetition operators

5. ; : sequence operators

6. prefix macro calls, unary built-in operators like always or next and
modifiers like optional

7. infix macro calls and binary built-in operators like until or and

8. if -then , if -then -else and iteration operators

Layers

The Salt language consists of three layers:

• The propositional layer deals with atomic boolean propositions and boolean
operators.

• The temporal layer encapsulates the main features of the Salt language
that reason about temporal behaviour. It is divided into a future fragment
and a symmetrical past fragment.

• The timed layer adds real-time constraints to the language. Similar to the
temporal layer, it is divided into a future and a past fragment.

Within each layer, parameterised macros can be defined and instantiated.
Iteration operators allow the instantiation of parameterised expressions for a set
of concrete values.

The kind of formula that is generated from a Salt specification depends on
the layers that are used in it. If only operators from the propositional layer are
employed, the resulting formulae are propositional formulae. If only operators
from the temporal and the propositional layer are employed, the resulting for-
mulae are Ltl formulae. If the timed layer is used, the resulting formulae are
Tltl formulae. The resulting formulae are pure future Ltl/Tltl formulae if
only operators from the future fragments are employed, and Ltl/Tltl+past
formulae if past operators are used.

CHAPTER 5. SALT LANGUAGE REFERENCE 15

5.2 Propositional layer

The propositional layer deals with atomic boolean propositions and boolean
operators. All boolean operators can however also be used to combine temporal
expressions.

<variable_declaration> ::= ’declare’ <identifier> (’,’ <identifier>)*

<identifier> ::= (’a’ .. ’z’ | ’A’ .. ’Z’ | ’_’)
(’a’ .. ’z’ | ’A’ .. ’Z’ | ’_’ | ’0’ .. ’9’)*

<propositional_expression> ::=
<expression> <binary_bool_operator> <expression>

| <unary_bool_operator> <expression>
| ’if’ <expression> ’then’ <expression>

[’else’ <expression>]
| <atomic_proposition>
| <constant>

<binary_bool_operator> ::= ’&’ | ’|’ | ’->’ | ’<->’
| ’and’ | ’or’ | ’implies’ | ’equals’

<unary_bool_operator> ::= ’!’ | ’not’

<atomic_proposition> ::= <identifier>
| (’a’ .. ’z’ | ’A’ .. ’Z’ | ’_’ |

<parameter_reference>)
(’a’ .. ’z’ | ’A’ .. ’Z’ | ’_’ | ’0’ .. ’9’ |

<parameter_reference>)*
| ’"’ (* | <parameter_reference>)* ’"’

<parameter_reference> ::= ’$’ <identifier> ’$’

<constant> ::= ’true’ | ’false’

Figure 5.2: Salt syntax: propositional layer

Simple boolean variables. Boolean variables are the simplest atomic propo-
sitions from which Salt expressions can be built. Every identifier that was not
defined as a macro or a formal parameter is treated as a boolean variable. This
means that it appears in the output as it has been written in the specification.

The boolean literals are denoted as true and false .

Quoted boolean propositions. Additionally, arbitrary strings between ""
can be employed as atomic propositions. This allows the use of predicates like
state==START or even Java expressions that can be interpreted by another
tool (e. g., the model checker or the runtime monitor) in the processing chain.
The text between "" appears unchanged in the output (a " or $ inside the
quoted proposition must be escaped with \).

Quoted propositions make the Salt language independent from the domain
it is used in and the models and tools that influence the rest of the verification
process. In order to make the use of complex propositions more reliable, custom
proposition parser plugins can be provided to check and/or transform atomic
propositions that appear in a Salt specification (see section 3.2).

CHAPTER 5. SALT LANGUAGE REFERENCE 16

Example:

assert condition & "state==START"

yields the output

LTLSPEC condition & state==START

Parameterised propositions. Inside a boolean proposition, function param-
eters or iteration variables may appear between $$. During translation they are
replaced by the value of the parameter. See section 5.5 for details on parame-
terised expressions.

Example:

define isok(process) :=
$process$_started & !$process$_error

assert isok("main")

yields the output

LTLSPEC main_started & !main_error

Explicit declaration of atomic propositions. By default, declaring boolean
variables is not mandatory in Salt. It is however possible to do so using the
declare keyword. If at least one declaration appears in the specification, all
atomic propositions have to be declared explicitly and the compiler issues an
error message for atomic propositions that are used in the specification but not
listed in the declaration. This allows to detect typos rapidly.

Custom proposition parser plugins can define their own behaviour for propo-
sition checking (see section 3.2).

Boolean operators. The usual semantics apply for the boolean operators
| & ! -> <-> (logical or, and, not, implication and equivalence).
The alternative notations and , or , not , equals and implies have the same
meaning, but the operator precedence of a macro call.

if ϕ then ψ else ρ expresses that ψ must hold if ϕ holds, and that ρ (if
present) must hold if ϕ does not hold. The advantage of if -then -else over
-> is that it helps to write specifications in a more natural way, because it
makes clear to the reader that the first expression is a condition. Nested if -
then -else have to be enclosed in parentheses in order to clarify to which if
an else belongs.

CHAPTER 5. SALT LANGUAGE REFERENCE 17

5.3 Temporal layer

The temporal layer is the heart of the Salt language. It allows to express
temporal properties by combining propositional expressions with temporal op-
erators. The temporal layer consists of a future fragment and a completely
symmetrical past fragment. For the sake of brevity, this section presents only
future operators explicitly. The corresponding past operators are introduced in
5.3.6.

5.3.1 Simple temporal operators

The common Ltl temporal operators can be used in Salt specifications:

• always ϕ
states that ϕ must hold forever from now on, including in the current step.

• never ϕ
states that ϕ must never hold from now on, including in the current step.

• eventually ϕ
states that ϕ must hold at some time in the future or at the current step.

• next ϕ
states that ϕ must hold in the next step. When used inside an upto
statement, next acts as a strong operator, i. e., even next true does
not hold if there is no next step. next weak is the corresponding weak
operator.

• ϕ until ψ
states that ψ must eventually hold and that ϕ must hold from now on
until this step.

• ϕ until weak ψ
states that either ϕ must hold forever from now on, or that ψ must even-
tually hold and that ϕ must hold from now on until this step.

• ϕ releases ψ
states that either ψ must hold forever from now on, or that ϕ must even-
tually hold and that ψ must hold from now on until and during this step.

Extended until

Besides the two well-known versions of until , Salt provides some more:

• ϕ until exclusive required ψ
is the same as ϕ until ψ.

• ϕ until exclusive optional ψ
states that if ψ eventually holds, ϕ must hold from now on until this step.
Nothing is required if ψ never holds.

• ϕ until exclusive weak ψ
is the same as ϕ until weak ψ.

CHAPTER 5. SALT LANGUAGE REFERENCE 18

<temporal_expression> ::=
<modifier> * <expression> <ternary_temp_operator>
<modifier> * <expression> ’,’ <modifier> * <expression>

| <modifier> * <expression> <binary_temp_operator>
<modifier> * <expression>

| <unary_temp_operator> <modifier> * <expression>
| <quantified_temp_operator> <range> <expression>
| <regular_expression>

<modifier> ::= ’required’ | ’req’
| ’optional’ | ’opt’
| ’weak’
| ’exclusive’ | ’excl’
| ’inclusive’ | ’incl’

<ternary_temp_operator> ::= ’between’ | ’betweeninpast’

<binary_temp_operator> ::= ’until’ | ’untilinpast’ | ’since’
| ’releases’ | ’releasesinpast’ | ’triggered’
| ’upto’ | ’before’ | ’uptoinpast’
| ’from’ | ’after’ | ’frominpast’
| ’rejecton’ | ’accepton’

<unary_temp_operator> ::= ’always’ | ’alwaysinpast’ | ’historically’
| ’never’ | ’neverinpast’
| ’eventually’ | ’eventuallyinpast’ | ’once’
| ’next’ | ’nextinpast’ | ’previous’

<quantified_temp_operator> ::= ’nextn’ | ’nextninpast’ | ’previousn’
| ’occurring’ | ’occurringinpast’
| ’holding’ | ’holdinginpast’

<regular_expression> ::=
’/ ’ [<expression>] [<repetition_operator>]

(<sequence_operator>
[<expression>] [<repetition_operator>])* ’/ ’

| ’\ ’ [<expression>] [<repetition_operator>]
(<sequence_operator>

[<expression>] [<repetition_operator>])* ’\ ’

<repetition_operator> ::= ’?’
| ’*’ [<range>]
| ’+’

<sequence_operator> ::= ’;’
| ’:’

<range> ::= ’[’ (’=’ | ’>’ | ’<’ | ’>=’ | ’<=’) <number> ’]’
| ’[’ <number> ’..’ <number> ’]’
| ’[’ <number> ’]’

<number> ::= (’1’ .. ’9’) (’0’ .. ’9’)*
| ’0’

Figure 5.3: Salt syntax: temporal layer

CHAPTER 5. SALT LANGUAGE REFERENCE 19

• ϕ until inclusive required ψ
states that ψ must eventually hold and that ϕ must hold from now on
until and during this step.

• ϕ until inclusive optional ψ
states that if ψ eventually holds, ϕmust hold from now on until and during
this step. Nothing is required if ψ never holds.

• ϕ until inclusive weak ψ
is the same as ψ releases ϕ.

The abbreviations req , opt , incl and excl may be used instead of the long
keywords.

Note that inclusive /exclusive has nothing to do with the strict or
non-strict until operators that can be defined in Ltl: strictness refers to
whether the present state (i. e., the left end of the interval where ϕ is required
to hold) is included or not in the evaluation, while inclusive /exclusive
defines whether ϕ has to hold in the state where ψ occurs (i. e., the right end of
the interval). Strict Salt operators can be created by adding a preceding next
operator.

Extended next

There is also an abbreviation for consecutive next operators:

• nextn [= n] ϕ or nextn [n] ϕ states that ϕ is required to hold n steps
from now in the future.

• nextn [n.. m] ϕ states that ϕ is required to hold at some time in the
future, at least n steps from now and at most m steps from now (both
inclusive).

• nextn [>= n] ϕ states that ϕ is required to hold eventually in the future,
but at least n steps from now (inclusive).

• nextn [<= n] ϕ states that ϕ is required to hold eventually in the future,
but at most n steps from now (inclusive).

• nextn [> n] ϕ, nextn [< n] ϕ similarly.

CHAPTER 5. SALT LANGUAGE REFERENCE 20

5.3.2 Scope operators

Scope operators allow to specify that an expression has to hold before, after or
in between some events (represented by boolean propositions).

The upto operator

ϕ upto exclusive required b
ϕ upto exclusive optional b
ϕ upto exclusive weak b
required ϕ upto exclusive required b
required ϕ upto exclusive optional b
required ϕ upto exclusive weak b
weak ϕ upto exclusive required b
weak ϕ upto exclusive optional b
weak ϕ upto exclusive weak b
ϕ upto inclusive required b
ϕ upto inclusive optional b
ϕ upto inclusive weak b

The upto operator states that an expression ϕ must hold in the time before the
first occurrence of a boolean end condition b. ϕ is evaluated in the current step,
but considering only the time up to b. This means that for example always x
is true if x holds at least until the occurrence b. It does not matter if x becomes
false afterwards. See below for a more detailed explanation.

The alternative name before can be used instead of upto .

The from operator

ϕ from exclusive required a
ϕ from exclusive optional a
ϕ from inclusive required a
ϕ from inclusive optional a

The from operator states that an expression ϕ must hold in the time after the
first occurrence of a start condition a.

The alternative name after can be used instead of from .

The between operator

The between operator is a combination of both from and upto : it states that
an expression ϕ must hold in the time after a start condition a, but before an
end condition b.

Start and end conditions

upto , from and between require the user to specify what behaviour is ex-
pected in a case where the condition does not occur at all. There are three
possibilities, expressed by prefixing the condition with a modifier keyword.

CHAPTER 5. SALT LANGUAGE REFERENCE 21

• required b states that b is expected to hold at some time in the future.
The whole expression evaluates to false if there is no occurrence of b.

• optional b states that ϕ shall be considered only if b eventually holds.
The whole expression evaluates to true if there is no occurrence of b.

• weak b states that b is an end condition that may or may not hold in the
future. ϕ is evaluated for the time until b, or for the whole sequence if b
never holds. weak may only be used with upto or for the end condition
of between .

Example:
always a upto always a upto always a upto

Trace excl req b excl opt b excl weak b

aaab . . . true true true
aaaa . . . false true true
---- . . . false true false
---b . . . false false false

Occurrences of end condition b of a between statement before the first occur-
rence of start condition a are not taken into account. When between is used
with the combination optional -optional , both conditions have to eventu-
ally hold in order for ϕ to be evaluated.

The abbreviations req and opt may be used instead of the long keywords.

Inclusive and exclusive semantics

upto can either be exclusive (the step when b occurs is not taken into account
any more) or inclusive (the step when b occurs is the last step of the denoted
interval). To specify which behaviour is meant, the condition b must be prefixed
with the modifier keyword exclusive or inclusive . The same applies to
the from operator: inclusive means that the step when a occurs is the step
ϕ is evaluated. Exclusive means that ϕ is evaluated in the next step after a.
The between operator requires its start and end condition to be prefixed by
inclusive or exclusive . A between operator with an exclusive start con-
dition looks for occurrences of the end condition only from the next step on, i. e.,
it ignores b if it occurs together with the start condition a. The abbreviations
incl and excl may be used instead of the long keywords. Figure 5.4 provides
a visualisation of inclusive/exclusive semantics.

Behaviour for empty time intervals

If the end condition of an exclusive upto or between holds immediately at
the current step, it is not clear whether the whole expression should evaluate to
true or false, as expressions can only be evaluated over non-empty intervals. For
example, p upto excl req b could be true or false if p and b are both true.
Depending on the immediate argument of the upto or between , the following
rules apply in this case:

• ϕ until ψ evaluates to false, because until requires its end condi-
tion to eventually occur, and of course this cannot happen if the upto

CHAPTER 5. SALT LANGUAGE REFERENCE 22

Figure 5.4: Inclusive and exclusive semantics of scope operators

ends immediately. The same applies to ϕ until excl req ψ and ϕ
until incl req ψ.

• ϕ until weak ψ evaluates to true, because until weak allows the end
condition to never occur, as long as the loop condition always holds. As
there is no time for the loop condition to hold not, we can say that it holds
forever. The same applies to ϕ releases ψ, ϕ until excl opt ψ, ϕ
until incl opt ψ, ϕ until excl weak ψ and ϕ until incl weak
ψ.

• always ϕ and never ϕ evaluate to true, for the same reasons that apply
to until weak .

• eventually ϕ evaluates to false, as there is no time for ϕ to eventually
occur.

• ! & | -> <-> have the usual boolean semantics. The arguments of the
operator are required to recursively match one of the above patterns.

• weak ϕ evaluates to true. This is a possibility to specify explicitly what
should happen in the case of an immediately occurring end condition.

• required ϕ evaluates to false. This is a possibility to specify explicitly
what should happen in the case of an immediately occurring end condition.
The abbreviation req may be used.

• all other ϕ are illegal as an argument to upto or between and produce
an error during compilation.

These rules imply that some ϕ, like propositions, must be prefixed with either
weak or required when used within an exclusive upto , while others, like
always , may also be used without. None of this has to be considered when
using an inclusive end condition, as this ensures that the time interval denoted
is at least of length 1.

CHAPTER 5. SALT LANGUAGE REFERENCE 23

Details and special cases

All three operators may be freely nested.
Note that although upto and from seem to be very similar, there is a

crucial difference: The from operator evaluates its argument from a certain
step (where the condition a holds for the first time) on toward the future. The
upto operator evaluates its argument at the current step, but on a future limited
by the occurrence of the end condition b. See figure 5.4 for a visualisation.

Note also that neither of the operators contains an implicit always . In
order to express that ϕ has to hold at every step before b, an explicit always
has to be added to ϕ.

next ψ is always false when evaluated in the last step of the time interval
delimited by the end condition b of an upto . Similarly, next weak ψ is always
true in this situation.

Examples

assert always x upto inclusive required b

states that x must hold from now on until and including the step when b holds
for the first time. b is required to eventually hold.

assert eventually y from exclusive optional b

states that if b becomes eventually true, y must hold at the following or any
later step.

assert /x;y/ between incl opt a, excl opt b

states that x followed by y is expected to hold the step when a holds for the first
time. If b holds during this or the next step, the expression evaluates to false,
as the sequence /x;y/ could not be finished in time. If no a occurs, the whole
expression is true. If no b occurs together with or after the first occurrence of
a, the whole expression is also true (keyword optional), even if x and y do
not show the desired behaviour.

assert always (weak (x->(eventually y)) upto excl weak b)

states that every x has to be followed by some y . This y must occur before
b holds the next time. The first weak states that the upto expression shall
be considered true if b occurs together with x . The always placed outside
the upto makes that the expression is tested at any time in the future, even
after the first occurrence of b. If it had been placed inside, any x after the first
occurrence of b would not have been taken into account.

CHAPTER 5. SALT LANGUAGE REFERENCE 24

5.3.3 Exception operators

ϕ rejecton b
ϕ accepton b

The operators rejecton and accepton define an exception condition (also
called abort condition) for a formula ϕ. The evaluation of ϕ stops when the
condition occurs. If the exception condition never occurs, the operator is ig-
nored. ϕ rejecton b rejects a formula ϕ (evaluates it to false) on occurrence
of a condition b if ϕ has not been satisfied before. ϕ accepton b accepts a
formula ϕ (evaluates it to true) on occurrence of a condition b if ϕ has not been
violated before.

Examples:

assert (a until b) rejecton c

is true, if b occurs before c , and a is present until the occurrence of b. It is false
if a becomes false before the occurrence of b, if b never occurs or if b occurs
only together with or after c .

assert (a until b) accepton c

is true, if b occurs before c , and a is present until the occurrence of b. It is
also true if a is present until the occurrence of c . It is false if a becomes false
before the occurrence of b or c .

The semantics of rejecton and accepton have similarities to those of the
upto operator (see 5.3.2). However, rejecton and accepton evaluate any
pending formula to false resp. true on occurrence of the abort condition, while
the result of an upto depends on the nature of ϕ.

Example:
always always always
eventually a eventually a eventually a

Trace rejecton b accepton b upto excl weak b

ab . . . false true true
-b . . . false true false
aa . . . true true true

rejecton and accepton do not have corresponding past operators (see
5.3.6). They influence both future and past operators in ϕ.

CHAPTER 5. SALT LANGUAGE REFERENCE 25

5.3.4 Regular expressions

Salt regular expressions (SRE) allow testing on complex patterns of conditions
in a very concise way. They begin and end with a slash / . However, some
restrictions have to be applied, as not every regular expression can be translated
into Ltl. The following table compares traditional regular expressions to SRE:

Traditional RE SRE
terminal symbols propositional formulae
. (concatenation) ; : (sequence operators)
∪ (union) | (or operator)
∗ (Kleene star) * + (repetition operators, with constraints)
? (optional part) ? (optional part)
¬ (complement) not implemented for efficiency reasons

Two sequence operators are available:

• p; q states that q must hold in the next step after p.

• p: q states that q must hold after p and overlap with p in one step. For
two boolean propositions, this is equivalent to p&q.

Each element of a SRE can be suffixed with a repetition operator. The following
repetition operators are available:

• p* states that p may hold an arbitrary number of consecutive steps from
now on.

• p*[= n] or p*[n] states that p must hold during exactly n consecutive
steps from now on.

• p*[n.. m] states that p must hold during between n and m consecutive
steps from now on.

• p*[> n] states that p must hold during more than n consecutive steps
from now on.

• p*[< n] states that p must hold during less than n consecutive steps from
now on (including the possibility that p does not hold at all).

• p*[>= n] states that p must hold during at least n consecutive steps from
now on.

• p*[<= n] states that p must hold during at most n consecutive steps from
now on (including the possibility that p does not hold at all).

• p? states that p may or may not hold (the same as p*[<=1]).

• p+ states that p must hold during at least one step from now on (the same
as p*[>=1]).

The SRE / a ∗ [0]: b/ (empty sequence in combination with the : sequence
operator) is equal to / b/ . This implies that for instance the SRE / p; q*: r/ is
not satisfied by an occurrence of p and r at the same time.

Elements in an SRE may be left out, which is interpreted as true . For exam-
ple, /*;a/ is equivalent to / true *;a/ , which is equivalent to eventually a.

CHAPTER 5. SALT LANGUAGE REFERENCE 26

As regular expressions can not be generally translated into Ltl, a few addi-
tional rules have to be followed when composing SRE:

• The argument of * , *[> n] , *[>= n] and + may only be a purely boolean
proposition. It may contain boolean operators like &, | or ! .

• All expressions except for the last in an SRE must be either purely boolean
propositions, or they must be other SRE combined by | . No other boolean
operators are allowed for the combination of SRE (although they can be
used to form boolean expressions).

• The last element in an SRE may be any Salt expression, however be-
cause of operator precedences it may be necessary to surround it with
parentheses.

Examples of allowed sequences:

assert / a*: b; c /
assert / !a*; (always b) /
assert / /a/ | /b*/; c /

Examples of forbidden sequences:

assert / /a; b/*; c /
-- / a; b/ is not purely propositional

assert / !/a*/; b /
-- complement of reg . exp . / a*/ is not allowed

assert / /a*/ -> /b/; c /
-- -> can not be used to combine reg . exp .

Remember that an SRE does not state anything about conditions not named
explicitly: /a;b/ requires a to hold in the current and b to hold in the next
step. It does not require b to be false in the current or a to be false in the next
step, and therefore also matches for example a sequence where a and b hold all
the time.

SRE match by default finite prefixes of a sequence. This implies that a
trailing unbounded * operator is equivalent to true, because it includes the
empty sequence, which is a prefix to any sequence. However, the last element
of an SRE is allowed to be an arbitrary Salt expression, and can therefore also
be for example (always a) , which does ensure that a is true until infinity.

CHAPTER 5. SALT LANGUAGE REFERENCE 27

5.3.5 Counting quantifiers

The counting quantifiers occurring and holding allow concise statements
about conditions that have to hold a certain number of times. The difference
between the two operators is that holding counts each step during which the
condition holds separately, while occurring treats consecutive steps where
the condition holds as one occurrence.

occurring operator

• occurring [= n] ϕ or occurring [n] ϕ states that ϕ occurs exactly n
times in the future. An occurrence may last more than one step, and has
to be separated from the next occurrence by a step where ϕ does not hold.
The first occurrence may or may not begin immediately. After the last
occurrence, ϕ must not hold again.

• occurring [n.. m] ϕ states that ϕ occurs between n and m times in the
future. After the last occurrence, ϕ must not hold again.

• occurring [>= n] ϕ states that ϕ occurs at least n times and is allowed
to occur again afterwards.

• occurring [<= n] ϕ states that ϕ occurs at most n times and is not al-
lowed to occur again afterwards.

• occurring [> n] ϕ, occurring [< n] ϕ similarly.

holding operator

• holding [= n] ϕ or holding [n] ϕ states that ϕ is required to hold dur-
ing exactly n steps in the future. Those occurrences may or may not be
separated from the next occurrence by a step where ϕ does not hold.
The first occurrence may or may not begin immediately. After the last
occurrence, ϕ must not hold again.

• holding [n.. m] ϕ states that ϕ is required to hold during between n
and m steps in the future. After the last occurrence, ϕ must not hold
again.

• holding [>= n] ϕ states that ϕ is required to hold at least during n steps
and is allowed to hold again afterwards.

• holding [<= n] ϕ states that ϕ is required to hold at most during n steps
and is not allowed to hold again afterwards.

• holding [> n] ϕ, holding [< n] ϕ similarly.

CHAPTER 5. SALT LANGUAGE REFERENCE 28

5.3.6 Past operators

Salt supports past operators, that reason about past states instead of future
ones. For every future operator there is a corresponding past operator, as shown
in figure 5.5. Future operators are translated using only Ltl future operators,
and past operators are translated using only Ltl past operators. This leaves
the users the choice whether they do or do not want to use past operators.

Some operators have two names: there is always a generic name where the
past operator has the name of the future operator with the suffix inpast . Addi-
tionally, there might be another more intuitive name like since or previous .
The future operators from and upto have the alternative names after and
before . Past regular expressions are written between \ \ instead of / / .

Future Past
always historically or alwaysinpast
between betweeninpast
eventually once or eventuallyinpast
from or after frominpast
holding holdinginpast
never neverinpast
next previous or nextinpast
next weak previous weak or nextinpast weak
nextn previousn or nextninpast
occurring occurringinpast
releases triggered or releasesinpast
until since or untilinpast
until weak since weak or untilinpast weak
upto or before uptoinpast

Figure 5.5: Overview of the future operators and their corresponding past op-
erators

Reading direction of past operators. Past operators as defined in Ltl
bring with them an inherent pitfall connected to our understanding of time.
Time always progresses from present to future, and we attribute intuitively the
Western reading direction left-to-right to the progress of time from present to
future. Past operators however are mirrored future operators: their direction
is from present to past. While a until b steps forward on a sequence of a
until hitting a b, the corresponding a since b steps backward on a sequence
of a until hitting a b. This b occurs actually before the sequence of a, but
when reading a since b from left to right the b appears behind the a. This
can be a little confusing. When using past operators, imagine therefore always
standing at the present point in time and facing backward, while reading the
expression from left to right.

CHAPTER 5. SALT LANGUAGE REFERENCE 29

All Salt past operators follow this mirrored semantics, which is consistent
with the definition of Ltl past operators. This has the advantage of similar
semantics for all past operators, as well as a similar parameter order for future
and past operators. The drawback is, however, that some past operators have
a meaning not expected at first sight. The most surprising case are probably
regular expressions which, when read from left to right, have to be interpreted
from present to past. The expression \a;b;c\ matches a sequence where a is
true in the present, b was true one step ago and c was true two steps ago. In
other words, it matches the sequence cba when reaching the a.

Past operators and scope operators used together. Future scope opera-
tors do not limit past operators in their argument, i. e., a from does not contain
an implicit uptoinpast . In the expression

assert (always x -> (once y)) from incl req a

the corresponding y is allowed to occur before the occurrence of a. In order to
limit once y to the time after a, you have to write

assert (always x -> (once y uptoinpast incl req a))
from incl req a

This expression however will look back for y only up to the first occurrence of
a it can find (which might be different from the one that triggered from).

Past operators and exception operators used together. In contrast to
from and upto , the operators rejecton and accepton influence both future
and past operators. There are no separated versions for future and past.

CHAPTER 5. SALT LANGUAGE REFERENCE 30

5.4 Timed layer

Salt contains a timed extension that allows the specification of real-time con-
straints.

<expression> ::= <unary_timed_operator> <timing_constraint>
<expression>

| <expression> <until_operator>
<timing_constraint> <expression>

| <timing_constraint> <expression> <releases_operator>
<expression>

<unary_timed_operator> ::= ’next’ | ’nextinpast’ | ’previous’ |
’always’ | ’alwaysinpast’ | ’historically’ |
’never’ | ’neverinpast’ |
’eventually’ | ’eventuallyinpast’ | ’once’

<until_operator> ::= ’until’ | ’untilinpast’ | ’since’

<releases_operator> ::= ’releases’ | ’releasesinpast’ | ’triggered’

<timing_constraint> ::= ’timed’ ’[’
(’=’ | ’>’ | ’<’ | ’>=’ | ’<=’) <float> ’]’

<float> ::= <number> [’.’ (’0’ .. ’9’)+]

Figure 5.6: Salt syntax: timed layer

Timed Salt includes all features of untimed Salt as well as some timed
operators. Timed operators are translated into a timed variant of Ltl, here
referred to as Tltl [D’S03]. Tltl adds the event predicting and event recording
operators defined in [RS99]. The Salt compiler can produce either pure Tltl
with B∼c and C∼c as the only timed operators, or an extended Tltl with the
additional timed operators U∼c, W∼c, �∼c and ♦∼c as well as the corresponding
past operators. Extended Tltl is much easier to read than pure Tltl.

Timing constraints in Salt are expressed using the modifier timed [∼ c]
that can be used together with several untimed Salt operators in order to make
them timed operators. ∼ is one of <, <=, =, >=, > for next timed and either
< or <= for all other timed operators.

• next timed [∼ c] ϕ
states that the next occurrence of ϕ is within the time bounds ∼ c. It is not
taken into account if ϕ is true at the current step. next timed [∼ c] ϕ
corresponds to the event predicting operator B∼cϕ.

• ϕ until timed [∼ c] ψ
states that ϕ is true until the next occurrence of ψ, and that this occur-
rence of ψ is within the time bounds ∼ c. Occurrences of ϕ at the current
step are accepted too. The extended variants of until (using required ,
optional , weak, inclusive and exclusive) can be used as timed
operators as well.

• timed [∼ c] ϕ releases ψ
states that ψ is true until and during the next occurrence of ϕ, if such

CHAPTER 5. SALT LANGUAGE REFERENCE 31

occurrence of ϕ is within the time bounds ∼ c. Occurrences of ϕ at the
current step are accepted too. If ϕ does not occur within the time bounds,
ψ is required to hold during the whole specified time interval.

• always timed [∼ c] ϕ
states that ϕ must be always true within the time bounds ∼ c.

• never timed [∼ c] ϕ
states that ϕ must be never true within the time bounds ∼ c.

• eventually timed [∼ c] ϕ
states that ϕ must be true at some point within the time bounds ∼ c.

Past operators can be enriched in a similar way. Other Salt operators can not
be combined with timed [] .

Examples:

assert always timed [<=3] p

states that p is true during the next 3 time units.

assert always (p -> (eventually timed [<3] q)

states that p is followed by q within less than 3 time units

assert p & (always (p -> (next timed [=1] p)))

states that p occurs periodically with a distance of 1 time unit.

Timed operators within upto and between . Timed operators within an
upto statement have to be handled with care. Both the timing constraint and
the upto specify an end condition, and it is not a priori clear what semantics
they express when combined.

For example,

assert (always timed [<3] p) upto req excl b

could have three different meanings:

1. p has to hold during the next 3 time units or until the occurrence of b.

2. p has to hold during the next 3 time units and b is not allowed to occur
during this time.

3. p has to hold during the next 3 time units regardless of whether b occurs.

Because of this ambiguity, the choice was made that upto and between do
not influence timed operators and their arguments at all, i. e., the end condition
is not woven into a timed sub-expression. This leaves the user full choice between
the possible meanings, because they can (or rather must) manually add the
desired constraints.

The Salt formulae yielding the correct semantics for the example from above
are:

CHAPTER 5. SALT LANGUAGE REFERENCE 32

assert (always timed [<3] p or eventually timed [<3] b)
upto req excl b

assert (always timed [<3] p and never timed [<3] b)
upto req excl b

assert (always timed [<3] p)
upto req excl b

CHAPTER 5. SALT LANGUAGE REFERENCE 33

5.5 Macros and parameterised expressions

Salt allows the definition of macros and parameterised expressions. This can
help to make a specification easier to understand, because complex sub-formulae
can be defined separately and accessed by a name. It also helps writing more
concise specifications, because expressions that appear several times in a speci-
fication have to be written down only once. Iteration operators can be used to
instantiate parameterised expressions for a list of concrete values.

5.5.1 Parameterised expressions

A parameterised expression is an expression that contains placeholders. Param-
eterised expressions allow to reuse a specification pattern for different concrete
values.

Parameters can be used in two ways within an expression: First, they can be
employed directly as part of an expression. Secondly, they can be used within
an atomic proposition, e. g., as part of a variable name. This is expressed by
referencing the parameter between $$ in the atomic proposition (see section
5.2).

define mymacro1(x, y) := x implies eventually y
define mymacro2(x, y) := always inputx & inputy

Salt parameters are expression-based and not—like for example C prepro-
cessor macro parameters—character-based. Therefore, parameters always have
to stand for complete expressions. It is not allowed (and hardly necessary) to
use incomplete expressions like a | as a parameter. Parameters used within an
atomic proposition should usually not be complex expressions.

5.5.2 Macros

Macro definitions. A macro definition starts with the keyword define ,
followed by the macro name and an optional parameter list in parentheses. The
macro body appears after := . All macros have to be defined before being used.
Macro definitions have to appear before any assertion in the specification.

Simple macro calls. Macros can be accessed in four different ways:

• Without arguments. A macro that does not expect parameters can be
accessed simply via its name.

define any_a := a1 | a2 | a3 | a4
assert always any_a

• As a prefix operator. A macro that expects exactly one parameter can
be used as a prefix operator without the need to enclose the argument in
parentheses, similar to the unary built-in operators like always or next .

define stricteventually(x) := next eventually x
assert stricteventually term

CHAPTER 5. SALT LANGUAGE REFERENCE 34

<macro_definition> ::= ’define’ <identifier> [<formal_parameter_list>]
’:=’ <expression>

<identifier> ::= (’a’ .. ’z’ | ’A’ .. ’Z’ | ’_’)
(’a’ .. ’z’ | ’A’ .. ’Z’ | ’_’ | ’0’ .. ’9’)*

<formal_parameter_list> ::= ’(’ <formal_parameter>
(’,’ <formal_parameter>)* ’)’

<formal_parameter> ::= <identifier>

<expression> ::= <macro_call>
| <formal_parameter>
| <iteration_expression>

<macro_call> ::= <nullary_call>
| <prefix_call>
| <infix_call>
| <explicit_call>

<nullary_call> ::= <identifier>
| <formal_parameter>

<prefix_call> ::= <identifier> <actual_parameter>

<infix_call> ::= <actual_parameter> <identifier>
<actual_parameter_list>

<explicit_call> ::= <identifier>
’(’ [<actual_parameter_list>] ’)’

| <formal_parameter>
’(’ [<actual_parameter_list>] ’)’

<actual_parameter_list> ::= <actual_parameter> (’,’
<actual_parameter>)*

<actual_parameter> ::= <expression>
| ’@’ <identifier>

<iteration_expression> ::= <iteration_operator> <list_creation>
’as’ <identifier> ’in’ <expression>

<iteration_operator> ::= ’allof’ | ’someof’ | ’noneof’ | ’exactlyoneof’

<list_creation> ::= ’list’ ’[’ [<expression> (’,’ <expression>)*] ’]’
((’with’ | ’without’) <expression>)*

| ’enumerate’ <range>
((’with’ | ’without’) <expression>)*

Figure 5.7: Salt syntax: macros and parameterised expressions

CHAPTER 5. SALT LANGUAGE REFERENCE 35

• As an infix operator. A macro that expects two or more parameters
can be used as an infix operator. The macro name appears after the first
argument. If the macro expects more than two parameters, the remaining
arguments are separated by commas. This is similar to the built-in binary
and ternary operators, like until , upto and between .

define respondsto(x, y) := y implies eventually x
assert reply respondsto request

• With explicit arguments. Any macro can be accessed via its name followed
by the comma-separated arguments enclosed in parentheses.

define my_macro(a, b, c) := a | b | !c
assert my_macro(x, u & v, z)
-- evaluates to a | (u & v) | ! z

Indirect macro calls. A macro name may be passed as a parameter to an-
other macro, which can then use the macro. This feature allows the defini-
tion of generic parameterised properties. The macro name has to be prefixed
with @when passed as a parameter. For accessing it, the explicit call syntax
f(a, b, . . .) has to be used; the prefix and infix variants are not allowed.

Example:

define myproperty(a, b) := a implies b
define circle(f,a,b,c) := f(a,b) and f(b,c) and f(c,a)
assert always circle(@myproperty, u, !v, w)
-- evaluates to G (u -> ! v) & (! v -> w) & (w -> u)

5.5.3 Iteration

Many specifications have to define a certain assertion for a whole set of boolean
variables like input1 input2 input3 , or repeat an expression several times
with a few parameters exchanged. Iteration operators allow easy handling of
such sets of similar boolean variables and expressions.

The general syntax for an iteration expression is

allof list as param in ϕ
noneof list as param in ϕ
someof list as param in ϕ
exactlyoneof list as param in ϕ

Each of the elements in list is inserted as iteration parameter param in the
expression ϕ. The resulting instantiated expressions are then combined using
one of the four iteration operators.

List creation. The following operators can be used to create lists:

• list [ϕ, ψ, . . .]
creates a list of expressions or identifiers.

CHAPTER 5. SALT LANGUAGE REFERENCE 36

• enumerate [n.. m]
creates a list containing the numbers between n and m. This list can be
used to create for example a parameterised list of boolean variables with
a common base name.

• list without ϕ
removes the element ϕ (which must be an element of list) from the list.

• list with ϕ
adds ϕ to the list.

Iteration operators.

• allof
combines the instantiated expressions with a logical and, i. e., all of them
have to be true in order to make the whole expression true.

• noneof
combines the negated instantiated expressions with a logical and, i. e.,
none of them is allowed to be true in order to make the whole expression
true.

• someof
combines the instantiated expressions with a logical or, i. e., some of them
have to be true in order to make the whole expression true.

• exactlyoneof
requires exactly one of the instantiated expressions to be true and all the
others to be false in order to make the whole expression true.

Examples:

assert allof list [a, b, c] as i in always i
-- is equal to (always a) & (always b) & (always c)

assert exactlyoneof list [a, b, c] as i in i
-- is equal to (a & ! b & ! c) |(! a & b & ! c) |(! a & ! b & c)

assert someof enumerate [1..3] as i in
someof enumerate [1..3] without i as j in

in$i$$j$
-- is equal to in12 | in13 | in21 | in23 | in31 | in32

Chapter 6

Translation schema

This chapter describes how the Salt language is translated into Ltl and Tltl
and thereby defines the formal semantics of Salt.

The translation of past operators is left out for brevity, unless stated other-
wise. It follows the same schema as the translation of the future operators. The
translation of timed operators is described in section 6.6. The other sections of
this chapter refer to untimed Salt.

Translation is done in several steps:

• Expansion of user-defined macros.

• Replacement of non-core Salt operators. Several Salt operators are
replaced by expressions made out of a small set of core operators.

• Translation of core Salt into Salt--. The Salt operators are replaced
by Salt-- expressions. Salt-- includes all Ltl operators as well as the
acc and rej operators (corresponding to the Salt exception operators

accepton and rejecton) and the exclusive and inclusive stop opera-
tors for future and past (introduced during the translation of upto and
between).

• Translation of Salt-- into Ltl/Tltl. The translation of the Salt-- oper-
ators requires weaving their end conditions into the whole sub-expression.

• Optimisation. The Ltl/Tltl expression is optimised using a number of
optimisation patterns.

• Ltl/Tltl output. The Ltl/Tltl expression is printed in the desired
output syntax. This might require expressing certain operators through
others (like W through U). Also, extended Tltl operators may be re-
placed by pure Tltl.

Each translation step is described in form of a translation function T(ϕ)
that is applied by choosing the first translation that matches the current ex-
pression. Trivial translations that just descend recursively into the arguments
of an operator, such as T(ϕ ∧ ψ) = T(ϕ) ∧ T(ψ), are left out in the following.

37

CHAPTER 6. TRANSLATION SCHEMA 38

The Ltl operators used during translation are:
true >
false ⊥
logical negation ¬
logical and ∧
logical or ∨
logical implication →
logical equivalence ↔

until U
weak until W
globally �
eventually ♦
next ◦
weak next ◦W

since S
back to B
historically �
once �
previous •
weak previous •W

And for timed expressions additionally:
timed until U∼c
timed weak until W∼c
timed globally �∼c
timed eventually ♦∼c
event predicting B∼c

timed since S∼c
timed weak since B∼c
timed historically �∼c
timed once �∼c
event recording C∼c

The Salt-- operators used are:
accept acc
reject rej
exclusive stop stopexcl

inclusive stop stopincl

6.1 Replacement of non-core Salt operators

6.1.1 never

T(never ϕ) = ¬♦T(ϕ)

6.1.2 releases

T(ϕ releases ψ) = T(ψ until incl weak ϕ)

6.1.3 nextn

T(nextn [= n] ϕ) =
if n = 0: T(ϕ)
else: ◦T(nextn [= n− 1] ϕ)

T(nextn [n.. m] ϕ) = T(nextn [= n] (nextn [<= m− n] ϕ))

T(nextn [<= n] ϕ) =
if n = 0: T(ϕ)
else: ϕ ∨ ◦T(nextn [<= n− 1] ϕ)

T(nextn [< n] ϕ) = T(nextn [<= n− 1] ϕ)

T(nextn [>= n] ϕ) = T(nextn [= n] ♦ϕ)

T(nextn [> n] ϕ) = T(nextn [>= n+ 1] ϕ)

CHAPTER 6. TRANSLATION SCHEMA 39

6.1.4 occurring

T(occurring [= n] ϕ) =
if n = 0: ¬♦T(ϕ)
if n = 1: ¬T(ϕ) U (T(ϕ) ∧ ((T(ϕ) W ¬♦T(ϕ)))1

else: ¬T(ϕ) U (T(ϕ) ∧ (T(ϕ) U (¬T(ϕ)∧
T(occurring [= n− 1] ϕ))))

T(occurring [n.. m] ϕ) =
if n = 0: T(occurring [<= m] ϕ)
if n = 1: ¬T(ϕ) U (T(ϕ) ∧ (T(ϕ) W (¬T(ϕ)∧

T(occurring [<= m− 1] ϕ))))1

else: ¬T(ϕ) U (T(ϕ) ∧ (T(ϕ) U (¬T(ϕ)∧
T(occurring [n− 1.. m− 1] ϕ))))

T(occurring [<= n] ϕ) = ¬T(occurring [>= n+ 1] ϕ)

T(occurring [< n] ϕ) = ¬T(occurring [>= n] ϕ)

T(occurring [>= n] ϕ) =
if n = 0: >
if n = 1: ♦T(ϕ)
else: ♦(T(ϕ) ∧ (♦(¬T(ϕ)∧

T(occurring [>= n− 1] ϕ))))

T(occurring [> n] ϕ) = T(occurring [>= n+ 1] ϕ)

6.1.5 holding

T(holding [= n] ϕ) =
if n = 0: ¬♦T(ϕ)
if n = 1: ¬T(ϕ) U (T(ϕ) ∧ ◦W ¬♦T(ϕ)))2

else: ¬T(ϕ) U (T(ϕ) ∧ ◦T(holding [= n− 1] ϕ))

T(holding [n.. m] ϕ) =
if n = 0: T(holding [<= m] ϕ)
if n = 1: ¬T(ϕ) U (T(ϕ)∧

◦WT(holding [<= m− 1] ϕ))2

else: ¬T(ϕ) U (T(ϕ)∧
◦T(holding [n− 1.. m− 1] ϕ))

T(holding [<= n] ϕ) = ¬T(holding [>= n+ 1] ϕ)

T(holding [< n] ϕ) = ¬T(holding [>= n] ϕ)

T(holding [>= n] ϕ) =
if n = 0: >
if n = 1: ♦T(ϕ)2

else: ♦(T(ϕ) ∧ ◦T(holding [>= n− 1] ϕ))

T(holding [> n] ϕ) = T(holding [>= n+ 1] ϕ)

1Notice that the last occurrence of ϕ may last forever.
2A special case for n = 1 is required for situations where there is no next state, because

either a surrounding upto ended or because we reached time zero in the past. In these

CHAPTER 6. TRANSLATION SCHEMA 40

6.1.6 Regular expressions, part I

The ? and + repetition operators can be expressed by the more general * oper-
ator as follows:
T(ϕ?) = T(ϕ*[<=1])

T(p+) = T(p*[>=1])

The different variants of the * repetition operator are translated as follows into
core Salt, where only sequences and the *[>= n] repetition operator exist. The
empty sequence is denoted by ε.
T(ϕ*[= n]) =

if n = 0: ε
if n = 1: T(ϕ)
else: T(ϕ; ϕ*[= n− 1])

T(ϕ[n.. m]) =
if n = 0: T(ϕ*[<= m])
else: T(ϕ*[= n− 1]; ϕ*[<= m− n]; ϕ)3

T(ϕ*[<= n]) =
if n = 0: ε

else: ε ∨ T(

n︷ ︸︸ ︷
ϕ ∨ ϕ; (ϕ ∨ ϕ; (. . .)))4

T(ϕ*[< n]) = T(ϕ*[<= n− 1])

T(p*[> n]) = T(p*[>= n+ 1])

6.1.7 Iteration operators

The iteration operators are translated as follows:
T(allof list) =

∧
ϕ∈list

T(ϕ)

T(noneof list) = ¬
∨

ϕ∈list
T(ϕ)

T(someof list) =
∨

ϕ∈list
T(ϕ)

T(exactlyoneof list) =
∨

ϕ∈list
(T(ϕ) ∧ ¬

∨
ψ∈list,ψ 6=ϕ

T(ψ))

situations, even ◦> would be false, although the conditions for the holding operator have
been fulfilled.

3The trailing ϕ is necessary for correct translation when followed by a : sequence operator.
4The schema used here repeats ϕ less times than the straightforward translation

ϕ*[= . . .] ∨ϕ*[= . . .] ∨

CHAPTER 6. TRANSLATION SCHEMA 41

6.2 Translation of core Salt into Salt--

6.2.1 until

T(ϕ until excl req ψ) = T(ϕ) U T(ψ)

T(ϕ until excl opt ψ) = (♦T(ψ)) → (T(ϕ) U T(ψ))

T(ϕ until excl weak ψ) = T(ϕ) W T(ψ)

T(ϕ until incl req ψ) = T(ϕ) U (T(ϕ) ∧ T(ψ))

T(ϕ until incl opt ψ) = (♦T(ψ)) → (T(ϕ) U (T(ϕ) ∧ T(ψ)))

T(ϕ until incl weak ψ) = T(ϕ) W (T(ϕ) ∧ T(ψ))

CHAPTER 6. TRANSLATION SCHEMA 42

6.2.2 upto

T(ϕ upto excl req b) =
if T(ϕ) = �ψ: (ψ stopexcl b) U b
if T(ϕ) = ¬♦ψ: (¬ψ stopexcl b) U b
else: (♦b) ∧ (T(ϕ) stopexcl b)5

T(ϕ upto excl opt b) =
if T(ϕ) = ♦ψ: ¬((¬ψ stopexcl b) U b)
else: (♦b) → (T(ϕ) stopexcl b)5

T(ϕ upto excl weak b) = (T(ϕ) stopexcl b)

T(req ϕ upto excl req b) =
if T(ϕ) = �ψ: ¬b ∧ ((ψ stopexcl b) U b)
if T(ϕ) = ¬♦ψ: ¬b ∧ ((¬ψ stopexcl b) U b)
else: (♦b) ∧ ¬b ∧ (T(ϕ) stopexcl b)5

T(req ϕ upto excl opt b) =
if T(ϕ) = ♦ψ: ¬((¬ψ stopexcl b) U b)
else: (♦b) → (¬b ∧ (T(ϕ) stopexcl b))5

T(req ϕ upto excl weak b) = ¬b ∧ (T(ϕ) stopexcl b)

T(weak ϕ upto excl req b) =
if T(ϕ) = �ψ: (ψ stopexcl b) U b
if T(ϕ) = ¬♦ψ: (¬ψ stopexcl b) U b
else: (♦b) ∧ (b ∨ (T(ϕ) stopexcl b))5

T(weak ϕ upto excl opt b) =
if T(ϕ) = ♦ψ: b ∨ ¬((¬ψ stopexcl b) U b)
else: (♦b) → (b ∨ (T(ϕ) stopexcl b))5

T(weak ϕ upto excl weak b) = b ∨ (T(ϕ) stopexcl b)

T(ϕ upto incl req b) = (♦b) ∧ (T(ϕ) stopincl b)

T(ϕ upto incl opt b) = (♦b) → (T(ϕ) stopincl b)

T(ϕ upto incl weak b) =
if T(ϕ) = �ψ: ¬(¬b U ¬(ψ stopincl b))
if T(ϕ) = ¬♦ψ: ¬(¬b U (ψ stopincl b))
else: (T(ϕ) stopincl b)5

5The specialised translations exist only for optimisation reasons.

CHAPTER 6. TRANSLATION SCHEMA 43

6.2.3 from

T(ϕ from incl req a) = (¬a) U (a ∧ T(ϕ))

T(ϕ from incl opt a) =
if T(ϕ) = �ψ: �(a→ �ψ)
if T(ϕ) = ¬♦ψ: �(a→ ¬♦ψ)
else: (¬a) W (a ∧ T(ϕ))6

T(ϕ from excl req a) = (¬a) U (a ∧ ◦T(ϕ))

T(ϕ from excl opt a) = (¬a) W (a ∧ ◦T(ϕ))

6.2.4 between

T(ϕ between a, b) = T((ϕ upto b)from a)

6.2.5 Exception operators

T(ϕ accepton b) = T(ϕ) acc b

T(ϕ rejecton b) = T(ϕ) rej b

6.2.6 Regular expressions, part II

The *[>= n] repetition operator is translated as follows (its translation depends
on the next element ψ in the sequence as well as on the sequence operator):
T(p*[>=0]; ψ) = p U T(ψ)

T(p*[>= n]; ψ) = p U T(
n︷ ︸︸ ︷

p; p; . . . ; p; ψ)

T(p*[>=0]: ψ) = T(ψ) ∨ T(p*[>=1]: ψ)

T(p*[>= n]: ψ) = p U T(
n︷ ︸︸ ︷

p; p; . . . ; p: ψ)

For the translation of the sequence operators, we have to define the length of a
regular expression:

|ϕ| :=

|ε| = 0
|p| = 1
|p*[>= n] | = ⊥
|ϕ1; ϕ2| = |ϕ1|+ |ϕ2|
|ϕ1: ϕ2| = |ϕ1|+ |ϕ2| − 1

The sequence operators are then translated as follows:
6The specialised translations exist only for optimisation reasons.

CHAPTER 6. TRANSLATION SCHEMA 44

T((ϕ1 ∨ ϕ2); ψ) =

{
if |ϕ1| 6= |ϕ2| : T(ϕ1; ψ) ∨ T(ϕ2; ψ)
else: T((ϕ1 ∨ ϕ2); ψ)

T(ϕ; ψ) = T(ϕ) ∧ ◦|ϕ|T(ψ)

T((ϕ1 ∨ ϕ2): ψ) =

{
if |ϕ1| 6= |ϕ2| : T(ϕ1: ψ) ∨ T(ϕ2: ψ)
else: T((ϕ1 ∨ ϕ2): ψ)

T(ϕ: ψ) =

{
if ϕ = ε : T(ψ)
else: T(ϕ) ∧ ◦|ϕ|−1T(ψ)

6.3 Translation of Salt-- into Ltl

During this step, the rej and acc operators (Salt-- equivalents of the Salt
exception operators) as well as the stop operators (introduced during the trans-
lation of upto and between) are replaced by pure Ltl expressions. This
requires weaving the end conditions into all sub-expressions of the argument.
The innermost operators are replaced first, so that the translation process does
not have to deal explicitly with nested operators.

6.3.1 acc

T(b acc a) = b ∨ a

T((¬ϕ) acc a) = ¬T(ϕ rej a)

T((ϕ ∧ ψ) acc a) = T(ϕ acc a) ∧ T(ψ acc a)

T((ϕ ∨ ψ) acc a) = T(ϕ acc a) ∨ T(ψ acc a)

T((ϕ U ψ) acc a) = T(ϕ acc a) U T(ψ acc a)

T((◦ϕ) acc a) = (◦T(ϕ acc a)) ∨ a

T((�ϕ) acc a) = ¬(¬a U ¬T(ϕ acc a))

T((♦ϕ) acc a) = ♦T(ϕ acc a)

The translation of →, ↔, W and ◦W is done using the corresponding Ltl
equivalents in 6.5.

CHAPTER 6. TRANSLATION SCHEMA 45

6.3.2 rej

T(b rej r) = b ∧ ¬r

T((¬ϕ) rej r) = ¬T(ϕ acc r)

T((ϕ ∧ ψ) rej r) = T(ϕ rej r) ∧ T(ψ rej r)

T((ϕ ∨ ψ) rej r) = T(ϕ rej r) ∨ T(ψ rej r)

T((ϕ U ψ) rej r) = T(ϕ rej r) U T(ψ rej r)

T((◦ϕ) rej r) = (◦T(ϕ rej r)) ∧ ¬r

T((�ϕ) rej r) = �T(ϕ rej r)

T((♦ϕ) rej a) = ¬r U T(ϕ rej r)

The translation of →, ↔, W and ◦W is done using the corresponding Ltl
equivalents in 6.5.

6.3.3 stopincl

T(b stopincl s) = b

T((¬ϕ) stopincl s) = ¬T(ϕ stopincl s)

T((ϕ ∧ ψ) stopincl s) = T(ϕ stopincl s) ∧ T(ψ stopincl s)

T((ϕ ∨ ψ) stopincl s) = T(ϕ stopincl s) ∨ T(ψ stopincl s)

T((ϕ U ψ) stopincl s) = (¬s ∧ T(ϕ stopincl s)) U T(ψ stopincl s)

T((◦ϕ) stopincl s) = ¬s ∧ ◦T(ϕ stopincl s)

T((◦W ϕ) stopincl s) = s ∨ ◦T(ϕ stopincl s)

T((�ϕ) stopincl s) = ¬(¬s U ¬T(ϕ stopincl s))

T((♦ϕ) stopincl s) = (¬s) U T(ϕ stopincl s)

T((ϕ S ψ) stopincl s) = T(ϕ stopincl s) S T(ψ stopincl s)7

T((•ϕ) stopincl s) = •T(ϕ stopincl s)7

The past stop operators are translated in a similar way as the future stop
operators, but affecting only past operators. The translation of W, → and ↔
is done using the corresponding Ltl equivalents in 6.5.

7Notice how the future stop operator affects only future operators and leaves the past
operators unchanged. The past operators not listed here are translated similarly.

CHAPTER 6. TRANSLATION SCHEMA 46

6.3.4 stopexcl

T(b stopexcl s) = b

T((¬ϕ) stopexcl s) = ¬T(ϕ stopexcl s)

T((ϕ ∧ ψ) stopexcl s) = T(ϕ stopexcl s) ∧ T(ψ stopexcl s)

T((ϕ ∨ ψ) stopexcl s) = T(ϕ stopexcl s) ∨ T(ψ stopexcl s)

T((ϕ U ψ) stopexcl s) = (¬s ∧ T(ϕ stopexcl s)) U (¬s ∧ T(ψ stopexcl s))

T((ϕ W ψ) stopexcl s) = T(ϕ stopexcl s) W (s ∨ T(ψ stopexcl s))

T((◦ϕ) stopexcl s) = ◦(¬s ∧ T(ϕ stopexcl s))

T((◦W ϕ) stopexcl s) = ◦(s ∨ T(ϕ stopexcl s))

T((�ϕ) stopexcl s) = T(ϕ stopexcl s) W s

T((♦ϕ) stopexcl s) = (¬s) U (¬s ∧ T(ϕ stopexcl s))

T((ϕ S ψ) stopexcl s) = T(ϕ stopexcl s) S T(ψ stopexcl s)7

T((•ϕ) stopexcl s) = •T(ϕ stopexcl s)7

The past stop operators are translated in a similar way as the future stop
operators, but affecting only past operators. The translation of → and ↔ is
done using the corresponding Ltl equivalents in 6.5.

6.4 Optimisation

The following equivalences are used for optimisation:
> U ϕ ⇐⇒ ♦ϕ

¬♦¬ϕ ⇐⇒ �ϕ

��ϕ ⇐⇒ �ϕ

♦♦ϕ ⇐⇒ ♦ϕ

¬ϕ U ϕ ⇐⇒ ♦ϕ

�(ϕ W ψ) ⇐⇒ �(ϕ ∨ ψ)

ϕ W (ϕ ∧ ψ) ⇐⇒ ¬(¬ψ U ¬ϕ)

(ϕ ∨ ψ) U ψ ⇐⇒ ϕ U ψ

Furthermore, boolean operators with constant arguments (e. g., >∧a) are elim-
inated.

6.5 Operator replacement

The following equivalences are used to express certain operators through others
if necessary for the current output syntax.

CHAPTER 6. TRANSLATION SCHEMA 47

�ϕ ⇐⇒ ¬(> U ¬ϕ)

♦ϕ ⇐⇒ > U ϕ

◦W ψ ⇐⇒ ¬◦(¬ϕ)

ϕ W ψ ⇐⇒

{
if |ψ| ≤ |ϕ|8: ¬(¬ψ U (¬ϕ ∧ ¬ψ))
else: (ϕ U ψ) ∨�ϕ

¬(¬ϕ U ¬ψ) ⇐⇒ ϕ R ψ

6.6 Translation of timed operators

6.6.1 Timed Salt into timed Salt--

T(next timed [∼ c] ϕ) = B∼cT(ϕ)

T(ϕ until timed [∼ c] ψ) = T(ϕ) U∼c T(ψ)

T(ϕ until timed [∼ c] weak ψ) = T(ϕ) W∼c T(ψ)

T(ϕ until timed [∼ c] excl req ψ) = T(ϕ) U∼c T(ψ)

T(ϕ until timed [∼ c] excl opt ψ) = (♦∼cT(ψ)) →
(T(ϕ) U∼c T(ψ))

T(ϕ until timed [∼ c] excl weak ψ) = T(ϕ) W∼c T(ψ)

T(ϕ until timed [∼ c] incl req ψ) = T(ϕ) U∼c (T(ϕ) ∧ T(ψ))

T(ϕ until timed [∼ c] incl opt ψ) = (♦∼cT(ψ)) → (T(ϕ) U∼c
(T(ϕ) ∧ T(ψ)))

T(ϕ until timed [∼ c] incl weak ψ) = T(ϕ) W∼c (T(ϕ) ∧ T(ψ))

T(timed [∼ c] ϕ releases ψ) = T(ψ) W∼c (T(ψ) ∧ T(ϕ))

T(always timed [∼ c] ϕ) = �∼cT(ϕ)

T(eventually timed [∼ c] ϕ) = ♦∼cT(ϕ)

8As a heuristic estimation for the size of a formula, the number of temporal operators in
the formula is used.

CHAPTER 6. TRANSLATION SCHEMA 48

6.6.2 Timed Salt-- into extended Tltl

acc (accepton):
T((B∼cϕ) acc a) = a ∨B∼cT(ϕ acc a)

T((ϕ U∼c ψ) acc a) = T(ϕ acc a) U∼c T(ψ acc a)

T((ϕ W∼c ψ) acc a) =

if |ψ| ≤ |ϕ|9: ¬(¬T(ψ acc a) U∼c

(¬T(ϕ acc a) ∧ ¬T(ψ acc a)))
else: (T(ϕ acc a) U∼c T(ψ acc a))∨

¬(¬a U∼c ¬T(ϕ acc a))
T((�∼cϕ) acc a) = ¬(¬a U∼c ¬T(ϕ acc a))

T((♦∼cϕ) acc a) = ♦∼cT(ϕ acc a)

rej (rejecton):
T((B∼cϕ) rej r) = ¬r ∧ ◦(¬r U T(ϕ rej r)) ∧B∼cT(ϕ rej r)10

T((ϕ U∼c ψ) rej r) = T(ϕ rej r) U∼c T(ψ rej r)

T((ϕ W∼c ψ) rej r) =

if |ψ| ≤ |ϕ|11: ¬(¬T(ψ rej r) U∼c

(¬T(ϕ rej r) ∧ ¬T(ψ rej r)))
else: (T(ϕ rej r) U∼c T(ψ rej r))∨

�∼cT(ϕ rej r)
T((�∼cϕ) rej r) = �∼cT(ϕ rej r)

T((♦∼cϕ) rej r) = ¬r U∼c T(ϕ rej r)

stop operators: The stop operators do not influence timed operators, i. e.,
any timed operator and its arguments are left unchanged.

6.6.3 Extended Tltl into pure Tltl

T(ϕ U∼c ψ) = (T(ϕ) U T(ψ)) ∧ (T(ψ) ∨B∼cT(ψ))

T(ϕ W∼c ψ) = (T(ϕ) U T(ψ)) ∨ (T(ϕ) ∧ ¬B ∼c¬T(ϕ))

T(�∼cϕ) = T(ϕ) ∧ ¬(B∼c¬T(ϕ))

T(♦∼cϕ) = T(ϕ) ∨B∼cT(ϕ)

9As a heuristic estimation for the size of a formula, the number of temporal operators in
the formula is used.

10The ◦ is required because B∼cϕ is not supposed to match occurrences of ϕ at the current
state, but U would.

11As a heuristic estimation for the size of a formula, the number of temporal operators in
the formula is used.

Chapter 7

Examples

The following examples describe requirements in natural language and provide
a corresponding Salt specification.

Simple specification

-- Requirement : A query is eventually answered

assert always (query -> (eventually answer))

Specification using until

This example makes use of a quoted atomic proposition to encapsulate a com-
parison predicate.

-- Requirement : The software is working until the
-- queue is empty or an abort signal comes.
-- Working may continue forever .

assert working until weak ("queuelength == 0" | abort)

Scheduler specification

The original specification for this example can be found on [DAC99].

-- Requirement : Between the moment in which an
-- execution completes and before a new execution
-- begins there is no work done .
-- Handwritten LTL: []((return_Execute && <>call_Execute)
-- -> ((! call_doWork) U call_Execute))

assert always
(never call_doWork

between inclusive optional return_Execute,
exclusive optional call_Execute)

49

CHAPTER 7. EXAMPLES 50

Precedence specification

This example makes use of macros and past operators.

-- Requirement : An answer is preceded by a request

define precedes(x, y) := if y then once x
assert always (request precedes answer)

Elevator specification

The original specification for this example can be found in [DAC99].

-- Requirement : Between the time an elevator is called at
-- a floor and the time it opens its doors at that
-- floor , the elevator can arrive at that floor at most
-- twice .
-- Handwritten LTL: []((call & <>open) ->
-- ((! atfloor & ! open) U
-- (open | ((atfloor & ! open) U
-- (open | ((! atfloor & ! open) U
-- (open | ((atfloor & ! open) U
-- (open | (! atfloor U open))))))))))

assert always
(occurring [<=2] atfloor

between incl optional call, excl optional open)

Input channel iteration specification

This example makes use of iteration operators.

-- Requirement : Only one of the four input channels may
-- be active at a time

assert always
(exactlyoneof enumerate [0..3] as i in in_i) |
(noneof enumerate [0..3] as i in in_i)

Response pattern specification

This example makes use of regular expressions.

-- Requirement : A connection signal is eventually
-- answered by an ack signal , followed by at least
-- 4 data states and a close signal .

assert always (if connection then eventually
/answer; data*[>=4]; close/)

CHAPTER 7. EXAMPLES 51

Real-time example

This example uses the timed extension of Salt.

-- Requirement : On all floors of a building ,
-- the elevator must arrive at most 60s after
-- having been called .

define max_60s_before_open(i) :=
always (call_i implies

eventually timed [<=60.0] open_i)

assert allof enumerate [1..3] as floor in
max_60s_before_open(floor)

Bibliography

[BLS06] Andreas Bauer, Martin Leucker, and Jonathan Streit. SALT—
structured assertion language for temporal logic. Technical Report
TUM-I0604, Technische Universität München, Institut für Informatik,
March 2006.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Pat-
terns in property specifications for finite-state verification. In Proceed-
ings of the 21st International Conference on Software Engineering,
1999.

[D’S03] D. D’Souza. A logical characterisation of event clock automata. Inter-
national Journal of Foundations of Computer Science, 14(4):625–639,
August 2003.

[RS99] Jean-François Raskin and Pierre-Yves Schobbens. The logic of event
clocks: decidability, complexity and expressiveness. Automatica,
4:247–282, 1999.

[Str06] Jonathan Streit. Development of a programming-language-like tem-
poral logic specification language. Master’s thesis, Technische Univer-
sität München, 2006.

52

Index

* , 25
+, 25
-- , 13
-> , 16
: , 25
:= , 33
; , 25
<-> , 16
?, 25
[]

with * , 25
with timed , 30
with counting quantifiers, 27
with lists, 35

$, 16
&, 16
\\ , 25, 28
| , 16
! , 16
@, 35
-? , 7
-e , 5
-f , 5
-hs , 6
-h , 7
-latex , 6
-ltl , 6
-nonext , 7
-nopast , 6
-notimed , 6
-o , 5
-parser , 5
-printer , 6
-rltl , 6
-smv , 6
-spin , 6
-tltl , 6
-v , 7
-xtltl , 6

accepton , 24

after , 20
allof , 36
always , 17
alwaysinpast , 28
and , 16
as , 35
assert , 13

before , 20
BEGINSALT, 5
between , 20
betweeninpast , 28

Comments, 13
Configuration, 4

declare , 16
define , 33

else , 16
Embedded Salt, 5
ENDSALT, 5
enumerate , 36
equals , 16
eventually , 17
eventuallyinpast , 28
exactlyoneof , 36
Examples, 49
excl

with until , 17
with upto , 21

exclusive
with until , 17
with upto , 21

false , 15
from , 20
frominpast , 28

Haskell Interpreter
GHC, 3
Hugs, 3

53

INDEX 54

historically , 28
holding , 27
holdinginpast , 28
hs.properties , 4

if , 16
implies , 16
in , 35
incl

with until , 17
with upto , 21

inclusive
with until , 17
with upto , 21

Installation, 3
Iteration, 35

Java Runtime Environment, 3
JAVA HOME, 3

Layer
propositional, 15
temporal, 17

Layers, 14
License, 1
list , 35
Literal, 15

Macros, 33
binary, 35
calling, 33
definition, 33
explicit calling, 35
indirect calling, 35
infix, 35
nullary, 33
prefix, 33
unary, 33

never , 17
neverinpast , 28
next , 17
next weak , 17
nextinpast , 28
nextinpast weak , 28
nextn , 19
nextninpast , 28
noneof , 36
not , 16

occurring , 27

occurringinpast , 28
once , 28
Operators

counting quantifiers, 27
exception, 24
infix, 35
iteration, 35
past, 28
precedences, 14
prefix, 33
repetition, 25
scope, 20
sequence, 25
timed, 30

opt
with until , 17
with upto , 21

optional
with until , 17
with upto , 21

or , 16

Parameters, 5
Past, 28
previous , 28
previous weak , 28
previousn , 28
Proposition

atomic, 15
declaration, 16
parameterised, 16
quoted, 15
simple, 15

Real time, 30
Regular expressions, 25
rejecton , 24
releases , 17
releasesinpast , 28
req

with until , 17
with upto , 21
with the argument of upto , 22

required
with until , 17
with upto , 21
with the argument of upto , 22

SALT HOME, 4
Sequences, 25

INDEX 55

someof , 36
stutter-invariant, 7

then , 16
timed , 30
Tltl, 30
Translation, 37

acc, 44
rej, 45
stopexcl, 46
stopincl, 45
accepton , 43
between , 43
from , 43
holding , 39
never , 38
nextn , 38
occurring , 39
rejecton , 43
releases , 38
timed , 48
until , 41
upto , 42
iteration, 40
regular expressions, 43
repetition operators, 40

triggered , 28
true , 15
Tutorial, 8
Typographical conventions, 2

until , 17
until weak , 17
untilinpast , 28
upto , 20
uptoinpast , 28
Usage, 5

weak
with next , 17
with until , 17
with upto , 21
with the argument of upto , 22

with , 36
without , 36

