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Abstract

Drivers of electric vehicles are interested in energy-optimal routes not only to re-

duce anthropogenic carbon dioxide but also to extend the limited reach. This the-

sis describes different shortest path models for energy-optimal routing in order

to extend these models with stochastic aspects as well as extending existing algo-

rithms to handle these models.

A new perspective on the simple shortest path problem will be presented. Us-

ing an arbitrary set of states, for example the battery charge of an electric vehicle,

sufficient properties of edge weights, namely monotonicity and extensivity, are

discussed and applied, such that efficient algorithms can be developed. The main

utility to extend existing algorithms is an abstract datatype describing partial pre-

order queues. The leading example of such algorithms are contraction hierarchies.

Basic implementations yield correct results for the described models, but various

algorithms and approximation techniques still need to be tested. A thorough im-

plementation for the use in the GreenNav system is planned.
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Notation

• Natural numbers N = {0, 1, 2, . . .} will be denoted by Z≥0, positive natural

numbers by Z≥1 = {1, 2, 3, . . .}. R are the real numbers, R≥0 are non-negative

reals and R = R ∪ {−∞,∞} is the extended real line.

• Intervals are denoted by [a, b] =
{
x ∈ R | a ≤ x ≤ b

}
. If a > b, then [a, b] = ∅.

• If A is a set, then its cardinality is |A|, its powerset is P(A) and its cartesian

power is denoted by Ak.

• The functional composition of f : X → Y and g : Y → Z is f ◦ g : X → Z

with (f ◦ g)(x) = g(f(x)) for all x ∈ X . Notice that this definition may not

be the commonly used one, but it is the appropriate and natural one to use

throughout this thesis.

• G = (V,E) is a graph of vertices V = V (G) and edges E = E(G). Usually,

n = |V | and m = |E|. If G is directed, then E ⊆ {(x, y) ∈ V 2 | x 6= y}, other-

wise G is undirected and E ⊆ {e ⊆ V | |e| = 2}. We say, vertex v ∈ G if and

only if v ∈ V (G) and edge e ∈ G if and only if e ∈ E(G) (V and E must be

disjoint).

• A vertex x is said to be connected to y in G, if (x, y) ∈ E(G) in the directed

case or otherwise {x, y} ∈ E(G) in the undirected case.

• Let f : E → X be a function defined on edges, then f(v1, v2) denotes either

f({v1, v2}) for undirected graphs or f((v1, v2)) for directed graphs.
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Notation

• Graph G′ = (V ′, E ′) is a subgraph of G, denoted by G′ ⊆ G, if and only if

V ′ ⊆ V and E ′ ⊆ E.

• A walk γ in G of length k > 0 from v0 to vk is a sequence of vertices

(v0, . . . , vk), such that there is an edge connecting vi−1 and vi in G for all

i = 1, . . . , k. γi is the prefix of γ having length i, i.e. (v0, . . . , vi) (0 ≤ i ≤ k).

Usually ΓGxy denotes all walks from x to y in G and ΓG denotes all walks in

graph G. We omit G, if it is clear by context. Notice, that edges are walks of

length 1.

• A path π in G is a walk on distinct vertices. Since π always induces a sub-

graph of G we say π ⊆ G and e ∈ π, if and only if the induced subgraph

contains edge e. Furthermore, ΠG
xy ⊆ ΓGx,y denotes all paths from x to y in

G and ΠG denotes all paths in graph G. We omit G, if it is clear by context.

Sometimes paths are called simple paths in contrast to walks.Notice, that Πxy

is always finite in finite graphs.

• Given a probability space (Ω,F , P ) we say P (property) to denote P (A),

where A ∈ F contains all the elements ω ∈ Ω fulfilling the given property.

• The expected value of a random variable X is denoted by E(X), not to be

confused with the set of edges E.

• The argument of the maximum (minimum defined analogously) of a func-

tion f : X → R is defined to be the set of elements x ∈ X with f(x) ≥ f(y)

for all y ∈ X , i.e.

arg max
x∈X

f(x) = {x ∈ X | ∀y ∈ X : f(x) ≥ f(y)} .

Since arg maxx is a set, we say x∗ ∈ arg maxx∈X f(x). If f : X → R then we

further require f(x) <∞.
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1 Introduction

There are just a few conclusions concerning the climate change that are recognized

as facts. One of those facts is the ocean acidification, the decrease in the oceans pH:

“Most carbon dioxide released into the atmosphere as a result of the

burning of fossil fuels will eventually be absorbed by the ocean, with

potentially adverse consequences for marine biota.” 1

In an open letter published in the journal Science in 2010 against political assaults

on climate change scientists Peter H. Gleick and more than 250 other members of

the U.S. National Academy of Sciences (not speaking on its behalf) list five scien-

tific conclusions, that are commonly referred to as facts. These are indicating why

“scientists are concerned about what future generations will face from business-

as-usual practices”. 2

The burning of fossil fuels is part of the problem, as stated in the above quotation.

Carbon dioxide, listed as the most important factor in climate change by Moore

[Moo09], is released among others by car traffic. Energy and thus carbon diox-

ide can be saved by improving technologies, such as the performance of vehicles.

But besides developing fuel-saving technologies car navigation systems should

compute and present energy efficient routes.

This thesis aims to improve routing algorithms to find energy efficient routes as

part of the prototypic GreenNav system which was developed at the Technische

1Caldeira et al. in [CW03]
2Gleick et al. in [Gle10]
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1 Introduction

Figure 1.1: The web-frontend of the GreenNav system lets you search for a route
(or the range) of a specific vehicle optimized by either time, distance or
energy.

Universität München and the University of Lübeck. It was designed as a client-

server system providing a public web-service, which is used by different client

software such as a web-frontend (see Figure 1.1) and an Android application for

mobile devices. The term Green Routing is used to describe energy-efficient rout-

ing in navigation systems, but an explicit definition is still missing. The following

interpretation would describe this term in the sense that it is used throughout this

thesis:

Definition 1.1. Green Routing is providing energy-efficient driving directions based on

vehicle characteristics and additional network information in order to promote ecological

sustainability in the context of car navigation systems.

2



After reviewing the basics of routing problems in general, different aspects of

energy-optimality will be discussed. The related work will be presented in the

next chapter, describing the current state of energy-optimal routing and the work

done so far in this field of research.

Different routing models are reviewed in Chapter 3 in order to combine different

aspect into a high-fidelity model. One of these models introduced in this thesis is

the state-based routing problem together with a state-based profile search, which

are capable of comprising most of the other models.

The utility of partial preorder queues presented in Section 4.1 plays an important

role in solving state-based routing problems. In some cases discussed in the re-

spective section, the state-based routing problem can be efficiently solved by Dijk-

stra’s Algorithm or by the A∗-search. Implementations of the state-based models

and an adaptation of Dijkstra’s Algorithm are presented in Section 4.2.

In Section 4.3 the elementary operations of the energy-optimal profile routing

problem are discussed. It will be shown, that energy-optimal routing is a ’sim-

ple’ problem according to the definition introduced for state-based routing. This

property may be used to bound the complexity of the algorithm.

For the common shortest path problem there are various acceleration techniques.

One of these techniques are contraction hierarchies. An adaption for solving state-

based profile routing will be discussed in Section 4.4.

Chapter 5 lists some advantages and disadvantages of the presented models and

points out the conclusions of my results, the open problems and the future work

planned to improve GreenNav.

3



1 Introduction

1.1 The Basic Problem

Finding paths on graphs is a large field of research, but most of the work done

in this field is probably based on Dijkstra’s shortest path algorithm. The shortest

path problem is commonly defined as follows:

Definition 1.2. Given a graph G = (V,E), additive edge costs C : E → R≥0 (or

C : E → Z+) and vertices x, y ∈ V , the (simple) shortest path problem (SPP) is to

find a path π∗x,y from x to y in G with minimum total costs, if it exists.

In 1959 Dijkstra published in [Dij59] a simple algorithm for (strongly-)connected

graphs, i.e. there always exists at least one path between any two nodes. His

original algorithm was to create a shortest path tree by using three vertex sets -

describing the visited, candidate and open vertices - and three edge sets - describ-

ing the edges on optimal paths, candidates and either rejected or open edges. A

simplified but complete algorithm using pseudocode is given in Algorithm 1. It

was adopted from the description provided by Sniedovich in his paper [Sni06]

about the dynamic programming perspective of Dijkstra’s Algorithm.

In most cases Dijkstra’s Algorithm is the basement for any further path finding

algorithms. Even the Bellman-Ford Algorithm may be seen as a modified Dijk-

stra’s Algorithm, that is relaxing all edges |V | − 1 times instead of just one edge

at a time. The A∗-search uses a heuristic to determine the next edge relaxed. Con-

traction Hierarchies are a more complex algorithm using Dijkstra’s Algorithm as

an important subalgorithm for precomputations and its bidirectional version for

querying. More is discussed in Section 4.4.

Proposition 1.3. Dijkstra’s shortest path algorithm computes a path from x to y with

least costs, if it exists.

Proof. To prove the correctness of Dijkstra’s Algorithm, one needs to see that the

algorithm constructs a shortest path tree with root x. A tree on V has exactly

4



1.1 The Basic Problem

Algorithm 1 Dijkstra’s Shortest Path Algorithm
Require: G = (V,E), C : E → R≥0 and x, y ∈ V .

1: Initialize a field pred : V → V .
2: Initialize a field dist : V → R≥0 ∪ {∞}with∞ as default.
3: Initialize the set U ← V .
4: Set dist(x)← 0 and the current vertex v ← x.
5: while v 6= y and dist(v) <∞ do
6: Remove vertex v from U .
7: for each successor w of v, w ∈ U do
8: Compute tentative distance d← dist(v) + C(v, w).
9: if d < dist(w) then

10: Set dist(w)← d.
11: Set pred(w)← v.
12: end if
13: end for
14: Choose any v ∈ arg minv′∈U dist(v′) or break, if there is no such v.
15: end while
16: if dist(y) =∞ then
17: return “no path of finite costs from x to y”
18: else
19: Initialize sequence P with y.
20: Set v ← y.
21: while pred(v) is not equal to x do
22: Set v ← pred(v).
23: Add v to the front of P .
24: end while
25: return Path P from x to y.
26: end if

5



1 Introduction

one path between any two vertices, a shortest path tree with root x describes all

shortest paths from x to any other vertex. Such a tree always exists (but it may not

be unique) because of the principle of optimality, i.e. any subpath of an optimal

path is also optimal.

By induction over the number k of vertices visited so far (line 6), we will prove that

the algorithm constructs a shortest path tree. For vertex x the optimal distance is

0, which is set by the algorithm in line 4. Now assume that S = V \ U is the set

of k vertices visited so far such that their distance values are optimal. Let v be the

(k + 1)-th vertex visited. By contradiction: If its distance was not optimal, then it

was incorrectly set in line 15 with a predecessor w ∈ S within a previous loop run.

Since w by induction hypothesis has optimal distance value for evaluating v, there

must be another vertex w′ ∈ S with dist(w′) + c(w′, v) < dist(w) + c(w, v). How-

ever, since by the time v is selected in line 6, the vertex w′ has been visited before,

because the current vertex v ∈ U is always chosen to be minimal. Therefore, the

distance value would be set using w′ instead of w, which is a contradiction to the

assumption, that w is the correct predecessor of v. Thus, the algorithm constructs

a shortest path tree.

Since any path from x to y in the constructed tree is an optimal path in G, the

path from x to y can be determined by the predecessor field pred. Therefore, the

algorithm returns the shortest path.

If the algorithm does not return a path, then the determined distance is infinity,

which happens only, if y is not reachable from x. This is checked by the algorithm,

because the tree constructed visits all reachable vertices. Thus if no path from x to

y exists, the algorithm will correctly terminate with no path.

6



1.2 Energy Optimality

1.2 Energy Optimality

The shortest path is not always the most energy-efficient path. 3

One may think, that for energy-optimal paths we just need to label the edges with

energy costs. However, by using the simple shortest path problem different as-

pects of Green Routing are ignored.

First it is not a trivial problem to predict the energy costs traveling along one edge

in the graph. Of course we may use empirical data, but since the road network

may change, we always need to collect new data for each new road being built.

Furthermore, having different types of vehicles, we need to collect data for each

type of car. All in all we would prefer reliable predictions of energy costs along

edges, computed from the static data provided.

Furthermore, by using the shortest path problem, we assume that each type of

vehicle consumes the exact same amount of energy under any condition, e.g. the

time of day, the weather, the battery charge, vehicle load and so on. Obviously,

this assumption is not correct, even though one would probably gain a sensible

approximation by using the mean value of the empirically collected energy costs.

The overall idea for a precise energy-cost prediction model is to have a static de-

scription and dynamic information of edges as well as a description and the cur-

rent state of a vehicle. This thesis aims to provide a theoretical background for im-

plementing state based routing. The vehicle models will not be discussed in detail

here, as this was done for example by Neubauer in her diploma thesis [Neu10]. In-

stead, some aspects are enlisted, that may be important algorithmically to Green

Routing.

A first example for the limitations of the simple shortest path problem is given by

Sachenbacher et al. [SLAH11] using elevation data and battery constraints. The

energy cost of an edge is not only computed as a function of the distance between

3Miscellaneous authors, for example [KFKN08].

7



1 Introduction

two vertices, but as a function of the distance and the potential energy gained (or

lost). Since driving downwards may cause recuperation, i.e. regaining energy in

electric vehicles from transforming potential energy, the edge costs may be neg-

ative. However, by introducing a potential function - as described in Mehlhorn

et al. in [MS10] - to the vertices, one can transform this graph to a non-negatively

weighted graph with the same shortest paths. Determining such values for each

vertex can be done by using the Bellman-Ford algorithm, but it is naturally given

for road networks by their respective heights.

This thesis copes with the problem of uncertainty. Roads with many traffic lights

may have a higher variance in energy use than a road with no traffic lights. Also

traffic jams are important to Green Routing, because vehicles usually consume

more energy in stop-and-go situations.

Another important issue may be to route vehicles not always in an egoistic man-

ner for personal energy saving, but instead for ecological sustainability in sum for

many vehicles. Nature reserves for example should be avoided when routing each

vehicle egoistically: Even though the vehicles had a little higher energy consump-

tion, it is probably more sensible than routing the traffic through nature reserves

causing serious damage to the nature. This fact can be modelled by energy penal-

ties, but a thorough analyzation still remains open.

An obvious but also serious problem is the higher fuel consumption rate at higher

velocities. In urban road network energy-efficient routing would chose slow-paces

areas, because it is more efficient. On highways energy-efficient routing using SPP

would probably not take into account, that cars do not necessarily need to drive at

the maximum allowed speed level. Both cases yield a multivariate target function,

which complicates the routing.

The SPP is widely used because of its simplicity. There are many algorithms and

acceleration techniques for finding such shortest paths. However, there are still

features that are not covered by SPP. Therefore, an optimal path in SPP may not

8



1.2 Energy Optimality

be an optimal path in reality.

Some few interesting aspects that are going to be addressed are:

• Optimizing more than one edge cost function, e.g. the time needed to reach

a target and the distance actually driven. This is reflected in the shortest

weight-constrained path problem

• Instead of using time or distance the energy use of a path may be of interest.

This includes a precise vehicle model comprising battery charge, potential

and kinetic energy. The energy-optimal path problem discusses these as-

pects.

• The weighting function could be stochastic in order to model for traffic jams,

different driving behaviours or traffic lights.

– Stochastic properties may be independent or dependent.

Section 3.7 reviews a small collection of stochastic routing models.

• The edge costs may change by time, for example because of high traffic vol-

ume during rush hours. Furthermore, multimodal routing refers to using

different types of vehicles. Thereby arriving at time to take a particular train,

flight or bus must be considered. Time-dependent routing is discussed in

Section 3.4.

Remarks.

• Even though the term “shortest” implies optimizing the length of a path, it is

often used as a generic term that may also refer to travelling time, arbitrary

costs or energy use. Therefore, the shortest path is meant to be the optimal

path depending on the current context.

9





2 Related Work

This thesis approaches Green Routing from two perspectives: On the one hand

there are different models presented for time-dependent routing, energy-optimal

routing and stochastic routing. On the other hand there are acceleration tech-

niques for the shortest path problem. This thesis aims to generalize the routing

problem in order to apply these techniques.

Stochastic routing was analysed for example by Uludag et al. in [UUN+09], who

used the Laplace transform in order to compute the weight of a path from inde-

pendent edge weights represented by cumulative distribution functions. More-

over, Polychronopoulos et al. in [PT96] analyzed the effects of stochastic depen-

dence of edge weights. In the context of computer networks stochastic routing

was also handled by Guérin et al. in [GO99], who presented different stochastic

models for energy efficient routing.

When it comes to the deterministic problem of finding simple shortest paths, there

are already some interesting acceleration techniques. One of those techniques

are highway hierarchies and transit node routing as presented by Schultes in his

dissertation [Sch08] or contraction hierarchies as presented by Geisberger in his

diploma thesis [Gei08].

The idea of using battery constraints for different routing problems originates

from Sachenbacher et al. in [SLAH11], who presented a modified A∗-search to

find a prefix-bounded shortest path. This will be taken up in order to combine it

with stochastic routing from Uludag et al. and with contraction hierarchies from

Geisberger.

11



2 Related Work

The physical perspective, for example the computation of precise fuel or energy

consumptions as edge weights, is not part of this thesis. Interested readers may

find more information for example in the diploma thesis of Neubauer [Neu10].

She presents and evaluates different fuel consumption models. Furthermore,

Kluge [Klu10] describes in his dissertation mathematically and physically sophis-

ticated models of fuel consumption and deals with time-dependent routing.

2.1 Contribution

Stochastic routing models have already been studied by differend authors, but

adding battery constraints from energy-optimal routing opens up some new

perspectives. A generalized path finding model will be presented, namely the

state-based shortest path problem. It will be shown, that time-dependent routing,

energy-optimal routing as well as stochastic routing may all be described by the

state-based model.

The complexity of the presented model will be discussed shortly. The main utility

for applying already known algorithms are partial preorder queues, that are in-

troduced in Section 4.1. As an example, Dijkstra’s Algorithm will be generalized

to solve a class of state-based routing problems.

Contraction hierarchies are difficult to apply to the battery constrained energy-

optimal routing problem, but throughout this thesis an approach will be presented

not only for energy-optimal routing, but for state-based routing in general. Nev-

ertheless, the paper published by Eisner et al. [EFS11] during the last phase of

writing approaches this problem in a similar manner. Differences and similarities

will be commented whenever necessary throughout this thesis.

12



3 Routing Models

In order to develop Green Routing algorithms, sensible models are needed. On the

one hand the reality shall be presented in an abstract way for computational rea-

sons and on the other hand feasible information shall be drawn out of the model

for making decisions in reality.

The basic model, the Shortest Path Problem (SPP) was discussed in the introduc-

tion. In the next section some terms and concepts will be clarified in the way they

are commonly used in literature. To gain a broader perspective to the problem,

a generalization - simply called Generalized Shortest Path Problem (GSPP) - will

be presented. The NP-completeness of its decision version can be easily shown.

Afterwards, the State-Based Shortest Path Problem (SBSPP) will be introduced.

This problem is still a generalization of the SPP and a specialization of the GSPP,

but avoiding NP-hardness. Furthermore, some well-known models, for exam-

ple time-dependent routing (Delling et al. in [DW09]) and energy-optimal routing

(Sachenbacher et al. in [SLAH11]), will be revised in order to show, that both may

be described as state-based routing problems.

3.1 Terms and Concepts

There are many different aspects that must be taken into account when developing

and refining routing models. Since there already are a lot of useful models, a short

description of the nomenclature will prepare for the next sections by defining the

commonly used terms (e.g. [GJ90], [UUN+09], [PT96], [SLAH11]).

13



3 Routing Models

Shortest Path Usually we request a shortest path in the sense of some additive

length. Thereby, length may also refer to other target functions such as travel

time, costs, energy use or a linear combination of those. The term routing

refers to algorithmic solutions of finding shortest paths, but it is used syn-

onymously.

Weight-Constrained Besides having one target function to optimize, there is a

weight defined for each edge, that is used for additional constraints. There-

fore, this term refers to optimizing more than one target function.

Dynamic The edge costs depend on a configuration x ∈ X resulting in a map-

pingX → (E → R) of edge costs. Usually the configuration does not change

during routing, otherwise it is called time-dependent. For a fixed configura-

tion x ∈ X the routing is simple, but the intention here is that precomputa-

tions must be done either for all configurations explicitely - resulting in large

overhead - or in a more general sense for groups of combinations, which is

usually more difficult.

Time-Dependent The edge costs are dynamic in the sense of time. So the edge

cost function becomes E → (T → R) for some time set T , such that travers-

ing the graph takes up time and changes the current time t ∈ T .

Stochastic The edge costs are random variables. We choose a probability space

(Ω,F , P ) and measurable edge costs E → (Ω→ R).

Most Likely In stochastic routing the objective here is to find a path fulfilling a

certain constraint (e.g. a maximum amount of costs) with maximum proba-

bility.

Expected In stochastic routing we search for a path with least expected costs.

One may search using the expected edge costs as fixed edge costs, thereby
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3.2 Generalized Shortest Path Problem

finding the least expected costs because of the linearity of the expectation

operator.

Recourse When traversing the graph, information can be obtained resulting in

the change of edge costs. As opposed to dynamic we do not have complete

information about x ∈ X here.

Prefix-Bounded The cost of a path is defined recursively in order to realize a

lower and upper bound on all prefixes of a path. This is used to realize

battery constraints of electric vehicles.

Energy-Optimal This term refers to prefix-bounded shortest paths, where edge

costs represent energy use or recuperation and battery constraints are real-

ized by lower and upper bounds on the battery. Negative edge weights are

explicitely allowed.

A model discussed recourse will not be discussed within this thesis. Details are

given in [PT96]. Because the model searches an optimal behaviour on what infor-

mation to gather in the network, this model is beyond usual path finding prob-

lems.

3.2 Generalized Shortest Path Problem

When writing programs implementing shortest path algorithms, probably the first

decision made is about what datatype to use as edge weights. The SPP is defined

using either positive reals or natural numbers. Sometimes also negative values are

allowed. Now the property all of these sets have in common is a total order and

a binary operation for chaining edge costs. However, it is also possible to route

on partially preordered edge costs. First, some necessary algebraic definitions are

repeated, then a definition of a generalized routing problem will be presented.

After a trivial example the complexity will be discussed shortly.

15
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3.2.1 Preliminaries

Some algebraic definitions will be revised here, because they are important

throughout this chapter. First, we want to define preorders and equivalence

relations.

Definition 3.1. Given a set S, a relation R ⊆ S2 is called

• reflexive, if and only if ∀x ∈ S : x R x,

• irreflexive, if and only if ¬∃x ∈ S : x R x,

• symmetric, if and only if ∀x, y ∈ S : x R y → y R x,

• antisymmetric, if and only if ∀x, y ∈ S : x R y ∧ y R x→ x = y,

• transitive, if and only if ∀x, y, z ∈ S : x R y ∧ y R z → x R z,

• total, if and only if ∀x, y ∈ S : x R y ∨ y R x,

• a partial preorder, if and only if it is reflexive and transitive,

• a partial order, if and only if it is an antisymmetric preorder,

• a total preorder, if and only if it is a preorder and total,

• a total order, if and only if it is a partial order and total, and

• an equivalence relation, if and only if it is reflexive, symmetric and transitive.

An important lemma for routing in general is the following. It shows, that paths

in a graph do not need to be ordered directly, but they may also be preordered by

a naturally given order on some image set.

Lemma 3.2. Given a function f : X → S, then a (total) preorder ≤S on S induces a

(total) preorder ≤X on X by their images:

x1 ≤X x2, if and only if f(x1) ≤S f(x2), for all x1, x2 ∈ X.
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3.2 Generalized Shortest Path Problem

When using preorders, especially partial preorders, the definition of minimal ele-

ments is important for routing. In SPP we chose a path of minimal length, where

the length was totally ordered. Because of the total order the minimal element (of

a finite and non-empty set) is a unique value. For partial preorders there are sets

of such minimal elements:

Definition 3.3. Given a partial preorder ≤S on S the minimal elements of S ′ ⊆ S with

respect to ≤S are

min
≤S

(S ′) = {x ∈ S ′ | ∀y ∈ S ′ : y ≤S x→ x ≤S y} .

Each partial preorder ≤ on a set X induces an equivalence relation ∼= on X in the

sense, that a ∼= b if and only if a ≤ b and b ≤ a. Notice, that a ∼= b does not

imply a = b because preorders are not necessarily antisymmetric. The relation ∼=

is indeed an equivalence relation, because it is reflexive (due to reflexivity of ≤),

transitive (due to the transitivity of ≤) and symmetric (by definition).

An equivalence class with representative a ∈ X denoted by [a]∼= for an equivalence

relation ∼= is given by

[a]∼= = {x ∈ X | a ∼= x} .

The set of all equivalence classes of X is called the quotient set and is denoted by

X/∼=.

X/∼= = {[a]∼= | a ∈ X} .

The induced strict partial order1 < of a partial preorder ≤ on X is given by a < b

if and only if a ≤ b and not b ≤ a, a, b ∈ X . Throughout this thesis a is also said to

improve b. Notice, that a ≤ b does not imply a = b ∨ a < b, because a ≤ b is also

true for a ∼= b where a 6= b.

Using the induced strict partial order <S , the min operator on ≤S can be defined

1Because of the irreflexivity we do not need to distinguish preorders from orders here.
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equivalently by

min
≤S

(S ′) = {x ∈ S | ¬∃y ∈ S : y <S x} .

3.2.2 Definition

An important application of orders and preorders in routing algorithms is for sort-

ing vertices by their distance to a start or end vertex or for sorting paths by their

length.

In the following definition uses not a totally ordered set of weights (such as R or Z)

but an arbitrary preordered set of weights W. Concatenating edges forming paths

yields weights, that are composed by an associative operation of the edge weights.

Associativity is important here, because it allows to concatenate adjacent edges in

any given order. Commutativity is not necessarily provided, because switching

the order of the edge in a path does usually not yield a path of adjacent edges.

The quotient set will be used to define the following routing models. A set of

paths m ⊆ Πx,y from x to y are weighted by elements of W. These weights are

partially preordered by≤W . One may be interested in finding at least one path for

each minimal element, but we also may take only one path for each equivalence

class.

For example, if a vehicle contains two batteries then it has two states representing

both battery charges. We want to find an energy-efficient path, so we optimize

the sum of both battery charges. If, for whatever reason, two paths yield different

battery charges but the the same sum, then we are interested only in one of those

paths.

Given the set of minimal weights of all pathsW = min≤W (W(Πx,y)) from x to y, we

are interested in at least one path corresponding to each equivalence class in the

induced quotient set W/∼=W of the equivalence relation ∼=W induced by the partial

preorder ≤W . In short we will say, that we query for at least one path for each

minimal element except for equivalence.
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3.2 Generalized Shortest Path Problem

Definition 3.4. Given (G,W,≤W ,W ′,⊕), where

• G = (V,E) is a (directed) graph,

• W is a set of weights,

• ≤W is a (partial) preorder on W,

• W ′ : E →W is a weighting,

• ⊕ : W×W→W is associative,

such that

• the extension2 ofW ′ isW : Γ→W is given by

W(γ) =
k⊕
i=1

W ′(vi−1, vi)

for all walks γ = (v0, . . . , vk) ∈ Γ, k ≥ 1,

then the generalized shortest path problem (GSPP) for given vertices x, y ∈ V is to

find at least one corresponding path for each minimal element in min(W(Πx,y)) except for

equivalence. If x = y, then GSPP yields an empty path containing just x and no edges.

As it has already been mentioned, this definition generalizes the simple SPP, which

may be reduced to GSPP in the following sense:

Example. Let G = (V,E) be a graph and C : E → R≥0 be additive edge costs.

With W = R≥0 we chooseW = C, ⊕ = + and the (total) order ≤W to be ≤ on R.

Now given x, y ∈ V the setW(Πx,y) is either empty (if no path from x to y exists)

or a finite set of positive reals containing a unique minimum element representing

the length of a shortest path. The GSPP now asks for at least one corresponding

path to the shortest path length. Therefore, the GSPP is a generalization of the

SPP.
2A problem instance is often given by an edge weightingW ′, inducing a weighting on arbitrary

walks. SoW ′ is only needed for the definition ofW .
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3.2.3 Intractability

The decision version of GSPP may be described by asking, if there is a w∗ ∈

W(Πx,y) with w∗ ≤ w for w ∈ W. Obviously this problem is NP-complete be-

cause we may choose≥ for the ordering of weights in the above example yielding

the longest path problem. The decision version of the longest path problem is

known to be NP-complete.

Nevertheless, a specialization of the GSPP in the sense that its algebraic structure

is specialized but the queried paths are just a subset of those from the GSPP. The

model presented next is a state-based approach avoiding NP-completeness.

3.3 State-Based Routing

The following model aims to be a specialization of the GSPP in order to avoid NP-

completeness. The main idea here is to have a set of states, which will be changed

by traversing edges that are weighted with state transformation functions. This

is similar to time-dependent routing and energy-optimal routing as can be seen

later. There are different options about what exactly to query from the model, one

is to find an optimal policy for all possible starting states and another one is to find

a particular path for a given starting state. This differs from the GSPP because in

GSPP at least one path for each minimal element is queried (see Figure 3.1).

3.3.1 Preliminaries

Definition 3.5. A function f : X → Y with X, Y ⊆ S is monotone with respect to a

preorder ≤ on S, if and only if x1 ≤ x2 → f(x1) ≤ f(x2) for all x1, x2 ∈ X .

Definition 3.6. A function f : X → Y with X, Y ⊆ S is extensive with respect to a

preorder ≤ on S, if and only if x ≤ f(x) for all x ∈ X .

The following lemma may be obvious, but it is essential for routing.
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x

y

f1

f2

f3

Figure 3.1: Three functions f1, f2, f3 : R→ R. The GSPP queries paths correspond-
ing to all functions f1, f2, f3, because each of them is minimal. State-
based routing shall ask only for f1 and f2, because f3 does not improve
the combination min(f1, f2).

Lemma 3.7. Monotonicity and extensivity are both preserved under functional composi-

tion.

Proof. Let f : X → Y, g : Y → Z with X, Y, Z ⊆ S and a preorder ≤ on S.

If both functions are monotone, then f(x1) ≤ f(x2) for all x1, x2 ∈ X with x1 ≤ x2

and g(y1) ≤ g(y2) for all y1, y2 ∈ Y with y1 ≤ y2. For y1 = f(x1) and y2 = g(x2) we

have (f ◦ g)(x1) = g(f(x1)) ≤ g(f(x2)) = (f ◦ g)(x2) for all x1, x2 ∈ X with x1 ≤ x2.

Therefore, f ◦ g is monotone.

If both functions are extensive, then x ≤ f(x) for all x ∈ X and y ≤ g(y) for all

y ∈ Y . For y = f(x) we have x ≤ f(x) ≤ g(f(x)) = (f ◦ g)(x). Therefore, f ◦ g is

extensive.

3.3.2 Definition

The first definition of state-based routing is used to search specific paths for a

given starting state while the second definition is used to perform a profile search.

In the following, graphs of vertices and (directed) edges G = (V,E) are specified,

such that each vertex is labelled with a set of possible states. These states denoted
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by S are used for example to describe the current battery charge in energy-optimal

routing, the time spent so far on a route or any other preordered set. The edges are

labelled with weights, which are state transformation functions. These weights

must fulfill certain properties. When thinking of Dijkstra’s Algorithm, negative

edge weights were not allowed. This corresponds to extensivity of weights. An-

other important property coming from time-dependent routing (see [DW09]) is

monotonicity.

Definition 3.8. Given (G,S,≤S,S,W,W ′), where

• G = (V,E) is a (directed) graph,

• S is a set of states,

• ≤S is a (partial) preorder on S,

• S : V → P(S) describes possible states at each vertex,

• W is the set of monotone and extensive weights S  S,

• W ′ : E →W is a weighting,

such that

• W ′(x, y) is a weight S(x)→ S(y),

• the extension ofW ′ again isW : Γ→W given by

W(γ) =W ′(v0, v1) ◦ . . . ◦W ′(vk−1, vk)

for all walks γ = (v0, . . . , vk) ∈ Γ, k ≥ 1,

then the state-based shortest path problem (SBSPP) for given vertices x, y ∈ V and

initial state s ∈ S(x) is to find at least one corresponding path for each minimal element

in min(W(Πx,y)(s)) except for equivalence.
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Remarks.

• Remember, that a minimal state s ∈ S is a state that can not be improved, i.e.

for all states s′ ∈ S we have s′ ≤S s → s ≤S s. This may also be described

using the induced strict partial order by not having s′ <S s (see Section 3.2.1).

• It is sensible to introduce a garbage state. When two vertices x, y are con-

nected but a path from x to y is not of interest, because e.g. the battery charge

is not sufficient, then a path yielding such a garbage state may be pruned.

This is implicitely done for energy-optimal routing and not discussed fur-

ther, but one may also introduce such a garbage state as part of above defi-

nition.

• Shortest path problems usually are defined having a total order or total pre-

order. An SBSPP with totally (pre-)ordered states is simpler in the sense, that

min(W(Πx,y)) contains only one state except for equivalence.

• Monotonicity here is quite strong because if two states s1, s2 ∈ S are equiv-

alent, i.e. s1
∼=S s2 meaning s1 ≤S s2 and s2 ≤S s1, then their transformed

states are also equivalent: w(s1) ∼=S w(s2). Therefore, you may see SBSPP as

routing on values of the quotient set of the equivalence relation induced by

≤S .

• To show that another problem may be solved by algorithms developed

for SBSPP, we want to reduce this problem to SBSPP by defining the tuple

(G,S,≤S,S,W,W ′). Furthermore, it needs to be shown that the weight

functions W are monotone and extensive.

• The extension was defined for the GSPP, such thatW(γ) =
⊕k

i=1W ′(vi−1, vi)

for walks γ = (v0, . . . , vk) ∈ Γ. When using function composition, it is impor-

tant to notice the ordering. Since we transform first the starting state, then

transform the transformed starting stated and so on, we have: W(γ)(s) =
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W ′(vk−1, vk)(. . . (W ′(v0, v1)(s))) for all starting states s ∈ S. In order to keep

the ascending order we have defined the notation of functional composition

(f ◦ g)(x) to be g(f(x)) for functions f : X → Y and g : Y → Z.

In order to handle the state-based approach in a more elegant way, we will intro-

duce routing policies. These are interesting for SBSPPs with partially preordered

states as well as for profile routing, because they are used to collect all optimal

paths.

Definition 3.9. Let G = (V,E) be a graph, then a policy m ⊆ Πx,y is a set of paths from

x to y. The set of all policies is denoted by M =
⋃
x,y∈V P(Πx,y). Let ≤M be a partial

preorder on M satisfying m1 ≤M m2 for all m1,m2 ∈M with m1 ⊇ m2.

• A path π ∈ Πx,y is said to improve a policym ⊆ Πx,y, if and only ifm ≤M {π} ∪m

is not satisfied.

• A policy m ⊆ Πx,y is said to be optimal (or not shrinkable), if and only if all paths

π ∈ m improve m \ {π}, i.e. no path π ∈ m satisfies m ≤M m \ {π}.

• A policy m ⊆ Πx,y is said to be complete (or not improvable), if and only if there

is no path π ∈ Πx,y improving m, i.e. m ≤M {π} ∪ m for all paths π ∈ Πx,y.

• The combination m of policies m1, . . . ,mk ⊆ Πx,y means the union of both path

sets

m =
⋃

i=1,...,k

mi ⊆ Πx,y.

• The concatenation m of policies m1 ⊆ Πv0,v1 , . . . ,mk ⊆ Πvk−1,vk means the set of

elementwise path concatenations

m = {π1 ◦ . . . ◦ πk | πi ∈ mi for i = 1, . . . , k} ∩ Πv0,vk .
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Remarks.

• We have m ≤M ∅ and Πx,y ≤M m for each policy m ⊆ Πx,y. The policy ∅ is

worse and the policy Πx,y is best in the sense, that a driver usually prefers

any path over none and that taking all possible paths into account surely

yields an optimal path.

• Since ≤M is reflexive, a path π ∈ m of a policy m does not improve m. This

means, that the policy containing all paths from x to y is complete.

• An optimal and complete policy does not necessarily have minimal cardi-

nality among all complete policies. Finding a minimal and complete policy

is NP-hard. More specifically, determining wether there is an optimal and

complete policy of some specific cardinality k > 0, is NP-hard, because the

’set covering’ problem, which is listed as one of Karp’s 21 NP-complete prob-

lems in [Kar72], can be easily reduced to it (without proof).

• The reason for defining ≤M on the union of all policies is to provide algo-

rithms with necessary comparisons. Dijkstra’s Algorithm for example com-

pares two weights even though they only share a common start vertex but

not a common end vertex. Furthermore, for bidirectional searches we want

to compare policies that share a common end vertex but not a common start-

ing vertex.

• Regarding SBSPP we want to find a path π, such that W(π)(s) is minimal

for some starting state s ∈ S(x). We may describe the partial preorder on

policies by m1 ≤M m2, if and only if W(π1)(s) ≤S W(π2)(s) for all paths

πi ∈ mi and policies mi ∈
⋃
y∈V Mx,y, i ∈ {1, 2}. But if m1 and m2 do not start

in a common vertex x, then we do not know, which path is ’better’, because

the ordering depends on an initial state s ∈ S(x) of a common vertex. That

way, backward and bidirectional searches are difficult.
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The aim is to show, how the relation ≤M may be induced from the relation ≤S on

states in way, that policies with different start and end vertex are comparable. Do-

ing so, we may search for an optimal and complete policy from x to y independent

of a starting state. This is called a profile search and was described informally for

time-dependent routing by Delling et al. in [DW09]. We formalize this search in

terms of state-based routing in the following way.

Definition 3.10. Given the structure of an SBSPP, i.e. the tuple (G,S,≤S,S,W,W ′), the

partial preorder≤M on policiesM =
⋃
x,y∈V P(Πx,y) is induced by functional comparison

using ≤S : Given any two policies m1 ⊆ Πx1,y1 , m2 ⊆ Πx1,y2 then m1 ≤M m2, if and only

if s1 ≤S s2 implies

∀π2 ∈ m2 ∃π1 ∈ m1 : W(π1)(s1) ≤S W(π2)(s2)

for all s1 ∈ S(x1), s2 ∈ S(x2).

Now given two vertices x, y ∈ V the state-based profile routing problem (SBPRP) is

to find an optimal and complete policy m ⊆ Πx,y.

Remarks.

• The property m1 ≤M m2 for all m1,m2 ∈ M with m2 ⊆ m1 is fulfilled,

because for all π2 ∈ m2 there is a π1 ∈ m1, namely π1 = π2, such that

W(π1)(s1) ≤S W(π2)(s2) because of the monotonicity of weights, which is

preserved under functional composition (see Lemma 3.7).

• The induced relation ≤M is indeed a preorder:

– Reflexivity: m ≤M m for any m ⊆ Πx,y is given, because m ⊆ m (see

previous remark).

– Transitivity: With m1 ≤M m2 and m2 ≤M m3, mi ⊆ Πxi,yi and with

any states s1 ≤S s2 and s2 ≤S s3, si ∈ S(xi), i ∈ {1, 2, 3}, we

have W(π1)(s1) ≤S W(π2)(s2) for some π1 ∈ m1 and all π2 ∈ m2
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as well as W(π2)(s2) ≤S W(π3)(s3) for some π2 ∈ m2 and all π3 ∈

m3. Therefore, for all π3 ∈ m3, there is a π2 ∈ m2 and a π1 ∈ m1

with W(π1)(s1) ≤S W(π2)(s2) and W(π2)(s2) ≤S W(π3)(s3) following

W(π1)(s1) ≤S W(π3)(s3) by transitivity of preorder ≤S .

• By requiring ≤M to be a preorder and thus to be reflexive, the given defi-

nition induces monotonicity on weights. However, the edge functions are

usually given by the problem and the preorder on M is derived from that.

Therefore, it is sensible to explicitely require the edge functions to be mono-

tone.

Again, these definitions generalize the simple SPP, which may be reduced to SB-

SPP (as well as SBPRP) in the following sense:

Example. Let G = (V,E) be a graph and C : E → R≥0 be additive edge costs.

With S = S(v) = R≥0 for all v ∈ V , we choose ≤S to be the usual comparison

≤ on reals. The weight functions wc ∈ W, e ∈ E are (monotone and extensive)

translation functions wc(x) = x + c for c ∈ R≥0, such that the weighting is given

byW(e) = wC(e) for all e ∈ E. Now given x, y ∈ V and (an arbitrary) starting state

s = 0, the SBSPP asks for a path π∗x,y with weight wc, such that wc(s) = wc(0) = c

is minimal, if such a path exists. Therefore, the SBSPP is a generalization of SPP.

Furthermore, the SBPRP solves the problem for all starting states, but because

the optimal path is independent of the starting state, the computed policy always

yields just the optimal path.

Furthermore, the longest path problem may not be directly transformed into a

state-based model, because the edge weight functions are not extensive, i.e. the

weights are not decreasing, but increasing the states. The same may also hold for

negatively weighted edges in SPP, because if there are cycles of negative weight,

then we can not use potential functions as described in [MS10].

So far we have seen the structure of the problem called SBSPP, but when develop-
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ing algorithms we have an interest in bounding the complexity of all comprised

modules. In most cases, it is necessary to refer to an actual implementation. Re-

member, that SBSPP with totally and with partially preordered states were dif-

fered explicitely. The former is usually less complex than the latter.

Definition 3.11. An SBSPP is called simple, if and only if

1. the preorder ≤S is total,

2. the states S have constant descriptive complexity and may be compared by ≤S in

constant time, and

3. the edge weights functionsW(E) have constant descriptive complexity and may be

computed in constant time.

The SPP is a simple SBSPP. Simple SBSPPs may be directly solved using Dijkstra’s

Algorithm (see Section 4.2).

The following definition tries to bound the complexity of profile searches.

Definition 3.12. An SBPRP is called simple (in O(X)), if and only if

1. the underlying SBSPP is simple,

2. the complexity of policiesmx,y ⊆ Πx,y is bounded byO(X) in the worst case, i.e. the

cardinality |mx,y| is in O(X) for all vertices x, y ∈ V (thereby X may be a function

of |V | and |E|), and

3. the concatenation, combination and comparison of two policies m1 and m2 may be

realized in time O(|m1|+ |m2|) in the worst case.

For completeness the existance of an optimal and complete policy will be shown.

Lemma 3.13. An optimal and complete policy from x to y does always exist.

28



3.3 State-Based Routing

Proof. Given any non-optimal policy m ⊆ Πx,y, then there is a path π ∈ m, such

that

∀s ∈ S(x) ∃π′ ∈ m : W(π′)(s) ≤S W(π)(s).

Thus we have m \ {π} ≤M m. Therefore, any non-optimal policy can be reduced

step by step to an optimal policy by removing the paths just described π, such that

completeness would be conserved. Remember, that an empty policy is optimal by

definition.

Now the policy Πx,y is complete and can be reduced to an optimal policy that

remains complete. Therefore, there always exists an optimal and complete policy.

Since profile routing solves the state-based shortest path problem for all starting

states (not just for one particular), a solution to SBPRP always describes a solution

to the corresponding SBSPP. This is intuitive but a formal proof is given in the

following.

Proposition 3.14. Givenm ≤M ∅ → m = ∅, then a solution to SBPRP always comprises

a correct solution to the corresponding SBSPP.

Notice that it may be quite complex to determine the correct solutions of an SBSPP

by the solution of an SBPRP if the found policy is set of many paths. For real road

networks this cardinality is usually assumed to be small. This assumption is stated

for example by Eisner et al. [EFS11].

Proof. Let (G,S,≤S,S,W,W ′) be the structure of an SBSPP and the corresponding

SBPRP. Given a solution to the SBPRP, we have an optimal and complete policy

m ⊆ Πx,y describing optimal paths from x to y.

If m = ∅, then y is not reachable from x. Otherwise the policy would not be com-

plete, we had a path π ∈ Πx,y such that {π} <M ∅ contradicting the presumption.

Therefore, assume that m 6= ∅.
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Given a starting state s ∈ S(x), let π ∈ m, such thatW(π′)(s) ≤S W(π)(s) follows

W(π)(s) ≤S W(π′)(s) for all π′ ∈ m. Such a path always exists, because of the

transitivity of ≤S .

Since m is complete, there is no path π′ ∈ Πx,y improving the policy m, i.e. we do

not have {π′} ∪m ≤M m for any path π′ ∈ Πx,y.

This results in

∃s1, s2 ∈ S(x) : s1 ≤S s2 → ∃π2 ∈ m ¬∃π1 ∈ {π′} ∪m : W(π1)(s1) ≤S W(π2)(s2).

Because of monotonicity and equal domains, s := s1 = s2 may be chosen, which

yields

∃π2 ∈ m ¬∃π1 ∈ {π′} ∪m : W(π1)(s) ≤S W(π2)(s).

Since π′ was chosen arbitrarily, no such path improves the resulting state, i.e. an

optimal state is reached through a path π ∈ m. Therefore, an optimal state is

reached from within the complete policy m.

The presumption m ≤M ∅ → m = ∅ is sensible, because any path is usually

better than no path. On the other hand, when considering energy-optimal routing

(Section 3.5) then paths may be worthless because they can not be traversed for

any starting state. In that case, SBPRP yields an empty set representing no paths

where SBSPP yields an arbitrary path. Because both cases are easily identified, we

do not distinguish them explicitely.

3.4 Time-Dependent Shortest Path Problem

Time-dependency is modeled “by using functions for specifying edge weights”

(Delling et al. in [DW09]). So the actual edge weight depends on the time of arrival

(or previous path costs so far). This model is revised here, because it perfectly fits
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in the definition of state-based routing and thus is an interesting example.

Definition 3.15. Let T = R be the set of departure times and let F be the function space

of functions f : T → R≥0 with f(t1) + t1 ≤ f(t2) + t2 for all t1, t2 ∈ T , t1 ≤ t2.

Now given a graph G = (V,E), a weighting F : E → F, vertices x, y ∈ V and start-

ing time t ∈ T , the time-dependent shortest path problem (TDSPP) is to find a path

π∗xy from x to y with minimum weight with respect to g : Π × T → R defined recur-

sively for a path (v0, . . . , vk) and starting time t by g(v0, t) = t and g((v0, . . . , vk), t) =

g((v0, . . . , vk−1), t) + F(vk−1, vk)(g((v0, . . . , vk−1), t)). 3

The property f(t1) + t1 ≤ f(t2) + t2 for all t1, t2 ∈ T is called FIFO property (or

non-overtaking property). It is used to ensure, that waiting does not provide any

advantage. If this property was not fulfilled and if waiting was not allowed, then

the decision version of TDSSPP would be NP-complete (Orda et al. in [OR90]).

Notice that this property is fulfilled if and only if the function g(t) = f(t) + t is

monotonically increasing, which will be of interest in the state-based approach.

3.4.1 State-Based Time-Dependency

The following definition is an alternative definition of the same problem, but for-

mulated as a state-based routing problem.

Definition 3.16. Let T = R be the set of departure times and let F be the function space

of functions f : T → R≥0 with f(t1) + t1 ≤ f(t2) + t2 for all t1, t2 ∈ T , t1 ≤ t2.

Now given a graph G = (V,E), a weighting F : E → F and vertices x, y ∈ V as

well as a transformation τ : F → (T → T ) with τ(f)(t) = f(t) + t for all t ∈ T ,

the time-dependent shortest path problem (TDSPP2) is to solve the SBSPP given by

(G, T,≤,S, τ(F),F ◦ τ), S(v) = T for all v ∈ V .

The monotonicity and extensivity are easily checked:

3Delling et al. in [DW09], slightly changed for consistency. The periodicity of functions in F was
omitted.
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Remarks.

• Monotonicity: Let t1, t2 ∈ T with t1 ≤ t2, then τ(f)(t1) = f(t1) + t1 ≤ f(t2) +

t2 = τ(f)(t2) for all functions f ∈ F by definition.

• Extensivity: Let t ∈ T , then f(t) ≥ 0 (since f : T → R≥0) and t ≤ t + f(t) =

τ(f)(t) for all functions f ∈ F.

Theorem 3.17. Both definitions of the time-dependent shortest path problem, TDSPP and

TDSPP2, are equivalent.

Proof. The only difference in both models is the definition of edge and path

weights. Let (v0, . . . , vk) be a path in G. In TDSPP we have a recursive definition:

g(v0, t) = t,

g((v0, . . . , vk), t) = g((v0, . . . , vk−1), t) + F(vk−1, vk)(g((v0, . . . , vk−1), t)).

In TDSPP we have a composition of functions:

W((v0, . . . , vk)) =W ′(v0, v1) ◦ . . . ◦W ′(vk−1, vk).

We need to show, that g((v0, . . . , vk), t) = W((v0, . . . , vk))(t) for all t ∈ T . This is

easily done by induction on k:

Base Let k = 0, then g((v0, . . . , vk), t) = g(v0, t) = t andW((v0, . . . , vk)) =W(v0) =

idT , soW((v0, . . . , vk))(t) = t = g((v0, . . . , vk), t) for all t ∈ T .

Hypothesis Let xt = g((v0, . . . , vi), t)
∗
= W((v0, . . . , vi))(t) for all t ∈ T for some

fixed i ∈ Z+, i < k.
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Step The induction step follows directly by using definitions:

g((v0, . . . , vi, vi+1), t) = g((v0, . . . , vi), t) + F(vi, vi+1)(g((v0, . . . , vi), t))

∗
= xt + F(vi, vi+1)(xt)

= τ(F(vi, vi+1))(xt)

=W ′(vi, vi+1)(xt)

∗
=W ′(vi, vi+1)(W((v0, . . . , vi))(t))

= (W((v0, . . . , vi)) ◦W ′(vi, vi+1))(t)

=W((v0, . . . , vi, vi+1))(t)

We have seen now, that both weights g and W are equivalent. The TDSPP now

asks for a path π∗xy, such that g is minimal, whereas the TDSPP2 asks for an optimal

path π∗xy with minimal projected stateW(π∗xy)(t), if such a path exists. Therefore,

both models are equivalent.

Property 3.11 defines simple SBSPPs. The time-dependent routing problem is not

simple, since the function space F was not constrained. Therefore, we can not de-

cide yet, e.g. if composing weight functions is possible in constant time. Further-

more, the profile-search in time-dependent routing may also be formulated by a

state-based approach as SBPRP, which follows from Theorem 3.17 and Proposition

3.14.

3.5 Energy-Optimal Path Problem

The following model was investigated by Sachenbacher et al. in [SLAH11] and

[AHLS10]. It is the grounding for the energy-optimal stochastic models as well

as the inspiration for state-based routing in general. The main difference to SPP
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allowing negative edge weights is the definition of path costs. Contrary to SPP, the

path costs are not the sum of its edges but defined recursively in order to model

for battery constraints. More precisely, the two following definitions are adapted

from their model.

Definition 3.18. The energy costs CKJ(γk) of a walk γk = (v0, . . . , vk), given edge

costs C : E → R, the battery capacity K ∈ R and its initial charge J ∈ R with

0 ≤ J ≤ K, is defined recursively for i = 0, . . . , k:

CKJ(γi) =



K − J if i = 0,

0 if i > 0 and ∆i < 0,

∆i if i > 0 and 0 ≤ ∆i ≤ K,

∞ if i > 0 and ∆i > K

where

∆i = CKJ(γi−1) + C(vi−1, vi) for i > 0.

Using this definition the energy optimal routing problem follows immediately:

Definition 3.19. Given a graph G = (V,E), vertices x, y ∈ V , edge costs C : E → R,

such that there are no cycles of negative energy costs, battery capacity K ∈ R and initial

charge J ∈ R with 0 ≤ J ≤ K, the energy-optimal path problem (EOPP) is to find a

path π∗xy from x to y with minimum total energy cost CKJ(π∗xy) <∞, if it exists. 4

Remarks.

• Negative edge costs are explicitely allowed to model for energy recupera-

tion.

• Since paths by definition are walks (with distinct vertices), the definition for

energy costs of walks may also be used to determine the energy costs of a

path.
4Sachenbacher et al. in [SLAH11], slightly changed for consistency.
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• It is sensible to assume, that each cycle has non-negative costs in sum. Al-

gorithmically this has the advantage of not running cycles in order to gain

energy. Furthermore, this assumption is based on thermodynamics: Assum-

ing the system does not gain energy from outside (which is of course not

true for solar vehicles, but these are ignored here), the battery charge can not

increase by driving cycles. Furthermore, the vehicle actually loses energy

due to friction and heating to the outside.

As was done with time-dependent routing problems we do now reformulate the

energy-optimal routing problems as state-based routing problems. However, this

is more difficult in various senses. First, the description of the state transforma-

tion functions will be more complex than how they were done in the previous

section, actually just because there was no detailed specification of the function

space there. Furthermore, the edge weights must be allowed to be negative, which

contradicts extensivity of edge weights. In order to solve this problem, potential

functions (Mehlhorn et al. in [MS10]) may be used in the same way as they were

used by Sachenbacher et al. in [SLAH11] for energy-optimal routing. This is done

by combining the battery charge and the potential energy to one combined energy

state.

3.5.1 Battery and Energy Transformation Functions

The alternative definition of the energy-optimal shortest path problem requires the

definition of simple battery transformation functions. It is similar to the edge cost

function of Eisner et al. in [EFS11], but instead of chaining functions in a particular

way, functional composition on state transformations is used here, which should

be more intuitive and simple. Moreover, the domain is explicitely defined, i.e. the

set of battery charges.

Definition 3.20. Given a battery capacity K ∈ R≥0, the set of battery charges is
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BK = [0, K]∪ {−∞}. Thereby K referes to a fully charged battery, 0 to an empty battery

and −∞ to the case, that the battery was overstrained.

There is just a slight difference between states 0 and −∞ by the given description,

but −∞ is used as a garbage state in routing here. If at state 0 recharging the bat-

tery by recuperation is still possible. If at state −∞ it does not matter which real

number representing recuperation is added to it, the battery still remains over-

strained.

Throughout this thesis, the same battery capacity level K is used, so K ∈ R≥0 is

omitted for better readability.

Definition 3.21. Let K be a battery capacity and B = BK be a set of battery charges. The

set SBTF = SBTFK of simple5 battery transformation functions comprises functions

f∞ : B→ B and fa,b,c : B→ B with f∞(J) = −∞ for all J ∈ B and

fa,b,c(J) =


−∞ for J = −∞ or J ∈ [0, a),

J − c for J ∈ [a, b),

b− c for J ∈ [b,K],

for c ∈ [−K,K], a ∈ [0,min(K + c,K)] and b ∈ [max(0, c), K].

Furthermore, the transformation τSBTF : R→ SBTF projects

• any c ∈ [0, K] to the function fc,K,c,

• any c ∈ [−K, 0] to the function f0,K+c,c,

• any c > K to the function f∞ and

• any c < −K to the function f0,0,−K .

5These functions are called simple because combinations of SBTF yielding advanced battery trans-
formation functions are introduced later. These functions will then be used as an implementa-
tion for optimal policies.
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There are mainly two ways to illustrate simple battery transformation functions.

The first one is as usual in a Cartesian coordinate system as can be seen in Figure

3.2, the other one is a mapping from domain to codomain as can be seen in Figure

3.3. The former is suited to illustrate comparisons, the latter is suited to illustrate

functional compositions.

0 a b K

K

a− c

b− c

Figure 3.2: A simple battery transformation function fa,b,c is depicted in a Carte-
sian coordinate system. The value −∞ of the ordinate is omitted for
simplicity, all values (strictly) less than a point to −∞.

The battery charge can be increased by applying an SBTF with negative costs c < 0,

so these functions may be monotone, but not extensive. Therefore, the potential

energy is combined with the current battery charge as one state S = B × R. The

transformation functions then are given by the following definition.
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−∞

−∞

0

0

a b

a− c b− c

K

K

Figure 3.3: A simple battery transformation function fa,b,c is depicted as a map-
ping. The upper part illustrates the domain, the lower part illustrates
the codomain. The dotted lines representing the projection of particu-
lar battery charges as well as the negative infinities will be omitted in
the following figures.

Definition 3.22. Let K be a battery capacity and B = BK be a set of battery charges.

Let S = B × R where the first value represents the battery charge and the second value

represents the potential energy or level of altitude. The set SETF = SETFK of simple

energy transformation functions comprises functions wh,f,h′ : B × {h} → B × {h′}

for all h, h′ ∈ R and f ∈ SBTF with

wh,f,h′(J, h) 7→ (f(J), h′),

such that if f = fa,b,c we have

c ≥ h′ − h.

Furthermore, the transformation τSETF : R×R≥0 ×R→ SETF projects any (h, c′, h′) to

the function wh,τSBTF(c′+h′−h),h′ ∈ SETF.
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0 h h+K

h′

h′ +K

h+ a h+ b

h′ + a− c

h′ + b− c

Figure 3.4: A simple energy transformation function wh,fa,b,c,h′ is depicted in a
Cartesian coordinate system. The sum J+h of a state (J+h) ∈ B×R is
used here. Again, all states strictly less than h+ a point to −∞. Notice
that the graph is always below or on the dashed line for SETFs, because
of the constraint c ≥ h′−h of Definition 3.22. It is proven in Proposition
3.26.
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−∞

−∞

h h+K

h′ h′ +K

h+ a h+ b

h′ + a− c h′ + b− c

Figure 3.5: A simple energy transformation function wh,fa,b,c,h′ is depicted. The up-
per part illustrates the domain, the lower part illustrates the codomain.
The sum J +h of a state (J, h) ∈ BK ×R is used here. The battery inter-
vals are translated by their respective potentials h and h′. Notice that
all projections lean to the left, i.e. the projection always decreases val-
ues describing an energy loss in all cases. This is due to the constraint
c ≥ h′ − h of Definition 3.22 and will be proven in Proposition 3.26.

Remarks.

• The inequality c ≥ h′ − h is required for extensivity and does not violate the

transformation τSETF, because given a c′ ∈ R≥0, we have c = c′ + h′ − h ≥

h′ − h. This is the equivalent of potential functions used in [SLAH11]. In

other words, the costs in battery charge must be at least as big as the gain in

potential energy.

• Again for illustration purposes, simple energy transformation functions may

be depicted as shown in Figure 3.4 and 3.5.

For completeness the closure of SBTF and SETF under functional composition is

shown.

Proposition 3.23. SBTF and SETF are closed under functional composition.

Proof. Given two functions f1, f2 ∈ SBTF. If either is equal to f∞, then f1 ◦ f2 =

f∞ is an SBTF. Otherwise, we have ci ∈ [−K,K], ai ∈ [0,min(K + ci, K)] and

bi ∈ [max(0, ci), K] for i ∈ {1, 2}, such that fi = fai,bi,ci . If now b1 − c1 < a2,

then f1 ◦ f2 = f∞ again is an SBTF. If a1 − c1 ≥ b2, then f1 ◦ f2 = fa1,a1,c with
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f1

f2

0

0

a1 b1

a2 b2

K

K

⇒ fa1,b1,c1+c2

f1

f2

0

0

a1 b1

a2 b2

K

K

⇒ fa2+c1,b1,c1+c2

f1

f2

0

0

a1 b1

a2 b2

K

K

⇒ fa1,b2+c1,c1+c2

f1

f2

0

0

a1 b1

a2 b2

K

K

⇒ fa2+c1,b2+c1,c1+c2

f1

f2

0

0

a1 b1

a2 b2

K

K

⇒ fa1,a1,a1−(b2−c2)

f1

f2

0

0

a1 b1

a2 b2

K

K

⇒ f∞

Figure 3.6: Composition of two SBTFs: If both f1 6= f∞ and f2 6= f∞, then there
may be six cases specifying the composition f1 ◦ f2. In any case the
composition yields an SBTF. Therefore, simple battery transformation
functions are closed under functional composition.
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c = a1− f2(f1(a1)) = a1− (b2− c2) being an SBTF. Otherwise, we have a2 ≤ b1− c1

and b2 < a1 − c1, and the composition yields fa,b,c = f1 ◦ f2 with c = c1 + c2,

a = max(a1, a2 + c1) and b = min(b1, b2 + c1), which is an SBTF (see Figure 3.6 for

illustration). Therefore, SBTF is closed under functional composition.

Now composing two SETF, say w1 : B×{h} → B×{h′}, w2 : B×{h′} → B×{h′′},

with w1 = wh,f1,h′ ∈ SETF and w2 = wh′,f2,h′′ ∈ SETF yields again an SETF w :

B× {h} → B× {h′′}, namely w = w1 ◦ w2 = wh,f1◦f2,h′′ .

Furthermore, we need to check wether the constraint c ≥ h′ − h for any wh,fa,b,c,h′

is also valid after composition: If fi = fai,bi,ci for i ∈ {1, 2}, then c1 ≥ h′ − h and

c2 ≥ h′′ − h′, so if fa,b,c = f1 ◦ f2 (i.e. f1 ◦ f2 6= f∞), then

c = c1 + c2 for a1 − c1 < b2

or

c = a1 − (b2 − c2) ≥ c1 + c2 for a1 − c1 ≥ b2.

In any case we have

c ≥ c1 + c2 ≥ h′ − h+ h′′ − h′ = h′′ − h.

Therefore, the constraint c ≥ h′ − h is preserved under functional composition.

The actual problem in energy-optimal routing is that SETF is not closed under the

max operator. Otherwise routing would be as simple as SPP. Figure 3.7 shows that

the maximization yields not an SETF in general. In Section 4.3 we will generalize

these transformation functions by using the closure under the max operator.
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0 p′ p′ +K

p′′

p′′ +K

w1

w2

Figure 3.7: The maximum of two simple energy transformation functions w1, w2

may not yield an SETF again. Therefore, we need to keep track of
multiple paths during routing. A policy decides, which path is opti-
mal among a set of paths with corresponding SETFs. The closure of
SETF under the max operator will be discussed in the next chapter.
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3.5.2 State-Based Energy-Optimality

Now with Definition 3.22 the energy-optimal routing can be specified as follows.

Definition 3.24. Let G = (V,E) be a graph with potentials H : V → R and edge costs

C : E → R≥0. The state space is S = B × R with the total preorder ≤S induced by

the function (J, h) 7→ J + h with total order ≥ on R (because we want to maximize

the energy), and let S(v) = B × {H(v)} for each v ∈ V . With W = SETF the edge

weights are given by We = τSETF({H(x)} × R≥0 × {H(y)}) and a weighting is given by

W ′(e) = τSETF(H(x), c,H(y)) for e = (x, y) ∈ E.

Given vertices x, y ∈ V and an initial battery charge J ∈ B the energy-optimal path

problem (EOPP2) is to solve the described SBSPP for (G,S,≤S,S,W,W ′).

The monotonicity of weights is guaranteed:

Proposition 3.25. The weight functions W of Definition 3.24 are monotone with respect

to ≤S on BK × R.

Proof. Simple battery transformation functions (SBTFs) are monotone: The func-

tion f∞ ∈ SBTF is monotone, because it is constant. Let fa,b,c ∈ SBTF and let

J1, J2 ∈ B, J1 ≤ J2, then

• If J1 = −∞ or J1 ∈ [0, a), then f(J1) = −∞ ≤ f(J2) for all J2 ∈ BK .

• If J1 ∈ [a, b), then f(J1) = J1 − c. Either J2 ∈ [a, b), then f(J1) = J1 − c ≤

J2 − c = f(J2), or else J2 ∈ [b,K], then f(J1) = J1 − c ≤ b− c = f(J2).

• If J1 ∈ [b,K], then also J2 ∈ (b,K] and f(J1) = b− c = f(J2).

So in any case, if J1 ≤ J2 then f(J1) ≤ f(J2).

Now given a weight function w = wh,f,h′ : B ∪ {h} → B ∪ {h′}, w ∈ SETF,

then two states s1, s2 ∈ B ∪ {h} are described by s1 = (J1, h) and s2 = (J2, h),

J1, J2 ∈ B. Assume that s1 ≤S s2, then J1 + h ≥ J2 + h, i.e. J1 ≥ J2. Since
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f ∈ SBTF is monotone, we have f(J1) ≥ f(J2) and f(J1) + h′ ≥ f(J2) + h′, i.e.

w(J1, h) = (f(J1), h′) ≤S (f(J2), h′) = w(J2, h).

Furthermore, the weights are extensive, meaning that we can not gain energy by

traversing edges with respect to the sum of battery charge and potential energy:

Proposition 3.26. The weight functions W of Definition 3.24 are extensive with respect

to ≤S .

Proof. Let h, h′ ∈ R, then with w = wh,∞,h′ , we have w(J, h) = (−∞, h′) constantly,

therefore w is extensive. Otherwise let c ∈ R≥0, h, h′ ∈ R and w = wh,f,h′ , w :

B∪{h} → B∪{h′}with f = fa,b,c ∈ SBTF with c ≥ h′−h, then J ≥ J−(c+h′−h) ≥

f(J) following J + h′ ≥ f(J) + h′ and (J, h) ≤S (f(J), h′) = w(J, h) for all states

(J, h) ∈ B ∪ {h}.

In detail this is:

• If J = −∞ or J ∈ [0, a), then f(J) = −∞, so J + h ≥ f(J) + h′ and (J, h) ≤S
(f(J), h′).

• If J ∈ [a, b), then f(J) = J − (c+h′−h) = (J +h)− (c+h′), so with c ≥ 0 (by

definition c ∈ R≥0) we have J+h ≥ J+h−c = (J+h)−(c+h′)+h′ = f(J)+h′

and (J, h) ≤S (f(J), h).

• If J ∈ [b,K], then f(J) = K and J − (c + h′ − h) ≥ K, because J ≥ b =

K + c + h′ − h. Therefore, J + h ≥ K + c + h′ ≥ K + h′ = f(J) + h′, so we

have (J, h) ≤S (f(J), h).

In all of these cases we have seen, that (J, h) ≤S (f(J), h′) = w(J, h). Therefore,

SETFs are extensive.

The following proves, that both definitions of energy-optimal routing are equiva-

lent.
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Theorem 3.27. Both definitions of the enery-optimal path problem, EOPP and EOPP2,

are equivalent, insofar as EOPP2 may be reduced to EOPP instantly, while EOPP may be

reduced to EOPP2 by computing a potential function H : V → R.

Proof. To prove this theorem, it needs to be shown, that given an initial battery

charge J ∈ [0, K] and two vertices x, y ∈ V , the energy costs of a walk (actually we

only need to show this for paths) of Definition 3.18 are equivalent to those given

by the corresponding energy transformation functions of Definition 3.22.

Given a graphG = (V,E) and an edge cost functionC : E → R, such that there are

no cycles of negative energy costs, then there exists a potential function (Mehlhorn

et al. in [MS10]) H : V → R, such that an optimal path with edge costs C is also

an optimal path with respect to edge costs C ′(e) = C(e)−H(x) +H(y) ≥ 0 for all

edges e = (x, y) ∈ E and vice versa.

Now given a walk γ = (v0, . . . , vk) ∈ Γx,y the energy costs are defined recursively:

CKJ(γi) =



K − J if i = 0,

0 if i > 0 and ∆i < 0,

∆i if i > 0 and 0 ≤ ∆i ≤ K,

∞ if i > 0 and ∆i > K

where

∆i = CKJ(γi−1) + C(vi−1, vi) for i > 0.

The corresponding energy transformation function w is given by

w = τSETF(H(v0), C ′(v0, v1), H(v1)) ◦ . . . ◦ τSETF(H(vk−1), C ′(vk−1, vk), H(vk)),
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which by definition gives

= wH(v0),τSBTF(C′(v0,v1)+H(v1)−H(v0)),H(v1) ◦ . . . ◦

wH(vk−1),τSBTF(C′(vk−1,vk)+H(vk)−H(vk−1)),H(vk)

= wH(v0),τSBTF(C′(v0,v1)+H(v1)−H(v0))◦...◦τSBTF(C′(vk−1,vk)+H(vk)−H(vk−1)),H(vk)

= wH(v0),τSBTF(C(v0,v1))◦...◦τSBTF(C(vk−1,vk)),H(vk)

Because the second parameter is constant, we just need to optimize the first

parameter. We will prove now, that maximizing this parameter (as is done by

EOPP2) minimizes energy costs. For convenience, let

fk := τSBTF(C(v0, v1)) ◦ . . . ◦ τSBTF(C(vk−1, vk))

Namely we will prove by induction on the length k of walk γ, that

CKJ(γk) = K − fk(J).

Base Let k = 0, i.e. γ = (v0). The energy costs are given by CKJ(γ) = K − J ,

whereas the battery transformation function is the identity function (because

γ0 is an empty path). Therefore, CKJ(γ0) = K−J = K− idB(J) = K−f0(J).

Hypothesis For some 0 ≤ i < k and all J ∈ B, let CKJ(γi) = K − fi(J).

Step We have ∆i+1 = CKJ(γi) + C(vi, vi+1). By case distinction:

• If ∆i+1 > K, then CKJ(γi+1) = ∞. Furthermore, we have fi(J) = K −
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CKJ(γi) by induction hypothesis. Therefore,

fi+1(J) = (fi ◦ τSBTF(C(vi, vi+1)))(J)

= τSBTF(C(vi, vi+1))(fi(J))

= τSBTF(C(vi, vi+1))(K − CKJ(γi))

= −∞,

because

K − CKJ(γi)− C(vi, vi+1) = K −∆i+1 < 0.

• If ∆i+1 < 0, then CKJ(γi+1) = 0. Furthermore, we have fi(J) = K −

CKJ(γi) by induction hypothesis. Therefore,

fi+1(J) = . . . = τSBTF(C(vi, vi+1))(K − CKJ(γi)) = K,

because

K − CKJ(γi)− C(vi, vi+1) = K −∆i+1 > K.

• Otherwise, if ∆i+1 ∈ [0, K], then CKJ(γi+1) = ∆i+1. Furthermore, we

have fi(J) = K − CKJ(γi) by induction hypothesis. Therefore,

fi+1(J) = . . . = τSBTF(C(vi, vi+1))(K − CKJ(γi)) = K −∆i+1,

because

K − CKJ(γi)− C(vi, vi+1) = K −∆i+1 ∈ [0, K].

Therefore, in all cases we have CKJ(γi+1) = K − fi+1(J).

Finally, since both cost functions are equivalent, insofar that EOPP minimizes
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costs, whereas EOPP2 maximizes energy left after traversal, both models query

for the same paths. Therefore, they are equivalent except for the potential func-

tion, that is explicitely required in EOPP2, but only indirectly given in EOPP.

This shows that the energy-optimal routing problem may be redefined from a

state-based perspective. It remains to show that this problem is simple with re-

spect to Definition 3.11 and 3.12. The first one, refering to the optimal path prob-

lem, is easily proven as follows. The second one depends particularly on the im-

plementation, which is why the simplicity of energy-optimal profile routing will

be discussed in the next chapter.

Proposition 3.28. The energy-optimal path problem EOPP2 is simple with respect to

Definition 3.11.

Proof. We need to check three statements:

1. The preorder ≤S is total.

Since≤S is induced by the total order≥ on the sum of both components, the

induced preorder is also total.

2. The states S must have constant descriptive complexity and may be com-

pared by ≤S in constant time.

The descriptive complexity of a state s ∈ S = B × R is constant, because its

representation just requires two numbers. They are compared by using≥ on

the sum of their two components, which is done in constant time.

3. The edge weights functions We have constant descriptive complexity and

may be computed in constant time

Weight functions are energy transformation functions W = SETF, which can

be described by two numbers h, h′ and a function f ∈ SBTF, which itself can
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be described either by f∞ or by fa,b,c with three numbers a, b, c. Therefore,

the descriptive complexity is constant.

The computation of a weight function w ∈ SETF for a given argument

(J, h) ∈ B × {h} may be computed in constant time, because it comprises

just an SBTF with a (constantly sized) case distinction.

3.6 Shortest Weight-Constrained Path Problem

The driver may be interested in minimizing energy use for Green Routing while

having constraints to the time needed to reach a destination or to the traveling

distance. Without those constraints driving directions will probably lead through

slow-paced regions, because driving fast is less energy-efficient. The correspond-

ing model is described by Joksch in [Jok66] and its decision version is listed in

[GJ90] as [ND30]:

Definition 3.29. Given a graph G = (V,E), additive edge lengths L : E → Z+ and

additive edge weights W : E → Z+, vertices x, y ∈ V , maximum length Lmax ∈ Z+

and maximum weight Wmax ∈ Z+, the shortest weight-constrained path problem

(SWCPP) is to determine, wether there is a path from x to y in G with total length Lmax

or less and total weight Wmax or less? 6

3.6.1 Intractability

Unfortunately the NP-complete problem Partition can be reduced to this path

problem. It is one of Karp’s 21 NP-complete problems [Kar72] and defined as

follows:

6Garey in [GJ90], p. 214, slightly changed for consistency.
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Definition 3.30. Given a tuple (c1, c2, . . . , ck) ∈ Zk, the partition problem (PP) is to

determine, wether there is a set I ⊆ {1, . . . , k} such that
∑

i∈I ci =
∑

i/∈I ci?
7

For the sake of completeness a reduction is given in the proof of the following

theorem.

Theorem 3.31. The decision version of the shortest weight-constrained path problem is

NP-complete.

Proof. Obviously SWCPP is an element of NP, because given a nondeterministic

solution, a path π∗xy from x to y, it is easy to verify, if the given total limits Lmax and

Wmax are satisfied.

To show the NP-hardness, we reduce PP to SWCPP in polynomial time: Given

an instance of PP, a tuple (c1, c2, . . . , ck) ∈ Zk with minimum value8 cmin =

mini=1,...,k ci, the instance of SWCPP is given by G = (V,E) with

V :=
{
v0, v

l
1, . . . , v

l
k, v

w
1 , . . . , v

w
k , v1, . . . , vk

}
,

E :=
{{
vli, vi

}
, {vwi , vi} ,

{
vi−1, v

l
i

}
, {vi−1, v

w
i } | i = 1, . . . , k

}
,

L(e) :=

1 + ci − cmin if vli ∈ e,

1− cmin otherwise,

W (e) :=

1 + ci − cmin if vwi ∈ e,

1− cmin otherwise,

Lmax := Wmax := 2k · (1− cmin) +
k∑
i=1

ck, x := v0 and y := vk.

By definition a path does not visit any vertex twice. Therefore, any path πxy is of

the form (v0, v
α1
1 , v1, . . . , v

αk
k , vk) with αi being either l or w for i = 1, . . . , k. The

7[Kar72], p. 97, slightly changed for consistency.
8The only reason to use the minimum value of all ci is, that PP is defined on integers, while

SWCPP is defined on positive integers. Therefore, we need cmin to translate the values into the
space of natural numbers.
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index set is defined as I := {i ∈ {1, . . . , k} | αi = l}. The length of the path then is

L(πxy) =
k∑
i=1

L(vi−1, v
αi
i ) + L(vαii , vi) = 2 ·

k∑
i=1

L(vi, v
αi
i )

= 2k · (1− cmin) + 2 ·
∑
v
αi
i =vli

ci = 2k · (1− cmin) + 2 ·
∑
i∈I

ci.

The weight of the path similarly is

W (πxy) = 2k · (1− cmin) + 2 ·
∑
i/∈I

ci.

Notice, that

L(πxy) +W (πxy) = 4k · (1− cmin) + 2 ·
k∑
i=1

ci = Lmax +Wmax,

i.e. the sum of length and weight of any path is constant. Therefore, with L(πxy) ≤

Lmax and W (πxy) ≤ Wmax it follows L(πxy) = Lmax = Wmax = W (πxy) and

∑
i∈I

ci =
L(πxy)

2
− k · (1− cmin) =

W (πxy)

2
− k · (1− cmin) =

∑
i/∈I

ci.

Thus we know:

• If there is a path found in SWCPP, then there is a valid partition.

• If there is a valid solution I ⊆ {1, . . . , k}, then I induces a solution to the

constructed instance of SWCPP.
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s = v0

vl1

vw1

v1 vk−1

vlk

vwk

vk = t

Figure 3.8: Reduction of Partition to SWCPP

3.6.2 State-Based Perspective

The two previously presented models, namely the time-dependent and the

energy-optimal routing problem, were both described positively as state-based

problems. The NP-complete weight-constrained path problem may as well be de-

scribed as an SBSPP, but one with partially preordered states. Since the states are

partially preordered, we need to keep record of all minimal states found during

routing. The number of optimal paths, and thus the size of an optimal policy, may

grow exponentially in the number of edges.

The intuitive definition of the state-space of SWCPP would be S = Z2
+ ∪ {(0, 0)},

representing both the distance and the weight from the start to some vertex. Let

H : E → Z+ and L : E → Z+ denote the weighting (because W will be used

for edge weight functions) and the length of edges, as well as Hmax and Lmax the

maximum weight and maximum length. The weight functions are wh,l ∈ W ′ with

wh,l : S → S and wh,l(h
′, l′) = (h′ + h, l′ + l). The weightingW ′ : E → W ′ is given

byW ′(e)(h, l) = wH(e),L(e).

Now the definition of ≤S is given by (h1, l1) ≤S (h2, l2), if and only if h1 ≤ h2 ∧

l1 ≤ l2 or h2 > Hmax ∨ l2 > Lmax, such that all states violating the constraints

are equivalent and greater than non-violating states. This relation is reflexive and

transitive, but neither total nor symmetric.

The problem resulting from the NP-completeness is the number of minimal paths,
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which may grow exponentially with respect to |V |. This can be seen in Figure 3.9

using binary representation, such that the cardinality of min(W (Π(x, y))) is equal

to
∣∣{(z, (2k − 1)− z) | 0 ≤ z < 2k

}∣∣ = 2k.

x v1 v2 v3 vk−1 y

(1, 0)

(0, 1)

(2, 0)

(0, 2)

(4, 0)

(0, 4)

(2k, 0)

(0, 2k)

Figure 3.9: Given k + 1 vertices (with 2k vertices inbetween), the number of min-
imal paths with respect to ≤S and Hmax, Lmax > 2k grows exponen-
tially, because each weighting (z, (2k+1 − 1) − z) for 0 ≤ z < 2k+1

is described by one path through the graph. All of these weightings
are minimal, because there is no other weighting with z′ ≤ z and
w′ = (2k+1 − 1)− z′ ≤ (2k+1 − 1)− z = w at the same time.

Nevertheless the corresponding SBPRP resulting from the state-based perspective

of weight-constrained path finding may still be useful. There are policiesm ⊆ Πx,y,

such that π ∈ Πx,y withW(π) = wh,l improves m, if and only if for all paths π′ ∈ m

with W(π′) = wh′,l′ we have h < h′ or l < l′ as well as h ≤ Hmax and l ≤ Lmax.

So, even though this problem is intractable, all algorithms developed for SBPRP

may still be applied and may probably still yield a better runtime on real road

networks.

3.7 Stochastic Shortest Path Problems

Uludag et al. [UUN+09] investigated a stochastic routing model looking for a path

that satisfies a given constraint with highest probability. This was done in the

generic context of Quality-of-Service routing, so it may possibly be adopted to

use for vehicle routing. Instead of a deterministic edge weighting function, in-
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dependent random variables are used as edge weights. These random variables

could represent the time needed to take a connection. Different acceleration and

deceleration behaviours induce randomness. Furthermore, we can use congestion

predictions or traffic lights in a stochastic manner.

The following model is adapted from [UUN+09], but since it does not actually

compute a shortest path, but a most likely successful path, it is called most likely

successful routing within this thesis.

Of course you may argue, that successful paths must also be shortest paths, but

those two aspects are just indirectly connected. You could rather say, that these

aspects behave similar to Pareto optimality on the success and the expected length.

Definition 3.32. Given a graph G = (V,E), vertices x, y ∈ V , a probability space

(Ω,F , P ), additive, independent random variables with known cumulative distribution

functions C : E → (Ω→ R≥0) representing edge costs and maximum costs Cmax ∈ R≥0,

the most likely successful path problem (MLSPP) is to find a path π∗x,y from x to y in

G satisfying Cmax with maximum probability, if it exists. 9

The problem may also be described as

π∗x,y ∈ arg max
πx,y∈Πx,y

P (C(πx,y) ≤ Cmax).

This model however is not complete, as we do not intuitively know how to rep-

resent the cumulative distribution functions. By their given algorithm Uludag et

al. indirectly suggest to use observation points on the Laplace transformation of

the cumulative distribution function. These are evaluated by a modified Gaussian

quadrature. Obviously there are various interesting numerical problems involved

this way.

The NP-hardness of this problem was shown by Guérin et al. in [GO99], who

9Uludag et al. in [UUN+09], slightly changed for consistency. The costs are explicitely defined to
be non-negative here.
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investigated stochastic routing in the context of computer networks. Furthermore,

they have shown, that determining if P (C(πx,y) ≤ Cmax) ≥ Pmin for a given path

πx,y and some Pmin ∈ [0, 1] is NP-hard by reduction from the K-th largest subset

problem listed in [GJ90] as problem [SP20]. It is not even known wether [SP20] is

in NP or not.

As described in the previous model, one could search for a path, that fulfills a

given constraint with maximum probability. Probably the more intuitive problem

for stochastic routing would be to search for a path with least expected costs.

Definition 3.33. Given a graph G = (V,E), vertices x, y ∈ V , a probability space

(Ω,F , P ) and additive, independent random variables with known cumulative distribu-

tion functions C : E → (Ω → R≥0) representing edge costs, the expected shortest

path problem (ESPP) is to find a path π∗x,y in G from x to y with least expected costs, if

it exists.

The problem may also be described as

π∗x,y ∈ arg min
πx,y∈Πx,y

E(C(πx,y)).

Because by choosing a different weighting function C ′ : E → R≥0 with C ′ = C ◦E

an optimal solution to the expected shortest path problem is directly given by

solving the corresponding SPP with edge costs C ′. This is due to the linearity of

the expected value operator.

However, the presented model remains interesting for further extensions. For ex-

ample finding a solution turns out to be difficult as soon as any constraints are in-

troduced, such as battery constraints from energy-optimal routing. Furthermore,

this model provides the basics for routing with recourse.
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3.7.1 State-Based Perspective

This thesis tries to combine both energy-optimality with stochastic aspects. If

stochastic routing can be described in a state-based manner, then it can probably

be combined with the state-based energy-optimal approach. Therefore, this sec-

tion handles an one step towards stochastic energy-optimal routing algorithms.

As it has been already noticed, the ESPP can be translated into an SPP, so it is

easy to translate it to a state-based model. This section concentrates on the ML-

SPP. Notice that the state space now contains random variables. In practice one

would use the corresponding cumulative distribution functions (CDF) as well as

the probability density functions (PDF), if the variables are continuous.

There are some obstacles when formulating the MLSPP as an SBSPP. First,

[UUN+09] makes heavy use of a backward approach. This means to have a

final state and inverse state transformation functions.

The intuitive approach may be to say that the distance of an empty path (at the

initial vertex) is 0 and that random variables are added to this initial state for

each edge traversed. When multiple paths meet then those less than one of the

remaining are omitted, depending on≤S . A natural approach for≤S is comparing

CDFs. Given two states s1, s2 : Ω → R, then s1 ≤S s2 if and only if P (s1 ≤ x) ≥

P (s2 ≤ x) for all x ∈ R. This is the approach used later in this thesis.

The other approach is a backward approach and discussed in [UUN+09]. The

presented algorithm starts at the target vertex with the state 0 and uses a pull

strategy 10 to update the information for vertices backwards. The states at each

vertex are the sum of the variables from traversed edges. At the starting vertex

the algorithm chooses iteratively the appropriate successor corresponding to the

10The pull strategy does essentially the same thing as the push strategy, which is used by Dijkstra’s
algorithm. The slight difference is the processing of a node, where you draw the information
from predecessors instead of pushing information to the successors. See Sniedovich [Sni06]
for details. Notice that in backward searches the predecessors actually are the successors of a
vertex and vice versa.
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optimal success value.

The latter approach is used in the following in order to stick to the definition of

[UUN+09].

The state space consists of random variables and the edge weights are additions of

further random variables. For practical reasons convolutions of PDFs (and CDFs

with derivation) are used to sum up two random variables. Since convolutions of

PDFs are given only for stochastically independent variables, all variables should

be chosen to be independent. But requiring all states and edge weights to be in-

dependent is not possible, because after the traversal of an edge, the edge weight

and the resulting state, i.e. the sum of the previous state and the edge variable, are

not (at least not always) independent. So to avoid invalid states, cycles must be

avoided explicitely.

Formally, this can be done by adding a list of vertices to each state that have al-

ready been visited so far. This would be S = {Ω→ R} × P(V ∗) ∪ {⊥} for some

garbage state⊥. Then for edge e = (x, y) ∈ E the weightwe : S(x)→ S(y) is given

by we(s) = ⊥ for s = (X, (v1, . . . , vk)) ∈ S(x) if and only if y is among the vertices

v1, . . . , vk. Otherwise, the random variable would be added to the first component

and vertex y would be enlisted in the second component.

Because of the extensivity of weights cycles are avoided anyway, so these enriched

states are just formally needed. Therefore, stochastic independency of all random

variables representing states and edge weights is assumed.

In the previously described problem, MLSPP, a path with the maximum proba-

bility of success of having costs less or equal than Cmax is queried. So if P (s1 ≤

Cmax) ≥ P (s2 ≤ Cmax), then we prefer s1 over s2, i.e. s1 ≤S s2. But states need

to be compared at all times during routing, in order to use all paths that may

cause a higher success in the future. An extension to s1 ≤S s2 if and only if

P (s1 ≤ x) ≥ P (s2 ≤ x) for all x ≤ Cmax is the natural approach also described

in [UUN+09]. Obviously, this relation is not total, so the following definition is an
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SBSPP with partially preordered states.

Definition 3.34. Given a graph G = (V,E), a probability space (Ω,F , P ), independent

random variables with known cumulative distribution functions C : E → (Ω → R≥0)

representing edge costs and maximum costs Cmax ∈ R≥0.

The state space describes random variables S = {Ω→ R}, S(v) = S for all v ∈ V , such

that s1 ≤S s2 if and only if P (s1 ≤ z) ≥ P (s2 ≤ z) for all z ≤ Cmax and s1, s2 ∈ S.

The weights w ∈ W = We then are functions w : (Ω → R) → (Ω → R), such that

wc(s) = s+ c for states s : Ω→ R and costs c : Ω→ R≥0.

The transposed graph is GT = (V,ET ) with (y, x) ∈ ET , if and only if (x, y) ∈ E.

Then a weightingW : ET →W is given byW(y, x) = wC(x,y) for each (x, y) ∈ E.

Given vertices x, y ∈ V the most likely successful path problem (MLSPP2) is to find

an optimal path from y to x in the transposed graph GT for the given starting state s = 0

(i.e. s : Ω→ R with s(ω) = 0 for all ω ∈ Ω).

Remarks.

• Again we need to check for monotonicity and extensivity of weights. More-

over, the similarities and differences between MLSPP and MLSPP2 need to

be discussed in the following.

• As it has already been mentioned, the reason to use the transposed graph is

that the MLSPP has a target state and is designed to be a backward search. In

order to define an appropriate SBSPP, the edges need to be reversed. Finding

a path from y to x in GT means to find a path from x to y in G.

Proposition 3.35. Assuming stochastic independence for edge costs c = C(x, y) and any

state s ∈ S(y), the weight function w = wc =W(y, x) is monotone.

Proof. Let s1, s2 ∈ S(y), s1 ≤S s2, such that s1 and c as well as s2 and c are

stochastically independent. Because of s1 ≤S s2 we have P (s1 ≤ z) ≥ P (s2 ≤ z)

for all z ≤ Cmax.
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With c : Ω→ R≥0, i.e. c ≥ 0, we have

P (s1 + c ≤ z) =

∫ z

−∞
P (s1 ≤ z′, c = z − z′)dz′

Stochastic independence yields

=

∫ z

−∞
P (s1 ≤ z′) · P (c = z − z′)dz′

And because s1 ≤S s2:

≤
∫ z

−∞
P (s2 ≤ z′) · P (c = z − z′)dz′

Again, stochastic independence yields

=

∫ z

−∞
P (s2 ≤ z′, c = z − z′)dz′

And because c ≥ 0, we have

= P (s2 + c ≤ z)

Therefore, P (s1 + c ≤ z) ≥ P (s2 + c ≤ z) for all z ≤ Cmax and w(s1) ≤S w(s2).

Proposition 3.36. The weights wC(x,y) for any (x, y) ∈ E are extensive.

Proof. This follows immediately from the definition C : E → (Ω → R≥0). Let
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s ∈ S(y) be a state and let c = C(x, y) for some edge (x, y) ∈ E.

P (s ≤ z) =

∫ z

−∞
P (s = z′)dz′

≥
∫ z

−∞
P (s = z′, c ≤ z − z′)dz′

= P (s+ c ≤ z)

Then P (s ≤ z) ≥ P (s+ c ≤ z) for all z ≤ Cmax.

This model is not simple, neither with respect to Definition 3.11 nor in common

sense. Nevertheless the math behind it was already studied by Uludag et al. in

[UUN+09], whereas the algorithms do only need to solve an SBSPP (or the corre-

sponding SBPRP) as well as finding numerically stable solutions to the convolu-

tion of CDFs (combined with a derivation). The former will be discussed in the

next chapter, the latter is a trade-off between accuracy and time/space require-

ments.

Last but not least, the similarities and differences between MLSPP and its state-

based version are as follows:

An obvious but only formal difference is the explicit use of random variables as

states while the original problem uses these just indirectly. Furthermore, the prob-

lem is modelled explicitely as a backward approach, whereas the original problem

just indirectly leads to a backward search. Starting with a target ending state and

choosing the path having highest success to reach the target with costs less or

equal than Cmax is the exact same behaviour in both models, except for notational

differences.
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3.8 Stochastic Energy-Optimal Path Problems

The aim of the following models is to combine the stochastic aspects of the pre-

vious section with energy-optimality as discussed in Section 3.5. After that, a

state-based approach is discussed, so that algorithms for SBSPP and SBPRP can

be applied to stochastic energy-optimal problems without thinking.

First, a function handling the case distinction in the definition of energy costs (Def-

inition 3.18) is introduced. Then, a specification of stochastic energy costs and the

stochastic energy-optimal problem follow in a natural way.

Definition 3.37. Given a battery capacityK, the Battery Constraining Function (BCF)

BK : R ∪ {∞} → [0, K] ∪ {∞} is given by

BK(x) =


0 if x < 0,

x if 0 ≤ x ≤ K,

∞ if x > K.

Given random variables as edge costs C : E → (Ω → R) and a random variable J :

Ω → [0, K] describing the initial charge, the stochastic energy costs of a walks γk =

(v0, . . . , vk) are random variables CKJ : Γ→ (Ω→ R) defined recursively by

CKJ(γk)(ω) =

K − J(ω) if k = 0,

BK(CKJ(γk−1)(ω)) + C(vk−1, vk)(ω) if k > 0.

Remarks.

• The intermediate step of defining a ∆ is not needed here, because of the

battery constraining function. We could have applied it also in Definition
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3.18. Then we would have there:

CKJ(γk) =

K − J if k = 0,

BK(CKJ(γk−1)) + C(vk−1, vk) if k > 0.

If ω ∈ Ω is fixed or if Ω is a singleton, then both definitions are equivalent.

The stochastic routing models are given as follows.

Definition 3.38. Given a graph G = (V,E), vertices x, y ∈ V , a probability space

(Ω,F , P ), maximum costs Cmax ∈ R≥0, independent random variables with known cu-

mulative distribution functions C : E → (Ω → R≥0) representing edge costs and

J : Ω→ B representing the initial charge, the most likely energy-sufficient path prob-

lem (MLESPP) is to find a path π∗x,y, such that the probability P (CKJ(π∗x,y) ≤ Cmax) is

maximal among all paths from x to y, if it exists.

The problem may also be described as

π∗x,y ∈ arg max
πx,y∈Πx,y

P (CKJ(πx,y) ≤ Cmax).

A corresponding definition of expected value routing is more difficult in terms of

energy costs. This is because costs of ∞ may occur as soon as the vehicle runs

out of energy. If the probability is positive to do so, then the expected costs are

infinite. Resulting from this, an optimal route among all paths never running out

of energy is queried, independent of the actual outcome. If such a path does not

exist, then an arbitrary path would be chosen.

In order to overcome that disadvantage, conditional expectation values may be

used. The following model queries a path that has least expected costs, given that

these costs are finite.

π∗x,y ∈ arg min
πx,y∈Πx,y

E(CKJ(πx,y) | CKJ(πx,y) <∞).

63



3 Routing Models

Since CKJ is a function with codomain [0, K]∪{∞}, this conditional expected value

is always finite, namely in [0, K]. This definition would prefer high varianced path

costs, because those outcomes resulting in infinite costs are just ignored. When

discussing the state-based approach, ignoring these outcomes with negative infi-

nite results will break the monotonicity.

Another approach is to combine the previous equation with a minimal success

probability Pmin.

π∗x,y ∈ arg min
πx,y∈Πx,y

P (CKJ (πx,y)<∞)≥Pmin

E(CKJ(πx,y) | CKJ(πx,y) <∞).

Since∞ here is used as a constant, it might be generalized to some Cmax as it was

done for the MLESPP. This results in the following equation.

π∗x,y ∈ arg min
πx,y∈Πx,y

P (CKJ (πx,y)≤Cmax)≥Pmin

E(CKJ(πx,y) | CKJ(πx,y) <∞).

To be consistent, the model should always deliver a path, so if there is no path

satisfying the success constraint but there are paths in the graph from x to y, then

the model is allowed to return an arbitrary path.

This model is summarized in the following definition.

Definition 3.39. Given a graph G = (V,E), vertices x, y ∈ V , a probability space

(Ω,F , P ), an energy constraint Cmax, a minimum success probability Pmin and indepen-

dent random variables with known cumulative distribution functions C : E → (Ω →

R≥0) representing edge costs and J : Ω→ B representing the initial charge, the expected

energy-optimal path problem (EEOPP) is to find a path π∗x,y with least expected costs

E(CKJ(π∗x,y) | CKJ(π∗x,y) < ∞) among all paths from x to y with a probability at least

Pmin to have costs less or equal to Cmax. If no such path exists but y is reachable from x,

then the problem is to find an arbitrary path from x to y. Otherwise, no path is returned.

This model introduces expected value routing with energy-optimal aspects. An
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interesting alternative would be a combination of both the expected value and the

success probability. A linear combination would be given by:

π∗x,y ∈ arg min
πx,y∈Πx,y

α · P (CKJ(πx,y) ≤ Cmax) + β · E(CKJ(πx,y) | CKJ(πx,y) <∞),

where α should be negative and β should be positive.

In general it is possible to use any bivariate function f , monotically decreasing in

the first component and monotonically increasing in the second, such that above

equation is written as:

π∗x,y ∈ arg min
πx,y∈Πx,y

f(P (CKJ(πx,y) ≤ Cmax),E(CKJ(πx,y) | CKJ(πx,y) <∞)).

The derived model is formalized in the following definition:

Definition 3.40. Given a graph G = (V,E), vertices x, y ∈ V , a probability space

(Ω,F , P ), an energy constraint Cmax, a bivariate function f : [0, 1] × [0, K] → R

monotonically decreasing in the first component and monotonically increasing in the sec-

ond, and independent random variables with known cumulative distribution functions

C : E → (Ω → R≥0) representing edge costs and J : Ω → B representing the initial

charge, the stochastic energy-optimal path problem (SEOPP) is to find a path π∗x,y

minimizing f(P (CKJ(πx,y) ≤ Cmax),E(CKJ(πx,y) | CKJ(πx,y) < ∞)) among all paths

from x to y, if it exists.

Both the MLESPP and EEOPP can be modeled as SEOPPs, as will be shown in the

following.

Proposition 3.41. The stochastic energy-optimal path problem comprises both MLESPP

and EEOPP.

Proof. This proof is straight-forward. An MLESPP is modeled by an SEOPP by

choosing f(x, y) = −x, i.e. ignoring the expected value and maximizing the suc-

cess.
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An EEOPP is defined for some minimal success Pmin. To model an EEOPP by an

SEOPP, we choose

f(x, y) =

y if x ≥ Pmin,

∞ if x < Pmin.

Using this definition for f , paths with success less than Pmin are dismissed, because

we try to minimize f . Among all paths with success at least Pmin, we rate them

path by their expected costs. If there is no path satisfying the success constraint,

then all paths are valued equally, so an arbitrary path may be chosen. If y is not

reachable from x at all, then SEOPP does not yield a path, as it is specified in

EEOPP.

3.8.1 State-Based Perspective

Reformulating the above models as a state-based problem, as it has been done for

energy-optimal routing and time-dependent routing, is difficult. This is because

of the target functions, that need to be reflected in the comparison ≤S . Just com-

paring success rates or expected values does not yield correct results, because the

details of the CDFs are ignored. Furthermore, using the conditional expectation in

the above manner will break the monotonicity of edge weights.

A backward approach, as it has been described in the previous section for the most

likely successful path problem, is not possible either, e.g. because negative edge

weights are explicitely allowed.

Instead the following model picks up the initial idea of the forward approach.

Thereby the states being random variables are compared by their CDFs. Stochas-

tic independency is assumed at all times, otherwise a similar formal approach as

shown in the previous section may be realized, where weight functions yield a

garbage state on the occurence of stochastic dependency.
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In order to use BTFs and ETFs, these functions need to be redefined using random

variables.

Definition 3.42. Let K be a battery capacity, B = BK be a set of battery charges and

let (Ω,F , P ) be a probability space. The set SSBTF = SSBTFK of simple stochastic

battery transformation functions comprises functions f : (Ω→ B)→ (Ω→ B), such

that there are corresponding f ′ : Ω → SBTFK with f(J) = J ′ for random variables

J, J ′ : Ω → B if and only if J ′(ω) = f ′(ω)(J(ω)) for all ω ∈ Ω. Furthermore, the

transformation τSSBTF : (Ω → R) → SSBTF projects any c : Ω → R to the function

corresponding to ω 7→ τSBTF(c(ω)).

This definition is just an elementwise application of SBTFs for each sample ω ∈ Ω.

The reason to use f : (Ω→ B)→ (Ω→ B) instead of directly using f ′ : Ω→ SBTF

is to have the codomain equaling the domain, such that functional composition

can still be applied. Stochastic energy transformation functions may be redefined

analogously or on top of stochastic battery transformation functions. The latter

approach will be used in the following.

Definition 3.43. Let K be a battery capacity, B = BK be a set of battery charges and let

(Ω,F , P ) be a probability space. Let S = (Ω → B) × R where the first value represents

the battery charge and the second value represents the potential energy or level of altitude.

The set SSETF = SSETFK of simple stochastic energy transformation functions

comprises functions wh,f,h′ : (Ω → S) → (Ω → S) for all h, h′ ∈ R and f ∈ SSBTF

with wh,f,h′(J, h) 7→ (f(J), h′), such that the SBTFs of the corresponding f ′(ω), ω ∈ Ω

have costs of at least h′ − h, i.e. f ′(ω)(x) ≤ x− h′ + h for all x ∈ B.

This definition again is just an elementwise application of SETFs for each sam-

ple ω ∈ Ω. A proof is left out because this proposition is not necessary for the

remaining discussion.

The definition of state-based stochastic, energy-optimal routing uses SSETFs as

edge costs. Thereby different target functions, such as the probability of success
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or the average energy consumption is not handled directly. Instead the CDFs are

used to compare two states. This probably yields more minimal states than a

specialized model, but monotonicity and extensivity are not fulfilled in most of

these cases. Using the CDFs allows to specify a valid SBSPP while solutions to

above models are always a subset of the found solutions.

Definition 3.44. Let G = (V,E) be a graph with potentials H : V → R, let (Ω,F , P )

be a probability space, and let C : E → (Ω → R≥0) be independent random variables

with known cumulative distribution functions representing edge costs.

The state space S = {Ω→ B} × R describes pairs of battery states and potentials. Let

(J1, h1) ≤S (J2, h2), if and only if P (J1 + h1 ≤ z) ≤ P (J2 + h2 ≤ z) for all z ∈ R

(because energy shall be maximized). Furthermore, let S(v) = B × {H(v)}, v ∈ V and

let W = SSETF with the weighting given by W ′(e) = τSSETF(H(x), C(e), H(y)) for

e = (x, y) ∈ E.

Given vertices x, y ∈ V the stochastic energy-optimal path problem (SEOPP2) is to

solve the described SBSPP for (G,S,≤S,S,W,W ′).

As it was done for the deterministic model some properties must be proven be-

fore actually using the SBSPP to model stochastic energy-optimal routing. The

following proofs are similar to those given in Sections 3.5 and 3.7.

Proposition 3.45. Assuming stochastic independence for edge costs c := C(x, y) and

battery charges J : Ω→ B, the edge weights w :=W(x, y) are monotone for all (x, y) ∈

E.

Proof. Let f be the SSBTF corresponding to w. If f is monotone, then w is also

monotone, because w again is just a translation by the potential h := H(x) at x and

by h′ := H(y) at y.

Let (J1, h), (J2, h) ∈ S(x), (J1, h) ≤S (J2, h), such that J1 and c as well as J2 and c

are stochastically independent.
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By definition (J1, h) ≤S (J2, h) follows P (J1 + h ≤ z) ≤ P (J2 + h ≤ z) for all

z ∈ R. We want to show, that P (f(J1) + h′ ≤ z) ≤ P (f(J2) + h′ ≤ z) for all

z ∈ R. Because both the premise and the conclusion are compared using the same

translation for both states (h for premise and h′ for conclusion), these values can

be ignored here. So it needs to be shown, that P (J1 ≤ z) ≤ P (J2 ≤ z) for all z ∈ R

implies P (f(J1) ≤ z) ≤ P (f(J2) ≤ z) for all z ∈ R.

Because of 3.35 we already know, that P (J1 ≤ z) ≤ P (J2 ≤ z) for all z ∈ R implies

P (J1 − c ≤ z) ≤ P (J2 − c ≤ z) for all z ∈ R, as long as J1 and c as well as J2 and c

are independent.

There are three cases for z ∈ R now. Let fω be the SBTF described by τSBTF(c(ω)).

Then ω 7→ fω is f ′ describing f by definition.

• For z < 0 we have P (J ≤ z) = P (J = −∞) because J : Ω → B with

B = {−∞} ∪ [0, K].

P (f(J1) = −∞) = P ({ω ∈ Ω | fω(J1(ω)) = −∞})

= P ({ω ∈ Ω | J1(ω) < c(ω)})

= P ({ω ∈ Ω | J1(ω)− c(ω) < 0})

= P (J1 − c < 0) ≤ P (J2 − c < 0)

= . . . = P (f(J2) = −∞)

• For z ∈ [0, K] we similarly have

P (f(J1) ≤ z) = P ({ω ∈ Ω | fω(J1(ω)) ≤ z})

= P ({ω ∈ Ω | J1(ω)− c(ω) ≤ z})

= P (J1 − c ≤ z) ≤ P (J2 − c ≤ z)

= . . . = P (f(J2) ≤ z)
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• For z > K we obviously have P (f(J1) ≤ z) = 1 = P (f(J2) ≤ z).

Therefore, all edge weights are monotone as long as stochastic independency of

battery charges and edge costs are given.

Proposition 3.46. The edge weights w :=W(x, y) are extensive for all (x, y) ∈ E.

Proof. This follows immediately from the definition C : E → (Ω → R≥0). Let

(J, h) ∈ S(x) be a state, let c = C(x, y) and let f be the SSBTF corresponding to w.

By definition we have f ′(ω)(x) ≤ x− h′ + h for f ′ corresponding to f .

P (J + h ≤ z) = P ({ω ∈ Ω | J(ω) + h ≤ z})

= P ({ω ∈ Ω | J(ω)− h′ + h+ h′ ≤ z})

Because for all ω ∈ Ω with J(ω)−h′+h+h′ ≤ z we also have f ′(ω)(J(ω)) +h′ ≤ z.

≤ P ({ω ∈ Ω | f ′(ω)(J(ω)) + h′ ≤ z})

= P (f(J) + h′ ≤ z)

Therefore, the edge weights are extensive.

Unfortunately SEOPP2 is not comparable with SEOPP due to the conditional ex-

pectation. Nevertheless MLESPP may be compared to SEOPP2 in the sense, that

MLESPP yields a path that is also found among all optimal solutions of SEOPP2.

Proposition 3.47. Given an optimal path π1 from x to y with respect to MLESPP, the

state-based model SEOPP2 finds at least one path π2 from x to y, that yields the same

success value.
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Proof. Let zi = P (CKJ(πi) ≤ Cmax) be the success values of the paths πi, i ∈ {1, 2}.

Obviously z1 ≤ z2, by contradiction MLESPP would otherwise have chosen the

path π2. It remains to show z2 ≤ z1.

Assume that z2 > z1. Then π1 is not queried by SEOPP2 directly (otherwise there

would be another path π′2 found by SEOPP2 equaling π1 in its success value). Then

with fi being the SSETFs corresponding to πi, we have P (f2(J) + H(y) ≤ z) ≤

P (f1(J) + H(y) ≤ z) for all z ∈ R and J : Ω → B. Because H(y) just represents a

translation, P (f2(J) ≤ z) ≤ P (f1(J) ≤ z) also holds for all z ∈ R and J : Ω→ B.

In Theorem 3.27 we have already seen, that CKJ(π) = K − f(J) for all paths π in

the deterministic case, where CKJ are the edge costs and f is the corresponding

SBTF. This also holds for the stochastic definitions, because for each ω ∈ Ω we have

CKJ(π)(ω) = CKJ(ω)(π) and K − f(J)(ω) = K − f ′(ω)(J(ω)) (for f ′ corresponding

to f in Definition 3.42) given indirectly by their respective definitions.

Therefore, P (f2(J) ≤ z) ≤ P (f1(J) ≤ z) for all z ∈ R implies P (K − CKJ(π2) ≤

z) ≤ P (K − CKJ(π1) ≤ z) for all z ∈ R, which is the same as P (CKJ(π2) ≤ z) ≥

P (CKJ(π1) ≤ z) for all z ∈ R. Due to this we also have a higher success on π2,

i.e. z2 ≤ z1, which contradicts the assumption z2 > z1. Therefore, a path with the

same success value is found by SEOPP2.

A counterexample easily shows that P (J1 ≤ z) ≤ P (J2 ≤ z) for all z ∈ R of two

random variables J1, J2 : Ω → B representing battery charges does not imply

E(J1 | J1 ≥ 0) ≥ E(J2 | J2 ≥ 0).

Example. Let (Ω,F , P ) be the uniform distribution over two outcomes Ω =

{ω1, ω2, ω3}. Let J1(ω1) = 0 and J1(ω2) = K, then E(J1) = E(J1 | J1 ≥ 0) = 0.5 ·K.

Let J2(ω1) = −∞ and J2(ω2) = K, then E(J2 | J2 ≥ 0) = K. Obviously
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E(J2 | J2 ≥ 0) > E(J1 | J1 ≥ 0), but comparing the CDFs yields:

P (J1 ≤ z) = 0 ≤ 0.5 = P (J2 ≤ z) for z < 0,

P (J1 ≤ z) = 0.5 = P (J2 ≤ z) for 0 ≤ z < K,

P (J1 ≤ z) = 1 = P (J2 ≤ z) for K ≤ 0.

Therefore, P (J1 ≤ z) ≤ P (J2 ≤ z) for all z ∈ R does not imply E(J1 | J1 ≥ 0) ≥

E(J2 | J2 ≥ 0).

Even though the expected shortest path problem can not (directly) be translated

into a state-based approach, the model SEOPP2 does take into account more than

just the success value. Since all optimal CDFs are queried by SEOPP2, a choice

function may be designed that has similar properties to the comparison of ex-

pected values but is consistent with the comparison of CDFs. It is left as an open

question here.
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In the previous chapter different models for vehicle routing were discussed. The

most simple version, the shortest path problem, comes with a lot of useful al-

gorithms, beginning with Dijkstra’s algorithm, the A∗-search, their bidirectional

versions and some more advanced acceleration techniques such as contraction hi-

erarchies or efficient graph partitionings (see for example [Gei08], [DGRW11]).

The advanced models such as energy-optimal routing and stochastic routing were

remodeled as state-based problems. Therefore, finding algorithms solving the

state-based routing problem is sufficient to find solutions to the previously dis-

cussed models. The aim now is to reformulate different shortest path algorithms

to solve state based profile routing problems. Because the inverse of edge weight

functions are missing or do not exist in general, bidirectional searches can not

be applied to SBSPP. Instead, the associative functional composition in SBPRP is

used.

Dijsktra’s Algorithm and the A∗-search can be easily adapted to state-based rout-

ing, especially to SBSPP with totally preordered states. Concerning energy-

optimal routing this corresponds exactly to the work of Sachenbacher et al. in

[SLAH11]. The main idea to use these algorithms to partially preordered states

and to profile routing lies in the use of partial preorder queues (PPQ) which will

be introduced here. In short the elements in the queue are topologically sorted,

but we keep track of all minimal elements instead of just one. This enables us to

use Dijkstra’s Algorithm and the A∗-search for SBSPP with partially preordered

states, for example to solve the weight-constrained shortest path problem (even
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though the runtime may grow exponentially). Furthermore, the partial preorder

queues may be used to improve other algorithms, such as contraction hierarchies,

as we will see later.

Figure 4.1 summarizes the three parts to a complete algorithm. First the partial

preorder queue will be discussed in its syntax and semantics. An efficient im-

plementation remains open. Then the basics of an implementation of the state-

based routing models are presented in terms of generic datatypes using Java. An

implementation of the policies in energy-optimal profile routing are discussed in

Section 4.3, where simple energy transformation functions are generalized to rep-

resent energy-optimal policies. Since most acceleration techniques may be gen-

eralized to solve profile routing problems by using PPQs, contraction hierarchies

were chosen as an example here. Thereby, the most important terms of shortcuts

and witnesses are translated to partially preordered policies.

4.1 Partial Preorder Queue

The partial preorder queue is the main utility to enable known shortest path algo-

rithms to be applied to SBSPP with partially preordered states and to state-based

profile routing SBPRP.

Usually a queue - a min-priority queue here - manages a subset of set X sorted

by a relation ≤ on X and provides at least two methods, one for adding objects,

one for extracting the least element (or the top priority element). If ≤ is a total

preorder then there may be multiple minimal elements. These minimal elements

are equivalent in the sense that x1 ≤ x2 and x2 ≤ x1 for all minimal elements

x1, x2 ∈ X . In state-based routing we have seen that such equivalent states always

yield equivalent resulting states in routing because of the monotonicity of weights.

If ≤ is not a total relation but a partial preorder, then there may be multiple mini-

mal elements that are not equivalent, i.e. we may neither have x1 ≤ x2 nor x2 ≤ x1
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Algorithms Models Elementary Operations

Dijkstra, A∗

Bidirectional Search

Partial Preorder Queue

Shortest Path
Algorithms

SBSPP total.

SBSPP part.

SBPRP

solves

solves

 

Comparison
of States

Evaluation
of Weights

Comparison
of policies

Combination
of policies

Concatenation
of policies

Evaluation
of policies

Figure 4.1: An algorithmic solution to state-based routing consists of three layers.
The middle one represents the models where profile routing (SBPRP)
comprises state-based shortest path problems. The right side repre-
sents elementary operations used by the model requiring specific im-
plementations. The left side represents actual algorithms. The bidi-
rectional search is not applicable to state-based routing, but we can
reuse Dijkstra’s Algorithm andA∗-search for an SBSPP with totally pre-
ordered states. Together with a partial preorder queue these may also
be applied to SBSPP with partially preordered states. Most shortest
path algorithms can be generalized using partial preorder queues to
solve profile routing problems. Examples are given for Dijkstra’s Al-
gorithm (Section 4.2) and Contraction Hierarchies (Section 4.4).
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for elements x1, x2 ∈ X . For state-based routing this means, that we keep track of

both possibilities. Therefore, it is sensible to extend the definition of min to partial

preorders (see also Section 3.2.1). This behaviour is described by

min
≤
X = {x ∈ X | ∀x′ ∈ X : x′ ≤ x→ x ≤ x′} .

The function min≤ yields a set of minimal elements, such that it is equivalent to

the usual definition if ≤ is total.

Another important feature for the partial preorder queue is changing the value of

an element already enqueued. The values need to be identified somehow. These

identifications are usually called keys which are valued by an element of set X .

Therefore, the queue is also a mapping from stored keys to values.

4.1.1 Syntax

The signature of an abstract data type Σ = (S,C,F) is described by a set of

sorts S, a family of constants C = (Cs)s∈S and a family of operations F =

(Fs1×...×sn→sn+1×...×sn+m)s1,...,sn+m∈S, where s1, . . . , sn are the argument sorts and

sn+1, . . . , sn+m are the result sorts.

Furthermore, axioms may be described by (Σ, X)-terms in first order logic using a

family of countable variables X = (Xs)s∈S.

In Figure 4.2 the specification of partial preorder queues is shown. It has four

constructing operations for the sort ppq representing the queues, namely ’empty’,

’insert’, ’change’ and ’pull’, all of which we described in the introduction of this

section. Furthermore, the sorts key and value represent the identification and the

value enqueued. The crucial operation here is the operation ≤ comparing two

values and yielding a bool. Axiom 1 (reflexivity and transitivity) enforces it to be

a partial preorder.

Axiom 2 describes the properties of the operation ’in’ with respect to all four con-
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specification PARTIAL_PREORDER_QUEUE =
based on BOOL, SET
sorts ppq,key
constants empty : ppq
operations ≤ : value× value→ bool

insert, change : ppq× key× value→ ppq
pull : ppq→ ppq× key× value

front : ppq→ set
isEmpty : ppq→ bool

in : key× ppq→ bool
get : ppq× key→ value

variables P, Q : ppq
a, b : key

x, y, z : value
axioms

1. Reflexivity (x ≤ x). Transitivity (x ≤ y ∧ y ≤ z → x ≤ z).

2. a in empty is false.
a in insert(P, a, x).
b in insert(P, a, x) is b in P for a 6= b.
b in change(P, a, x) is b in P .
a in Q is false for pull(P ) = (Q, k, a).
b in Q is b in P for pull(P ) = (Q, k, a) with a 6= b.
isEmpty(P ), if and only if there is no key a with a in P .

3. get(insert(P, a, x), a) is x.
get(insert(P, a, x), b) is get(P, b) for a 6= b.
get(change(P, a, x), a) is x, if a in P .
get(change(P, a, x), b) is get(P, b) for a 6= b.
get(Q, b) is get(P, b) for pull(P ) = (Q, k, a) with a 6= b.

4. x ∈ front(P ), if and only if there is key a with a in P , x = get(P, a) and
for all keys b we have y = get(b) ∧ b in P → (y ≤ x→ x ≤ y).

5. pull(P ) = (Q, a, x), if a in P , get(P, a) = x, not(a in Q), and x ∈
front(P ), as well as b in P = b in Q and get(P, b) = get(Q, b) for b 6= a.

end

Figure 4.2: Syntax and axioms of partial preorder queues. For readability an
axiom yielding a bool x is a formula x = true.
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structors. Basically, this operation yields ’true’, if and only if the corresponding

key was inserted and not removed afterwards. The operation ’change’ on a queue

has no influence on the ’in’ operation. ’isEmpty’ is true, if and only if there is no

key ’in’ the queue.

Axiom 3 then describes the operation ’get’ with respect to all but one constructors,

such that ’get’ always yields the value which was assigned to the key by either

’insert’ or ’change’. The search for a key in an empty queue is not specified. This

would be usually caught by some kind of exception mechanism.

Axiom 4 describes the ’front’ of a queue. A value x is part of the front if there is

a corresponding key a in the queue, such that y ≤ x → x ≤ y for all values y

comprised by the queue (having a corresponding key b inside the queue). This is

equivalent to the mathematical definition of min≤ of the introduction.

Axiom 5 describes the operation ’pull’. The specification is not deterministic here,

the result may be any pair of key and value as long as the value is an element of

the front. Furthermore, the other elements may not be affected by ’pull’.

4.1.2 Semantics

Algebras interpret signatures by providing explicit descriptions of the terms in-

troduced in the signature. Thereby a Σ-algebra consists of an interpretation of the

sorts, of the constants, and of the functions, such that no axiom is violated.

Besides the ground-term algebra, there is a simple algebra A on partial mappings

directly derived from our preliminary thoughts about the queue. For BOOL and

SET we may use the natural algebras on boolean values and sets. Let K be the

set of all keys and V be the set of all possible values, the interesting interpretation

then is the definition of the algebra for PARTIAL_PREORDER_QUEUE. Thereby,

a queue is a partial mapping K  V represented by a subset of pairs K × V , such

that any key appears at most once in the queue. For every partial preorder queue
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q, key a and value x, we have:

ppqA = {K  V } ⊆ P(K × V ),

emptyA = ∅,

insertA(q, a, x) = (q \ ({a} × V )) ∪ {(a, x)} ,

changeA(q, a, x) =

insertA(q, a, x) if a in q,

q otherwise,

pullA(q) = (q \ {(a, x} , a, x) with x ∈ frontA(q) for q 6= ∅,

frontA(q) = min
≤

({x ∈ V | (a, x) ∈ q}),

isEmptyA(q) =

trueA if q = ∅,

falseA otherwise,

inA(a, q) =

trueA if q ∩ ({a} × V ) 6= ∅,

falseA otherwise

getA(q, a) = x for (a, x) ∈ q.

An efficient implementation remains open for further research and is not part of

this thesis. The implementation may be specialized to different situations, e.g. the

queue may often use the ’insert’, ’change’ and ’pull’ methods, while ’front’ is used

rarely. This is a reasonable assumption because the main reason to use the front is

to know when exactly to stop a search. Besides of just skipping the stop-condition

check one may use different heuristics here, for example the average ’distance’.

Furthermore, the values may fulfill additional properties. One example is totality

(i.e. x ≤ y ∨ y ≤ x for all values x, y) which yields a simple priority queue

except for anti-symmetry playing no role for ordering elements in a priority queue

anyway.
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4.2 Model Implementation

In Figure 4.1 the development of algorithms was illustrated with three layers, the

middle one representing the models. This section is for showing an implemen-

tation of the models SBSPP and SBPRP in the context of Java 1.6. All data types

will be represented by using appropriate interfaces. They may also be realized

as templates as in C++ or by any other type inheritance mechanism. Additional

constraints that are not verified explicitely in the program but used for routing are

added as commentaries.

In the following partial and total preorders are explicitely distinguished, because

the specified algorithms shall only be applied to problems they are designed for.

By using unique types for each model the compiler can check syntactically, wether

a routing problem is solved by an appropriate algorithm.

• Preorders: The model layer should provide a generic interface for compar-

ing two objects. Thereby total and partial preorders are differed. Since al-

gorithms for problems with partial preorders can also solve problems with

total preorders it is sensible to use type inheritance in this place such that

partial preorders are more general than total preorders. The interfaces may

be seen as concretizations of the abstract data type ELEMENT (described in

the previous section and listed in Appendix A).

1 i n t e r f a c e PartialPreorder <K> {

2 // This relation must be reflexive and transitive.

3 public boolean lessEqual(K other);

4 }

5 i n t e r f a c e TotalPreorder <K> extends PartialPreorder<K>{

6 // The relation lessEqual must be total.

7 }

A class implementing this interface is supposed to setK to the implementing
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class itself.

• States: States are values, i.e. not implementing any methods.

8 i n t e r f a c e State {}

The only reason to use this interface is to identify which objects are states

and which are not.

• Weights: Edge weights are mappings from input states to output states.

9 i n t e r f a c e Weight

10 <S extends State & Preorder<S>> {

11 // The evaluate function must be monotone and extensive.

12 public S evaluate(S state);

13 }

Even though weight composition will be included in the concatenation of

policies, an explicit interface may be of interest for later use.

14 i n t e r f a c e WeightFactory

15 <S extends State & Preorder<S>,

16 W extends Weight<S>> {

17 public W compose(W w1, W w2);

18 }

• Vertex and Edge: These are required for graphs. The only reason for an

interface is again to identify vertices and edges.

19 i n t e r f a c e Vertex {}

20 i n t e r f a c e Edge {}

• Graph: In this case, a read-only directed graph.

21 i n t e r f a c e Graph

22 <V extends Vertex,
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23 E extends Edge> {

24 // Vertex operations

25 public i n t getOrder();

26 public Set<V> getVertices();

27

28 // Edge operations

29 public i n t getSize();

30 public boolean isAdjacent(V x, V y);

31 public E getEdge(V x, V y);

32 public Set<V> getSuccessors(V x);

33 public Set<V> getPredecessors(V x);

34 }

For more complex algorithms the graph class of course needs to be extended,

but efficient data structures are part of the algorithms themselves and not

included in the routing model.

• Policy: A mapping from states to paths, i.e. lists of vertices.

35 i n t e r f a c e Policy

36 <S extends State & Preorder<S>,

37 V extends Vertex> {

38 public List<V> evaluate(S state);

39 }

A factory is used to construct policies:

40 i n t e r f a c e PolicyFactory

41 <S extends State & Preorder<S>,

42 W extends Weight<S>,

43 V extends Vertex,

44 M extends Policy<S, V> & Preorder<M>> {

45 public M createEmpty(V x, V y);

46 public M createFromEdge(V x, V y, W w);

47 public M createSingleton(V x);
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48 public M compose(M m1, M m2);

49 public M combine(M m1, M m2);

50 }

• Algorithm: An algorithm implementation then would realize one of the fol-

lowing interface.

51 i n t e r f a c e SBSPPTotalAlgorithm

52 <S extends State & TotalPreorder<S>,

53 V extends Vertex> {

54 public List<V> searchPath(V x, V y, S s);

55 }

56 i n t e r f a c e SBSPPPartialAlgorithm

57 <S extends State & PartialPreorder<S>,

58 V extends Vertex>

59 extends SBSPPTotalAlgorithm<S, V> {

60 // The preorder on states must be total.

61 }

62 i n t e r f a c e SBPRPAlgorithm

63 <S extends State & PartialPreorder<S>,

64 V extends Vertex,

65 M extends Policy<S, V> & PartialPreorder<M>> {

66 public M searchPolicy(V x, V y);

67 }

Notice that the only difference between the interfaces SBSPPTotalAlgorithm

and SBSPPPartialAlgorithm is the comment about the totality of the pre-

order. The reason to define distinct interfaces is to keep algorithms for both

models seperate. Otherwise one could apply an algorithm for SBSPP with

totally preordered states to a problem with partially preordered states. Due

to the inheritance relation it is possible to apply the more general algorithm

with a partial preorder to problems with a total preorder.
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• Partial Preorder Queue: Priority queues are needed in almost any routing

algorithm. As we have seen in the previous section, we want to use par-

tial preorder queues for SBSPP and SBPRP. A Java 1.6 interface1 is derived

directly from the definition of the signature.

68 i n t e r f a c e PartialPreorderQueue<K, V extends PartialPreorder<V>> {

69 public void insert(K k, V v);

70 public void change(K k, V v);

71 public java.util.Map.Entry<K, V> pull();

72 public Set<V> front();

73 public boolean isEmpty();

74 public boolean in(K k);

75 public V get(K k);

76 }

77 i n t e r f a c e TotalPreorderQueue<K, V extends TotalPreorder<V>>

78 extends PartialPreorderQueue<K, V>{

79 }

If a given routing problem can be formulated as an SBSPP with totally pre-

ordered states, then a simple priority queue may also be used. In contrast to

the partial preorder queue, this is called a total preorder queue even though

it is equivalent to usual priority queues.

The constructor ’empty’ is best placed in a factory:

80 i n t e r f a c e PartialPreorderQueueFactory

81 <K, V extends PartialPreorder<V>,

82 Q extends PartialPreorderQueue<K, V>> {

83 public Q createEmpty();

84 }

85

1Because a method in Java 1.6 may only return one result, i.e. no tuples, the type
’java.util.Map.Entry’ is used as a workaround here. In any way it makes sense to do so because
the given definition of a partial preorder queue actually is a mapping, such that the partial
preorder queue could also implement the ’java.util.Map’ interface.
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86 i n t e r f a c e TotalPreorderQueueFactory

87 <K, V extends TotalPreorder<V>,

88 Q extends TotalPreorderQueue<K, V>> {

89 public Q createEmpty();

90 }

4.2.1 Example: Dijkstra’s Algorithm

As a first example of how all three layers in Figure 4.1 may work together, the

following listing shows Dijkstra’s Algorithm in the style of A∗ (starting with a

queue only containing the start vertex) solving an SBSPP with totally preordered

states.

1 c l a s s DijkstrasAlgorithm

2 <S extends State & TotalPreorder<S>,

3 W extends Weight<S> & Edge,

4 V extends Vertex,

5 G extends Graph<V, W>,

6 Q extends TotalPreorderQueue<V, S>,

7 QF extends TotalPreorderQueueFactory<V, S, Q>>

8 implements SBSPPTotalAlgorithm<S, V> {

9 private G graph;

10 private Q queue = null;

11 private QF queueFactory;

12 private Map<V, S> states = new TreeMap<V, S>();

13 private Map<V, V> predecessor = new TreeMap<V, V>();

14 public DijkstrasAlgorithm(G graph, QF queueFactory) {

15 t h i s.graph = graph;

16 t h i s.queueFactory = queueFactory;

17 }

18 public List<V> searchPath(V x, V y, S s) {

19 i f (x == y)

20 return Collections.singletonList(x);
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21 states.clear();

22 predecessor.clear();

23 states.put(x, s);

24 queue = queueFactory.createEmpty();

25 queue.insert(x, s);

26 while (!queue.isEmpty()) {

27 V currVertex = queue.pull().getKey();

28 S currState = states.get(currVertex);

29 i f (states.containsKey(y) && states.get(y).lessEqual(currState))

30 break; // Because of the totality of the (pre-)order

31 for (V succNode : graph.getSuccessors(currVertex)) {

32 S succState = states.get(succNode);

33 W edgeWeight = graph.getEdge(currVertex, succNode);

34 S sum = edgeWeight.evaluate(currState);

35 // If weight is improved this way

36 i f (succState == null

37 || (sum.lessEqual(succState)

38 && !succState.lessEqual(sum))) {

39 states.put(succNode, sum);

40 predecessor.put(succNode, currVertex);

41 queue.insert(succNode, sum);

42 }

43 }

44 }

45 return getPath(x, y);

46 }

47 private List<V> getPath(V x, V y) {

48 List<V> res = new LinkedList<V>();

49 V pred = y;

50 while (pred != x) {

51 res.add(0, pred);

52 pred = predecessor.get(pred);

53 }
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54 res.add(0, pred);

55 return res;

56 }

57 }

This programm shows an example of an algorithm applied to one of the defined

models, namely the SBSPP with totally preordered states. Therefore, it is possible

to solve time-dependent routing and energy-optimal routing both with the same

given algorithm. An extension to A∗ can be easily implemented by using an ap-

propriate queue.

As a minimal example on how to use the algorithm the simple shortest path prob-

lem is presented in terms of the given interfaces (see example from Section 3.3):

1 c l a s s Distance implements State, TotalPreorder<Distance> {

2 double value;

3 public Distance(double value) { t h i s.value = value;}

4 public boolean lessEqual(Distance other) {

5 return t h i s.value <= other.value;

6 }

7 }

8 c l a s s DistanceWeight implements Edge, Weight<Distance> {

9 double costs;

10 public DistanceWeight(double costs) { t h i s.costs = costs;}

11 public Distance evaluate(Distance state) {

12 return new Distance(state.value + t h i s.costs);

13 }

14 }

A further simple example is energy-optimal routing as described in Section 3.5.

15 c l a s s Energy implements State, TotalPreorder<Energy> {

16 double h; // Potential.

17 double j; // Charge.

18 public Energy(double h, double j) { t h i s.h = h; t h i s.j = j;}
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19 public boolean lessEqual(Energy other) {

20 return t h i s.h + t h i s.j <= other.h + other.j;

21 }

22 }

23 c l a s s EnergyWeight implements Edge, Weight<Energy> {

24 s t a t i c double K = ...;

25 double h1, h2;

26 double costs;

27 public EnergyWeight(double h1, double h2, double costs) {

28 t h i s.h1 = h1;

29 t h i s.h2 = h2;

30 t h i s.costs = costs;

31 }

32 public Energy evaluate(Energy state) {

33 i f (state.h != h1)

34 throw new RuntimeException(...);

35 double j2 = state.j - (costs + h2 - h1);

36 i f (j2 < 0)

37 j2 = Double.NEGATIVE_INFINITY;

38 e lse i f (j2 > K)

39 j2 = K;

40 return new Energy(j2, h2);

41 }

42 }

This shows that implementing SBSPP with totally preordered states is straightfor-

ward. An example for an SBSPP with states not totally preordered is the weight-

constrained shortest path problem as described in Section 3.6. We skip an imple-

mentation of Dijkstra’s Algorithm for that problem because it is rather technical.

Nevertheless, the state-based profile routing is an interesting concept, so an adap-

tation of Dijkstra’s Algorithm to solve SBPRP will be shown next.

1 c l a s s DijkstrasSBPRP

2 <S extends State & PartialPreorder<S>,
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3 W extends Weight<S> & Edge,

4 V extends Vertex,

5 M extends Policy<S, V> & PartialPreorder<M>,

6 MF extends PolicyFactory<S, W, V, M>,

7 G extends Graph<V, W>,

8 Q extends PartialPreorderQueue<V, M>,

9 QF extends PartialPreorderQueueFactory<V, M, Q>>

10 implements SBPRPAlgorithm<S, M, V> {

11 private G graph;

12 private Q queue = null;

13 private QF queueFactory;

14 private MF policyFactory;

15 private Map<V, M> policies = new TreeMap<V, M>();

16 public DijkstrasSBPRP(G graph, QF queueFactory, MF policyFactory) {

17 t h i s.graph = graph;

18 t h i s.queueFactory = queueFactory;

19 t h i s.policyFactory = policyFactory;

20 }

21 public M searchPolicy(V x, V y) {

22 i f (x == y)

23 return policyFactory.createSingleton(x);

24 policies.clear();

25 queue = queueFactory.createEmpty();

26 for (V succVertex : graph.getSuccessors(x)) {

27 W edgeWeight = graph.getEdge(x, succVertex);

28 M edgePolicy = policyFactory.createFromEdge(x,

29 succVertex, edgeWeight);

30 policies.put(succVertex, edgePolicy);

31 queue.insert(succVertex, edgePolicy);

32 }

33 while (!queue.isEmpty()) {

34 // Check for break condition

35 i f (policies.containsKey(y)) {
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36 M my = policies.get(y);

37 Set<M> front = queue.front();

38 boolean doBreak = t rue;

39 for (M m : front)

40 i f (!my.lessEqual(m))

41 doBreak = f a l s e;

42 i f (doBreak)

43 break;

44 }

45 // Expand

46 V currVertex = queue.pull().getKey();

47 M currPolicy = policies.get(currVertex);

48 for (V succVertex : graph.getSuccessors(currVertex)) {

49 M succPolicy = policies.get(succVertex);

50 W edgeWeight = graph.getEdge(currVertex, succVertex);

51 M edgePolicy = policyFactory.createFromEdge(currVertex,

52 succVertex, edgeWeight);

53 M sum = policyFactory.compose(currPolicy, edgePolicy);

54 // If policy is improved this way

55 i f ((succPolicy == null)

56 || (sum.lessEqual(succPolicy)

57 && !succPolicy.lessEqual(sum))) {

58 M combination = policyFactory.combine(succPolicy, sum);

59 policies.put(succVertex, combination);

60 queue.insert(succVertex, combination);

61 }

62 }

63 }

64 return policies.get(y);

65 }

66 }

Proofs of correctness are omitted here because they are rather technical and the

reasoning is already given informally in the previous chapter. The main concept
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of the proof would be to build a tree of optimal policies, as it was done in the

introduction for the shortest path problem (see Proposition 1.3).

There are two important aspects that need to be taken care of when proving cor-

rectness. The first one is the break condition, the second one is the combination of

policies.

The break condition ’doBreak’ becomes true, if and only if there is no policy left in

the front of the queue, that could possibly improve the currently computed policy

to the target. In other words, the tentative policy found to the target must be less

or equal to all other policies in the queue.

The combination of policies and thus enqueuing another vertex is done, if the pol-

icy using the traversed edge ’improves’ the current policy. By using the induced

strict order as it is commonly done in the original version of Dijkstra’s Algorithm

(which is correct for total preorders), we completely miss those policies in which

paths actually are combined to form new policies.

4.3 Energy-Optimal Policies

The simple battery transformation functions (SBTF) discussed in the previous

chapter in Section 3.5 are closed under functional composition. Up to this point

we have no substantial differences between the two definitions of energy path

costs and battery transformation functions because energy path costs can be com-

posed in a similar fashion which was also done by Eisner et al. in [EFS11].

Since SBTFs are not extensive, simple energy transformation functions (SETF) are

used in the following. These were monotone and extensive. Furthermore, imple-

mentations of comparison, combination, concatenation and evaluation of policies

are needed as illustrated in Figure 4.1.

Basically a policy is a set of paths. Therefore using the representation of sets, the

combination and concatenation of policies is intuitive (see Definition 3.9). Further-
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more, evaluation of policies is also simple because it just requires to compute the

resulting state for each path and choose one path with an optimal resulting state.

An exact implementation of the comparison of policies is more difficult. Eisner et

al. do this by evaluating the path weight functions at all ’break points’ (interval

endpoints), which they assume to be correct. A formal proof (for energy transfor-

mation functions) is given in Proposition 4.12.

4.3.1 Definition

A more compact representation of policies in energy-optimal routing is given by a

generalization of SBTF and SETF. Both are closed under functional composition as

shown by Proposition 3.23, while they are not closed under the elementwise max-

operator representing combination. The following definition describes the closure

of both transformation functions under max.

Definition 4.1. Let K be a battery capacity and B = BK be a set of battery charges. The

set BTF = BTFK of battery transformation functions comprises all functions f : B→

B corresponding to a family of k ∈ N0 triples (ai, bi, ci)i=1,...,k with

• a1 ≥ 0, bk ≤ K, c1 ≤ a1, ck ≥ bk −K,

• ai ≤ bi for i = 1, . . . , k,

• ai < ai+1, bi ≤ ai+1, bi − ci ≤ ai+1 − ci+1 for i = 1, . . . , k − 1,

such that

f(J) =



−∞ if k = 0 or else J < a1,

J − ci if k > 0 and J ∈ [ai, bi), i = 1, . . . , k,

bi − ci if k > 0 and J ∈ [bi, ai+1), i = 1, . . . , k − 1,

bk − ck if k > 0 and J ≥ bk.
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Furthermore, the transformation τBTF : R→ BTF is equivalent to τSBTF.

−∞

−∞

0

0

a1 b1

a1 − c1 b1 − c1

a2 b2

a2 − c2 b2 − c2

K

K

Figure 4.3: Battery transformation functions (BTFs) are used to describe the
change of battery charge when traversing edges or paths in a graph.
The contraction of vertices results in the combination of different BTFs.
We make routing choices based on the intervals, which will be enriched
by additional information about the actual paths.

We may illustrate battery transformation functions in the same way we did for

SBTF, as is shown in Figure 4.3. The energy transformation functions now are

derived from BTF in the same way as SETF was derived from SBTF.

Definition 4.2. Let K be a battery capacity and B = BK be a set of battery charges.

Let S = B × R, where the first value represents the battery charge and the second value

represents the potential energy or level of altidude. The set ETF = ETFK of energy

transformation functions comprises function wh,f,h′ : B × {h} → B × {h′} for all

h, h′ ∈ R and f ∈ BTF, with wh,f,h′(J, h) 7→ (f(J), j′′), such that we have ci ≥ h′ − h

for all triples (ai, bi, ci), i = 1, . . . , k corresponding to f . Furthermore, the transformation

τETF : R× R≥0 × R→ ETF is equivalent to τSETF.

4.3.2 Properties

In order to use BTF and ETF various properties needs to be proven now. Both

definitions must be well-defined, the questionable part is the set of properties

describing the family of triples corresponding to BTF as well as the question, if

SBTF ⊆ BTF and SETF ⊆ ETF actually hold. Furthermore, monotonicity and
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extensivity of ETF as well as closure under functional composition and the max

operator needs to be shown. Another interesting property is that BTF and ETF do

not contain any more elements than the closure under max of their respective sets

SBTF and SETF. This means, that BTF and ETF actually are the closures of SBTF

and SETF under max. Two other important aspects are the descriptive complexity

and the comparison of ETF.

When it comes to above definitions, one may doubt the required properties of

the family of triples (ai, bi, ci)i=1,...,k describing a BTF. The idea behind choosing

these properties is to have multiple intervals on the domain projecting values in

the same way as is done by SBTFs. Of course, if the intervals specified by [ai, bi)

(requiring ai ≤ bi for i = 1, . . . , k) are subsets of the domain B, then ai ≥ 0 and

bi ≤ K, but together with bi ≤ ai+1 for i = 1, . . . , k − 1 the inequalities a1 ≥ 0 and

bk ≤ K are sufficient. Moreover, the intervals should be disjoint such that the case

distinction in Definition 4.1 is unambiguously.

Another point is to avoid duplicate intervals, thus ai < ai+1 is chosen for i =

1, . . . , k − 1. Notice that bi may be equal to bi+1, i.e. ai < bi = ai+1 = bi+1. So empty

intervals are allowed even though they can not be dismissed, because they are still

used for the third (and fourth) case in their case distinction. The idea behind this

are singletons, a path always yielding either negative infinity or another constant

value. This is represented by an SBTF fa,b,c with a = b (see Figure 3.6).

Furthermore, ci describe the costs for battery charges in the interval [ai, bi). These

costs must be chosen such that the function is monotone and inside the codomain

B. Monotonicity is guaranteed by bi − ci ≤ ai+1 − ci+1 for i = 1, . . . , k − 1 as will

be proven in Proposition 4.10. Finally the image is kept inside [0, K] by requiring

c1 ≤ a1 and ck ≥ bk −K.

Proposition 4.3. SBTF ⊆ BTF.
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Proof. SBTF comprises functions f∞ and fa,b,c with f∞(J) = −∞ and

fa,b,c(J) =


−∞ for J = −∞ or J ∈ [0, a),

J − c for J ∈ [a, b),

b− c for J ∈ [b,K],

for all J ∈ B. By definition, f∞ corresponds to the BTF with k = 0 intervals.

Furthermore, fa,b,c corresponds to the BTF with one triple (a, b, c), which can be

seen directly by comparing both case distinctions.

The only difference in the definitions of SETF and ETF is the use of SBTF for SETF

and BTF for ETF. Because SBTF is contained in BTF, the inclusion SETF ⊆ ETF is

obvious.

Because wh,f,h′ ∈ ETF for any f ∈ BTF, we also have wh,f,h′ ∈ ETF for any f ∈

SBTF, i.e. an SETF:

Corollary 4.4. SETF ⊆ ETF.

Comparing BTF and the closure of SBTF under the max operator consists of two

directions. Inclusion is shown easily, but equality requires the closure of BTF un-

der functional composition and the max operator as shown in Propositions 4.7 and

4.8.

Proposition 4.5. BTF is a subset of the closure of SBTF under the max operator.

Proof. Let f be a BTF with corresponding triples (ai, bi, ci)i=1,...,k. If k ≤ 1, then f

is an SBTF. Otherwise, let f ′ = max(f1, . . . , fk) for SBTFs fi = fai,bi,ci , i = 1, . . . , k.

Now, f equals f ′, which can be seen by the following case distinction.

• If J ∈ [ai, bi), i = 1, . . . , k, then f(J) = J − ci = fi(J). Furthermore, for
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fj, j = i+ 1, . . . , k we have fj(J) = −∞ and for fj, j = 1, . . . , k − 1 we have

fj(J) = fj(bj) = bj − cj ≤ . . . ≤ ai − ci ≤ fi(J).

• If J ∈ [bi, ai+1], i = 1, . . . , k − 1, then f(J) = bi − ci = fi(J). Furthermore, for

fj, j = i+ 1, . . . , k we have fj(J) = −∞ and for fj, j = 1, . . . , k − 1 we have

fj(J) = fj(bj) = bj − cj ≤ . . . ≤ ai − ci ≤ fi(J).

• If J ≥ bk, then f(J) = bk − ck = fk(J). Furthermore, for fj, j = 1, . . . , k − 1

we have

fj(J) = fj(bj) = bj − cj ≤ . . . ≤ ak − ck ≤ fk(J).

Therefore, f(J) = (max(f1, . . . , fk))(J) = f ′(J) in any case.

The following corollary is an immediate result from the previous proposition.

Corollary 4.6. ETF is a subset of the closure of SETF under combination (max operator).

The closures need a little more attention, because we would also like to derive

simple algorithms for both operations. This is only done for BTF, because both

closures (composition and max operator) for ETFs are directly bound to the clo-

sures of BTFs.

Proposition 4.7. BTF is closed under functional composition.

Proof. Let f1, f2 be two BTFs with corresponding triples (a1
i , b

1
i , c

1
i )i=1,...,k1 and

(a2
j , b

2
j , c

2
j)j=1,...,k2 and let g = f1 ◦ f2. If k1 = 0 or k2 = 0, then g(J) = (f1 ◦ f2)(J) =

−∞ for all J ∈ B, which is a BTF. So assume, that k1, k2 > 0 in the following.

To find the corresponding tuples for g, we are interested in g([a1
i , b

1
i ]) for all i =

1, . . . , k1, because for J < a1
1 we have g(J) = −∞, for J ∈ (b1

i , a
1
i+1), i = 1, . . . , k− 1

we have g(J) = g(b1
i ) and for J > b1

k1
we have g(J) = g(b1

k1
).
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There are five cases.

• The interval [a2
j , b

2
j ] is included in the image of [a1

i , b
1
i ] under f1.

Let a2
j ≥ a1

i − c1
i and b2

j ≤ b1
i − c1

i , then f−1
1 ([a2

j , b
2
j ]) = [a2

j + c1
i , b

2
j + c1

i ] and

g(J) = J + c1
i + c2

j for all J ∈ [a2
j + c1

i , b
2
j + c1

i ]. Therefore, we introduce the

triple

(aij, bij, cij) = (a2
j + c1

i , b
2
j + c1

i , c
1
i + c2

j).

• The interval [a2
j , b

2
j ] has elements only less than the image of [a1

i , b
1
i ] under f1.

Let a2
j , b

2
j < a1

i − c1
i and a2

j+1 > a1
i − c1

i , then for all J ∈ [a1
i , a

2
j+1 + c1

i ) we have

g(J) = f2(J − c1
i ) = f2(b2

j) = b2
j − c2

j . Therefore, we introduce a singleton

(aij, bij, cij) = (a1
i , a

1
i , a

1
i − b2

j + c2
j).

• The interval [a2
j , b

2
j ] has elements inside and less than the image of [a1

i , b
1
i ]

under f1.

Let a2
j < a1

i − c1
i and b2

j + c1
i ∈ [a1

i , b
1
i ), then for all J ∈ [a1

i , b
2
j + c1

i ] we have

g(J) = f2(J − c1
i ) = J − c1

i − c2
j . Therefore, we introduce a triple

(aij, bij, cij) = (a1
i , b

2
j + c1

i , c
1
i + c2

j).

• The interval [a2
j , b

2
j ] has elements in and greater than the image of [a1

i , b
1
i ] un-

der f1.

Let b2
j > b1

i − c1
i and a2

j + c1
i ∈ [a1

i , b
1
i ], then for all J ∈ [a2

j + c1
i , b

1
i ] we have

g(J) = f2(J − c1
i ) = J − c1

i − c2
j . Therefore, we introduce a triple

(aij, bij, cij) = (a2
j + c1

i , b
1
i , c

1
i + c2

j).

• The interval [a2
j , b

2
j ] is a superset of the image of [a1

i , b
1
i ] under f1.

Let a2
j < a1

i − c1
i and b2

j > b1
i − c1

i , then for all J ∈ [a1
i , b

1
i ] we have g(J) =
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f2(J − c1
i ) = J − c1

i − c2
j . Therefore, we introduce a triple

(aij, bij, cij) = (a1
i , b

1
i , c

1
i + c2

j).

The introduced intervals shall be lexically ordered, first by index i and secondly

by index j. Since above case distinction is exhaustive, the introduced intervals are

sufficient to represent g as a battery transformation function. Notice that there is

no case required for intervals [a2
j , b

2
j ] having all elements greater than the image

of [a1
i , b

1
i ] under f1, because for all J ∈ [a1

i , b
1
i ] the inequality f1(J) < a2

j holds

and the battery charge is insufficient to traverse paths with higher battery charge

requirements in f2.

Proposition 4.8. BTF is closed under the max operator

Proof. Let f1, f2 be two BTFs with corresponding triples (a1
i , b

1
i , c

1
i )i=1,...,k1 and

(a2
j , b

2
j , c

2
j)j=1,...,k2 and let h = max(f1, f2). If k1 = 0, then f1(J) = −∞ ≤ f2(J) for

all J ∈ B, so h = f2. Analogously, if k2 = 0 otherwise, then f2(J) = −∞ ≤ f1(J)

for all J ∈ B, so h = f1. So assume that k1, k2 > 0 in the following.

Notice that for all J ∈ B not included in any interval [a1
i , b

1
i ) of f1 nor in any

interval [a2
j , b

2
j) of f2 we either have h(J) = −∞ for

J < min(a1
1, a

2
1)
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or we have h(J) = max(f1(b1
i ), f2(b2

j)) for

J ∈ [max(b1
i , b

2
j),min(a1

i+1, a
2
j+1)),

J ∈ [max(b1
k1
, b2
j), a

2
j+1),

J ∈ [max(b1
i , b

2
k2

), a1
i+1),

J ∈ [max(b1
k1
, b2
k2

), K].

Therefore, there are no triples needed to describe the behaviour of h at these values

of J . We are merely interested in the behaviour of h for any J ∈ [a1
i , b

1
i ] or J ∈

[a2
j , b

2
j ].

Assume that J ∈ [a1
i , b

1
i ] for some i = 1, . . . , k1. We introduce necessary triples

coming from f1 with costs c1
i here. These may be interupted by other triples of

f2 having less costs, but these are ignored, because triples derived from f2 can be

evaluated analogously.

If there is a triple (a2
j , b

2
j , c

2
j) with c2

j < c1
i and a2

j ≤ b1
i and b2

j − c2
j > a1

i − c1
i , then

(a2
j , b

2
j , c

2
j) is said to collide with (a1

i , b
1
i , c

1
i ), because we then have f2(J) > f1(J) for

some J ∈ [a1
i , b

1
i ].

We are now looking for those subintervals of [a1
i , b

1
i ] with costs c1

i , that do not col-

lide with any (a2
j , b

2
j , c

2
j), which can be easily found by iterating through all given

triples of f2.

With the last two propositions the closure of ETF follows immediately:

Corollary 4.9. ETF is closed under functional composition and the max operator.

The combination of paths yields a policy which may be described by ETFs. The

path yielding a better final state is chosen, i.e. having highest battery charge at the

end vertex. In order to use these functions monotonocity and extensivity need to

be assured, as it was done for the functional composition in Lemma 3.7.
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Proposition 4.10. BTFs and ETFs are monotone.

Proof. Since BTFs are the closure of SBTFs under the max operator, it is enough to

show, that monotonicity is preserved under this operator:

Let J1 ≥ J2 for J1, J2 ∈ B. If f1, f2 are monotone BTFs, then f1(J1) ≥ f1(J2)

and f2(J1) ≥ f2(J2). Furthermore f1(J1) ≥ max(f1(J2), f2(J2)) and f2(J1) ≥

max(f1(J2), f2(J2)). Therefore, max(f1(J1), f2(J1)) ≥ max(f1(J2), f2(J2)).

Monotonicity of ETFs follows immediately from the monotonicity of BTFs.

For extensivity the method is the same:

Proposition 4.11. ETF is extensive.

Proof. Since ETFs are the closure of SETFs under the max operator, it is enough to

show, that extensivity is preserved under this operator.

Let w1, w2 be two extensive ETFs, then with s ≤S w1(s) and s ≤S w2(s) we have

s ≤S max(w1(s), w2(s)). Therefore, max(w1, w2) is extensive.

With the closure of ETF policies can now be mapped to ETFs, such that the ETF

always yields energy state of an optimal path of the policy. For a policy m this is

the ETF from the elementwise max operator of all path weights

w = max {W(π) | π ∈ m} .

Proposition 4.12. The elementwise comparison w1 ≤S w2 of two ETFs w1 and w2 can be

realized in time O(k1 + k2) in the worst case, where k1 and k2 are the number of triples

corresponding to the BTFs comprised by w1 and w2.

Proof. Remember that a policy m1 is ’better’ than m2 if m1 ≤M m2. Because a

higher energy state is better, we compare two ETFs elementwise here by w1 ≤S w2,

where wi corresponds to mi, i ∈ 1, 2. In the following, let wi = whi,fi,h′i ∈ ETF with
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4.3 Energy-Optimal Policies

wi : S(hi) → S(h′i), i ∈ {1, 2}, such that f1, f2 ∈ BTF correspond with the triples

(a1
i , b

1
i , c

1
i )i=1,...,k1 and (a2

j , b
2
j , c

2
j)j=1,...,k2 .

By definition m1 ≤M m2, if and only if s1 ≤S s2 implies

∀π2 ∈ m2 ∃π1 ∈ m1 : W(π1)(s1) ≤S W(π2)(s2)

for all s1 ∈ S(x1), s2 ∈ S(x2).

The definition translates to the following with respect to ETFs: If and only if

w1(J1, h1) ≤S w2(J2, h2) for all J1, J2 ∈ B with J1 + h1 ≥ J2 + h2, then m1 ≤M
m2. The negation is to find some J1, J2 ∈ B with J1 + h1 ≥ J2 + h2, such that

f1(J1) + h′1 < f2(J2) + h′2.

Because of monotonicity of f1, we want to check for the least possible value of J1,

i.e. J1 = min(J2 + h2 − h1, K) if this value is greater or equal 0. If there are such

J1 and J2, we will show for all four cases of J2 ∈ B, that we only need to compare

particular function values to find appropriate J1 and J2.

• If J2 < a1
2, then f2(J2) = −∞. So there is no J1 with f1(J1) + h1 < −∞.

• If J2 ∈ [a2
j , b

2
j), j ∈ {1, . . . , k2}, then f2(J2) = J2 − c2

j . In this case, we need

to check all triples (a1
i , b

1
i , c

1
i ) colliding with (a2

j , b
2
j , c

2
j). If there is a triple

(a1
i , b

1
i , c

1
i ) with f1(a1

i ) + h′1 < f2(a1
i + h1 − h2) + h′2, where a1

i + h1 − h2 ∈ B,

then w1 ≤S w2 does not hold. Otherwise, for all J1 ∈ [a1
i , a

1
i+1) we have

f1(J1) + h′1 ≤ f1(a1
i ) + (J1 − a1

i ) + h′1

< f2(a1
i + h1 − h2) + h′2 + (J1 − a1

i )

≤ f2(J1 + h1 − h2).

• If J2 ∈ [b2
j , a

2
j+1), j ∈ {1, . . . , k2 − 1}, then f2(J2) = b2

j − c2
j . Now, J1 can be
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chosen to be the least possible value, and we only need to check wether

f1(min(b2
j + h2 − h1, K)) + h′1 < b2

j − c2
j + h′2.

If so, then w1 ≤S w2 does not hold.

• If J2 ≥ b2
k2

, then f2(J2) = b2
k2
− c2

k2
. Again, J1 can be chosen to be the least

possible value, and we only need to check wether

f1(min(b2
k2

+ h2 − h1, K)) + h′1 < b2
k2
− c2

k2
+ h′2.

If so, then w1 ≤S w2 does not hold.

All in all we only need to compute particular function values. This may be done

by traversing both families of triples in parallel to keep a runtime of O(k1 + k2).

4.3.3 Simplicity

The complexity of the model still needs to be discussed. The idea is to show sim-

plicity in terms of Definition 3.12 and to use the property of simplicity to bound

time and space consumption. Simplicity of the underlying SBSPP was already

shown in Proposition 3.28. Furthermore, the cardinality of an optimal policy

grows at most linearly in the number of edges. This still needs to be proven but

since experimental results indicate that this cardinality is small for real road net-

works (see [EFS11]) a proof is left as an open question for now.

Conjecture 4.13. The complexity of an optimal policy m ∈ Mx,y in the SBPRP based on

energy-optimal routing EOPP2 is linear in |E| for any two vertices x, y ∈ V in the worst

case.
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Together with the previous propositions for closure under functional composition

(Proposition 4.7), closure under combination (Proposition 4.8), where algorithms

in O(k1 + k2) can be derived directly, and comparison in O(k1 + k2) (Proposition

4.12), all requirements for simplicity in O(|E|) with respect to Definition 3.12 are

satisfied.

4.4 Contraction Hierarchies

There are different acceleration techniques used for the shortest path problem.

One of these are contraction hierarchies (CH) introduced by Geisberger in [Gei08].

Eisner et al. have shown, that CHs can be applied to energy-optimal routing in

[EFS11]. We want to use a similar strategy to generalize CHs to use partial pre-

order queues, such that they may solve SBPRPs. The reason, why SBSPPs are not

considered here, is the necessary backward search for contraction hierarchies.

The following three steps sum up CHs here, as they were introduced in [Gei08].

Thereby, a lot of details will be omitted, because they are not necessary to adapt

CHs to the given problems. The first two steps are precalculations, the third step

actually performs a query.

1. Node Ordering:

All vertices are sorted by a relation≤, indicating the ’importance’ of vertices

ascending. The algorithm is correct for arbitrary orders, but the runtime

heavily depends on the order. Different heuristics are linearly combined to

determine an ordering. The most important priority term, says Geisberger,

is the ’edge difference’. This is the difference of graph sizes before and after

a simulated contraction of a vertex.

2. Construction:

The construction of a CH is done by consecutively contracting vertices or-

dered by≤. For a current vertex v, let x be a predecessor and y be a successor
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of v. A ’shortcut’ edge from x to y with additional information pointing to v

is introduced if we do not find a ’witness’ path, i.e. a path from x to y shorter

than the direct path (x, v, y).

3. Bidirectional Search:

A bidirectional search is performed on the contracted graph. Thereby, both

searches are allowed to traverse only these edges, that lead to vertices of

higher importance (described by ≤). That means, the forward search may

use edges (x, y) with x ≤ y and the backward search may use edges (x, y)

with y ≤ x. The stop criterion here is not to have a common vertex in both

search spaces, but to abort as soon as all keys in both search queues have

higher distances than some tentative shortest path determined so far.

Notice that a node ordering itself is independent of the graph structure, edge costs

and additional information. These may be used as heuristics, but since any node

ordering is correct, we may ignore this step for now. For real road networks we

may use a node ordering from common contraction hierarchies, because ’impor-

tant’ nodes will hardly become unimportant for slighlty extended problems.

In order to extend CHs to solve SBPRP we need to describe how and when to

create shortcut edges and how to perfom bidirectional searches.

4.4.1 Shortcuts and Witnesses

When contracting a vertex in a graph, we need to introduce shortcuts, if the con-

tracted vertex is part of an optimal path. In case of SBPRP we want to introduce

shortcuts, if the contracted vertex is necessary for an optimal and complete policy

(see Definition 3.9). In order to save edges and to reduce the size of the search

graph, we may omit these shortcuts, if we find witnesses. A witness with respect

to state-based routing then is a path, that yields better resulting states for all input

states than the direct path via the contracted vertex.

104



4.4 Contraction Hierarchies

Due to the extensivity and monotonicity of weights, we can use the same reason-

ing for correctness here as is given in [Gei08].

In common contraction hierarchies, when contracting a vertex v an edge (x, y) is

replaced by its shortcut (x, y) together with information to the contracted vertex,

such that the actual path can be easily unfolded. This is done only, if the costs of

the path (x, v, y) is strictly less than the path (x, y). Otherwise (x, y) would be a

witness. To get the same behaviour for state-based routing, we want to use policies

representing a set of paths. The same formulation can then be used: If we have

two policies mx,v from x to v and mv,y from v to y as well as a policy mx,y from

x to y, we introduce a shortcut replacing (x, y) by the policy m = mx,v ∪ mv,y, if

m ≤M mx,y and not mx,y ≤M m. If we have mx,y ≤M m, we do not need to create a

shortcut, because mx,y always yields better resulting states.

But there is a third case: If both policies are incomparable, i.e. neither mx,y ≤M m

nor m ≤M mx,y, then both policies are required, because either policy may yield

a resulting state for some particular input state strictly better than for the other

policy. In this case, we want to merge both policies by combination.

For energy-optimal routing, this combination corresponds to the max operator (see

Figure 3.7). Eisner et al. introduce multiple edges in this place to represent policies,

but for energy-optimal routing we can also use energy transformation functions,

as we have seen in Section 4.3. Even though, they say, that profile searches are

“relatively time- and space-consuming” [EFS11], they are missing reasonings or

experimental results here.

Another point we have not yet addressed is the reference to the contracted ver-

tex. For common contraction hierarchies, a shortcut edge references to the unique

contracted vertex. For state-based routing we use multiple edges or policies, so

we may have different ’sources’. We may get a shortcut that is the merging of

two shortcuts, both with distinct references. In this case, we need to keep track of

all such vertices. In the worst case, we then need to check all of these reference
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in order to unfold a path for a specific starting state. In the best case, we have

a mapping S(x) →
⋃
v∈V Mx,v × Mv,y from starting states to both subpolicies of

a contracted vertex v. For energy-optimal routing this is simple, because we just

need to keep track of the contracted vertices for each triple (ai, bi, ci) representing

the ETF (see Definition 4.1 and 4.2).

4.4.2 Bidirectional Search

The bidirectional search is based on concatenating, combining and comparing

policies. Because concatenation is based on functional composition of state trans-

formation functions and because function composition is associative, the bidi-

rectional search works in the same way as it has been described by Eisner et al.

[EFS11]. Details of bidirectional searches will be omitted here, but the stop criteria

is an important aspect to discuss.

Bidirectional searches usually stop when both search spaces meet somewhere in-

between at vertex v. This is reasonable because the search space around the start-

ing vertex x contains all vertices of some distance d to x and the search space

around the end vertex y contains as well all vertices of distance d to y. All other

paths from x to y are longer than 2 · d.

Regarding contraction hierarchies it is not a valid assumption to stop the bidirec-

tional search when both search spaces meet. This is described in detail by Geis-

berger [Gei08]. The search can be stopped as soon as both search queues do not

contain a vertex of distance less than of a tentative shortest path from start to end

found so far.

Because SBPRP uses partial preorders the bidirectional search may be stopped

only if a complete and optimal policy was found. This is due to the definition

of state-based profile routing. The implementation of the elementary operations

of concatenation and combination need to ensure, that only optimal policies are

constructed in the search graph. So in theory the optimality of policies can be
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assumed to be given at all times. A complete policy is found as soon as a tentative

policy can not be improved by any other policy in the remaining search queues.

In order to check this criterion the partial preorder queues must provide a method

to deliver all minimal elements in the queue, because each minimal element may

probably improve the tentative policy found so far. This method is given by

’front’, which is discussed in Section 4.1.
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Green Routing can be approached in many different ways. Chapter 3 presents

different models handling different aspects of Green Routing. On of those models

is the state-based shortest path problem using an arbitrary set of states and hav-

ing edges labelled with state transformation functions. This model is capable of

comprising most other routing problems, the only required properties are mono-

tonicity and extensivity with respect to a partial preorder on the set of states.

Two types of state-based routing is presented, the SBSPP and the SBPRP. The for-

mer queries for optimal path for a specific starting state. If the preorder on the

states is total, then Dijkstra’s Algorithm and A∗ may be applied. Otherwise a

partial preorder queue is required to solve the problem. The latter queries for

a complete policy describing optimal paths for all possible starting states. The

size of such policies heavily influence the efficiency of algorithms designed for the

SBPRP.

This thesis focused on proving that the energy-optimal path problem introduced

by Sachenbacher et al. in [SLAH11] can be reformulated as a state-based problem.

Simple battery transformation functions were introduced to represent the change

of the battery charge after traversing edges. These were monotone and closed

under functional composition. Unfortunately they were not extensive which is re-

quired for the state-based approach. A potential function naturally given by the al-

titudes of the locations represented by vertices are used similarly as in [SLAH11].

Using such potential functions yields simple energy transformation functions.

Section 3.8 presents a model combining battery constraints from energy-optimal
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routing with stochastic aspects. Unfortunately these models do not perfectly fit

into the state-based model, but finding a path with optimal cumulative distri-

bution functions (CDFs) is easily done in theory. In practice approximations are

needed to compute the CDFs and their convolutions (together with a derivation

to keep the result a CDF). Different approximation techniques still need to be im-

plemented and tested.

In order to use the state-based energy-optimal path problem for profile routing a

representation of policies is required. Eisner et al. [EFS11] have done this by using

multiple edges such that they could apply the acceleration technique of contrac-

tion hierarchies introduced by Geisberger [Gei08]. Another approach using bat-

tery and energy transformation functions was presented, but a comparison of time

and space efficiency still needs to be done. Eisner et al. assume their approach to

be more efficient in both aspects.

A Java 1.6 implementation of the model layer consisting of generic interfaces was

presented in Section 4.2. These interfaces are implemented to realize specific mod-

els, such as the energy-optimal path problem. Algorithms can be designed on top

of this structure on interfaces as presented in the respective section.

Different acceleration techniques are known for solving the shortest path problem.

In order to generalize these to solve state-based problem, an important datatype -

the partial preorder queue - is presented in Section 4.1. Using this type of priority

queue contraction hierarchies are generalized to solve the state-based profile rout-

ing problem. This generalization is done analogously to the approach of [EFS11].

Other techniques might be generalized in a similar way.

5.1 Open Problems

There are different aspects not yet discussed in full detail. Section 3.8 presents a

model combining battery constraints from energy-optimal routing with stochastic
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aspects. It may be worth to combine all four different aspects of time-dependency,

energy-optimality, stochastic routing and the shortest weight-constrained path

problem representing multiple target functions (see Chapter 3). This may prob-

ably be a sensible model for multimodal routing, i.e. routing not only on electric

vehicles but on a set of different types of transportations overcomming the prob-

lem of a limited reach of eletric vehicles.

Furthermore, in this chapter we have seen, that the conditional expectation can

not be used in a state-based approach directly. Nevertheless SEOPP2 does take

more information into account than MLESPP itself. It was left as an open question

to design a choice function comparing CDFs not only by a specific value (e.g. the

success for MLESPP) but in a way similar to the expectation operator still consis-

tent with the comparison of CDFs.

Another important aspect is fleet routing and fleet scheduling. So far routing was

considered in an egoistic manner to find optimal paths just for one vehicle. Pro-

viding routing directions to balance the load in order to avoid the upcomming of

congestion completely may be more efficient than giving egoistic routing direc-

tions. Nevertheless, energy-optimal routing may indirectly cause the same effect

in a self-organizing way.

Section 4.1 introduces partial preorder queues. There are already different imple-

mentations for priority queues using a total (pre)orders, but efficient implementa-

tions for partial preorder queues are still open for research. As it has been already

mentioned in the discussion of these queues, an efficient implementation might

exploit additional information. One such information could the average rate dif-

ferent methods are used.

Contraction hierarchies solving the state-based profile routing problem were pre-

sented in Section 4.4. Other acceleration techniques may be generalized in a sim-

ilar fashion using partial preorder queues. An interesting technique for profile

routing could be transit node routing discussed by Bast et al. in [BFM+07].
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As previously mentioned defining a distinguished garbage state when modeling

state-based path problem is natural in most cases. This was also implicitely done

for energy-optimal routing where −∞ was such a garbage state. This state repre-

sents that the target is not reachable through the given path even though this path

actually connects start and end vertex.

The use of kinetic energy was not further discussed because it is not possible

to implement kinetic energy in the state-based models directly. Each road junc-

tion would need to be expanded in order to model additional energy costs due

to breaking and acceleration at the road junctions. These costs can be seen as a

property of pairs of adjacent edges which is not handled by the presented models,

but is an interesting problem if such space-consuming expansions can be saved by

generalizing shortest path algorithms or the state-based model even further.

5.2 Future Work

A thorough implementation of contraction hierarchies solving state-based profile

routing is still open for future work. If this algorithms shows to be efficient in a

series of tests, then it will be imported into the GreenNav system.

The implementation is to be evaluated with respect to time and space consump-

tion and correctness. In case of a stochastic model where approximations should

be used for effiency, approximation quality needs to be evaluated. Thereby differ-

ent discretization techniques should be compared.

Another aspect for test is the actual benefit of using a complex model. Kono et al.

[KFKN08] save about nine percent of energy by not taking the shortest but energy-

efficient route in their experiment, but more empirical data should be analyzed for

a differentiated point of view. Another approach is to directly compare energy-

consumption on shortest and time-efficient paths to energy-efficient paths.
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A Abstract Data Types

For completeness the signatures of booleans and sets together with axiomatic

properties are presented here as they are formulated by Stümpel [Stü11]. They

are used for a formal specification of partial preorder queues in Section 4.1. The

axioms are formulated using first-order logic.

specification BOOL =
sorts bool
constants true : bool

false : bool
operations not : bool→ bool

and : bool × bool→ bool
or : bool × bool→ bool

implies : bool × bool→ bool
is : bool × bool→ bool

variables x : bool
axioms

true 6= false,
not(true) = false,
not(false) = true,

true and x = x,
false and x = false,

true or x = true,
false or x = x,

false implies x = true,
true implies x = x,

x is y = (x implies y) and (y implies x).
end

Figure A.1: The syntax and axioms of datatype describing boolean values.
Notice that the infix notation is used for boolean operators.

113



A Abstract Data Types

specification SET =
based on BOOL
sorts set, value
constants ∅ : set
operations {·} : value→ set

∪ : set × set→ set
∩ : set × set→ set
\ : set × set→ set
⊆ : set × set→ bool
≡ : set × set→ bool
∈ : value × set→ bool

variables A, B : set
x, y : value

axioms

• x ∈ ∅ = false,

• x ∈ {x} = true,

• x ∈ A ∪B = x ∈ A ∨ x ∈ B,

• x ∈ A ∩B = x ∈ A ∧ x ∈ B,

• x ∈ A \B = x ∈ A ∧ ¬(x ∈ B),

• A ⊆ B = true, if and only if x ∈ A→ x ∈ B = true for all values x,

• A ≡ B = A ⊆ B ∧B ⊆ A.

end

Figure A.2: The syntax and axioms of an abstract datatype describing sets.
The operation {·} is used to describe singleton sets.
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