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1 Introduction and Basic Definitions

1 Introduction and Basic Definitions

The definition of m-step graphs first requires precise definitions of graphs and paths.

Throughout this thesis I will only consider simple graphs; simple in this context means finite,

undirected and having neither loops nor multiple edges. Thus a graph G = (V, E) is a pair of

disjoint sets V = V(G), the vertices, and E = E(G), the edges; thereby any edge e ∈ E is a

set of two distinct elements x, y ∈ V . An edge {x, y} ∈ E will be written as xy ∈ E. The set of

all possible simple graphs over V is denoted by G(V) = {(V, E) | ∀e ∈ E : e ⊆ V ∧ |e| = 2}.

Paths are graphs isomorphic to Pn = (V, E) with n ∈ N vertices V = {v1, . . . , vn} and edges

E = {v1v2, . . . , vn−1vn}. The length of a path is the number of its edges |E| = n − 1. Its end

vertices are v1 and vn and the path is called a v1vn-path. The inner vertices are v2, . . . , vn−1. A

path from v1 to vn is often denoted by the sequence of its vertices v1v2. . .vn. The vertices of

P (and therefore its edges) are pairwise distinct, otherwise it is called a walk.

Isomorphism is denoted by G1 � G2, subgraphs are denoted by G1 ⊆ G2, the union of graphs

is denoted by G1+G2. Inserting vertices (or edges) is denoted by G+x (or G+xy, respectively)

and deleting edges by G − xy. Other notations, which are not explicitly mentioned can be

found in Diestel [8].

Definition 1.1. Let G = (V, E) and m ∈ N. The (open) m-neighborhood of x ∈ V is given by

pm(x : G) = {y ∈ V | ∃ xy-path of length m in G} .

If the context to G is clear we write pm(x) for short.

Note that pm is symmetric for undirected graphs: y ∈ pm(x) ↔ x ∈ pm(y). For any vertex

holds v < pm(v), because a path having distinct ends is required for pm,m ≥ 1. The distance

of vertices x and y ∈ pm(x) is at most m.

Using this definition the m-step graph is an intuitive way of describing pm(v) for any v ∈ V .

Definition 1.2. If G = (V, E) is a graph, its m-step graph Nm(G) = (V, Em) is given by

Em = {xy | y ∈ pm(x)} .
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1 Introduction and Basic Definitions

The trivial cases of definition 1.2 are the following:

• The 1-step graph of G is N1(G) = G itself, because paths of length 1 in G are given

exactly by its edges E(G).

• For m ≥ |V | the m-step graph of G has no edges, because there is no path of length m

with |V | vertices.

Therefore I will consider only m-step graphs with m ≥ 2 and |V | > m avoiding excessive

case distinctions. Figure 1 describes a basic example of constructing m-step graphs. An ele-

G :

N2(G) N3(G) N4(G) N5(G)

Figure 1: The 2-, 3-, 4- and 5-step graph of an exemplary graph.

mentary result used for constructions of m-step graph is given by the following proposition.

Proposition 1.3. Let G be a simple graph. Then

∀H ⊆ G : Nm(H) ⊆ Nm(G).

Proof. Let H ⊆ G be an arbitrary subgraph of G. Since V(Nm(H)) = V(H) ⊆ V(G) =

V(Nm(G)), it follows V(Nm(H)) ⊆ V(Nm(G)). Now let xy ∈ E(Nm(H)) be arbitrarily chosen,

i.e. y ∈ pm(x : H). It follows y ∈ pm(x : G), because paths in H are also paths in G. Therefore

xy ∈ E(Nm(G)).

�
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2 Literature and Overview

2 Literature and Overview

In this section I will describe some topical work using definitions similar to the m-step graphs

given in the introduction. Afterwards I will describe the competition and embedding number

of graphs, which are hard to determine, even for restricted graph classes. After that I will

give an overview on the structural properties of m-step graphs, which are investigated in this

thesis.

2.1 Neighborhood and Competition Graphs

The competition graph C(D) of a directed graph D is a simple graph constructed over the

same vertex set of D and having edges xy ∈ E(V(D)) if and only if there exists a vertex v

such that (x, v) and (y, v) are arcs in D. The term competition graph was introduced by Cohen

[6] in 1968 and caused a lot of further research on this topic.

The competition graph of an undirected graph has a handfull of equivalent names. In fact,

the definition of the 2-step graph N2(G) is one of those names; it is obtained by replacing the

arcs (x, y) and (y, x) in a symmetric digraph by the edge xy or vice versa. Another equivalent

definition is that of the neighborhood graph N(G) = N2(G).

In his Bachelor thesis Pfützenreuter [17] investigated structural properties of neighborhood

graphs. Moreover, there have been several interesting studies concerning neighborhood

graphs: In 1995 Lundgren et al. [13] characterized graphs which have neighborhood graphs,

that are interval or unit interval. Furthermore Lundgren, Merz and Rasmussen [14] in-

vestigated the chromatic numbers of competition graphs. Competition graphs of strongly

connected and hamiltonian digraphs have been investigated by Fraughnaugh et al. [9] in

1995. Schiermeyer, Sonntag and Teichert [18] investigated the hamiltonicity of neighbor-

hood graphs in 2009. Another generalization was introduced and investigated by Sonntag

and Teichert [19], [20], [21] using hypergraphs. The competition hypergraph CH(D) of a

digraph D is defined on the same vertex set V(D) and e ⊆ V(D) is an edge if and only if

|e| ≥ 2 and there is a vertex v ∈ V(D), such that e = {w ∈ V(D) | (w, v) ∈ A(D)}.

When dealing with m-step graphs one might come across the definition of the power of

a graph. The k-th power Gk of a graph is defined on the same vertex set having edges

xy ∈ E(Gk) if and only if their distance is at most k, that is dG(x, y) ≤ k. Another notion is

- 3 -



2 Literature and Overview 2.2 Embedding and Competition Number

G(k), which describes a graph on the same vertex set having edges xy ∈ E(G(k)) if and only if

their distance is exactly k. However, in general neither Gk nor G(k) are equivalent to m-step

graphs.

2.2 Embedding and Competition Number

Not all graphs are competition or neighborhood graphs. This will also be discussed in Sec-

tion 4. However, it is possible to obtain from a graph a competition graph by adding isolated

vertices. The least number of isolated vertices needed for this procedure is called the com-

petition number. Similarily every graph G can be embedded in an m-step graph Nm(G′) as an

induced subgraph. The least number of vertices for such a graph G′ is called the embedding

number.

The embedding number was investigated by Boland, Brigham and Dutton in [2] and [3],

based on the introduction of open neighborhood graphs by Acharya and Vartak [1].

Similarly to m-step graphs there is a generalization for competition graphs called m-step

competition graph introduced by Cho, Kim and Nam [5] in 2000. The m-step competition

graph of a digraph D is defined on the same vertex set and has edges xy if x and y have a

common m-step pray, that is a vertex v with directed paths of length m from x to v and from

y to v. They also introduced the m-step competition number. Further work on this definition

was done by Helleloid [10] in 2004 investigating connected triangle-free m-step competition

graphs, by Ho [11] in 2005 introducing same-step and any-step competition graphs and by

Zhao and Chang in 2009 examining the m-step competition number of paths and cycles.

Determining the competition number appears to be a difficult problem: In 1971 Stephen A.

Cook [7] published his paper on the concept of NP-completeness. Based on this Richard

M. Karp [12] took 21 well-known problems - for which there were (and still are) no de-

terministic polynomial algorithms found - and proved their NP-completeness. Using these

results James Orlin [16] was able to prove the NP-completeness of determining minimal

edge-clique-covers (ECCs) in 1977 by reducing this problem amongst others to Karps chro-

matic number problem. Robert J. Opsut [15] then showed 1982 that the ECC problem is

reducible to computing the competition number of graphs. That means, if there was a de-

terministic polynomial algorithm for computing the competition number, then the infamous

equation P = NP would be solved.
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2.3 Overview

In the following I want to give some detailed examples in Section 3, namely the descriptions

of m-step graphs of well-known graph classes; paths, cycles, wheels and bipartite graphs.

Then I will discuss some basic graph properties in Section 4 or to be more specific, I will

answer some questions on how much these graph properties are preserved by the m-step

function. As a first step in this, injectivity and surjectivity of the m-step function will be

discussed. After that the minimum degree is a perfect example on how a graph property

can be preserved by the m-step function. Two more of such interesting properties are con-

nectivity and hamiltonicity, which got their own chapters 5 and 6. Finally I will have some

conclusions, summaries and open problems in Section 7.
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3 Particular Graph Classes

3 Particular Graph Classes

In this chapter I will describe particular m-step graphs, namely the m-step graphs of paths,

cycles, wheels and bipartite graphs. Examining these graph classes will give us a basic

idea on how to work with m-step graphs, so that we can rely on these results in the further

chapters. Considering the complete graph Kn with n vertices, for example, its m-step graph

is still Kn, respecting the condition 2 ≤ m < n given in the introduction. Therefore by

Proposition 1.3 we can conclude, for example, that any supergraph of Kn has again Kn in its

m-step graph.

3.1 Paths

Pn is a path of length n − 1 with n vertices.

Proposition 3.1. Let d ∈ [0,m − 1] with d ≡ n mod m. The m-step graph Nm(Pn) consists

of m paths; d of those paths have
⌈

n
m

⌉
vertices, the other paths have

⌊
n
m

⌋
vertices, i.e.

Nm(Pn) = d · Pd n
me

+ (m − d) · Pb n
mc
,

or by substitution n = m · k + d for any k ∈ N and d ∈ [0,m − 1] this is

Nm(Pm·k+d) = d · Pk+1 + (m − d) · Pk.

v0

v1

v2

v3

v4

v5+0

v5+1

v5+4

v5k+0

v5k+1

⇒

[v0]

[v1]

[v2]

[v3]

[v4]

} d = 2

Figure 2: The 5-step graph N5(P5k+2) consists of five paths.
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3 Particular Graph Classes 3.2 Cycles

Proof. Let n = m · k + d and Pn = v0. . .vm−1. . .vn−1. Since there are at least m vertices there

is a partition of V containing m subsets {[v0], . . . , [vm−1]} with

[vi] := {vk ∈ V | k ≡ i mod m} .

The induced subgraphs in Nm(Pn) having vertices [vi] are paths.

• There are two possibilities for the number of vertices, which is caused by

[vi] =


vi, vi+m, vi+2m, . . . , vi+km if 0 ≤ i < d

vi, vi+m, vi+2m, . . . , vi+(k−1)m if d ≤ i < m
.

Therefore we obtain |[vi]| =
⌊

n−i
m

⌋
, that is

|[vi]| =


k + 1 =

⌊
n
m

⌋
+ 1 if 0 ≤ i < d

k =
⌊

n
m

⌋
if d ≤ i < m

.

However, since d = 0 always follows the second case, we can rewrite the first case by

using
⌈

n
m

⌉
instead of

⌊
n
m

⌋
+ 1.

• The edges induced are along the path vivi+mvi+2m . . . , vi+km.

• In addition these paths are not interconnected, because there can be no path of length

m from vi to v j in Pm·k+d with i . j mod m.

Altogether we obtain d paths each with
⌈

n
m

⌉
vertices and m− d paths each with

⌊
n
m

⌋
vertices.

�

3.2 Cycles

Cn is a cycle with n vertices, say V(Cn) = {v0, . . . , vn−1}, vivi+1 ∈ E(Cn) and indices are taken

modulo n. For convenience C1 denotes a single vertex and C2 denotes two connected vertices

instead of a real cycle.

Proposition 3.2. Let g = gcd(m, n). The m-step graph of Cn consists of g cycles of equal

length,

Nm(Cn) = g ·C n
g
.
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3 Particular Graph Classes 3.2 Cycles

v0
v1

v2

v3

v4
v5

v6

v7

v8

v9

⇒

v0
v1

v2

v3

v4
v5

v6

v7

v8

v9

Figure 3: The 4-step graph N4(C10) consists of two cycles C5.

Proof. There is a partition of V(Cn) containing g subsets
{
[v0], . . . , [vg]

}
with

[vi] := {vk | k ≡ i mod g} ⊆ V.

The induced subgraphs in Nm(Cn) having vertices [vi] are cycles.

• The number of vertices |[vi]| is the least k ∈ N such that

i + k · m ≡ i mod n.

By subtracting i on both sides and dividing by g we obtain

k ·
m
g
≡ 0 mod

n
g
.

Because m
g and n

g are coprime, the least such k is exactly n
g .

• The edges induced are along the cycle vivi+mvi+2m. . .vi+ n
g m with vi+ n

g ·m = vi (indices

taken modulo n).

• Let [vi] and [v j] be any two distinct sets of vertices. The cycles are not interconnected.

This is proven by contradiction. If there was an edge
{
vi+a·g, v j+b·g

}
∈ Nm(Cn) (a, b ∈ N)

we would obtain i + a · g − ( j + b · g) ≡ 0 mod m which means i − j ≡ 0 mod g and

thus [vi] = [v j].

Altogether we obtain g cycles each with |[vi]| = n
g vertices in Nm(Cn).

�
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3 Particular Graph Classes 3.3 Wheels

3.3 Wheels

A wheel Wn is a graph with one center vertex connected to each vertex of a cycle of n vertices.

Because of this notation n = |V | − 1 and m ≤ n.

Proposition 3.3. The m-step graph of a wheel Wn is the complete graph Kn+1,

Nm(Wn) = Kn.

Proof. Let V(Wn) = {v0, v1, . . . , vn} with center vertex v0 and circle v1, . . . , vn. It is sufficient

to show, that v1 has paths of length m to each other vertex. Consider the following three cases

showing v1vi ∈ E(Nm(Wn)) for i = 0, 2 ≤ i < m or m ≤ i ≤ n.

i = 0

v0

v1
v2

vm

2 ≤ i < m

v0

v1
v2

vi

vm

m ≤ i ≤ n

v0

v1
v2

vm

vi

Figure 4: Case distinction of the proof for wheels Wn, finding v1vi-paths.

• Let i = 0. Then v1 . . . vmv0 is a path of length m in Wn.

• Let 2 ≤ i < m. Then v1 . . . vi−1v0vmvm−1 . . . vi is a path of length m in Wn.

• Let m ≤ i ≤ n. Then v1 . . . vm−1v0vi is a path of length m in Wn.

Therefore pm(v1) = V \ {v1}. Because of the symmetry in a wheel, it follows pm(vi) = V \ {vi}

for 1 ≤ i ≤ n. And by the symmetry of pm, from v0 ∈ pm(vi) for vi ∈ V \ {v0} it follows

pm(v0) = V \ {v0}.

�
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3.4 Complete Bipartite Graphs

For a bipartite graph G = (A ∪ B, E) with A ∩ B = ∅ let a = |A|, b = |B|. Without loss of

generalization assume a ≤ b. The complete bipartite graph Ka,b is a bipartite graph with all

possible edges E =
{
aib j | ai ∈ A ∧ b j ∈ B

}
. The graph without edges having n vertices is

denoted by In.

Proposition 3.4. The m-step graph of the complete bipartite graph is

Nm(Ka,b) =



Ka,b if m is odd and m < 2a

Ka + Kb if m is even and m < 2a

Ia + Kb if m = 2a and a < b

Ia+b otherwise

.

Proof. Since any path of length m in Ka,b is alternating on A and B it can be written in exactly

one of the following three notations:

PAA = a0b1a2b3 . . . bm−1am if m is even

PAB = a0b1a2b3 . . . am−1bm if m is odd

PBB = b0a1b2a3 . . . am−1bm if m is even

A B

PAA
m
2 + 1 m

2

PAB
m+1

2
m+1

2

PBB
m
2

m
2 + 1

Table 1: Number of vertices of A and B traversed by paths PAA, PAB and PBB.

Table 1 describes the number of vertices of A and B traversed by each path PAA, PAB and

PBB. Let a0, am ∈ A and b0, bm ∈ B be arbitrarily chosen vertices. The following existence

propositions are true, because b ≥ a and Ka,b is complete.

- 10 -



3 Particular Graph Classes 3.4 Complete Bipartite Graphs

• PAA exists if and only if a ≥ m
2 + 1, i.e. m ≤ 2a − 2 and m is even.

• PAB exists if and only if a ≥ m+1
2 , i.e. m ≤ 2a − 1 and m is odd.

• PBB exists if and only if a ≥ m
2 and b > a, i.e. m ≤ 2a and b > a and m is even.

For even m the m-step graph Nm(Ka,b) is induced by paths of type PAA and PBB. For odd m

the m-step graph Nm(Ka,b) is induced only by paths of type PAB. Therefore for even m we

obtain the union of Ka and Kb; for odd m we obtain again the bipartite graph Ka,b. Only for

m = 2a and b > a the paths PBB do exist while paths PAA do not exist; thus we obtain in this

case the union of Ia and Kb.

�

A star is a graph with one center vertex and n additional vertices connected to its center, thus

a star is K1,n and

Nm(K1,n) =


K1,n if m = 1 (trivial),

Kn + I1 if m = 2,

I1+n otherwise.

- 11 -
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4 Basic Results for Arbitrary Graphs

In this chapter I will present some basic results on the structure of m-step graphs. After inves-

tigating injectivity and surjectivity of the m-step function I will answer some other questions

similar to that of surjectivity. Then we will discuss a lower bound for the minimum degree

of an m-step graph. After that I will finish this section by investigating some isomorphism

problems, that ask for characterizations of graphs G such that the equations Nm(G) = Kn,

Nm(G) = G or Nm(G) = G are fulfilled.

There are two elemental questions concerning m-step graphs:

• If two graphs G1 and G2 have the same m-step graph Nm(G1) = Nm(G2), does that

imply G1 = G2?

• Is any graph G ∈ G(V) an m-step graph? That is, for any graph G is there another

G′ ∈ G(V) such that Nm(G′) = G?

We can define the m-step function as a function mapping from simple to simple graphs, i.e.

Nm : G(V)→ G(V), Nm : (V, E) 7→ (V, {xy | y ∈ pm(x)} ).

With that the above questions ask for injectivity and surjectivity of this m-step function.

Proposition 4.1. Let V be any (finite) vertex set and m ∈ N with 2 ≤ m < |V |. Then the

function Nm : G(V)→ G(V) is neither injective nor surjective.

Proof. Since Nm(K2) = Nm(I2) = I2 the function Nm is not injective. Furthermore the

domain and codomain are equal and finite, therefore the range of Nm has less elements than

its codomain and thus Nm is not surjective.

�

The restriction to finite graphs makes this proof easier, however, as we will realize later,

there are graphs that are not m-step graphs no matter how many vertices (or edges) a graph

is allowed to have.

Concerning the trivial cases of m-step graphs as described in the introduction, we can com-

plete the above proposition by the following.

• If m = 1, then Nm(G) = G; thus Nm is bijective.

- 12 -



4 Basic Results for Arbitrary Graphs

• Otherwise if m ≥ |V |, then Nm(G) is empty. Therefore Nm is bijective for |V | ≤ 1 and

neither injective nor surjective for |V | ≥ 2.

In order to develop a better understanding we will weaken the condition of surjectivity and

examine the results. Let G be an arbitrary graph in G(V). Surjectivity asks for a graph

G′ ∈ G(V) such that Nm(G′) = G. By adding t vertices to G′ we have G′ ∈ G(V∪{v1, . . . , vt}).

However, that makes Nm(G′) , G in any case, because they are defined on different vertex

sets. That is why we should ask for the following questions.

1. Is there a graph G′ such that Nm(G′) contains only G and t isolated vertices?

2. Is there a graph G′ such that Nm(G′) contains G as a component?

3. Is there a graph G′ such that Nm(G′) contains G as an induced subgraph?

The second and thus the third question as well will be answered positivly by the following

proposition.

Proposition 4.2. For any graph G ∈ G(V) there is a t ∈ N0 such that there exists a graph

G′ ∈ G(V ∪ {v1, . . . , vt}) with Nm(G′) containing G as a component.

G

va

vb

G′

va

v1
i

v2
i

vm−2
i

vm−1
i

vb

Nm(G′)

va

vb

Figure 5: Subdividing edges such that G is a component of Nm(G′) (ei = vavb, a < b).
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4 Basic Results for Arbitrary Graphs

Proof. Let G = (V, E) be a simple graph with vertices V = {v1, . . . , vn} and edges E =

{e1, . . . , ek}. Then G′ = (V ′, E′) is constructed by subdividing each edge in G into m edges.

V ′ = V ∪
{
v j

i | i = 1, . . . , k, j = 1, . . . ,m − 1
}

E′ =
{
v j

i v
j+1
i | i = 1, . . . , k, j = 1, . . . ,m − 2

}
∪

{
vav1

i , v
m−1
i vb | vavb = ei, a < b, i = 1, . . . , k

}
Now Nm(G′) contains G as an induced subgraph: By construction the vertex set V is a subset

of V ′. Let ei = vavb ∈ E with a < b be an arbitrary edge in G. Since G′ contains a path

of length m from va to vb, namely vav1
i v2

i . . .v
m−1
i vb, this edge ei is in E(Nm(G′)) as well. In

addition, any path of length m in G′ with end vertices in V(G) by construction has a corre-

sponding edge in E(G). Therefore G is an induced subgraph of Nm(G′).

It is left to prove, that G is a component of Nm(G), which means, that the subgraph is not

connected to any vertex in V ′ \ V =
{
v j

i | i = 1, . . . , k, j = 1, . . . ,m − 1
}
. However, by con-

struction any path of length m starting in va ∈ V(G) ends in vb ∈ V(G). Thus because of

symmetry, there can be no path from va to v j
i ∈ V(G) of length m, and there is no edge

vav j
i ∈ Nm(G′).

�

Furthermore, if G is a component of Nm(G′) then it is also an induced subgraph, thus positivly

answering the third question. In that case the least number |V(G′)| = |V(G)| + t is called the

embedding number of G. Determining the embedding number seems not to be an easy

problem. Boland, Brigham and Dutton have done research on this for neighborhood graphs

N2 in [2] and [3]. However, the NP-completeness has not been proven yet, and the embedding

number of m-step graphs Nm(G),m ≥ 3 was not investigated yet.

The first question however has a negative answer. For example let m = 2, then G = P2 = acb

plus any number of isolated vertices is not a neighborhood graph. For those two edges ac and

bc there must be two vertices v1, v2 adjacent to the ends of these edges. If they are identical

v1 = v2 then there is an edge ab ∈ E(N2(G)) induced by the path av1b. This yields a triangle

instead of a path. If the vertices are not identical v1 , v2, then they have a common neighbor

c and thus are connected in the neighborhood graph. For arbitrary m ≥ 3 the graph G′ with

Nm(G′) = P2 + It can be constructed as shown in Figure 6.

- 14 -
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a b

v1

vm−1

c

⇒

a b

c

Figure 6: An m-step graph consisting of P2 = acb and isolated vertices for m ≥ 3.

However, if G = P3 there is no graph G′ with Nm(G′) = P3 + It.

Proposition 4.3. Let m ≥ 2 and t ∈ N0. Then there is no graph G′ such that Nm(G′) = P3 + It.

Proof. Let P3 = acbd a path of length three. The subpath acb must be a fork in G′ as can

be seen in Figure ??: Let ac be induced by the path a = a0a1. . .am = c and bc induced by

the path b = b0b1. . .bm = c. It follows, that there must be a minimal i < m
2 with ai = bi;

otherwise this would yield edges in Nm(G′) that are not in acbd. Now there must be a path

of length m in G′ inducing the edge bd. However, by a case distinction on where this path

must diverge from the other paths, in any case there is a fourth edge or a triangle induced.

Therefore we obtain contradictions such that there is no G′ with Nm(G′) = P3 + It.

�

a b

c

} < m
2

} > m
2

⇒

a b

c

Figure 7: Any bd-path in G implies edges in Nm(G′), that are not in acbd.
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4.1 Minimum Degree

A lower bound for the minimum degree of m-step graphs is given by

Theorem 4.4. Let G = (V, E) be a graph with minimum degree δ(G) and m ∈ N with

2 ≤ m ≤ δ(G). Then we obtain for the m-step graph Nm(G)

δ(Nm(G)) ≥ δ(G) − 1. (1)

Proof. Without loss of generality assume that G is connected (otherwise the following con-

siderations can be made seperatly for each component). We have |V | > δ(G) and because of

m ≤ δ(G) there is a path P = v1 . . . vm of length m − 1 in G for an arbitrarily chosen start

vertex v1 ∈ V . In the following we show the existence of δ(G) − 1 paths of length m from v1

to pairwise distinct end vertices, which proves (1).

(a) Let j = |{vivm ∈ E | i ∈ {1, . . . ,m − 2}}|, that is the number of edges from any vertex vi

in the path (except from vm−1) to the end vertex vm. Then vm has at least δ(G) − ( j + 1)

neighbors a1, . . . , aδ(G)− j−1 < V(P). Now the path Pai from v1 to ai is of length m in G,

thus v1ai ∈ E(Nm(G)) for i = 1, . . . , δ(G) − j − 1 (see Figure (8)).

v1 vi1 vi j vm−1 vm

a1

aδ(G)− j−1

Figure 8: Path v1 . . . vm, neighbors of vm and j = 2 edges from vm back to the path.

(b) Now consider the j vertices vi1 , . . . , vi j ∈ V(P) with it ∈ {2, . . . ,m − 1}, vit−1vm ∈ E and

t = 1, . . . j. Because of δ(G) ≥ m there are (not necessarily distinct) vertices wt < V(P)

with wtvit+1 ∈ E and t = 1, . . . , j. For each t ∈ {1, . . . , j} we distinguish three cases (see

Figure (9)).

(i) Let bt := vit+2 and wtvm ∈ E (that is wt = ai, i ∈ {1, . . . , δ(G) − j − 1}). Then the

path P1 = v1. . .vitvit+1wtvm. . .bt has length m, and thus v1bt ∈ E(Nm(G)).

(ii) Let bt := wt and wtvm < E. If there is no other vertex vir with ir > it and
{
vir+1,wt

}
∈

E then the path P2 = v1 . . . vitvm . . . vit+1bt has length m and {v1, bt} ∈ E(Nm(G)).

Note that this case appears at most once for each vertex wt.
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(i)
v1 vit vit+2 vm

wt

(ii)
v1 vit vit+2 vm

wt

(iii)
v1 vit vit+2 vir vir+2 vmwt

Figure 9: Case distinction of the proof for the minimum degree.

(iii) Otherwise there is a vertex vir with ir > it and
{
vir+1,wt

}
∈ E. Let bt := vit+2. Then

the path P3 = v1. . .vitvit+1wtvir+1. . .vmvir . . .bt is of length m and v1bt ∈ E(Nm(G)).

Summarizing the results we obtain the vertices a1, . . . , aδ(G)− j−1 and b1, . . . , b j. In cases (i)

and (iii) bt = vit+2 and in case (ii) bt = wt. Furthermore these vertices are pairwise distinct

and we obtain δ(G) − 1 edges {v1, ai} , {v1, bt} ∈ E(Nm(G)), this completes the proof.

�

This lower bound for the minimum degree is sharp.

• For Kn we have δ(Kn) = n − 1 and δ(Nm(Kn)) = 0 for any m ≥ n > δ(Kn).

• There are graphs with δ(Nm(G)) = δ(G)−1. Let m ∈ N and m ≥ 2. Graph G = (V, E) is

the union of a tree and a complete bipartite graph; the tree has the root vertex v and all

leafs are at depth m − 1, the inner nodes have degree of m and all the leaf vertices are

connected to the vertices {y1, . . . , ym−1}. See Figure 10 for an example. To be precise,

the construction is formally given by

V =

m⋃
i=0

Li, Li =


{v} if i = 0{
vp | p ∈ [1,m] × [1,m − 1]i−1

}
if 0 < i < m

{yk | k ∈ [1,m − 1]} if i = m
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and the set of edges E is defined by the following four conditions

(i) {vv1, . . . , vvm} ⊆ E,

(ii) ∀i ∈ [1,m − 2] ∀w ∈ Li : w = vp1,...,pi →
{
wvp1,...,pi,1, . . . ,wvp1,...,pi,m−1

}
⊆ E,

(iii) ∀w ∈ Lm−1 : {wy1, . . . ,wym−1} ⊆ E,

(iv) there is no other edge in E than those given in (i), (ii) and (iii).

level L0

level L1

level L2

level L3

level L4

v

y1 y2 y3

v1

v1,1

v1,1,1

v4

v4,3

v4,3,3

Figure 10: Example for m = δ(G) = 4 and δ(Nm(G)) = δ(G) − 1.

The graph G has the minimum degree δ(G) = m. Because of Theorem 4.4 the mini-

mum degree of its m-step graph is δ(Nm(G)) ≥ δ(G) − 1. Considering the start vertex

v ∈ G we notice that every path of length m is of the type vvp1vp1,p2 . . .vp1,p2,...,pm−1yk.

Therefore Nm(v) = {y1, . . . , ym−1} and thus δ(Nm(G)) = m − 1.

4.2 Isomorphism Problems

Brigham and Dutton [4] gave characterizations for graphs G such that N2(G) � Kn and

N2(G) � G. Furthermore they described new results on the more difficult problem N2(G) �

G. With respect to m-step graphs, these problems can be generalized by the following equa-

tions:

• Nm(G) � Kn,

• Nm(G) � G or

• Nm(G) � G.

Let us first consider the equation Nm(G) � Kn (remember that |V | = n > m ≥ 2).

- 18 -



4 Basic Results for Arbitrary Graphs 4.2 Isomorphism Problems

Proposition 4.5. Necessary conditions for Nm(G) = Kn are:

(i) G is connected,

(ii) diameter d(G) ≤ m,

(iii) if v ∈ V(G) is a cut vertex seperating A, B, then |V(A)| > m and |V(B)| > m,

(iv) there is no bridge in G,

(v) each e ∈ E(G) is part of a cycle of length m + 1.

Proof. If d(G) > m, then there are two vertices x, y ∈ V(G), such that there is no xy-path of

length m, thus xy < E(Nm(G)). Therefore (ii) is necessary, which implies, that (i) is necessary

too. Condition (iii) is necessary, because any xy-path in G requires at least m + 1 vertices

and can not visit a cut vertex twice. Any edge e = xy ∈ E(G) requires an xy-path of length

m in G, otherwise e < E(Nm(G)). Therefore e is part of a cycle of length m + 1, and (v) is

necessary, which implies, that (iv) is necessary too.

�

Obviously these conditions are not sufficient for m ≥ 3; Cm+1 for example fulfills these

necessary conditions, but Nm(Cm+1) � Cm+1 � Km+1.

Let us now consider the equation Nm(G) � G. For m = 2 Brigham and Dutton have shown,

that every component of G is a complete graph on other than two vertices or an odd cycle.

However, for m ≥ 3 we obtain only sufficient but not necessary conditions by generalizing

these conditions. If n > m then Nm(Kn) = Kn, and if also gcd(m, n) = 1 then Nm(Cn) � Cn,

but another example is given in Figure 11 showing a spiked cycle isomorphic to its 3-step

graph. Similarily for any odd m there is a spiked cycle G = C2m−2 + x + xv0, such that

Nm(G) � G. Finding elegant conditions for problems with m ≥ 3 remains an open problem.

v1

v4

v2

v3

w
⇒

v1

v4

v2

v3

w

Figure 11: The spiked cycle on five vertices is isomorphic to its 3-step graph.
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5 Connectivity

A necessary condition for the connectivity of an m-step graph Nm(G) is the connectivity of

G, as described in the following proposition.

Proposition 5.1. If Nm(G) is connected, then G is also connected.

Proof. Let x, y ∈ V be any arbitrary vertices. Since Nm(G) is connected, there is a path P

from x to y in Nm(G). An edge of this path is induced by a path of length m in G. Thus there

is a walk from x to y in G and G is connected.

�

Now the other way round is more difficult. Does connectivity of G imply also the connec-

tivity of Nm(G)? From Section 3.1 we already know, that a path P is split up into m paths

in Nm(P). Furthermore Nm(K1,n) = In+1 if m ≥ 3 (see 3.4), thus there is no boundary for

the number of components of an m-step graph Nm(G) of a connected graph G. However,

one might come to the idea, that if a graph is connected, large enough and contains certain

subgraphs, then perhaps the connectivity of Nm(G) is guaranteed. An example of such a

subgraph is the cycle Cm+1. Since Nm(Cm+1) = Cm+1 remains connected this cycle induces

connectivity of any supergraph. More general we obtain

Proposition 5.2. Let G be connected and H ⊆ G with Nm(H) connected and having more

than one vertex, then Nm(G) is connected.

Proof. Let x, y ∈ V(G) be arbitrarily chosen. It is to prove, that there is an xy-path in Nm(G).

(i) If x, y ∈ V(H) then there is an xy-path in Nm(G), because Nm(H) ⊆ Nm(G) (by Proposi-

tion 1.3) and Nm(H) is connected.

(ii) Let x < V(H), y ∈ V(H). Since G is connected, there is a path P1 from x to v ∈ V(H) in

G such that {v} = V(P)∩V(H) (see Figure 12). The length of P1 is k ·m + d with k ∈ N

and d ∈ [0,m − 1]. Now let vm ∈ V(H) such that there is a vvm-path vv1. . .vm−1vm of

length m in H. Then xP1v. . .vm−d is a path in G with a length divisible by m. Therefore

there is a path from x to vm−d ∈ V(H) in Nm(G). By extending this path with an vm−dy-

path as in (i) we obtain a walk from x to y in Nm(G) and thus have an xy-path in Nm(G).

(iii) Let x, y < V(H) and v ∈ V(H) arbitrarily chosen. By (ii) we obtain an xv-path and an

yv-path, therefore there exists an xy-path in Nm(G).
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In any case there exists an xy-path in Nm(G) for arbitrarily chosen x, y ∈ V(G), therefore

Nm(G) is connected.

�

x

v vm−d vm

y

Graph G

Subgraph H ⊆ G

Figure 12: Showing the existence of an xy-path for Proposition 5.2 (ii).

A subgraph H ⊆ G as in above proposition is called minimal, if there is no other subgraph

H′ ⊂ H of at least two vertices such that Nm(H′) is connected. For m = 2 it is not difficult to

see, that the only minimal graphs H with N2(H) connected are odd cycles:

• Odd cycles are connected and contain more than two vertices. Since N2 preserves odd

cycles (under isomorphism) Proposition ?? holds.

• Odd cycles are minimal. Proper connected subgraphs of odd cycles are paths, their

m-step graphs are disconnected by Proposition 3.1.

• In order to show, that there are no minimal subgraphs H ⊆ G other than odd cycles

inducing connectivity in N2(G), assume G does not contain odd cycles. Then G is

bipartite and by Proposition 3.4 N2(G) is disconnected.

By the same reason an odd cycle is required even though not sufficient for even m ≥ 4.

However, for odd m ≥ 3 a minimal subgraph H with Nm(H) does not require any cycles. To

give an example I will show the connectivity of an acyclic graph, a caterpillar graph that is a

tree having its leaf vertices within a distance of 1 from a central (longest) path.
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Proposition 5.3. For any odd m ≥ 3 the m-step graph Nm(G) of the following caterpillar

graph G = (V, E) (see Figure 13) is connected (and even contains a hamiltonian path):

V = {ai, bi, ci, di | i = 1, . . . ,m − 1} ,

E = {aiai+1, bibi+1, cici+1 | i = 1, . . . ,m − 2}

∪ {bidi | i = 1, . . . ,m − 1}

∪ {am−1b1, bm−1c1} .

G :

a1 a2 am−1 b1 b2 bm−1 c1 c2 cm−1

d1 d2 dm−1

Figure 13: The caterpillar graph of Proposition 5.3.

Proof. For odd m ≥ 3 the m-step graph Nm(G) contains the following edges

E(Nm(G)) = {aibi+1, bici+1 | i = 1, . . . ,m − 2}

∪ {aidi, dici | i = 1, . . . ,m − 1} ∪ {c1am−1, d1dm−1} .

Therefore Nm(G) contains a hamiltonian path P = b1P1am−1c1P2bm−1 (see Figure 14) with

P1 = (b1c2d2a2)(b3c4d4a4) . . . (bm−2cm−1dm−1am−1),

P2 = (c1d1a1b2)(c3d3a3b4) . . . (cm−2dm−2am−2bm−1).

�

Note that the constructed path uses every edge in E(Nm(G)) except for d1dm−1. Furthermore

this caterpillar graph is minimal regarding the above definition, i.e. for any proper subgraph

H ⊂ G (|(|V(H)) ≥ 2) the m-step graph Nm(H) is disconnected.
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P1 :

P2 :

P :

Figure 14: Prooving the connectivity by finding a hamiltonian path in Nm(G).
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6 Hamiltonicity

In this chapter I want to generalize some ideas on hamiltonicity concerning neighborhood

graphs.

A simple result follows from theorem 4.4 and Dirac’s theorem stating: Any simple graph G

on n ≥ 3 vertices is hamiltionian if each vertex has degree at least n
2 .

Corollary 6.1. Let G = (V, E) be a simple graph, n = |V | ≥ 3 and m < n. If δ(G) ≥ n
2 + 1

then Nm(G) is hamiltonian.

Proof. From δ(G) ≥ n
2 + 1 theorem 4.4 follows δ(Nm(G)) ≥ n

2 , which implies a hamiltonian

cycle according to Dirac.

�

In their paper Schiermeyer, Sonntag and Teichert [18] have proven some interesting propo-

sitions, answering the question on how N2(G) does inherit hamiltonicity properties from G.

Their basic results are

Proposition 6.2. Let G = (V, E) be a graph and N2(G) its neighborhood graph.

(i) If |V | is odd and G is hamiltonian then N2(G) is hamiltonian.

(ii) If G is nonbipartite and hamiltonian then N2(G) contains a hamiltonian path.

(iii) If G has an odd spanning spiked cycle then N2(G) is hamiltonian.

(iv) If G is 1-hamiltonian then N2(G) is hamiltonian.

The first proposition can easily be generalized and proven; if gcd(m, |V |) = 1 and G is hamil-

tonian then Nm(G) is hamiltonian, because by Proposition 3.2 a hamiltonian cycle is congru-

ent to a hamiltonian cycle in Nm(G).

With that in mind one might come to the conclusion, that the odd spanning spiked cycle

of 6.2 (iii) can be generalized to a spanning spiked cycle of length n with gcd(m, n) = 1.

However, this is not the case. A counterexample is the 3-step graph of the spiked cycle as

already seen in Figure 11. Instead there are variants of spikes for which the m-step graph is

hamiltonian:

• A non-cycle vertex connected to two cycle vertices at a given distance (Proposition

6.3).
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• Two spikes at a given distance on the cycle (Proposition 6.4).

• Cycles of length m can be appended to cycle vertices (Proposition 6.5).

• Pairs of paths of length m − 1 can be appended to one cycle vertex (Proposition 6.6).

Proposition 6.3. Let G = (V, E) with V = {v0, . . . , vn−1,w}. Furthermore let E = {wva,wvb}∪

{vivi+1 | i = 0, . . . , n − 1} (indices are taken modulo n) such that b − a ≡ m − 2 mod n (or

a − b ≡ m − 2 mod n), then Nm(G) is hamiltonian.

Proof. Without loss of generalization assume a = 1 and b = m − 1 (otherwise this can be

achieved by switching a and b or by rotation (vi → vi+τ, indices taken modulo n).

From gcd(m, n) = 1 and Proposition 3.2 we obtain a cycle in Nm(G) covering the cycle ver-

tices v0, . . . , vn−1. To integrate the vertex w in this cycle there are three edges of importance

(see Figure 15):

• wv0 ∈ E(Nm(G)) since there is a path of length m in G, namely wvm−1vm−2. . .v1v0.

• wvm ∈ E(Nm(G)) since there is a path of length m in G, namely wv1v2. . .vm−1vm.

• v0vm ∈ E(Nm(G)) is obtained from the induced cycle of CN .

Now (V, {vivi+m | i = 1, . . . , n − 1} ∪ {wv0,wvm}) ⊆ Nm(G) is a hamiltonian cycle.

�

w

v0
v1 vm−1 vm

Figure 15: Replacing v0vm (blue) by v0wvm (green) yields a hamiltonian cycle.

In case of m = 2 the precondition b − a ≡ m − 2 mod n means b = a and therefore va = vb,

yielding the familiar spike in Proposition 6.2 (iii).

Another possibility exists by using two spikes at a given distance:
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Proposition 6.4. Let G = (V, E) with V = {v0, . . . , vn−1, x, y}. Furthermore let E = {xva, yvb, xy}∪

{vivi+1 | i = 0, . . . , n − 1} (indices are taken modulo n) such that b − a ≡ m − 2 mod n (or

a − b ≡ m − 2 mod n), then Nm(G) is hamiltonian.

Proof. Similar to the proof of the preceding proposition, assume a = 1 and b = m−1 without

loss of generelization. There are four edges of importance to construct a hamiltonian cycle:

• v0y ∈ E(Nm(G)), since v0v1. . .vm−2vm−1y is a path of length m in G.

• vmx ∈ E(Nm(G)), since xv1v2. . .vm−1vm is a path of length m in G.

• xy, since xv1v2. . .vm−2vm−1y is a path of length m in G.

• v0vm ∈ E(Nm(G)) is obtained from the induced cycle of CN .

Therefore (V, {vivi+m | i = 1, . . . , n − 1} ∪ {xv0, xy, yvm}) ⊆ Nm(G) is a hamiltonian cycle.

�

x y

v0
v1 vm−1 vm

Figure 16: Replacing v0vm (blue) by v0xyvm (green) yields a hamiltonian cycle.
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Furthermore there can be cycles of length m be appended to a vertex of Cn.

Proposition 6.5. Let G = (V, E) with V = {v0, . . . , vn−1,w1, . . . ,wm−1}. Furthermore let

E = {v0w1,w1w2, . . . ,wm−2wm−1,wm−1v0}∪{vivi+1 | i = 0, . . . , n − 1} (indices are taken modulo

n), then Nm(G) is hamiltonian.

Proof. To construct a hamiltonian cycle there are the following edges of importance:

(i) vn−m+1w1, . . . , vn−1wm−1 ∈ E(Nm(G)) and w1v1, . . . ,wm−1vm−1 ∈ E(Nm(G)); these edges

are interconnecting the vertices from both cycles.

(ii) The edges vn−m+1v1, . . . , vn−1vm−1 ∈ E(Nm(G)) are induced by the cycle Cn.

Therefore by replacing the edges of (ii) by the paths vn−m+1w1v1, . . . , vn−1wm−1vm−1 of (i)

yields a hamiltonian cycle,

namely (V, {vivi+m | i = 0, . . . , n − m} ∪ {vn−m+iwi,wivi | i = 1, . . . ,m − 1}.

�

An example for constructing this hamiltonian cycle is given in Figure 17 with m = 6.

v0

w1

w2

w3

w4

w5

v1vn−1 v2vn−2
v3vn−3

v4vn−4

v5vn−5

Figure 17: Replacing vn−m+ivi (blue) by vn−m+iwivi (green), i = 1, . . . ,m − 1 with m = 6
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Another possibilty is described in Figure 18, which is similar to the previous one using two

paths of length m instead of a cycle Cm.

Proposition 6.6. Let G = (V, E) with V = {v0, . . . , vn−1, x1, . . . , xm−1, y1, . . . , ym−1}. Further-

more let E = {v0x1, x1x2, . . . , xm−2xm−1, v0y1, y1y2, . . . , ym−2ym−1} ∪ {vivi+1 | i = 0, . . . , n − 1}

(indices are taken modulo n), then Nm(G) is hamiltonian.

Proof. Similar to the previous proof a hamiltonian cycle is constructed by replacing the edges

vn−m+1v1, . . . , vn−1vm−1 ∈ E(Nm(G)) by the paths vn−m+1x1ym−iv1, . . . , vn−1xm−1y1vm−1, namely

(V, {vivi+m | i = 0, . . . , n − m} ∪ {vn−m+ixi, xiym−i, ym−ivi | i = 1, . . . ,m − 1}.

�

v0

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

v1vn−1 v2vn−2
v3vn−3

v4vn−4

v5vn−5

Figure 18: Replacing vn−m+ivi (blue) by vn−m+ixiym−ivi (green), i = 1, . . . ,m − 1 with m = 6
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7 Conclusions

The m-step graph is an interesting theoretical construct and closely related to the topical

research on neighborhood graphs, competition graphs, m-step competition graphs and their

other generalizations. Describing the m-step graphs for particular graph classes is a straight-

forward procedure. The more interesting question is: How are graph properties preserved by

the m-step function? The minimum degree was a perfect example; as long as m ≤ δ(G), the

minimum degree of the m-step graph is at least δ(Nm(G)) ≥ δ(G)−1. Other interesting graph

properties could be the girth and circumference. Furthermore the results for connectivity 5

and hamiltonicity 6 are elemental results, but there are many questions left. The following

section describes a small selection of open problems concerning m-step graphs.

7.1 Open Problems

• For m ≥ 3 it was not difficult to show that P2 together with isolated vertices is an

m-step graph. P3 was shown to be not an m-step graph, no matter how many isolated

vertices are added. By that one might conjecture that even paths are m-step graphs and

odd paths are not. For m = 2 however it is obvious that no path of length at least two

is a neighborhood graph.

• Is there an elegant way of describing the m-step graph of a tree? The easy thing about

trees is the existence and uniqueness of xy-paths for arbitrary x, y ∈ V(G). However,

as we have seen in Section 5 the m-step graphs of trees do not necessarily decompose

for odd m, which makes an elegant description difficult.

• In Section 2.2 we have seen the history of NP-completeness for determining the com-

petition number. However, because the proof of Opsut [15] makes heavily use of

directed arcs, it is difficult and perhaps impossible to translate it to the undirected case,

i.e. the embedding number.

• The isomorphism problems in Section 4.2 ask for classes of graphs fulfilling the equa-

tions Nm(G) = Kn, Nm(G) = G, Nm(G) = G. However, no elegant descriptions of

the graphs fulfilling these equations are known yet. Another interesting problem could

arises when comparing N2
m = Nm(Nm(G)) with N2m(G), or in general Nk

m(G) = Nm·k(G)?
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