
Runtime Verification of Web Services for
Interconnected Medical Devices

Normann Decker∗ Franziska Kühn† Daniel Thoma∗

∗Institute for Software Engineering
and Programming Lanugages

University of Lübeck, Germany
{decker, thoma}@isp.uni-luebeck.de

†Graduate School for Computing in Medicine and Life Science
Institute of Telematics

University of Lübeck, Germany
kuehn@itm.uni-luebeck.de

Abstract—This paper presents a framework to ensure the
correctness of service-oriented architectures based on runtime
verification techniques. Traditionally, the reliability of safety crit-
ical systems is ensured by testing the complete system including
all subsystems. When those systems are designed as service-
oriented architectures, and independently developed subsystems
are composed to new systems at runtime, this approach is no
longer viable. Instead, the presented framework uses runtime
monitors synthesised from high-level specifications to ensure
safety constraints. The framework has been designed for the
interconnection of medical devices in the operating room. As a
case study, the framework is applied to the interconnection of an
ultrasound dissector and a microscope. Benchmarks show that
the monitoring overhead is negligible in this setting.

I. INTRODUCTION

Nowadays, the reliability of safety critical systems usu-
ally is ensured by applying techniques like testing or model
checking to the complete system. When systems are built on-
the-fly by interconnecting components that have been devel-
oped independently, the complete system is not available for
analysis in advance. Applying the established techniques when
interconnecting components would usually be too expensive
and time consuming. Especially when the devices are intercon-
nected in a plug-and-play fashion, there is only a very limited
time frame available. On the other hand, testing components
independently is not sufficient as it is not possible to derive any
guarantees for the complete system from test results of single
components. Ensuring correctness under these conditions is,
however, increasingly important, as it is more and more
common to build even safety critical systems by dynamically
interconnecting independently developed components.

For many application domains, the predominant paradigm
to organise such systems is that of service-oriented architec-
tures (SOA). An important technology for realising SOAs is
that of web services. The major advantages of web services
are that they are independent of a certain technology and build
on protocols and data formats (e. g., HTTP and XML) which
are widely available.

In the medical domain, interconnecting devices, possibly
from different manufacturers, is a topic of growing importance
and is addressed by several current research projects like
OR.NET1 and MD PnP2. For technical as well as legal reasons,

1 www.ornet.org 2 www.mdpnp.org

however, interconnecting medical devices dynamically is in
most cases still not possible in practice. Usually the legislation
requires that devices used together have been tested and cer-
tified in that particular combination. Testing and certifying all
possible combinations of devices in advance, though, is not a
viable approach. Also, if the clinic operator would interconnect
devices without respecting their intended use he would have
to test the combination himself and take responsibility for any
failures induced by the interconnection. Commonly, these tasks
could not be handled by the clinic operator, especially, as to
him a device comes as a black box.

Instead, the risks introduced by the interconnection have to
be addressed differently. In [1] it has been discussed how the
level of safety can be maintained. The basic idea is to certify
the devices with respect to their interface specification. An
interface specification contains the static definition including,
e. g., available operations, their parameters and permitted value
ranges as well as behavioural correctness properties. When
connecting devices, it then has to be ensured, that the defined
interfaces are compatible. As there is usually no complete guar-
antee that the devices adhere to their interface specification,
the interfaces have to be monitored at runtime. Furthermore,
not all behavioural constraints can be checked by observing
interfaces independently. Thus, the communication between
the devices has to be monitored as well to ensure correct
cooperative behaviour.

In this paper, we present a framework for specifying cor-
rectness properties of the communication of web services and
checking them at runtime. The framework has been designed
for the interconnection of medical devices in operating rooms.
To reduce the risk of errors introduced when defining prop-
erties, we apply runtime verification techniques to synthesise
efficient monitors from a high-level language. Monitors are
software components that observe the execution of a system
and continuously assess its compliance with a specification.

We evaluate our approach in the context of the following
scenario from the medical domain. An ultrasound dissector
(USD) and a microscope (MS) are interconnected such that
triggering the USD as well as viewing and modifying its
parameters can be done via the user interfaces of the MS. Both
devices have to be used by a surgeon in combination, e. g.,
during brain surgery. Being able to use only one user interface
for the devices would simplify handling both at the same
time and provide better overview. This scenario is a typical
example of how medical devices are likely to be interconnected

in the nearer future. The interconnection of both devices
has been realised prototypically in the DOOP3 project in a
collaboration between the Möller-Wedel GmbH & Co KG and
the Söring GmbH and is one of the applications we investigate
further within OR.NET. Web services have been used for
implementing the prototype. SOA and web services are the
technology of choice in OR.NET and other projects concerned
with the dynamic interconnection of medical devices. The
USD is a device in one of the highest safety classes (Class
IIb according to [2]) as malfunctions could directly cause
bodily harm. Thus, ensuring its safety is of critical importance.
Furthermore, the required correctness properties pose several
interesting challenges as data, timing and distributed behaviour
is involved. Consider, e. g., the property that messages have to
be processed in the same order as they have been sent, i.e.
the messages have to be received with an increasing sequence
number. This property has to hold in order to avoid overwriting
parameters with old values. While this is still a rather simple
property, it already involves counting, and thus cannot be
handled by formalisms limited to regular properties that are
often used for runtime verification.

Therefore, we use an extension of linear-time temporal
logic (LTL) [3] that allows us to use first-order formulae
referring to runtime data inside LTL operators. This exten-
sion facilitates expressing complex constraints as counting,
temporal order or recursive data types. This logic as well
as a corresponding procedure for synthesising monitors has
been introduced in [4]. In our formalism, we can express the
example from above as

G(i = sendNum⇒ X sendNum > i).

The symbol sendNum refers to the sequential number of the
current message. It is a constant provided by the current
message and may hence change over time. The free variable
i is implicitly universally (∀) quantified over a fixed, possibly
infinite domain. Intuitively, the semantics of such a formula can
be derived by instantiating the formula for all (infinitely many)
values for i. Then, both (in-)equations can be evaluated for
the respective messages. The domain of the free variables as
well as the interpretation of the symbols = and >, is provided
by a fixed first-order theory. Here, G and X are the LTL-
operators for always and next, respectively. For our application,
all relevant constraints can be expressed using the theories of
IDs with equality and of linear in-equations over integers. It
is, however, possible to use others.

Our framework builds on this expressive formalism and
corresponding monitoring procedures. It can observe and in-
tercept messages and allows the user to integrate monitors into
the target system. While we focus on medical applications
here, our approach is suitable for many other SOAs and our
implementation can be used for many web service applications
based on the Java API for XML Web Services.

Following the spirit of SOAs, our framework provides the
concept of a monitoring service. A monitoring service executes
the monitors synthesised from the specification and sends
results to a custom handler service as well as to the caller.
Handler services are only required to implement a certain
interface and may react on failures reported by the monitoring

3 www.doop-projekt.de

service. The system is observed by transparently attaching so
called interceptors to the web service stacks used by the dif-
ferent components. Interceptors dispatch copies of transmitted
messages to monitoring services and may process their out-
put. In particular, interceptors may block messages when the
monitoring service reports a violation, thereby preventing the
violating message from being delivered. Monitoring services,
handler services and interceptors may be deployed throughout
the system as needed. For our application we instantiate an
interceptor on each medical device, one local and one global
monitoring service and a single handler service reacting to
system failures.

We generated benchmarks for our framework using
the configuration required for our application and stub-
implementations of the application’s services. Our benchmarks
show that the monitoring overhead is negligible in this setting.

Related Work: Adding runtime verification to systems
based on web services has been studied before. In [5] an
architecture for runtime monitoring of web services is de-
scribed. The authors also use features of the web service stack
to intercept messages and dispatch them to monitors. Their
approach is less flexible though, as it assumes that all messages
are dispatched to a single monitoring system and they do not
describe how the system may react to monitoring output. Their
interceptors do not provide any additional functionality such
as synchronisation or rejecting messages. Furthermore, they do
not describe any specification formalism but rely on monitors
provided manually.

In [6], message sequence charts (MSC) are used to describe
interface constraints of web services. The authors provide a
monitoring synthesis procedure based on a formal semantics
for MSCs. However, their approach does neither support
handling data nor distributed constraints over multiple services.
It also does not support rejecting violating messages.

A lot of work focuses on monitoring business processes de-
scribed in the Business Process Execution Language (BPEL).
BPEL comes with a specific architecture: multiple instances of
a BPEL process are run and managed by a web service. Hence,
it is natural to specify properties per instance and simply run
the monitors in parallel inside the same web service. It is
not necessary to handle any global or distributed behaviour
as opposed to our setting. Such an approach is introduced in
[7]. The interception of events is specific to BPEL processes
and the monitors have to be given as automata that have to
be specified manually. Furthermore, the authors do not give
a formal semantics and do not support blocking messages.
In [8], the past-time fragment of LTL is used to synthesise
monitors. Again, the approach is strictly limited to BPEL. It
only allows for monitoring a single service and does not allow
for blocking messages. In [9], an approach is introduced that
can use compensation actions to recover from a system failure.
The approach is also very specific to BPEL. Furthermore,
our application requires to actually prevent a dangerous action
from being executed.

In [10], an approach to ensuring the safety of the dynamic
interconnection of medical devices has been described, but they
aim for verification of medical devices instead of using runtime
monitors.

Another approach using a variant of LTL extended by

first-order formulae is described in [11]. The expressiveness
of that logic is quite limited as it only allows to compare
for equalities and only comprises quantifiers restricted to the
current observation. Important aspects as counting or temporal
ordering are not expressible. Furthermore, only local monitors
are supported.

Our framework also supports the concept of blocking
violating messages which can be seen as an instance of runtime
enforcement [12].

Outline: In the following Section II, we give an overview
over the specification formalism and runtime verification tech-
niques employed by our framework. Based on this, Section III
describes our approach to monitoring web services in general.
In Section IV we discuss our medical scenario and its safety
requirements and show how the monitoring framework is
instantiated for this particular application. Finally, we present
our implementation and benchmarks in Section V.

II. RUNTIME VERIFICATION WITH DATA

Runtime verification can be seen as both, a lightweight
verification technique as well as an architectural safety con-
cept. The aim is to provide high-level behavioural specification
formalisms in combination with algorithmic procedures to syn-
thesize and integrate program code that monitors the execution
of the program under observation and continuously verifies that
it conforms to the specification.

While runtime verification itself deals with the pure detec-
tion of runtime errors, the methodology can be integrated with
recovery routines reacting to the deviation and hence providing
an additional layer for behavioural exception handling. The
independent specification of formal runtime properties and au-
tomatic integration of monitoring code is generally a valuable
concept in software engineering, in particular for safety critical
systems.

A. Behavioural Specifications

The behaviour that needs to be specified and verified in
our setting is the sequence of messages sent between web
services. The formal specifications we consider are therefore
based on linear-time temporal logic (LTL), a comprehensible
formalism that was proposed for program verification in [3]
and has become widely used for the specification of sequential
system behavior. A collection of specification patterns is also
available to help developers formalizing typical properties [13].
The syntax of LTL formulae ϕ is defined over a finite set AP
of atomic propositions according to the following grammar.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕU ϕ | true (where p ∈ AP)

We use the common abbreviation for always (Gϕ := ¬(> U
¬ϕ)). It is also possible to add past-time operators without
increasing expressiveness. For more convenience further syn-
tactic extensions can be used, such as SALT [14].

The standard semantics of LTL is defined on infinite words
over the alphabet Σ = 2AP of sets of propositions. The set of
all infinite words over Σ is denoted Σω and the semantics of

a formula ϕ is given by the mapping JϕKω : Σω → B with

JpKω(w) := > if p ∈ w0 and JpKω(w) := ⊥ otherwise,
J¬ϕKω(w) := ¬JϕKω(w),

Jϕ ∧ ψKω(w) := JϕKω(w) ∧ JψKω(w),

JXϕKω(w) := JϕKω(w(1)) and

JϕU ψKω(w) := > if ∃n : JψKω(w(n)) = >
and ∀0≤i<n : JϕKω(w(i)) = >

where w = w0w1. . . ∈ Σω (wi ∈ Σ) and w(n) := wnwn+1. . .
is the suffix of w starting at position n.

This infinitary semantics is suitable for modelling the
behaviour of, e. g., reactive systems. During on-line monitor-
ing, however, the actually observed sequence, e. g. of system
states or messages, is a finite prefix of the whole run. It is
hence necessary to evaluate a property at any time using a
finitary semantics that additionally takes the possibility of only
incomplete observations into account. This is reflected by the
maxim of impartiality that requires to distinguish preliminary
from final verdicts [15]. A semantics is impartial if once a
final verdict is declared, it must not change under any addi-
tionally observed information. It is furthermore anticipatory if
it declares a verdict as early as possible [15]. For the purpose
of this paper we use the three-valued impartial, anticipatory
LTL semantics LTL3 [16] that is defined over the truth domain
B3 := {>,⊥, ?} where ? is inconclusive. For a finite alphabet
Σ and w ∈ Σ∗, the LTL3 semantics of a formula ϕ is the
mapping JϕK3 : Σ∗ → B3 with

JϕK3(w) :=


> if ∀u ∈ Σω : JϕKω(wu) = >
⊥ if ∀u ∈ Σω : JϕKω(wu) = ⊥
? otherwise.

(1)

Essentially all LTL semantics, in particular LTL3, “access”
the model only by using atomic propositions. The semantics
of the temporal operators do not depend on the particular letter
that is encountered at some position but only on the evaluation
of propositions. We call semantics of temporal logics that
enjoy this property propositional. It allows us to substitute
propositions by more complex expressions taking data into
account.

Reasoning on Data: A very powerful formalism to reason
on data and data structures is provided by first-order (FO)
logic. Dedicated FO theories such as arithmetics, arrays, lists
or uninterpreted functions are suitable for a large class of data
structures used in modern software systems and can be handled
by today’s SMT solvers (cf. [17], [18], [19]).

The syntax of FO formulae is defined over some signature
S = (P, F, ar) comprised of predicate symbols P and function
symbols F of arity defined by the mapping ar : P ∪ F → N.
Additionally, formulae can contain variables from a set W and
expressions that evaluate to concrete values. Formulae χ and
expressions e are built according to the following grammar
where x ∈W , p ∈ P and f ∈ F .

χ ::= p(e1, . . . , ear(p)) | ¬χ | χ ∧ χ | ∀xχ
e ::= x | f(e1, . . . , ear(f))

We use common abbreviations such as ∃xχ := ¬∀x¬χ, and

χ1 ∨ χ2 := ¬(¬χ1 ∧ ¬χ2). A variable x is called free, if it is
not within the scope of some quantifier (∀ or ∃).

For a signature S, an S-structure is a tuple s = (U, s)
where U is a universe and s is an interpretation that maps
function symbols f ∈ F to functions s(f) : Uar(f) → U and
predicate symbols p ∈ P to relations s(p) ⊆ Uar(p) of their
respective arity. The semantics of FO formulae over signature
S and variables W is defined over tuples (s, θ), where s
is an S-structure and θ : W → U is a (partial) valuation
of variables. Expressions are evaluated as JxK(s, θ) := θ(x)
for variables x ∈ W and for function symbols f ∈ F
as Jf(e1, . . . , en)K(s, θ) := s(f)(Je1K(s, θ), . . . , JenK(s, θ)).
Then, for p ∈ P , x ∈ W and formulae χ, χ′, we define the
models relation |= by

(s, θ) |= p(e1, . . . , en) if (Je1K(s, θ), . . . , JenK(s, θ)) ∈ s(p),
(s, θ) |= ¬χ if (s, θ) 6|= χ,
(s, θ) |= χ ∧ χ′ if (s, θ) |= χ and (s, θ) |= χ′,
(s, θ) |= ∀xχ if (s, θ[x 7→ u]) |= χ for all u ∈ U.
For reasoning in a specific setting, the interpretation of some
dedicated symbols, as well as the universe is fixed in terms of
a theory. It is formally represented by a fixed structure over
some signature T . For example, consider the theory of natural
numbers with equality. It is represented by a structure with
universe N over a signature only defining a predicate symbol
= of arity 2.

Temporal Data Logic: Combining FO theories with tem-
poral logic provides a formalism that allows for expressing a
wide range of realistic properties of the communication in a
distributed system. Recently, a generic monitoring approach
has been proposed for such a combination of first-order and
temporal logic [4]. This framework is particularly useful for
monitoring the communication of web services since trans-
mitted messages provide a discrete sequence of observations
where the (XML) message structure and internal data values
are of significant importance for verifying the correctness
of the communication. In the remainder of this section, we
summarize the approach in the light of this application.

Given a theory t over a signature T , we extend T with ad-
ditional symbols called observation predicates and observation
functions. We then model actual observations by structures g
that are equal to t but additionally provide an interpretation for
the observation symbols. We use Γ to denote the set of all such
observation structures which hence only differ in terms of their
interpretation of observation symbols. We call FO formulae
using such additional observation symbols data formulae since
we use them to specify properties on the data that is transmitted
in observed messages.

To evaluate data formulae in practice, the user is required
to provide the information on how to map runtime data
to the interpretations of observation symbols. That way, the
behavioral specification itself is completely decoupled from
the concrete system. We show later how this is done in the
concrete setting of web services.

As mentioned earlier, the LTL3 semantics is propositional.
This means we can exchange propositions in LTL by more
complex properties, expressed by data logic formulae, without
affecting the temporal aspect. We combine the temporal- and
data logic to what we call temporal data logic (TDL) that is

interpreted over words from Γ∗.

Free variables in data formulae are considered to be univer-
sally quantified. This provides the freedom to specify dynamic
dependencies between messages. Returning to the example
from the introduction, we observe that it can be formulated as
a TDL formula using the theory of (in)equalities over natural
numbers and an observation symbol sendNum. If observed
messages provide a message number n, they can be represented
as structures m = (N,m) interpreting the observation symbol
by m(sendNum) = n ∈ N.

Given a variable valuation θ : W → U , the semantics of
a TDL formula ϕ is defined as a mapping JϕKθ : Γ∗ → B3

based on an infinitary semantics JϕKθω , just as LTL3. We only
replace the definition for atomic propositions by

JχKθω(w) := > if (w0, θ) |= χ and otherwise JχKθω(w) := ⊥

for data logic formulae χ. Based on JϕKθω , the three-valued
semantics JϕKθ is defined in analogy to Equation 1. Since
free variables are considered universally quantified, we let
the general TDL semantics of a formula ϕ be defined as the
conjunction (infimum) over all possible valuations θ ∈ UV

JϕK(w) :=
l

θ∈UV

JϕKθ(w).

B. Monitoring

Executable monitoring code is very specific and there-
fore the behavioural specification is first translated into an
intermediate, abstract computational model, that we call the
monitor. Monitor constructions are either rewriting-based (see,
e. g., [20], [21]) or automata-based and exist for various
temporal logics, including LTL (see, e. g.,[16], [22], [23], [24]).
We apply automata-based techniques that can be seen as an
additional optimization step. It may require more complex
computations for synthesis but reduces runtime overhead.

For LTL3, a monitor can be synthesized as a finite-state
Moore machine [16]. Basically, this can be done by transform-
ing an LTL formula into a Büchi automaton and performing
emptiness checks to ensure an impartial and anticipatory
evaluation of the property. As finite-state Moore machines can
be determinized and minimized this allows for the construction
of very efficient monitors. This construction can be lifted to ob-
tain a monitor construction for TDL. Considering the data logic
formulae χ1,. . . ,χn that occur in some TDL formula ϕ as if
they were atomic symbols, we obtain a plain LTL formula over
the set of propositions APϕ = {χ1, . . . , χn}. To this formula,
the monitor construction for LTL3 can be applied yielding a
Moore machine over the symbolic alphabet Σϕ = 2APϕ . For
the example formula G(i = sendNum ⇒ X sendNum > i),
we treat i = sendNum and sendNum > i as two atomic
propositions χ1 and χ2. This yields a plain LTL formula
G(χ1 → χ2) over APϕ = {χ1, χ2} from which the Moore
machine presented in Figure 1 is constructed.

The free variables in the TDL formula are universally quan-
tified, meaning the property must be checked for all valuations
θ. This can be achieved by instantiating the symbolic monitor
for all valuations. In such an instance, the values of the free
variables are thus fixed and any proposition χ ∈ APϕ can
be evaluated wrt. an observation. For example, binding the

? ? ⊥

sendNum 6= i

sendNum = i

sendNum > i

sendNum ≤ i

true

Figure 1. A symbolic Moore machine.

variable i to the value 5 in Figure 1, this instance verifies
the property G(5 = sendNum ⇒ X sendNum > 5) along a
sequence of observations. The obtained data formulae (i. e.,
5 = sendNum and sendNum > 5) can be evaluated indepen-
dently for each observation g ∈ Γ providing an interpretation,
i. e., a value, for the observation symbol sendNum. The re-
maining reasoning (e. g., if 6 ≤ 5) only relies on the underlying
theory and can be delegated to an SMT solver. While there are
usually infinitely many valuations, the corresponding monitor
instances can be finitely represented and executed using a
suitable data structure (cf. [4] for further details).

III. RUNTIME VERIFICATION FOR WEB SERVICES

Complex applications based on web services often imple-
ment the concepts of a SOA. SOAs are based on services
implementing a coherent set of functionalities. Single services
can be aggregated to new services that provide more complex
functionalities. The interconnection between services does not
have to be static. Instead, at runtime, services might be dis-
covered and new connections may be established. The service
functionalities are usually provided over a defined interface.
It remains independent of the technology or programming
language used to implement a service.

Web services are usually implemented by exchanging
messages serialised as XML over a network using HTTP.
The most popular protocol for message-based web services
is SOAP [25]. Typically, interfaces are defined using the Web
Services Description Language (WSDL) [26] and messages are
validated by the web service stack. This kind of validation,
though, is limited to simple type and range checks for the
methods in the statically defined interface. It does not support
checking dynamic constraints and temporal correctness prop-
erties of interaction of services. To this end, our approach aims
at integrating runtime verification techniques seamlessly within
the setting of SOAs, particularly SOAs for interconnecting
medical devices.

A common feature of web service stacks and frameworks is
the ability to intercept messages in a manner that is transparent
to the web service running on top of the stack. We use such
a mechanism to inject interceptors for runtime verification
basically copying all transmitted messages and dispatching
them to some monitoring service. The messages dispatched
to the monitoring services are enriched with additional infor-
mation, i.e. where it has been intercepted, a local sequence
number and whether it has been intercepted during sending
or receiving. Figure 2 depicts all messages that, depending on
the configuration, may be transmitted when Client A calls a
function of Service B. Monitoring services can be deployed as
needed (e.g. on the same application server or even on separate

Client A Interceptor A Interceptor B Service B MonitoringWS HandlerWS

setValue

setValue

setValue

setValue

setValue

setValue

setValue

Figure 2. Dispatching of messages for monitoring

monitoring hardware) and execute possibly multiple monitors.
Both, interceptors and monitoring services are configurable
components, thus runtime verification can be transparently
integrated into an existing system by means of configuration.
The overall architecture is shown in Figure 3.

For performance reasons and to simplify temporal specifi-
cations, the messages relayed to the monitors can be filtered
using the configuration of an interceptor as well as of a moni-
toring service. Thereby, only relevant messages are transmitted
to a monitoring service, that executes a monitor only for
messages relevant to the respective property. The interceptors
can be configured to block messages until it receives the
corresponding monitor outputs. In case a monitor reports a
violation, the message will not be transmitted to its actual
target and the respective action will not be executed. Here we
rely on the properties of the underlying monitoring approach,
impartiality and anticipation. Impartiality guarantees that a
report of a violation cannot be taken back and blocking a mes-
sage will not interrupt a conforming execution. Anticipation
guarantees at least for the temporal aspects that the violation
is reported as early as possible and thus after blocking the
message the system can still be guided into a safe state. This
allows for using runtime monitoring to prevent the execution
of dangerous actions.

Furthermore, blocking the message until it is processed by
the monitor, guarantees that the monitor observes the messages
in a causally consistent order, i.e. it does not observe that a
message has been received before observing that it has been
sent. When the interceptor processes a message without block-
ing, messages from the same interceptor are still guaranteed to
be received by the monitor in the correct order. Messages from
different interceptors though might be received in a causally
inconsistent order. Thus, when a monitor receives messages
from multiple interceptors only those messages can be allowed
to be processed without blocking, where the (global) order is
irrelevant to the corresponding property. In case it is known in
advance whether the order of certain messages is irrelevant for
a property, blocking of those messages can be relaxed reducing
the performance impact of monitoring. Additionally, the output
of the monitors may be sent to a custom service, e. g., writing
it to a log file or alert the user. It could also lead the system
back into a safe state.

Logfile
RVLib

XQuery
Processor

LTL

SMT Solver

Monitoring Web Service

Microscope

Web Service

Client

Web
Service
Stack

Interceptor

Ultrasound Dissector

Web Service

Client

Web
Service
Stack

Interceptor

Handler
Web Service

Figure 3. Architecture with central monitoring service

In principle, the monitoring service could be implemented
manually but this would come with several major disadvan-
tages. Primarily, programming at a low level of abstraction is
very prone to errors. Furthermore, as the monitor would be
realised at the same abstraction level as the implementation, it
is likely, that similar errors would occur. Also, it is potentially
very cost intensive. Instead, our approach is to synthesise mon-
itors from a high-level specification. Many typical correctness
properties can be directly expressed in such a formalism. It
is less error prone than expressing the same property, e. g.,
in a programming language and it is easier to validate the
specification. Additionally, the monitors can be generated and
optimised automatically.

From a methodical perspective, another advantage is, that
crucial safety constraints can already be addressed at the design
or architectural level of a system. When breaking the system’s
functionality down to several services and designing their
interfaces and interaction protocols, one also has to specify
the corresponding safety constraints. These constraints can be
modelled at the interface level and the corresponding monitors
can be synthesised. Therefore, errors in the implementation of
the services no longer affect the safety of the system as a
whole.

We generate monitors using the approach described in
Section II. We obtain deterministic finite Moore machines
interpreted symbolically using an SMT solver. These monitors
can be executed efficiently. Furthermore, they are impartial in
the sense that they only return a true or false verdict when
this verdict is certain, and anticipatory in the sense that they
report (temporal) violations as early as possible. We require
impartiality, as we reject messages causing a violation. If the
monitor might change its verdict in the future, we could not
determine whether a message has to be blocked. Anticipation
facilitates reacting to violations in time.

IV. RUNTIME VERIFICATION FOR INTERCONNECTED
MEDICAL DEVICES

We realised our framework in the context of the following
scenario where an MS and a USD are used during brain
surgery to remove a meningeom. The MS system consists
of several components including a foot and hand switch and
several displays, typically only showing MS settings. The USD

system consists of the actual dissector (hand piece), a control
unit/generator with a display, and a foot switch.

The surgeon uses the MS to observe the operating area and,
at the same time, he is holding the hand piece. When he wants
to change some parameters (e.g. ultrasound power, aspiration
power, irrigation volume) of the USD he has to instruct the
operating personnel, as the USD’s control unit is not sterile
and thus the surgeon must not touch it. Even, if he only wants
to reassure himself that their values are correct, he has to turn
away from the MS and focus on the USD or ask the operating
personnel. As triggering the USD requires the surgeon to use
the respective foot switch, he has to change between both foot
switches, in case he wants to control the MS via foot switch
as well. Conversely, parameters of the MS (e.g. zoom, focus)
cannot be changed using the USD’s control unit.

Thus, it would be beneficial if the surgeon could control
the USD using the MS. The parameters of the USD should
be shown on displays of the MS and it should be possible to
adjust them using the hand or foot switch of the MS. This
would enable the surgeon to control all parameters himself
and would only require him to use a single display and foot
switch. This scenario has been realised by interconnecting both
devices via a network. To facilitate the communication between
different medical devices, a service-oriented architecture is
used. Technically, the communication is realised using web
services. To this end, the Devices Profile for Web Services,
a selection of web service standards for devices with limited
resources, has been adapted to the medical setting [27].

Figure 4 shows the communication between the MS and the
USD on the logical level as well as the interaction with them
by the surgeon and the operating personnel, respectively. When
the surgeon uses, e. g., the hand switch of the MS to change
the ultrasound power to 60 %, the MS sends a corresponding
message to the USD. After changing the parameter, the USD
notifies all registered devices, including the MS, that the value
has been changed to 60 %. Now, when the operating personnel
changes the ultrasound power to 80 % at the USD, the USD
sends a corresponding message to itself. Again, after changing
the parameter, the USD notifies all registered devices. When
the surgeon triggers the USD by pressing the foot switch of the
MS it sends a corresponding on-message. It continues to send
continue-messages at least every 200 ms until the foot switch is
released and a final off -message is sent. As a safety measure,
the USD remains only active for 250 ms after receiving the
most recent message to ensure it deactivates itself in case the
connection is interrupted.

Interconnecting medical devices dynamically, introduces
several additional risks. Following the approach outlined in [1]
it has to be verified at runtime, that the participating devices
respect the defined interfaces and correctness properties. The
following properties are the most crucial for our application.

(1) The parameters that can be changed have to stay in
predefined ranges (e.g. between 0 % and 100 %) and may
sometimes only be changed in certain steps (e.g. in steps
of 5). While ranges are usually already checked by the
web service stack, this is not the case when the constraint
is not part of the statically defined interface.

(2) The messages have to be received by the USD in the
same order as they have been sent by the MS. Otherwise,

Surgeon
Microscope UltrasoundhDissector Operating

Personnel

startinghinitialisation

initialisationhsuccessful

sethultrasound
toh60

setValueE2ultrasound2,60F

eventValueChangedE2ultrasound2,60F

sethultrasound
toh80

setValueE
2ultrasound2,80F

eventValueChangedE2ultrasound2,80F

triggers
thehdissector

setStringEtrigger250ms,h2ON2F

setStringEtrigger250ms,h2CONTINUE2F

setStringEtrigger250ms,h2CONTINUE2F

setStringEtrigger250ms,h2CONTINUE2F

stopshtriggering
thehdissector

setStringEtrigger250ms,h2OFF2F

Figure 4. Interaction between USD and MS

Surgeon
Microscope UltrasoundTDissector

triggersTtheTdissector

setString(trigger250ms,TEONE)

setString(trigger250ms,TECONTINUEE)

>T250ms

setString(trigger250ms,TECONTINUEE) FailureI

Figure 5. Violation of property (3)

e. g., when changing parameters a new value might be
overwritten by an older message.

(3) To avoid the USD switching its trigger state to off while it
is intended to be on, it has to be ensured that a continue-
message is received at least every 250 ms (see Figure 5).

(4) When the USD is triggered, for every parameter the value
displayed at the USD has to be the same as at the MS.
Otherwise, the surgeon could assume a wrong value to be
set.

In the example, both devices are exposing their interfaces
as web services. The web service of the USD provides methods
to set and get parameters, trigger the USD and to subscribe
to parameter change notifications. The web service of the MS
provides a callback method to receive such notifications. Both
devices are acting as service users and call the methods of the

USD web service.

Let us consider the properties described above. The first
two can be expressed as

G(name = volume

⇒ (0 ≤ value ≤ 100 ∧ value mod 5 = 0)),
(1)

G(i = sendNum⇒ X sendNum > i). (2)

Recall, that the interpretation of observation symbols such
as name and sendNum is provided by observations, i. e., the
observed messages, while the free variable i is quantified
universally. Consider for property (2) a particular observation
yielding, e. g., a value 5 for sendNum. For a valuation of i
with i 6= 5 the constraint is vacuously true at this moment.
The interesting valuation is the one that assigns the value 5 to
i. Under this binding, the message observed next must provide
a value for sendNum that is larger than 5. In that way, the
free variables are used to express the relation of observed data
values at different points in times, i. e., in different observed
messages.

In a similar fashion, the third property can be specified by
the formula

G
(

((on ∨ cont) ∧ t = min(sendTime, receiveTime))

⇒ X receiveTime− 250 ≤ t
)
.

(3)

The non-trivial case for the free variable t is when it is bound
to the minimum of the send and receive time of a message.
It ensures that the delay between sending the current and
receiving the next message is at most 250 ms, assuming the
clocks of the sending and receiving devices are in sync. Even
if they are not, the expressed guarantee is still that a message
is received at least every 250 ms and the network delay does
not exceed a certain limit.

The last property is more complex. We express it as

G
(
on⇒ (

(¬set(c)) S (set(c) ∧ v = value)

⇔ (¬changed(c)) S (changed(c) ∧ v = value))
)
.

(4)

By set(c) and changed(c) we denote that the current mes-
sage is a set and change value operation, respectively, for a
parameter c. By using a variable c for the parameter name,
we specify the property for all parameters at once. For better
readability, we use the past-time operator ϕ S ψ meaning that
ψ did hold once and ϕ has been satisfied for every position
since. The property can, however, also be reformulated using
only the future-time operators defined above.

The only property requiring the monitor to observe mes-
sages on both devices is (4). The set-messages have to be
intercepted at the USD and the changed-messages at the MS.
We use a central monitoring service depicted in Figure 3 re-
ceiving messages from interceptors on both devices to monitor
property (4). Properties (1) to (3) only require to observe
messages on the USD. We monitor them using a dedicated
monitoring service running directly on the USD. Note that by
running the monitor locally on the USD we do not have any
network delay for dispatching messages to the monitor. Hence,
property (3) can be monitored correctly. It is also possible
to run the local monitoring service on a dedicated hardware
component to avoid interference with the system.

Triggering the USD when one of the properties is violated
is potentially dangerous. In that case, we use the ability of the
interceptor to reject messages based on the monitor output to
prevent activation of the USD. The handler service is used to
reset the system in case property violations occur. Disabling a
system or certain functionalities is a typical measure to ensure
safety of medical devices. When we reset the system we also
set the monitors back to their initial states. Resetting system
and monitors at the same time ensures that the monitoring
verdicts remain valid.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented our monitoring framework for web
services based on the Java API for XML Web Services (JAX-
WS) [28]. JAX-WS allows for attaching interceptors at both,
the client and the server side in a way that is transparent to the
actual application. We use this API to attach our interceptors to
web services and clients. While JAX-WS maps automatically
between Java objects and their XML representation, it also
provides direct access to the underlying SOAP messages. We
use this facility to implement the monitoring service. The
monitoring service reads its specification from an XML file,
generates the corresponding monitors and executes them when
an arbitrary message is received. For the synthesis of monitors
we rely on RVLib the backend of jUnitRV [29]. A monitor
is specified using an XML based syntax for TDL formulae.
For data formulae XQuery expressions are used which either
result in a boolean value or an FO formula. We also use
XQuery expressions wherever messages can be filtered. Our
implementation uses Apache CXF4 as an implementation of
JAX-WS and Saxon5 as an XQuery processor. Figure 3 depicts
the overall architecture and the components used to implement
the monitoring service. For more complex settings it could be
cumbersome to set-up all required interceptors using the API.
JAX-WS itself allows to configure interceptors via Java anno-
tions or XML configuration files. Furthermore, an integration
framework like Apache Camel6 may be used.

The following listing shows the specification corresponding
to Property (2) described in Section IV encoded in XML.
1 <G><OR>

<NOT><P><sym><xquery><![CDATA[
3 <eq><intVar>i</intVar><int>

{xs:integer(//*:sendSequenceNumber/text())}
5 </int></eq>

]]></xquery></sym></P></NOT>
7 <WX><P><sym><xquery><![CDATA[

<lt><intVar>i</intVar><int>
9 {xs:integer(//*:sendSequenceNumber/text())}

</int></lt>
11]]></xquery></sym></P></WX>

</OR></G>

The XML elements G, OR, NOT encode the corresponding LTL
operators, the implication has been expressed using disjunc-
tion. Further, WX represents a variant of the standard X operator
that evaluates to true in case the system terminates and there
is no further step. The P tag encloses the propositional part,
more precisely, the data logic formulae that are evaluated wrt.
the individual messages.

4 cxf.apache.org 5 www.saxonica.com 6 camel.apache.org

In this example, the data logic formulae consisting of
just a single unary observation predicate sym(i) represented
by the XML element sym. Inside the sym tags, an XQuery
expression defines the free variable i and thereby the arity
of the predicate. Given an observation in terms of a SOAP
message, the expression yields a first-order formula, again
encoded in XML. This formula, generated from the message,
precisely characterises the predicate that is the interpretation
of the symbol sym under this observation. The expression in
line 4 constrains the free integer variable x to be equal to
the sequence number assigned at the sending location. The
expression in line 9 constrains x to be less than the sequence
number.

Evaluation: To validate the feasibility of our approach,
we implemented a testing environment based on the JAX-WS
stack simulating the scenario presented in Section IV. I.e. a
typical usage scenario where two kinds of messages, setting a
parameter and triggering the USD, are sent with equal average
frequency. Figure 6 shows the results when sending those
messages from the MS to the USD repeatedly. The number
of calls is the number of actual calls between the MS and
the USD, not counting return messages for synchronous calls
or monitoring messages. We executed the benchmark under
different parameters.

The setting closest to our application is sync, mixed. In
this setting, the application is monitored and the monitor
blocks for all messages where an error might be reported. The
local monitor on the USD is accessed using a local transport
transmitting messages in memory. Any other communication
is transmitted via HTTP. As a single message requires only
12 ms even with monitoring, message transmission is by far
fast enough for our application. In the base-line scenario HTTP
monitoring has been deactivated completely. It shows that
most of the execution time is due to overhead caused by
the web service stack. Comparing the execution time of the
other scenarios to this base-line scenario shows that monitoring
increases the transmission delay by a factor 2.4. Medical
devices are usually interconnected using small, short distance
networks where transmission times are not an issue. Thus, this
factor is still negligible. E.g. in our application we have a time
constraint of 250 ms which is an order of magnitude above the
transmission time of 12 ms.

In scenario dummy, mixed monitoring is enabled but the
monitoring services execute no monitors. This shows, that
about half of the overhead is caused by, e. g., messaging
and interception and only the other half is due to actually
verifying the properties. In the scenario async, mixed, blocking
of messages is almost completely disabled resulting in almost
no monitoring overhead (a factor 1.1). In this case the handler
service would still receive the correct monitoring output, but in
case of an error a message would not be blocked immediately.
For our application this would not be acceptable, but for
many applications a reaction to an error with a slight delay
is sufficient.

Figure 6 also shows the times required to actually execute
the monitors for Properties (1) to (4). These measurements are
less accurate as they had to be measured summing up the times
for each monitoring step and can thus not directly be compared
to the other results. They do show, however, that most of
that overhead is caused by Properties (2) and (3) for which

0 200 400 600 800 1,000

0

2

4

6

8

10

12

14

calls

ti
m
e
/
s

sync, HTTP
sync, mixed
sync, local

dummy, HTTP
dummy, mixed
dummy, local
async, HTTP
async, mixed
async, local

HTTP
local

Property (1)
Property (2)
Property (3)
Property (4)

Figure 6. Experimental results, calls from MS to USD.

we actually need to call an SMT solver whereas Properties
(1) and (4) only need identity which is handled directly in
our implementation. The other scenarios show variations using
only HTTP or only the local in-memory transport. They are
not relevant to our application but still might be of interest for
other applications.

While these results cannot directly be transferred to other
application domains, they still give some indication. They
show, that the monitoring overhead can be controlled by in-
stantiating the framework appropriately (avoiding unnecessary
messages and synchronisation). Certainly, the framework can
be used for monitoring applications where message transmis-
sion times are of minor importance.

The implementation, the testing environment and the
benchmarks are available for download7.

VI. CONCLUSION

We presented an approach to ensure the safety of service-
oriented architectures for medical devices using runtime ver-
ification techniques. The approach is also suitable for a wide
range of application domains where message transmission
times are of minor importance. We applied our approach to
a safety-critical scenario of interconnecting medical devices
that will become increasingly important in the near future. We
gain several valuable insights from this case study. First, it
is important that a monitoring framework does not rely on
a single centralised monitoring service, but allows for the
deployment of multiple services as needed. In our application,
some properties require a centralized monitor receiving events
form different devices as well as a local monitor receiving
events directly without network delay. Second, the additional
functionality to reject violating messages can be useful to
guarantee the safety of the system. While blocking messages
can in some cases introduce additional risks, in many applica-
tions like ours, safety can be ensured by simply preventing the
execution of dangerous actions. Third, an expressive specifica-
tion formalism is essential as many common properties cannot

7 www.isp.uni-luebeck.de/wsrv

be expressed without handling data, e. g., in terms of IDs or
sequential numbering.

We were able to handle all important constraints for our
application, which shows that our technique works particularly
well for securing the dynamic interconnection of medical
devices. Furthermore, our approach is open for other specifica-
tion formalisms on two levels: our procedure for synthesising
monitors allows for using other temporal logics than LTL (e. g.,
CaRet [30] for context-free constraints) and our architecture
allows to use arbitrary monitor synthesis procedures. It is pos-
sible, as our benchmarks show, to keep monitoring overhead
small enough to not influence the application. It is easier to
convince oneself of the safety of a system when correctness
properties can already be incorporated at an architectural level.
We believe that in the context of the risk management for a
medical device, monitoring using our approach would be well
suited as a risk control measure.

Acknowledgements: We thank André Dauenheimer (Söring
GmbH) and Stefan Lembke (Möller-Wedel GmbH & Co KG)
for providing the application and for insightful discussions of
its technical details.

REFERENCES

[1] F. Kühn and M. Leucker, “OR.NET: Safe interconnection of medical
devices - (position paper),” in FHIES, ser. Lecture Notes in Computer
Science, J. Gibbons and W. MacCaull, Eds., vol. 8315. Springer, 2013,
pp. 188–198.

[2] “Richtlinie 93/42/EWG des Rates vom 14. Juni 1993 über Medizinpro-
dukte,” Jul. 1993.

[3] A. Pnueli, “The temporal logic of programs,” in FOCS. IEEE Computer
Society, 1977, pp. 46–57.

[4] N. Decker, M. Leucker, and D. Thoma, “Monitoring modulo theories,”
in TACAS, ser. Lecture Notes in Computer Science, E. Ábrahám and
K. Havelund, Eds., vol. 8413. Springer, 2014, pp. 341–356.

[5] K. Bratanis, D. Dranidis, and A. J. H. Simons, “An extensible
architecture for run-time monitoring of conversational web services,”
in Proceedings of the 3rd International Workshop on Monitoring,
Adaptation and Beyond, ser. MONA ’10. New York, NY, USA:
ACM, 2010, pp. 9–16. [Online]. Available: http://doi.acm.org/10.1145/
1929566.1929568

[6] J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani,
and J. Waterhouse, “Runtime monitoring of web service conversations,”
IEEE T. Services Computing, vol. 2, no. 3, pp. 223–244, 2009.

[7] S. Kallel, A. Charfi, T. Dinkelaker, M. Mezini, and M. Jmaiel, “Specify-
ing and monitoring temporal properties in web services compositions,”
in ECOWS, R. Eshuis, P. W. P. J. Grefen, and G. A. Papadopoulos, Eds.
IEEE Computer Society, 2009, pp. 148–157.

[8] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-time moni-
toring of instances and classes of web service compositions,” in ICWS.
IEEE Computer Society, 2006, pp. 63–71.

[9] J. Simmonds, S. Ben-David, and M. Chechik, “Monitoring and recovery
of web service applications,” in The Smart Internet, ser. Lecture Notes
in Computer Science, M. H. Chignell, J. R. Cordy, J. Ng, and Y. Yesha,
Eds., vol. 6400. Springer, 2010, pp. 250–288.

[10] A. L. King, L. Feng, O. Sokolsky, and I. Lee, “A modal specification
approach for on-demand medical systems,” in FHIES, ser. Lecture Notes
in Computer Science, J. Gibbons and W. MacCaull, Eds., vol. 8315.
Springer, 2013, pp. 199–216.

[11] S. Hallé and R. Villemaire, “Runtime enforcement of web service
message contracts with data,” IEEE T. Services Computing, vol. 5, no. 2,
pp. 192–206, 2012.

[12] Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier, “Runtime
enforcement monitors: composition, synthesis, and enforcement abili-
ties,” Formal Methods in System Design, vol. 38, no. 3, pp. 223–262,
2011.

[13] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in ICSE, B. W. Boehm,
D. Garlan, and J. Kramer, Eds. ACM, 1999, pp. 411–420.

[14] A. Bauer, M. Leucker, and J. Streit, “SALT—Structured assertion
language for temporal logic,” in ICFEM, ser. Lecture Notes in Computer
Science, Z. Liu and J. He, Eds., vol. 4260. Springer, 2006, pp. 757–
775.

[15] A. Bauer, M. Leucker, and C. Schallhart, “Comparing LTL semantics
for runtime verification,” J. Log. Comput., vol. 20, no. 3, pp. 651–674,
2010.

[16] ——, “Monitoring of real-time properties,” in FSTTCS, ser. Lecture
Notes in Computer Science, S. Arun-Kumar and N. Garg, Eds., vol.
4337. Springer, 2006, pp. 260–272.

[17] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in CAV, ser. Lecture
Notes in Computer Science, G. Gopalakrishnan and S. Qadeer, Eds.,
vol. 6806. Springer, 2011, pp. 171–177.

[18] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The
mathsat5 smt solver,” in TACAS, ser. Lecture Notes in Computer
Science, N. Piterman and S. A. Smolka, Eds., vol. 7795. Springer,
2013, pp. 93–107.

[19] L. M. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in
TACAS, ser. Lecture Notes in Computer Science, C. R. Ramakrishnan
and J. Rehof, Eds., vol. 4963. Springer, 2008, pp. 337–340.

[20] A. Goldberg and K. Havelund, “Automated runtime verification with
Eagle,” in MSVVEIS. INSTICC Press, 2005.

[21] H. Barringer, D. E. Rydeheard, and K. Havelund, “Rule systems for run-
time monitoring: From Eagle to RuleR,” in RV, ser. LNCS. Springer,
2007.

[22] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for LTL
and TLTL,” ACM Trans. Softw. Eng. Methodol., 2011.

[23] W. Dong, M. Leucker, and C. Schallhart, “Impartial anticipation in
runtime-verification,” in ATVA, ser. LNCS. Springer, 2008.

[24] N. Decker, M. Leucker, and D. Thoma, “Impartiality and anticipation
for monitoring of visibly context-free properties,” in RV, ser. LNCS.
Springer, 2013.

[25] N. Mitra and Y. Lafon, “SOAP version 1.2 part 0: Primer (second edi-
tion),” W3C, Tech. Rep., Apr. 2007, http://www.w3.org/TR/2007/REC-
soap12-part0-20070427/.

[26] K. Liu and D. Booth, “Web services description language (WSDL)
version 2.0 part 0: Primer,” W3C, W3C Recommendation, Jun. 2007,
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626.

[27] S. Pöhlsen and S. Schlichting, “An architecture for distributed systems

of medical devices in high acuity environments - a proposal for
standards adoption,” Health Level Seven International, 2014.

[28] J. Kotamraju, “The Java API for XML-based web services,” Oracle,
Java Specification Request, 2011.

[29] N. Decker, M. Leucker, and D. Thoma, “jUnitRV—Adding runtime
verification to jUnit,” in NASA Formal Methods, ser. Lecture Notes in
Computer Science, G. Brat, N. Rungta, and A. Venet, Eds., vol. 7871.
Springer, 2013, pp. 459–464.

[30] R. Alur, K. Etessami, and P. Madhusudan, “A temporal logic of nested
calls and returns,” in TACAS, ser. Lecture Notes in Computer Science,
K. Jensen and A. Podelski, Eds., vol. 2988. Springer, 2004, pp. 467–
481.

