
Ilya Sergey

Temporal Properties of Smart Contracts 

Amrit Kumar Aquinas Hobor



Smart Contracts
• Stateful mutable objects replicated via a consensus protocol 
• State typically involves a stored amount of funds/currency 
• One or more entry points: invoked reactively by a client transaction 
• Main usages:  

• crowdfunding and ICO 
• multi-party accounting  
• voting and arbitration  
• puzzle-solving games with distribution of rewards



• Most of interesting correctness properties of SC are temporal 
• i.e., describe what happens during the contract’s lifetime 

• Stating those properties requires a suitable computational model 

• Temporal reasoning can be built on top of existing proof assistants.

Our Agenda
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A Very Broken Contract  

(and how to fix it)



Querying an Oracle

Transaction 1
c.prepareRequest()

o.raiseEvent()

o.respond()

c.__callback(data)
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Block N Block N+M



function enter() {
  if (msg.value < 50 finney) {
     msg.sender.send(msg.value);
     return; 
  }
  warrior = msg.sender; 
  warriorGold = msg.value; 
  warriorBlock = block.number; 
  bytes32 myid = 
      oraclize_query(0,”WolframAlpha","random number between 1 and 9"); 
}

BlockKing via Oraclize 

function __callback(bytes32 myid, string result) { 
  if (msg.sender != oraclize_cbAddress()) throw; 
  randomNumber = uint(bytes(result)[0]) - 48; 
  process_payment();
}



Property 1 (Correctness of BlockKing payment processing).  
 
Any call to enter from a sender account a sets the value of the field warrior to X, 
so when the next call to __callback by an oracle takes place,  
the value of warrior is still X. 

A Desired Property
function enter() {
  if (msg.value < 50 finney) {
     msg.sender.send(msg.value);
     return; 
  }
  warrior = msg.sender; 
  warriorGold = msg.value; 
  warriorBlock = block.number; 
  bytes32 myid = 
      oraclize_query(0,”WolframAlpha","random number between 1 and 9"); 
}

function __callback(bytes32 myid, string result) { 
  if (msg.sender != oraclize_cbAddress()) throw; 
  randomNumber = uint(bytes(result)[0]) - 48; 
  process_payment();
}
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• Most of interesting correctness properties of SC are temporal 
• i.e., describe what happens during the contract’s lifetime 

• Stating those properties requires a suitable computational model 

• Temporal reasoning can be built on top of existing proof assistants.



Stateful Smart Contracts  
in a Nutshell

Computations

State Manipulation

Effects

Communication

self-explanatory

changing contract's fields

accepting funds, logging events

sending funds, calling other contracts
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Scilla

Computations

State Manipulation Effects

Communication

Verified Specification  

Verified Specification  



Scilla
Smart Contract Intermediate-Level Language

Principled model for computations

Not Turing-complete 

Explicit Effects

Communication

System F with small extensions

Only primitive recursion/iteration

State-transformer semantics

Contracts are communicating automata



Account X

Contract Execution Model
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Contracts as Automata
• Scilla contracts are (infinite) State-Transition Systems 

• Interaction between contracts via sending/receiving messages 

• Messages trigger (effectful) transitions (sequences of statements) 

• A contract can send messages to other contracts via send statement 

• Most computations are done via pure expressions, no storable closures 

• Contract's state is immutable parameters, mutable fields, balance



Contract Structure

Library of pure functions

Immutable parameters

Mutable fields

Transition 1

Transition N

...



Working Example: Crowdfunding contract

• Parameters: campaign's owner, deadline (max block), funding goal 
• Fields: registry of backers, "campaign-complete" boolean flag 
• Transitions: 

• Donate money (when the campaign is active) 
• Get funds (as an owner, after the deadline, if the goal is met) 
• Reclaim donation (after the deadline, if the goal is not met)



transition Donate (sender: Address, amount: Int)
  blk <- & BLOCKNUMBER;
  in_time = blk_leq blk max_block;
  match in_time with 
  | True  => 
    bs  <- backers;
    res = check_update bs sender amount;
    match res with
    | None => 
      msg  = {tag : Main; to : sender; amount : 0; code : already_backed};
      msgs = one_msg msg;
      send msgs
    | Some bs1 =>
      backers := bs1; 
      accept; 
      msg  = {tag : Main; to : sender; amount : 0; code : accepted_code};
      msgs = one_msg msg;
      send msgs     
     end  
  | False => 
    msg  = {tag : Main; to : sender; amount : 0; code : missed_dealine};
    msgs = one_msg msg;
    send msgs
  end 
end



Structure of the incoming message

transition Donate (sender: Address, amount: Int)
  blk <- & BLOCKNUMBER;
  in_time = blk_leq blk max_block;
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Reading from blockchain state

transition Donate (sender: Address, amount: Int)
  blk <- & BLOCKNUMBER;
  in_time = blk_leq blk max_block;
  match in_time with 
  | True  => 
    bs  <- backers;
    res = check_update bs sender amount;
    match res with
    | None => 
      msg  = {tag : Main; to : sender; amount : 0; code : already_backed};
      msgs = one_msg msg;
      send msgs
    | Some bs1 =>
      backers := bs1; 
      accept; 
      msg  = {tag : Main; to : sender; amount : 0; code : accepted_code};
      msgs = one_msg msg;
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     end  
  | False => 
    msg  = {tag : Main; to : sender; amount : 0; code : missed_dealine};
    msgs = one_msg msg;
    send msgs
  end 
end



Using pure library functions 
(defined above in the contract)

transition Donate (sender: Address, amount: Int)
  blk <- & BLOCKNUMBER;
  in_time = blk_leq blk max_block;
  match in_time with 
  | True  => 
    bs  <- backers;
    res = check_update bs sender amount;
    match res with
    | None => 
      msg  = {tag : Main; to : sender; amount : 0; code : already_backed};
      msgs = one_msg msg;
      send msgs
    | Some bs1 =>
      backers := bs1; 
      accept; 
      msg  = {tag : Main; to : sender; amount : 0; code : accepted_code};
      msgs = one_msg msg;
      send msgs     
     end  
  | False => 
    msg  = {tag : Main; to : sender; amount : 0; code : missed_dealine};
    msgs = one_msg msg;
    send msgs
  end 
end



transition Donate (sender: Address, amount: Int)
  blk <- & BLOCKNUMBER;
  in_time = blk_leq blk max_block;
  match in_time with 
  | True  => 
    bs  <- backers;
    res = check_update bs sender amount;
    match res with
    | None => 
      msg  = {tag : Main; to : sender; amount : 0; code : already_backed};
      msgs = one_msg msg;
      send msgs
    | Some bs1 =>
      backers := bs1; 
      accept; 
      msg  = {tag : Main; to : sender; amount : 0; code : accepted_code};
      msgs = one_msg msg;
      send msgs     
     end  
  | False => 
    msg  = {tag : Main; to : sender; amount : 0; code : missed_dealine};
    msgs = one_msg msg;
    send msgs
  end 
end

Manipulating with fields



Accepting incoming funds

transition Donate (sender: Address, amount: Int)
  blk <- & BLOCKNUMBER;
  in_time = blk_leq blk max_block;
  match in_time with 
  | True  => 
    bs  <- backers;
    res = check_update bs sender amount;
    match res with
    | None => 
      msg  = {tag : Main; to : sender; amount : 0; code : already_backed};
      msgs = one_msg msg;
      send msgs
    | Some bs1 =>
      backers := bs1; 
      accept; 
      msg  = {tag : Main; to : sender; amount : 0; code : accepted_code};
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transition Donate (sender: Address, amount: Int)
  blk <- & BLOCKNUMBER;
  in_time = blk_leq blk max_block;
  match in_time with 
  | True  => 
    bs  <- backers;
    res = check_update bs sender amount;
    match res with
    | None => 
      msg  = {tag : Main; to : sender; amount : 0; code : already_backed};
      msgs = one_msg msg;
      send msgs
    | Some bs1 =>
      backers := bs1; 
      accept; 
      msg  = {tag : Main; to : sender; amount : 0; code : accepted_code};
      msgs = one_msg msg;
      send msgs     
     end  
  | False => 
    msg  = {tag : Main; to : sender; amount : 0; code : missed_dealine};
    msgs = one_msg msg;
    send msgs
  end 
end

Creating and sending messages



transition Donate (sender: Address, amount: Int)
  blk <- & BLOCKNUMBER;
  in_time = blk_leq blk max_block;
  match in_time with 
  | True  => 
    bs  <- backers;
    res = check_update bs sender amount;
    match res with
    | None => 
      msg  = {tag : Main; to : sender; amount : 0; code : already_backed};
      msgs = one_msg msg;
      send msgs
    | Some bs1 =>
      backers := bs1; 
      accept; 
      msg  = {tag : Main; to : sender; amount : 0; code : accepted_code};
      msgs = one_msg msg;
      send msgs     
     end  
  | False => 
    msg  = {tag : Main; to : sender; amount : 0; code : missed_dealine};
    msgs = one_msg msg;
    send msgs
  end 
end

Amount of own funds  
transferred in a message



transition Donate (sender: Address, amount: Int)
  blk <- & BLOCKNUMBER;
  in_time = blk_leq blk max_block;
  match in_time with 
  | True  => 
    bs  <- backers;
    res = check_update bs sender amount;
    match res with
    | None => 
      msg  = {tag : Main; to : sender; amount : 0; code : already_backed};
      msgs = one_msg msg;
      send msgs
    | Some bs1 =>
      backers := bs1; 
      accept; 
      msg  = {tag : Main; to : sender; amount : 0; code : accepted_code};
      msgs = one_msg msg;
      send msgs     
     end  
  | False => 
    msg  = {tag : Main; to : sender; amount : 0; code : missed_dealine};
    msgs = one_msg msg;
    send msgs
  end 
end

Numeric code to inform the recipient



Our Agenda

• Most of interesting correctness properties of SC are temporal 
• i.e., describe what happens during the contract’s lifetime 

• Stating those properties requires a suitable computational model 

• Temporal reasoning can be built on top of existing proof assistants.



Verifying Scilla Contracts

• Local properties (e.g., "transition does not throw an exception") 
• Invariants (e.g., "balance is always strictly positive") 
• Temporal properties (something good eventually happens)

Scilla
Coq Proof Assistant



• State-of-the art verification framework 
• Based on dependently typed functional language 
• Interactive — requires a human in the loop 
• Very small trusted code base 
• Used to implement fully verified 

• compilers 
• operating systems 
• distributed protocols (including blockchains)

Coq Proof Assistant



Q since P as long R ≝  
          ∀ conf conf′,  conf →R* conf′, P(conf) ⇒ Q(conf, conf′)   

•“Token price only goes up” 
•“No payments accepted after the quorum is reached” 
•“No changes can be made after locking” 
•“Consensus results are irrevocable”
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P holds here Q holds here

Temporal Properties

R holds for intermediate messages
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Temporal Properties
Q since P as long R ≝  
          ∀ conf conf′,  conf →R* conf′, P(conf) ⇒ Q(conf, conf′)   

Definition since_as_long
           (P : conf → Prop)
           (Q : conf → conf → Prop)
           (R : bstate * message → Prop) :=
  ∀ sc conf conf',
    P st →
    (conf ⇝ conf' sc) ⋀ (∀ b, b ∈ sc → R b) →
    Q conf conf'.



Specifying properties of Crowdfunding

• Lemma 1: Contract will always have enough balance to refund everyone. 

• Lemma 2: Contract will not alter its contribution records. 

• Lemma 3: Each contributor will be refunded the right amount,  
                  if the campaign fails.



• Lemma 2: Contract will not alter its contribution records.

Definition donated (b : address) (d : amount) conf :=
  conf.backers(b) == d.

Definition no_claims_from (b : address) 
                          (q : bstate * message) := 
  q.message.sender != b.

Lemma donation_preserved (b : address) (d : amount):
  since_as long (donated b d) (fun c c' => donated b d c') 
                (no_claims_from b).

b donated amount d

b didn’t try to claim

b’s records are preserved by the contract



To Take Away
• Most of interesting correctness properties of SC are temporal 

• Stating those properties requires a suitable computational model 

• Temporal reasoning can be built on top of existing proof assistants

Scilla is our way to approach this challenge.

Thanks!
http://scilla-lang.org


