
Ilya Sergey

Temporal Properties of Smart Contracts

Amrit Kumar Aquinas Hobor

Smart Contracts
• Stateful mutable objects replicated via a consensus protocol
• State typically involves a stored amount of funds/currency
• One or more entry points: invoked reactively by a client transaction
• Main usages:

• crowdfunding and ICO
• multi-party accounting
• voting and arbitration
• puzzle-solving games with distribution of rewards

• Most of interesting correctness properties of SC are temporal
• i.e., describe what happens during the contract’s lifetime

• Stating those properties requires a suitable computational model

• Temporal reasoning can be built on top of existing proof assistants.

Our Agenda

• Most of interesting correctness properties of SC are temporal
• i.e., describe what happens during the contract’s lifetime

• Stating those properties requires a suitable computational model

• Temporal reasoning can be built on top of existing proof assistants.

Our Agenda

A Very Broken Contract  

(and how to fix it)

Querying an Oracle

Transaction 1
c.prepareRequest()

o.raiseEvent()

o.respond()

c.__callback(data)

Transaction 2

Querying an Oracle

Transaction 1
c.prepareRequest()

o.raiseEvent()

o.respond()

c.__callback(data)

Transaction 2

Block N Block N+M

function enter() {
 if (msg.value < 50 finney) {
 msg.sender.send(msg.value);
 return;
 }
 warrior = msg.sender;
 warriorGold = msg.value;
 warriorBlock = block.number;
 bytes32 myid =
 oraclize_query(0,”WolframAlpha","random number between 1 and 9");
}

BlockKing via Oraclize

function __callback(bytes32 myid, string result) {
 if (msg.sender != oraclize_cbAddress()) throw;
 randomNumber = uint(bytes(result)[0]) - 48;
 process_payment();
}

Property 1 (Correctness of BlockKing payment processing).  
 
Any call to enter from a sender account a sets the value of the field warrior to X,
so when the next call to __callback by an oracle takes place,  
the value of warrior is still X.

A Desired Property
function enter() {
 if (msg.value < 50 finney) {
 msg.sender.send(msg.value);
 return;
 }
 warrior = msg.sender;
 warriorGold = msg.value;
 warriorBlock = block.number;
 bytes32 myid =
 oraclize_query(0,”WolframAlpha","random number between 1 and 9");
}

function __callback(bytes32 myid, string result) {
 if (msg.sender != oraclize_cbAddress()) throw;
 randomNumber = uint(bytes(result)[0]) - 48;
 process_payment();
}

• Most of interesting correctness properties of SC are temporal
• i.e., describe what happens during the contract’s lifetime

• Stating those properties requires a suitable computational model

• Temporal reasoning can be built on top of existing proof assistants.

Our Agenda

Our Agenda

• Most of interesting correctness properties of SC are temporal
• i.e., describe what happens during the contract’s lifetime

• Stating those properties requires a suitable computational model

• Temporal reasoning can be built on top of existing proof assistants.

Stateful Smart Contracts  
in a Nutshell

Computations

State Manipulation

Effects

Communication

self-explanatory

changing contract's fields

accepting funds, logging events

sending funds, calling other contracts

Computations

State Manipulation

Effects

Communication

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Verified Specification

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Verified Specification

abstraction level

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Scilla

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Scilla
Smart Contract Intermediate-Level Language

Principled model for computations

Not Turing-complete

Explicit Effects

Communication

System F with small extensions

Only primitive recursion/iteration

State-transformer semantics

Contracts are communicating automata

Account X

Contract Execution Model

m6Contract C

Contract D Contract E

Account YAccount Z

Account X
m1

m2

m3

m4

m5

Contract Execution Model

ConfC Conf

0
C

Conf

0
DConfD

ConfE Conf

0
E

Conf

00
C

m1

m2

m4

m6

Final contract states

Fixed MAX length of call sequence

z}|{
Contract Execution Model

Contracts as Automata
• Scilla contracts are (infinite) State-Transition Systems

• Interaction between contracts via sending/receiving messages

• Messages trigger (effectful) transitions (sequences of statements)

• A contract can send messages to other contracts via send statement

• Most computations are done via pure expressions, no storable closures

• Contract's state is immutable parameters, mutable fields, balance

Contract Structure

Library of pure functions

Immutable parameters

Mutable fields

Transition 1

Transition N

...

Working Example: Crowdfunding contract

• Parameters: campaign's owner, deadline (max block), funding goal
• Fields: registry of backers, "campaign-complete" boolean flag
• Transitions:

• Donate money (when the campaign is active)
• Get funds (as an owner, after the deadline, if the goal is met)
• Reclaim donation (after the deadline, if the goal is not met)

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Structure of the incoming message

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Reading from blockchain state

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Using pure library functions 
(defined above in the contract)

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Manipulating with fields

Accepting incoming funds

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Creating and sending messages

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Amount of own funds  
transferred in a message

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Numeric code to inform the recipient

Our Agenda

• Most of interesting correctness properties of SC are temporal
• i.e., describe what happens during the contract’s lifetime

• Stating those properties requires a suitable computational model

• Temporal reasoning can be built on top of existing proof assistants.

Verifying Scilla Contracts

• Local properties (e.g., "transition does not throw an exception")
• Invariants (e.g., "balance is always strictly positive")
• Temporal properties (something good eventually happens)

Scilla
Coq Proof Assistant

• State-of-the art verification framework
• Based on dependently typed functional language
• Interactive — requires a human in the loop
• Very small trusted code base
• Used to implement fully verified

• compilers
• operating systems
• distributed protocols (including blockchains)

Coq Proof Assistant

Q since P as long R ≝  
 ∀ conf conf′, conf →R* conf′, P(conf) ⇒ Q(conf, conf′)

•“Token price only goes up”
•“No payments accepted after the quorum is reached”
•“No changes can be made after locking”
•“Consensus results are irrevocable”

ConfC Conf

0
C Conf

00
C

m m′

P holds here Q holds here

Temporal Properties

R holds for intermediate messages

z}|{

Temporal Properties
Q since P as long R ≝  
 ∀ conf conf′, conf →R* conf′, P(conf) ⇒ Q(conf, conf′)

Definition since_as_long
 (P : conf → Prop)
 (Q : conf → conf → Prop)
 (R : bstate * message → Prop) :=
 ∀ sc conf conf',
 P st →
 (conf ⇝ conf' sc) ⋀ (∀ b, b ∈ sc → R b) →
 Q conf conf'.

Specifying properties of Crowdfunding

• Lemma 1: Contract will always have enough balance to refund everyone.

• Lemma 2: Contract will not alter its contribution records.

• Lemma 3: Each contributor will be refunded the right amount,  
 if the campaign fails.

• Lemma 2: Contract will not alter its contribution records.

Definition donated (b : address) (d : amount) conf :=
 conf.backers(b) == d.

Definition no_claims_from (b : address)
 (q : bstate * message) :=
 q.message.sender != b.

Lemma donation_preserved (b : address) (d : amount):
 since_as long (donated b d) (fun c c' => donated b d c')
 (no_claims_from b).

b donated amount d

b didn’t try to claim

b’s records are preserved by the contract

To Take Away
• Most of interesting correctness properties of SC are temporal

• Stating those properties requires a suitable computational model

• Temporal reasoning can be built on top of existing proof assistants

Scilla is our way to approach this challenge.

Thanks!
http://scilla-lang.org

