
Blockchains as Kripke models: 
an Analysis of Atomic Cross-

Chain Swap
Yoichi Hirai 

Limassol, 2018-11-05

Atomic Cross-Chain Swap vs  
Chandy-Misra

“Atomic Swap” protocols swap tokens on
different blockchains atomically. 

No asynchronous communication can create a
new piece of common knowledge 
[Chandy, Misra: How Processes Learn, 1986].

 
“Atomic Swap” should require some synchrony. 
What kind of?

Atomic Cross-Chain Swap
Uses Hash Lock

To spend the fund in a hash lock,

the first way is

1. with Bob’s signature

2. with input whose hash is H

3. before the deadline.

the second way is

1. with Alice’s signature

2. after the deadline.

Atomic Cross-Chain Swap
Success Case

Alice BobChain X Chain Y

tim
e

hashlock for 
* Bob with preimage of H 

* Alice after 2 days

hashlock for 
* Alice with preimage of H 

* Bob after 1 day

opened with k

opened with k

fund

fund

k

k

k

Atomic Cross-Chain Swap
Failure Case

Alice BobChain X Chain Y

tim
e

hashlock for 
* Bob with preimage of H 

* Alice after 2 days

hashlock for 
* Alice with preimage of H 

* Bob after 1 day

timeout

fund

fund

timeout

Observations

Obs. 1 Properties dependent on states.

Obs. 2 Most interesting properties are persistent.

e.g. 
Once a hashlock is opened, it remains opened. 
Once a secret is revealed on a blockchain, it remains
revealed.

Obs. 3 “Bob knows chain Y has something.”

Obs. 1 Properties dependent on
local states. 
→ Kripke Models

¬□p

¬p
p

□p

Obs. 2 Most interesting
properties are persistent.

Kripke models with persistent properties 〜 
model of intuitionistic logic

p

p

¬p

¬pp ××

tim
e

Obs. 3 “Bob knows chain Y
has something.”
The logic needs epistemic modality.

KYk

k

tim
e

KBKYkfB

fY
Design choice [Hirai, LPAR-16]: 
identify epistemic modality with
communication

fY

fB

Some valid formulas
KYk

k

fYfY
KYk ⊃ KYKYk

KYk

k

fY
KYk ⊃ k

only consider models where fY is
idempotent

only consider models where fY
points to the past 
(and all formulas are persistent)

Features of a hash lock

Ka'. Such situation typically occurs when a sends a message from state fa(w)
and the message arrives in state w. We assume such messages contain all current
knowledge of a at fa(w).

We consider any fa(w) as a local state of a and thus fa(fa(w)) is always equal
to fa(w). As a result, Ka' and KaKa' are always equivalent (so the property
“positive introspection” holds.

Our models can distinguish (a) asynchronous round-trip between Alice and
Bob from (b) synchronous communication between them (Fig. 2). In the asyn-
chronous case, if fAlicefBobfAlice(v) satisfies ', v satisfies KAliceKBobKAlice' but
not necessarily KAliceKBobKAliceKBob'. In the synchronous case, if w satisfies
', w also satisfies KAliceKBob · · ·KBob' with any repetition of KAlice and KBob.

Fig. 2. Kripke models showing (a) asynchronous round-trip and (b) synchronous com-
munication between Alice and Bob. Circles represent the states of models. In (a), the
state v contains Bob’s message from fBob(v), which in turn contains Alice’s message
from fAlicefBob(v).

3 Common Assumptions

3.1 For the Hashlock on Blockchain X

The cross-chain atomic swap (Fig. 1) is a protocol based on a primitive called
“a hashlock.” We need to specify the hashlocks using logical formulas.

The most relevant property is a hashlock’s ability to settle payments. After
a finite amount of time, a hashlock is able to dictate whether the locked fund
already belongs to Bob or never. Concretely on blockchain X, after two days,
either Bob has obtained the fund and the secret has been revealed (BX ^ k) or
Bob will never get the fund (¬BX).

KX(D2 � ((BX ^ k) _ ¬BX)). (X-live1)

A hashlock can be unlocked using a secret. On blockchain X, if two days have
not passed yet, if Bob provides the secret (KBobk), Bob obtains the fund (BX).

KX(D2 _ (KBobk � BX)). (X-live2)

Ka'. Such situation typically occurs when a sends a message from state fa(w)
and the message arrives in state w. We assume such messages contain all current
knowledge of a at fa(w).

We consider any fa(w) as a local state of a and thus fa(fa(w)) is always equal
to fa(w). As a result, Ka' and KaKa' are always equivalent (so the property
“positive introspection” holds.

Our models can distinguish (a) asynchronous round-trip between Alice and
Bob from (b) synchronous communication between them (Fig. 2). In the asyn-
chronous case, if fAlicefBobfAlice(v) satisfies ', v satisfies KAliceKBobKAlice' but
not necessarily KAliceKBobKAliceKBob'. In the synchronous case, if w satisfies
', w also satisfies KAliceKBob · · ·KBob' with any repetition of KAlice and KBob.

Fig. 2. Kripke models showing (a) asynchronous round-trip and (b) synchronous com-
munication between Alice and Bob. Circles represent the states of models. In (a), the
state v contains Bob’s message from fBob(v), which in turn contains Alice’s message
from fAlicefBob(v).

3 Common Assumptions

3.1 For the Hashlock on Blockchain X

The cross-chain atomic swap (Fig. 1) is a protocol based on a primitive called
“a hashlock.” We need to specify the hashlocks using logical formulas.

The most relevant property is a hashlock’s ability to settle payments. After
a finite amount of time, a hashlock is able to dictate whether the locked fund
already belongs to Bob or never. Concretely on blockchain X, after two days,
either Bob has obtained the fund and the secret has been revealed (BX ^ k) or
Bob will never get the fund (¬BX).

KX(D2 � ((BX ^ k) _ ¬BX)). (X-live1)

A hashlock can be unlocked using a secret. On blockchain X, if two days have
not passed yet, if Bob provides the secret (KBobk), Bob obtains the fund (BX).

KX(D2 _ (KBobk � BX)). (X-live2)

Here, we could not say (¬D2) � · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX � KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 � ((AY ^ k) _ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 _ (KAlicek � AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY � KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 � D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 � ((AY ^ BX) _ ((¬AY) ^ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

Ka'. Such situation typically occurs when a sends a message from state fa(w)
and the message arrives in state w. We assume such messages contain all current
knowledge of a at fa(w).

We consider any fa(w) as a local state of a and thus fa(fa(w)) is always equal
to fa(w). As a result, Ka' and KaKa' are always equivalent (so the property
“positive introspection” holds.

Our models can distinguish (a) asynchronous round-trip between Alice and
Bob from (b) synchronous communication between them (Fig. 2). In the asyn-
chronous case, if fAlicefBobfAlice(v) satisfies ', v satisfies KAliceKBobKAlice' but
not necessarily KAliceKBobKAliceKBob'. In the synchronous case, if w satisfies
', w also satisfies KAliceKBob · · ·KBob' with any repetition of KAlice and KBob.

Fig. 2. Kripke models showing (a) asynchronous round-trip and (b) synchronous com-
munication between Alice and Bob. Circles represent the states of models. In (a), the
state v contains Bob’s message from fBob(v), which in turn contains Alice’s message
from fAlicefBob(v).

3 Common Assumptions

3.1 For the Hashlock on Blockchain X

The cross-chain atomic swap (Fig. 1) is a protocol based on a primitive called
“a hashlock.” We need to specify the hashlocks using logical formulas.

The most relevant property is a hashlock’s ability to settle payments. After
a finite amount of time, a hashlock is able to dictate whether the locked fund
already belongs to Bob or never. Concretely on blockchain X, after two days,
either Bob has obtained the fund and the secret has been revealed (BX ^ k) or
Bob will never get the fund (¬BX).

KX(D2 � ((BX ^ k) _ ¬BX)). (X-live1)

A hashlock can be unlocked using a secret. On blockchain X, if two days have
not passed yet, if Bob provides the secret (KBobk), Bob obtains the fund (BX).

KX(D2 _ (KBobk � BX)). (X-live2)

Ka'. Such situation typically occurs when a sends a message from state fa(w)
and the message arrives in state w. We assume such messages contain all current
knowledge of a at fa(w).

We consider any fa(w) as a local state of a and thus fa(fa(w)) is always equal
to fa(w). As a result, Ka' and KaKa' are always equivalent (so the property
“positive introspection” holds.

Our models can distinguish (a) asynchronous round-trip between Alice and
Bob from (b) synchronous communication between them (Fig. 2). In the asyn-
chronous case, if fAlicefBobfAlice(v) satisfies ', v satisfies KAliceKBobKAlice' but
not necessarily KAliceKBobKAliceKBob'. In the synchronous case, if w satisfies
', w also satisfies KAliceKBob · · ·KBob' with any repetition of KAlice and KBob.

Fig. 2. Kripke models showing (a) asynchronous round-trip and (b) synchronous com-
munication between Alice and Bob. Circles represent the states of models. In (a), the
state v contains Bob’s message from fBob(v), which in turn contains Alice’s message
from fAlicefBob(v).

3 Common Assumptions

3.1 For the Hashlock on Blockchain X

The cross-chain atomic swap (Fig. 1) is a protocol based on a primitive called
“a hashlock.” We need to specify the hashlocks using logical formulas.

The most relevant property is a hashlock’s ability to settle payments. After
a finite amount of time, a hashlock is able to dictate whether the locked fund
already belongs to Bob or never. Concretely on blockchain X, after two days,
either Bob has obtained the fund and the secret has been revealed (BX ^ k) or
Bob will never get the fund (¬BX).

KX(D2 � ((BX ^ k) _ ¬BX)). (X-live1)

A hashlock can be unlocked using a secret. On blockchain X, if two days have
not passed yet, if Bob provides the secret (KBobk), Bob obtains the fund (BX).

KX(D2 _ (KBobk � BX)). (X-live2)

Ka'. Such situation typically occurs when a sends a message from state fa(w)
and the message arrives in state w. We assume such messages contain all current
knowledge of a at fa(w).

We consider any fa(w) as a local state of a and thus fa(fa(w)) is always equal
to fa(w). As a result, Ka' and KaKa' are always equivalent (so the property
“positive introspection” holds.

Our models can distinguish (a) asynchronous round-trip between Alice and
Bob from (b) synchronous communication between them (Fig. 2). In the asyn-
chronous case, if fAlicefBobfAlice(v) satisfies ', v satisfies KAliceKBobKAlice' but
not necessarily KAliceKBobKAliceKBob'. In the synchronous case, if w satisfies
', w also satisfies KAliceKBob · · ·KBob' with any repetition of KAlice and KBob.

Fig. 2. Kripke models showing (a) asynchronous round-trip and (b) synchronous com-
munication between Alice and Bob. Circles represent the states of models. In (a), the
state v contains Bob’s message from fBob(v), which in turn contains Alice’s message
from fAlicefBob(v).

3 Common Assumptions

3.1 For the Hashlock on Blockchain X

The cross-chain atomic swap (Fig. 1) is a protocol based on a primitive called
“a hashlock.” We need to specify the hashlocks using logical formulas.

The most relevant property is a hashlock’s ability to settle payments. After
a finite amount of time, a hashlock is able to dictate whether the locked fund
already belongs to Bob or never. Concretely on blockchain X, after two days,
either Bob has obtained the fund and the secret has been revealed (BX ^ k) or
Bob will never get the fund (¬BX).

KX(D2 � ((BX ^ k) _ ¬BX)). (X-live1)

A hashlock can be unlocked using a secret. On blockchain X, if two days have
not passed yet, if Bob provides the secret (KBobk), Bob obtains the fund (BX).

KX(D2 _ (KBobk � BX)). (X-live2)

two days have passed
Bob has opened the hashlock on chain X
Bob never opens the hashlock on chain X

We have defined a set of infinitely many logical formulas where ' is replaced
with arbitrary logical formulas.

When blockchain Y contains records at the two-day moment, it also contains
witnesses from the one-and-quarter-day moment, saying that the hashlock had
already been settled; either Alice had used the secret to unlock the hashock, or
Alice would never unlock it:

KY(D2 � K1 1
4
((AY ^ k) _ (¬AY))). (Y-timed1)

Finally, if Bob ever gets to know the secret, Alice should have opened the
hashlock. In other words, Alice does not leak the secret without getting the fund
in blockchain Y:

KBobk � AY. (Alice-opsec)

Blockchain X at one-and-half days should allow Bob to unlock the hashlock:

KXK1 1
2
((KBobk) � BX). (X-live1 1

2)

When we impose those formulas at every state, the desired weak binary
outcome property holds.

Proposition 5 If a model M satisfies (X-live2), (Y-timed1), (Alice-opsec), (Bob-
has-chance), (X-live1 1

2) at every state, M also satisfies (Weak-Binary-Outcome)
at every state.

Before proving this proposition, we need some preparations.

Proposition 6 (Kripke monotinicity [14]) M,w |= ' and w � w0 imply
M,w0 |= '.

Proof. By structural induciton on '. ut

Proposition 7 Any model M at any state w satisfies any (Ka') � '.

Proof. For any w0 with w0 ⌫ w, we assume M,w0 |= Ka' and claim M,w0 |= '.
By the semantics of Ka, fa(w0) satisfies '. By the definition of a model, fa(w0) �
w0 holds. By Prop. 6, w0 satisfies '. ut

With these two auxiliary propositions, we are ready to continue.

Proof (of Prop. 5). We take an arbitrary state v in such a model M . And we take
an arbitrary state w with w ⌫ v. We assume M,w |= KXD2 and M,w |= KYD2.
It is enough to show that w satisfies (AY ^ BX) _ ((¬AY) ^ (¬BX)).

Since w satisfies KYD2, fY(w) satisfies D2. Since w satisfies (Y-timed1),
fY(w) satisfies D2 � K1 1

4
((AY ^ k) _ (¬AY)). So fY(w) satisfies K1 1

4
((AY ^

k) _ (¬AY)). That is to say w satisfies KYK1 1
4
((AY ^ k) _ (¬AY)). By (Bob-

has-chance), w also satisfies KXK1 1
2
KBobKYK1 1

4
((AY ^ k) _ (¬AY)). In other

words, f1 1
4
fYfBobf1 1

2
fX(w) satisfies AY ^ k (the positive case) or ¬AY (the

negative case).

secret

Another hashlock

Here, we could not say (¬D2) � · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX � KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 � ((AY ^ k) _ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 _ (KAlicek � AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY � KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 � D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 � ((AY ^ BX) _ ((¬AY) ^ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

Here, we could not say (¬D2) � · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX � KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 � ((AY ^ k) _ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 _ (KAlicek � AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY � KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 � D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 � ((AY ^ BX) _ ((¬AY) ^ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

Here, we could not say (¬D2) � · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX � KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 � ((AY ^ k) _ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 _ (KAlicek � AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY � KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 � D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 � ((AY ^ BX) _ ((¬AY) ^ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

and a timing constraint

Here, we could not say (¬D2) � · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX � KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 � ((AY ^ k) _ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 _ (KAlicek � AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY � KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 � D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 � ((AY ^ BX) _ ((¬AY) ^ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

These don’t imply binary
outcomes.

Here, we could not say (¬D2) � · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX � KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 � ((AY ^ k) _ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 _ (KAlicek � AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY � KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 � D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 � ((AY ^ BX) _ ((¬AY) ^ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

Proof. By constructing a model M and a state w (Fig. 3) so that M satisfies all
assumptions at every state but w does not satisfy (Binary-Outcome). The state
w in Fig. 3 does not satisfy ¬AY because there is a future state satisfying AY. On
the other hand, w does not satisfy AY either. So, without looking at BX or ¬BX,
we can conclude that w does not satisfy (AY^BX)_ ((¬AY)^ (¬BX)). However,
w does satisfy D2. So w does not satisfy the implication (Binary-Outcome). ut

Informally speaking, on state w in Fig. 3, two days have passed but neither
blockchain has produced visible blocks since the beginning of the protocol.

D2, D1

AY, k,
D2, D1

w

fYfX

≼

Fig. 3. A model M and a state w for the proof of Prop. 3. Three circles represent the
three states of M . Each function fa is identity whenever not explicitly shown. The �
relation holds whenever two states are connected through dashed lines and arrows in
a bottom-to-top way.

4.2 A Failure on a Weaker Binary Outcome

We can require that both blockchains contain blocks produced after two days
have passed:

KXD2 � (KYD2 � ((AY ^ BX) _ ((¬AY) ^ ¬BX))). (Weak-Binary-Outcome)

This new proposition is strictly weaker than the old one. All states satisfying
(Binary-Outcome) also satisfy (Weak-Binary-Outcome), but the inverse is not al-
ways the case. For instance, state w in Fig. 3 does not satisfy (Binary-Outcome),
but it satisfies (Weak-Binary-Outcome).

Proposition 4 There is a model that satisfies (Y-live1), (Y-live2), (Y-safe),
(X-live1), (X-live2), (X-safe) and (Days) at all states, but does not satisfy (Weak-
Binary-Outcome) at some states.

Proof. By constructing a model M and a state w (Fig. 3) so that M satisfies all
assumptions at every state but w does not satisfy (Binary-Outcome). The state
w in Fig. 3 does not satisfy ¬AY because there is a future state satisfying AY. On
the other hand, w does not satisfy AY either. So, without looking at BX or ¬BX,
we can conclude that w does not satisfy (AY^BX)_ ((¬AY)^ (¬BX)). However,
w does satisfy D2. So w does not satisfy the implication (Binary-Outcome). ut

Informally speaking, on state w in Fig. 3, two days have passed but neither
blockchain has produced visible blocks since the beginning of the protocol.

Fig. 3. A model M and a state w for the proof of Prop. 3. Three circles represent the
three states of M . Each function fa is identity whenever not explicitly shown. The �
relation holds whenever two states are connected through dashed lines and arrows in
a bottom-to-top way.

4.2 A Failure on a Weaker Binary Outcome

We can require that both blockchains contain blocks produced after two days
have passed:

KXD2 � (KYD2 � ((AY ^ BX) _ ((¬AY) ^ ¬BX))). (Weak-Binary-Outcome)

This new proposition is strictly weaker than the old one. All states satisfying
(Binary-Outcome) also satisfy (Weak-Binary-Outcome), but the inverse is not al-
ways the case. For instance, state w in Fig. 3 does not satisfy (Binary-Outcome),
but it satisfies (Weak-Binary-Outcome).

Proposition 4 There is a model that satisfies (Y-live1), (Y-live2), (Y-safe),
(X-live1), (X-live2), (X-safe) and (Days) at all states, but does not satisfy (Weak-
Binary-Outcome) at some states.

Ka'. Such situation typically occurs when a sends a message from state fa(w)
and the message arrives in state w. We assume such messages contain all current
knowledge of a at fa(w).

We consider any fa(w) as a local state of a and thus fa(fa(w)) is always equal
to fa(w). As a result, Ka' and KaKa' are always equivalent (so the property
“positive introspection” holds.

Our models can distinguish (a) asynchronous round-trip between Alice and
Bob from (b) synchronous communication between them (Fig. 2). In the asyn-
chronous case, if fAlicefBobfAlice(v) satisfies ', v satisfies KAliceKBobKAlice' but
not necessarily KAliceKBobKAliceKBob'. In the synchronous case, if w satisfies
', w also satisfies KAliceKBob · · ·KBob' with any repetition of KAlice and KBob.

Fig. 2. Kripke models showing (a) asynchronous round-trip and (b) synchronous com-
munication between Alice and Bob. Circles represent the states of models. In (a), the
state v contains Bob’s message from fBob(v), which in turn contains Alice’s message
from fAlicefBob(v).

3 Common Assumptions

3.1 For the Hashlock on Blockchain X

The cross-chain atomic swap (Fig. 1) is a protocol based on a primitive called
“a hashlock.” We need to specify the hashlocks using logical formulas.

The most relevant property is a hashlock’s ability to settle payments. After
a finite amount of time, a hashlock is able to dictate whether the locked fund
already belongs to Bob or never. Concretely on blockchain X, after two days,
either Bob has obtained the fund and the secret has been revealed (BX ^ k) or
Bob will never get the fund (¬BX).

KX(D2 � ((BX ^ k) _ ¬BX)). (X-live1)

A hashlock can be unlocked using a secret. On blockchain X, if two days have
not passed yet, if Bob provides the secret (KBobk), Bob obtains the fund (BX).

KX(D2 _ (KBobk � BX)). (X-live2)

Ka'. Such situation typically occurs when a sends a message from state fa(w)
and the message arrives in state w. We assume such messages contain all current
knowledge of a at fa(w).

We consider any fa(w) as a local state of a and thus fa(fa(w)) is always equal
to fa(w). As a result, Ka' and KaKa' are always equivalent (so the property
“positive introspection” holds.

Our models can distinguish (a) asynchronous round-trip between Alice and
Bob from (b) synchronous communication between them (Fig. 2). In the asyn-
chronous case, if fAlicefBobfAlice(v) satisfies ', v satisfies KAliceKBobKAlice' but
not necessarily KAliceKBobKAliceKBob'. In the synchronous case, if w satisfies
', w also satisfies KAliceKBob · · ·KBob' with any repetition of KAlice and KBob.

Fig. 2. Kripke models showing (a) asynchronous round-trip and (b) synchronous com-
munication between Alice and Bob. Circles represent the states of models. In (a), the
state v contains Bob’s message from fBob(v), which in turn contains Alice’s message
from fAlicefBob(v).

3 Common Assumptions

3.1 For the Hashlock on Blockchain X

The cross-chain atomic swap (Fig. 1) is a protocol based on a primitive called
“a hashlock.” We need to specify the hashlocks using logical formulas.

The most relevant property is a hashlock’s ability to settle payments. After
a finite amount of time, a hashlock is able to dictate whether the locked fund
already belongs to Bob or never. Concretely on blockchain X, after two days,
either Bob has obtained the fund and the secret has been revealed (BX ^ k) or
Bob will never get the fund (¬BX).

KX(D2 � ((BX ^ k) _ ¬BX)). (X-live1)

A hashlock can be unlocked using a secret. On blockchain X, if two days have
not passed yet, if Bob provides the secret (KBobk), Bob obtains the fund (BX).

KX(D2 _ (KBobk � BX)). (X-live2)

Here, we could not say (¬D2) � · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX � KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 � ((AY ^ k) _ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 _ (KAlicek � AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY � KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 � D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 � ((AY ^ BX) _ ((¬AY) ^ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

Here, we could not say (¬D2) � · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX � KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 � ((AY ^ k) _ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 _ (KAlicek � AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY � KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 � D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 � ((AY ^ BX) _ ((¬AY) ^ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

Here, we could not say (¬D2) � · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX � KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 � ((AY ^ k) _ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 _ (KAlicek � AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY � KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 � D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 � ((AY ^ BX) _ ((¬AY) ^ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

Here, we could not say (¬D2) � · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX � KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 � ((AY ^ k) _ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 _ (KAlicek � AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY � KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 � D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 � ((AY ^ BX) _ ((¬AY) ^ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

Here, we could not say (¬D2) � · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX � KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 � ((AY ^ k) _ ¬AY)). (Y-live1)

Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 _ (KAlicek � AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY � KYk. (Y-safe)

3.3 For the temporal ordering of day one and day two

If two days have passed, one day has already passed, too:

D2 � D1. (Days)

4 Reasoning about Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 � ((AY ^ BX) _ ((¬AY) ^ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3 There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

Then Require Blocks on
Both Chains after Day 2

Proof. By constructing a model M and a state w (Fig. 3) so that M satisfies all
assumptions at every state but w does not satisfy (Binary-Outcome). The state
w in Fig. 3 does not satisfy ¬AY because there is a future state satisfying AY. On
the other hand, w does not satisfy AY either. So, without looking at BX or ¬BX,
we can conclude that w does not satisfy (AY^BX)_ ((¬AY)^ (¬BX)). However,
w does satisfy D2. So w does not satisfy the implication (Binary-Outcome). ut

Informally speaking, on state w in Fig. 3, two days have passed but neither
blockchain has produced visible blocks since the beginning of the protocol.

Fig. 3. A model M and a state w for the proof of Prop. 3. Three circles represent the
three states of M . Each function fa is identity whenever not explicitly shown. The �
relation holds whenever two states are connected through dashed lines and arrows in
a bottom-to-top way.

4.2 A Failure on a Weaker Binary Outcome

We can require that both blockchains contain blocks produced after two days
have passed:

KXD2 � (KYD2 � ((AY ^ BX) _ ((¬AY) ^ ¬BX))). (Weak-Binary-Outcome)

This new proposition is strictly weaker than the old one. All states satisfying
(Binary-Outcome) also satisfy (Weak-Binary-Outcome), but the inverse is not al-
ways the case. For instance, state w in Fig. 3 does not satisfy (Binary-Outcome),
but it satisfies (Weak-Binary-Outcome).

Proposition 4 There is a model that satisfies (Y-live1), (Y-live2), (Y-safe),
(X-live1), (X-live2), (X-safe) and (Days) at all states, but does not satisfy (Weak-
Binary-Outcome) at some states.

Proof. By constructing a model M and a state w in it (Fig. 4). ut
Fig. 4 demonstrates a lack of communication between the two chains. More
specifically, although the hashlock on blockchain Y is unlocked, Bob fails to use
the secret revealed on blockchain Y to unlock the hashlock on blockchain X.

D1, D2,
AY, ¬BX,

k

D1, D2,
¬BX

D1, D2,
AY, k

D1

w

fX

fX

fY

fY

≼ ≼

Fig. 4. A model M and a state w for proving Prop. 4. Five circles represent the five
states of M . Each function fa is identity whenever not explicitly shown. The � relation
holds whenever two states are reachable following dashed lines and arrows in a bottom-
to-top way.

4.3 Enough Assumptions for Atomicity

To remedy the situation, we need to assume certain communication between the
two chains. Especially, contents on blockchain Y should be read by Bob and
transmitted over to blockchain X in a timely manner.

In order to talk about the timing restrictions, we add two more agents in
the language: 1 1

4 and 1 1
2 that represent “1 1

4 (resp. 1 1
2) days from the beginning

of protocol execution.” In the models, f1 1
2
(w) is equal to w when the wall-

clock time at w is less than one-and-half days from the beginning of protocol
execution. Otherwise, f1 1

2
(w) is a previous state where the wall-clock time is less

than one-and-half days from the beginning.
Now we can spell out assumptions; whenever blockchain Y has a record

at one-and-quarter days, Bob should have read and submitted the record to
blockchain X by one-and-half days:

(KYK1 1
4
') � KXK1 1

2
KBobKYK1 1

4
'. (Bob-has-chance)

X timed out though transfer
occurred on Y

X after two days 
knows nothing about 

Y after one day.

What makes it work?

Proof. By constructing a model M and a state w in it (Fig. 4). ut
Fig. 4 demonstrates a lack of communication between the two chains. More
specifically, although the hashlock on blockchain Y is unlocked, Bob fails to use
the secret revealed on blockchain Y to unlock the hashlock on blockchain X.

Fig. 4. A model M and a state w for proving Prop. 4. Five circles represent the five
states of M . Each function fa is identity whenever not explicitly shown. The � relation
holds whenever two states are reachable following dashed lines and arrows in a bottom-
to-top way.

4.3 Enough Assumptions for Atomicity

To remedy the situation, we need to assume certain communication between the
two chains. Especially, contents on blockchain Y should be read by Bob and
transmitted over to blockchain X in a timely manner.

In order to talk about the timing restrictions, we add two more agents in
the language: 1 1

4 and 1 1
2 that represent “1 1

4 (resp. 1 1
2) days from the beginning

of protocol execution.” In the models, f1 1
2
(w) is equal to w when the wall-

clock time at w is less than one-and-half days from the beginning of protocol
execution. Otherwise, f1 1

2
(w) is a previous state where the wall-clock time is less

than one-and-half days from the beginning.
Now we can spell out assumptions; whenever blockchain Y has a record

at one-and-quarter days, Bob should have read and submitted the record to
blockchain X by one-and-half days:

(KYK1 1
4
') � KXK1 1

2
KBobKYK1 1

4
'. (Bob-has-chance)

We have defined a set of infinitely many logical formulas where ' is replaced
with arbitrary logical formulas.

When blockchain Y contains records at the two-day moment, it also contains
witnesses from the one-and-quarter-day moment, saying that the hashlock had
already been settled; either Alice had used the secret to unlock the hashock, or
Alice would never unlock it:

KY(D2 � K1 1
4
((AY ^ k) _ (¬AY))). (Y-timed1)

Finally, if Bob ever gets to know the secret, Alice should have opened the
hashlock. In other words, Alice does not leak the secret without getting the fund
in blockchain Y:

KBobk � AY. (Alice-opsec)

Blockchain X at one-and-half days should allow Bob to unlock the hashlock:

KXK1 1
2
((KBobk) � BX). (X-live1 1

2)

When we impose those formulas at every state, the desired weak binary
outcome property holds.

Proposition 5 If a model M satisfies (X-live2), (Y-timed1), (Alice-opsec), (Bob-
has-chance), (X-live1 1

2) at every state, M also satisfies (Weak-Binary-Outcome)
at every state.

Before proving this proposition, we need some preparations.

Proposition 6 (Kripke monotinicity [14]) M,w |= ' and w � w0 imply
M,w0 |= '.

Proof. By structural induciton on '. ut

Proposition 7 Any model M at any state w satisfies any (Ka') � '.

Proof. For any w0 with w0 ⌫ w, we assume M,w0 |= Ka' and claim M,w0 |= '.
By the semantics of Ka, fa(w0) satisfies '. By the definition of a model, fa(w0) �
w0 holds. By Prop. 6, w0 satisfies '. ut

With these two auxiliary propositions, we are ready to continue.

Proof (of Prop. 5). We take an arbitrary state v in such a model M . And we take
an arbitrary state w with w ⌫ v. We assume M,w |= KXD2 and M,w |= KYD2.
It is enough to show that w satisfies (AY ^ BX) _ ((¬AY) ^ (¬BX)).

Since w satisfies KYD2, fY(w) satisfies D2. Since w satisfies (Y-timed1),
fY(w) satisfies D2 � K1 1

4
((AY ^ k) _ (¬AY)). So fY(w) satisfies K1 1

4
((AY ^

k) _ (¬AY)). That is to say w satisfies KYK1 1
4
((AY ^ k) _ (¬AY)). By (Bob-

has-chance), w also satisfies KXK1 1
2
KBobKYK1 1

4
((AY ^ k) _ (¬AY)). In other

words, f1 1
4
fYfBobf1 1

2
fX(w) satisfies AY ^ k (the positive case) or ¬AY (the

negative case).

We have defined a set of infinitely many logical formulas where ' is replaced
with arbitrary logical formulas.

When blockchain Y contains records at the two-day moment, it also contains
witnesses from the one-and-quarter-day moment, saying that the hashlock had
already been settled; either Alice had used the secret to unlock the hashock, or
Alice would never unlock it:

KY(D2 � K1 1
4
((AY ^ k) _ (¬AY))). (Y-timed1)

Finally, if Bob ever gets to know the secret, Alice should have opened the
hashlock. In other words, Alice does not leak the secret without getting the fund
in blockchain Y:

KBobk � AY. (Alice-opsec)

Blockchain X at one-and-half days should allow Bob to unlock the hashlock:

KXK1 1
2
((KBobk) � BX). (X-live1 1

2)

When we impose those formulas at every state, the desired weak binary
outcome property holds.

Proposition 5 If a model M satisfies (X-live2), (Y-timed1), (Alice-opsec), (Bob-
has-chance), (X-live1 1

2) at every state, M also satisfies (Weak-Binary-Outcome)
at every state.

Before proving this proposition, we need some preparations.

Proposition 6 (Kripke monotinicity [14]) M,w |= ' and w � w0 imply
M,w0 |= '.

Proof. By structural induciton on '. ut

Proposition 7 Any model M at any state w satisfies any (Ka') � '.

Proof. For any w0 with w0 ⌫ w, we assume M,w0 |= Ka' and claim M,w0 |= '.
By the semantics of Ka, fa(w0) satisfies '. By the definition of a model, fa(w0) �
w0 holds. By Prop. 6, w0 satisfies '. ut

With these two auxiliary propositions, we are ready to continue.

Proof (of Prop. 5). We take an arbitrary state v in such a model M . And we take
an arbitrary state w with w ⌫ v. We assume M,w |= KXD2 and M,w |= KYD2.
It is enough to show that w satisfies (AY ^ BX) _ ((¬AY) ^ (¬BX)).

Since w satisfies KYD2, fY(w) satisfies D2. Since w satisfies (Y-timed1),
fY(w) satisfies D2 � K1 1

4
((AY ^ k) _ (¬AY)). So fY(w) satisfies K1 1

4
((AY ^

k) _ (¬AY)). That is to say w satisfies KYK1 1
4
((AY ^ k) _ (¬AY)). By (Bob-

has-chance), w also satisfies KXK1 1
2
KBobKYK1 1

4
((AY ^ k) _ (¬AY)). In other

words, f1 1
4
fYfBobf1 1

2
fX(w) satisfies AY ^ k (the positive case) or ¬AY (the

negative case).

We have defined a set of infinitely many logical formulas where ' is replaced
with arbitrary logical formulas.

When blockchain Y contains records at the two-day moment, it also contains
witnesses from the one-and-quarter-day moment, saying that the hashlock had
already been settled; either Alice had used the secret to unlock the hashock, or
Alice would never unlock it:

KY(D2 � K1 1
4
((AY ^ k) _ (¬AY))). (Y-timed1)

Finally, if Bob ever gets to know the secret, Alice should have opened the
hashlock. In other words, Alice does not leak the secret without getting the fund
in blockchain Y:

KBobk � AY. (Alice-opsec)

Blockchain X at one-and-half days should allow Bob to unlock the hashlock:

KXK1 1
2
((KBobk) � BX). (X-live1 1

2)

When we impose those formulas at every state, the desired weak binary
outcome property holds.

Proposition 5 If a model M satisfies (X-live2), (Y-timed1), (Alice-opsec), (Bob-
has-chance), (X-live1 1

2) at every state, M also satisfies (Weak-Binary-Outcome)
at every state.

Before proving this proposition, we need some preparations.

Proposition 6 (Kripke monotinicity [14]) M,w |= ' and w � w0 imply
M,w0 |= '.

Proof. By structural induciton on '. ut

Proposition 7 Any model M at any state w satisfies any (Ka') � '.

Proof. For any w0 with w0 ⌫ w, we assume M,w0 |= Ka' and claim M,w0 |= '.
By the semantics of Ka, fa(w0) satisfies '. By the definition of a model, fa(w0) �
w0 holds. By Prop. 6, w0 satisfies '. ut

With these two auxiliary propositions, we are ready to continue.

Proof (of Prop. 5). We take an arbitrary state v in such a model M . And we take
an arbitrary state w with w ⌫ v. We assume M,w |= KXD2 and M,w |= KYD2.
It is enough to show that w satisfies (AY ^ BX) _ ((¬AY) ^ (¬BX)).

Since w satisfies KYD2, fY(w) satisfies D2. Since w satisfies (Y-timed1),
fY(w) satisfies D2 � K1 1

4
((AY ^ k) _ (¬AY)). So fY(w) satisfies K1 1

4
((AY ^

k) _ (¬AY)). That is to say w satisfies KYK1 1
4
((AY ^ k) _ (¬AY)). By (Bob-

has-chance), w also satisfies KXK1 1
2
KBobKYK1 1

4
((AY ^ k) _ (¬AY)). In other

words, f1 1
4
fYfBobf1 1

2
fX(w) satisfies AY ^ k (the positive case) or ¬AY (the

negative case).

Anything that reaches blockchain Y by 1 + 1/4 days also
reaches Bob, and chain X by 1 + 1/2 days.

By 2 days, blockchain Y sees, the hashlock on Y has
been open or timeout since 1 + 1/4 days.

By the time Bob gets the secret, Alice has opened the
hashlock on Y.

If chain X sees the secret signed by Bob by 1 + 1/2 days,
the hash lock opens on X.

Then it works somehow.

If a model satisfies (X-live2), (Y-timed1),
(Alice-opsec), (Bob-has-chance), (X-live
1+1/2) at every state,  
 
the model also satisfies (Weak-Binary-
Outcome) at every state.

Proof: reasoning on the
models or deductions?

I chose to reason about Kripke models directly

rather than using
Part A

(ax)
KbKa(KmKaϕ ⊃ KmKbψ) ⊢sc KbKa(KmKaϕ ⊃ KmKbψ)

(T)
KbKa(KmKaϕ ⊃ KmKbψ) ⊢ Ka(KmKaϕ ⊃ KmKbψ)

(ax)
KmKaϕ ⊢sc KmKaϕ

(ax)
KmKaϕ ⊃ KmKbψ ⊢sc KmKaϕ ⊃ KmKbψ

(⊃-E)
KmKaϕ, KmKaϕ ⊃ KmKbψ ⊢sc KmKbψ

(nec)
KaKmKaϕ, Ka(KmKaϕ ⊃ KmKbψ) ⊢sc KaKmKbψ

(⊃-I)
KaKmKaϕ ⊢sc Ka(KmKaϕ ⊃ KmKbψ) ⊃ KaKmKbψ

(⊃-E)
KbKa(KmKaϕ ⊃ KmKbψ), KaKmKaϕ ⊢sc KaKmKbψ

(⊃-I)
KbKa(KmKaϕ ⊃ KmKbψ) ⊢sc KaKmKaϕ ⊃ KaKmKbψ

(∨-I)
KbKa(KmKaϕ ⊃ KmKbψ) ⊢sc (KmKaϕ ⊃ KmKbψ) ∨ (KmKbψ ⊃ KmKaϕ)

Part B

(SC)
⊢sc (KmKaϕ ⊃ KmKbψ) ∨ (KmKbψ ⊃ KmKaϕ)

(nec)
⊢sc Ka

`
(KmKaϕ ⊃ KmKbψ) ∨ (KmKbψ ⊃ KmKaϕ)

´

(∨K)
⊢sc Ka(KmKaϕ ⊃ KmKbψ) ∨ Ka(KmKbψ ⊃ KmKaϕ)

(nec)
⊢sc Kb

`
Ka(KmKaϕ ⊃ KmKbψ) ∨ Ka(KmKbψ ⊃ KmKaϕ)

´

(∨K)
⊢sc KbKa(KmKaϕ ⊃ KmKbψ) ∨ KbKa(KmKbψ ⊃ KmKaϕ)

.

.

. Part A

.

.

. (same as left, swap (a, b) and (ϕ, ψ))
(∨E)

⊢sc (KaKmKaϕ ⊃ KaKmKbψ) ∨ (KbKmKbψ ⊃ KbKmKaϕ)

Part C

(ax)
KaKmKaϕ ⊢sc KaKmKaϕ

(ax)
KaKmKaϕ ⊃ KaKmKbψ ⊢sc KaKmKaϕ ⊃ KaKmKbψ

(⊃-E)
KaKmKaϕ ⊃ KaKmKbψ, KaKmKaϕ ⊢sc KaKmKbψ

(ax)
KmKbψ ⊢sc KmKbψ

(T)
KmKbψ ⊢sc Kbψ

(nec)
KaKmKbψ ⊢sc KaKbψ

(⊃-I)
⊢sc KaKmKbψ ⊃ KaKbψ

(⊃-E)
KaKmKaϕ ⊃ KaKmKaψ, KaKmKaϕ ⊢sc KaKbψ

Main Part

.

.

. Part B

(KaKmKaϕ ⊃ KaKmKbψ) ∨ (KbKmKbψ ⊃ KbKmKaϕ)

.

.

. Part C

KmKaϕ ⊃ KmKbψ, KaKmKaϕ ⊢sc KaKbψ

KmKaϕ ⊃ KmKbψ, KaKmKaϕ ⊢sc KaKbψ ∨ KbKaϕ

.

.

. (same as left, swap (a, b) and (ϕ, ψ))
∨E

KaKmKaϕ, KbKmKbψ ⊢sc KaKbψ ∨ KbKaϕ

Figure 3.1: A proof diagram for an example theorem in ⊢sc.

42

because, defining a deduction system takes space. 
and the formal proof is not smaller than the English proof
on models.

Discussion
“1 + 1/2 days” and “1 + 1/4 days” are arbitrary.

Failed to capture probabilistic aspects.

Finality of blockchains are hidden in “ …” being
persistent.

Moreover, Bob never mistakenly believes finality.

Players’ strategies are missing.

Proof. By constructing a model M and a state w in it (Fig. 4). ut
Fig. 4 demonstrates a lack of communication between the two chains. More
specifically, although the hashlock on blockchain Y is unlocked, Bob fails to use
the secret revealed on blockchain Y to unlock the hashlock on blockchain X.

Fig. 4. A model M and a state w for proving Prop. 4. Five circles represent the five
states of M . Each function fa is identity whenever not explicitly shown. The � relation
holds whenever two states are reachable following dashed lines and arrows in a bottom-
to-top way.

4.3 Enough Assumptions for Atomicity

To remedy the situation, we need to assume certain communication between the
two chains. Especially, contents on blockchain Y should be read by Bob and
transmitted over to blockchain X in a timely manner.

In order to talk about the timing restrictions, we add two more agents in
the language: 1 1

4 and 1 1
2 that represent “1 1

4 (resp. 1 1
2) days from the beginning

of protocol execution.” In the models, f1 1
2
(w) is equal to w when the wall-

clock time at w is less than one-and-half days from the beginning of protocol
execution. Otherwise, f1 1

2
(w) is a previous state where the wall-clock time is less

than one-and-half days from the beginning.
Now we can spell out assumptions; whenever blockchain Y has a record

at one-and-quarter days, Bob should have read and submitted the record to
blockchain X by one-and-half days:

(KYK1 1
4
') � KXK1 1

2
KBobKYK1 1

4
'. (Bob-has-chance)

