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Building a family of products
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Building a family of products

family of products = product line
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Software Product Family

How to deal with software product lines?

◮ how to model software product lines?

◮ how to verify software product lines?

◮ how to model software product lines to allow their verification?
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Software Product Family

How to deal with software product lines?

◮ how to model software product lines?

◮ how to verify software product lines?

◮ how to model software product lines to allow their verification?

◮ one system model incorporating all products

◮ PL-CCS: product line extension of Milner’s CCS [FMOODS’08]
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Software Product Family

Dijstra’72

If a program has to exist in two different versions, I would rather not regard

(the text of) the one program as a modification of (the text of) the other. It

would be much more attractive if the two different programs could, in some

sense or another, be viewed as, say, different children from a common

ancestor, where the ancestor represents a more or less abstract program,

embodying what the two versions have in common.
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Software Product Line

Definition [Clements&Northrop]

A software product line is a set of software intensive systems sharing a

common, managed set of features that satisfy the specific needs of a

particular market segment or mission and that are developed from a

common set of core assets.
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Software Product Line

Definition (Feature)

A feature is the ability of a product to cover a certain use case or meet a

certain customer need.

Feature Diagram

WiperSystem

manual mode interval mode

semi-automated fully automated

1..1
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Feature versus Product Line

Different views

◮ Feature: Customer view

◮ SPL: Technical view

◮ It is frequently impossible to map features independently to certain

technical properties (=core assets).

◮ Mapping features combinations to products is no homomorphism!
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Definition (Features to Products)

F : P → 2F is a feature function mapping products p ∈ P to features f ∈ F they

have.

Definition (Feasible Feature Combinations)

The set F ⊆ F is a feasible feature combination if ∃p ∈ P : F ⊆ F(p).
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The core (of PL-CCS)

Variability = Choice Points

wiper := wiper
1
⊕1 wiper

2
; sensor := sensor1 ⊕2 sensor2

Composition of assets

wiper‖sensor
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PL-CCS Semantics

Three semantics

◮ flat semantics
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PL-CCS Semantics

Three semantics

◮ flat semantics

◮ unfolded semantics

◮ configured-transitions semantics
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Flat Semantics

Definition (fully configured)

Given a well-formed PL-CCS program with N variants operators, we call a

corresponding configuration vector

θ ∈ {R, L, ?}N

fully configured if

θ ∈ {R, L}N

From a PL-CCS program to a set of CCS programs

config : P × {R, L, ?}N 7→ R

Definition (flat semantics)

[[Prog]]Flat =
{

[[V]]CCS | ∃θ : config(Prog, θ) = V
}
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Unfolded Semantics

Definition (PL-LTS)

A product-line transition system (PL-LTS) with N variants operators is a tuple

(S,A,∆, σ), where

◮ S is a (countably, possibly infinite) set of states,

◮ A is a set of actions, and

◮ ∆ is a finite set of transition relations of the form
α, ν
−−→⊆ S × S, where

α ∈ A, ν ∈ ×{R, L, ?}N,

◮ and σ ∈ S is the start state.
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From a PL-CCS program to a PL-LTS

SOS rules

P, ν
α, ν
−−→ P′, ν

C, ν
α, ν
−−→ P′, ν

, C
def
= P (constant definition)

α.P, ν
α, ν
−−→ P, ν

, for arbitrary ν ∈ {R, L, ?}N (prefix)

Pj, ν
α, ν
−−→ P′

j , ν

P1 + P2, ν
α, ν
−−→ P′

j , ν
, j ∈ {1, 2} (summation)

P, ν
α, ν
−−→ P′, ν

(P ‖ Q), ν
α, ν
−−→ (P′ ‖ Q), ν

(parallel composition (1) )

...
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Model Checking

Definition (Model Checking)

◮ Specification of system
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Model Checking

Definition (Model Checking)

◮ Specification of system given by logical formula ϕ

◮ Implementation of system given by Kripke structure K

◮ Question: Does the system meet its specification??

K |= ϕ

p

p

p

q

q

q

q

q

|= AG(EXtrue)
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Model Checking

Definition (Model Checking)

◮ Specification of system given by logical formula ϕ

◮ Implementation of system given by Kripke structure K

◮ Question: Does the system meet its specification??

K |= ϕ

Practical Definition

Model Checking is a powerful analysis tool

parameterized via a logical specification
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Model Checking

Definition (Model Checking)

◮ Specification of system given by logical formula ϕ

◮ Implementation of system given by Kripke structure K
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State Space

c©Moritz Hammer
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Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

◮ Specification of a property
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Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

◮ Specification of a property given by logical formula ϕ

◮ Multi-valued model of system(s) given by mv-Kripke structure K

◮ Question: To which extent does system meet its specification??

p : {1, 2}

{1, 2}

{1, 2}

{1, 2}

{1, 2}
{1, 2}

{1, 2}

{1, 2}

{1, 2} {1, 2}

{1}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {2}

p : {1, 2}
{1, 2}

|= AG(EXtrue)

Martin Leucker Dagstuhl 19/54



Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

◮ Specification of a property given by logical formula ϕ

◮ Multi-valued model of system(s) given by mv-Kripke structure K

◮ Question: To which extent does system meet its specification??

[[ϕ]]
K
= v

p : {1, 2}

{1, 2}

{1, 2}

{1, 2}

{1, 2}
{1, 2}

{1, 2}

{1, 2}

{1, 2} {1, 2}

{1}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {2}

p : {1, 2}
{1, 2}

|= AG(EXtrue)
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Thesis

Rational

Model Checking Product Lines is Multi-valued Model Checking
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However. . .

. . . there are different approaches

based on open system’s verification:

http://cs.brown.edu/~sk/Publications/Papers/Published/

lkf-verif-cc-features-open-sys/

and

http://cs.brown.edu/~sk/Publications/Papers/Published/

bfkv-param-int-open-sys-verif-prod-line/

but this is not considered here.

Martin Leucker Dagstuhl 21/54
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Lattices

Lattices

◮ lattice is a partially ordered set (L,⊑)

◮ where for each x, y ∈ L, there exists
◮ a unique greatest lower bound (glb) x ⊓ y, and
◮ a unique least upper bound (lub) x ⊔ y.

◮ bottom ⊥ top ⊤

◮ distributive iff

x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)

x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z)

◮ DeMorgan

¬¬x = x

◮ Boolean iff complete, distributive, and

x ⊔ ¬x = ⊤ x ⊓ ¬x = ⊥
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Examples

Lattices

⊤

⊥

(⊤,⊤)

(⊤,⊥)

(⊥,⊥)

{1, 2}

{1}

{∅}

{2}

({1, 2}, {1, 2})

({1, 2}, {1})

({1}, {1})

({1}, {∅})

({1, 2}, {∅})

({∅}, {∅})

({1, 2}, {2})

({2}, {2})

({2}, {∅})

Product Lines

(2N,⊆) – The powerset of all products
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Multi-valued Modal Kripke Structure

Definition (Multi-valued Kripke structure (mv-KS))

T = (S,R, L)

◮ S states

◮ R( . , . ) : S × S → L valuation function

◮ L : S → LP value of proposition
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Multi-valued µ-Calculus

Definition (mv-L
µ
—Syntax)

ϕ ::= true | false | q | ¬q | Z | ϕ ∨ ϕ | ϕ ∧ ϕ |

♦ϕ | �ϕ |

µZ.ϕ | νZ.ϕ
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Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f ] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f ]}
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Multi-valued Modal µ-Calculus

Theorem (Computation of Fixpoints, Tarski’55)

For all MMKS T with state set S there is an α ∈ Ord s.t. for all s ∈ S we have: if

[[ηZ.ϕ]]
ρ
(s) = x then Zα(s) = x.
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Model Checking

Theorem (Correctness of Model Checking)

For all PL-CCS programs Prog = (E ,P1), every configuration vector ν, and

formulae ϕ ∈ mv-Lµ, we have

[[config(Prog, ν)]]CCS |= ϕ iff ν ∈ ([[Prog]]CT |= ϕ)(P1)
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Practical Model Checking?

Similar stories. . .

◮ On-the-fly: Adapt Shoham&Grumberg’s game-based approach

◮ Symbolic MC: . . .

◮ CTL: As restrictions of µ-calculus, Chechik et al.

◮ Automata-based for mv-LTL: Checkik et al.

◮ More specific integration of notion of features in on-the-fly mc: Legay et

al.

◮ Bounded MC: . . .

◮ Abstraction: see next
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Two-valued Abstraction

Idea

Check smaller over-approximation of the system
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counter

example w

γ(w) ∈ C

false

refine

abstraction
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[Clarke, Grumberg, Jha, Lu, Veith’03] [Lakhnech, Bensalem, Berezin,

Owre:’01] [. . . ]
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Three-valued Abstraction

Idea

◮ Yields conservative results for both, TRUE and FALSE
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Three-valued Abstraction

Idea

◮ Yields conservative results for both, TRUE and FALSE

◮ Requires third value: Don’t know

◮ Check over-approximation and under-approximation of the system

◮ carried out for the µ-calculus in [Bruns, P. Godefroid’99]
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Three-valued Abstraction

p

p
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q

q

q
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Three-valued Abstraction

must/may transitions

p
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Three-valued Abstraction

p

p

p

q

q

q

q

q q,¬p
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CBAR

CBAR—Cause-based Abstraction Refinement

compute

abstrac-

tion A

A |= ϕ

true

false

compute

cause for ?

refine one

state/tran-

sition

yes

no

?
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CBAR

CBAR—Cause-based Abstraction Refinement

compute

abstrac-

tion A

A |= ϕ

true

false

compute

cause for ?

refine one

state/tran-

sition

yes

no

?

[Grumberg, Lange, L_, Shoham’07]
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Abstraction by joining states

Idea

s10

s11

s2

s3

s4

{1}

{1, 2}

{3}

{3, 4}

s′1

s′2

s′3

s′4

({1, 2}, {1})

({3/4},∅)

({3/4}, {3/4})
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The abstract lattice

Definition (op-lattice)

Let L be a de Morgan lattice. The lattice

Lop = ({(m1,m2) ∈ L × L | m1 ⊒ m2},⊓op,⊔op,¬op)

with the operations ⊓op, ⊔op, ¬op given by

(m1,m2) ⊓op (m
′
1,m

′
2) := (m1 ⊓ m′

1,m2 ⊓ m′
2)

(m1,m2) ⊔op (m
′
1,m

′
2) := (m1 ⊔ m′

1,m2 ⊔ m′
2)

¬op(m1,m2) := (¬m2,¬m1)

is called the optimistic-pessimistic lattice (op-lattice) for L.
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Examples

Lattices and op-Lattices

⊤

⊥

(⊤,⊤)

(⊤,⊥)

(⊥,⊥)

{1, 2}

{1}

{∅}

{2}

({1, 2}, {1, 2})

({1, 2}, {1})

({1}, {1})

({1}, {∅})

({1, 2}, {∅})

({∅}, {∅})

({1, 2}, {2})

({2}, {2})

({2}, {∅})

Martin Leucker Dagstuhl 39/54



Abstraction by Joining States

Definition (State Abstraction Operator)

We call the function absS [. . . ] by joining states according to the abstraction

complete function γ the state abstraction operator, where the set SA of abstract

states is implicitly given by γ, the lattice LA is the op-lattice of LC and

RA(sA, s
′
A) =





⊔

sC∈γ(sA)

⊔

s′
C
∈γ(s′

A
)

RC(sC, s
′
C) ,

l

sC∈γ(sA)

⊔

s′
C
∈γ(s′

A
)

RC(sC, s
′
C)





LA(sA, p) =





⊔

sC∈γ(sA)

LC(sC, p) ,
l

sC∈γ(sA)

L(sC, p)




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Abstraction by joining lattice elements

Idea

s10

s11

s2

s3

s4

{1}

{1, 2}

{3}

{3, 4}

s′1

s′2

s′3

s′4

({1, 2}, {1})

({3/4},∅)

({3/4}, {3/4})

Martin Leucker Dagstuhl 41/54



Abstraction of lattices

Definition (Galois Connection)

Let L1 and L2 be lattices. A pair (↑, ↓) of monotone functions ↑ : L1 → L2

and ↓ : L2 → L1 is a Galois connection from L1 to L2, if

∀l ∈ L1 : l ⊑ ↓(↑(l))

and

∀a ∈ L2 : ↑(↓(a)) ⊑ a

.
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Abstraction by joining lattice elements

Galois connection

{1, 2, 3}

{1, 2}

{1}

{2, 3}

{2}

∅

{1, 3}

{3}

{1/2, 3}

{1/2}

∅

{3}

↑

↓

Martin Leucker Dagstuhl 43/54



Abstraction by joining lattice elements

Definition (aop-lattice)

Let LC, Lo, and Lp be de Morgan lattices.

Let ↑o : LC → Lo and ↓o : Lo → LC and

↑p : Lp → LC and ↓p : LC → Lp be Galois connections.

We call the lattice

Laop =
(

{(mo,mp) ∈ Lo × Lp | ↓o(mo) ⊒ ↑p(mp)}, ⊓aop, ⊔aop, ¬aop
)

with the operations given by

(mo,mp) ⊓aop (m′
o,m′

p) := (mo ⊓ m′
o , mp ⊓ m′

p)

(mo,mp) ⊔aop (m′
o,m′

p) := (mo ⊔ m′
o , mp ⊔ m′

p)

¬aop(mo,mp) := (¬pmp , ¬omo)

the abstract optimistic-pessimistic lattice (aop-lattice) for the lattice LC.
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Let LC, Lo, and Lp be de Morgan lattices.

Let ↑o : LC → Lo and ↓o : Lo → LC and

↑p : Lp → LC and ↓p : LC → Lp be Galois connections.

We call the lattice

Laop =
(

{(mo,mp) ∈ Lo × Lp | ↓o(mo) ⊒ ↑p(mp)}, ⊓aop, ⊔aop, ¬aop
)

with the operations given by

(mo,mp) ⊓aop (m′
o,m′

p) := (mo ⊓ m′
o , mp ⊓ m′

p)

(mo,mp) ⊔aop (m′
o,m′

p) := (mo ⊔ m′
o , mp ⊔ m′

p)

¬aop(mo,mp) := (¬pmp , ¬omo)

the abstract optimistic-pessimistic lattice (aop-lattice) for the lattice LC.

Furthermore, let Lo and Lp be connected by two anti-monotone negation functions

¬o : Lo → Lp and ¬p : Lp → Lo with ¬o↑o(x) ⊑ ↓p(¬x) and ↑o(¬x) ⊑ ¬p↓p(x).
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Abstraction by joining lattice elements

aop-lattice

{1, 2, 3}

{1, 2}

{1}

{2, 3}

{2}

∅

{1, 3}

{3}

{1/2, 3}

{1/2}

∅

{3}

↑o

↓p

¬o

↑o

↓p

¬p
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Abstraction by joining lattice elements

Definition (Lattice Abstraction Operator)

Let (SA,LA,RA, LA) be a mv-KS, and ↑o, ↓p be two Galois connections with

corresponding negation functions ¬o,¬p. Then, the lattice abstraction operator

absL yields an abstracted mv-KS

absL

(

(SA,LA,RA, LA), ↑o, ↓p,¬o,¬p

)

= (S′
A,L

′
A,R

′
A, L

′
A)

labeled with an aop-lattice L′
A, where S′

A = SA and

R′
A(s, s

′) =
(

↑o

(

(RA(s, s
′))1

)

, ↓p

(

(RA(s, s
′))2

))

L′
A(s, p) =

(

↑o ((LA(s, p))1) , ↓p ((LA(s, p))2)
)
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Conservative Abstraction

Theorem (Correctness of abstraction)

[. . . ]

↑p (mp) ⊑ [[ϕ]]
KC
∅

(sC) ⊑ ↓o (mo)

where (mo,mp) = [[ϕ]]
KA
∅

(sA) is the result of the evaluation of ϕ on KA.
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Towards Refinement

Question?

Why do optimistic and pessimistic assessment differ?

Relevant cases

(i) the evaluation of the labeling function L for some atomic proposition p

and state s

(ii) the evaluation of the transition relation function R for two states s and

s′,

(iii) the computation of negation, or

(iv) the computation of meet and join.

Φ := ¬Φ | Φ ⊓ Φ | Φ ⊔ Φ |
l

si

Φ |
⊔

si

Φ | L(si, p) | R(si, sj)
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Sources of Imprecision

{1, 2, 3, 5}

∅

({1, 2, 3, 5},∅)

{2, 3}

({1, 2, 3, 5},∅) {1, 2, 3}

{2, 3, 4}

({1, 2, 3, 4, 5},∅)
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Atomic propositions

causes(p(s),mo,mp, ξo, ξp, ζ) = {(s, p, (↓o(mo), ↑p(mp)))}

p evaluates to {1, 2, 3, 4, 5} in the optimistic and to {2, 3, 4, 5} in the

pessimistic account:

the cause is (s, p, ({1, 2, 3, 4, 5}, {2, 3, 4, 5})).
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Meet

◮ Imprecision due to lattice abstraction

◮ Precision due to meet: (⊤,⊥) ⊓ (⊥,⊥) = (⊥,⊥)

causes((ϕ1 ⊓ ϕ2)(s),mo,mp, ξo, ξp, ζ) =

{(↓o(ξo(ϕ1(s))) ⊓ ↓o(ξo(ϕ2(s))), ↑p(mp))} if components differ

∪
⋃

c∈ζ(ϕ1(s))∪ζ(ϕ(s))

fil(mo,mp, c)

fil(mo,mp, (k, (lo, lp))) = (k, lo ⊓ ↓o(mo), (lp ⊔ ↑p(mp)) ⊓ (lo ⊓ ↓o(mo)))
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Conclusions

We have shown

◮ product familily verification is multi-valued model-checking
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Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

◮ abstractions for multi-valued systems

◮ by joining states

◮ by abstraction of truth values

◮ as multi-valued model checking problem

◮ identified causes for indefinite results

Future work

◮ abstractions for compact representations

◮ implementation?

◮ . . .

◮ feature-based verification – Is it compositional (multi-valued) model

checking?
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