
Model Checking Product Lines

Martin Leucker

partially joint work with Alarico

Campetelli, Alexander Gruler and

Daniel Thoma

University of Lübeck

Dagstuhl, February 25th, 2013

Martin Leucker Dagstuhl 1/54

Outline

Software Product Families

Features

Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Martin Leucker Dagstuhl 2/54

Presentation outline

Software Product Families

Features

Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Martin Leucker Dagstuhl 3/54

Building a family of products

Martin Leucker Dagstuhl 4/54

Building a family of products

family of products = product line

Martin Leucker Dagstuhl 4/54

Software Product Family

How to deal with software product lines?

◮ how to model software product lines?

◮ how to verify software product lines?

◮ how to model software product lines to allow their verification?

Martin Leucker Dagstuhl 5/54

Software Product Family

How to deal with software product lines?

◮ how to model software product lines?

◮ how to verify software product lines?

◮ how to model software product lines to allow their verification?

◮ one system model incorporating all products

◮ PL-CCS: product line extension of Milner’s CCS [FMOODS’08]

Martin Leucker Dagstuhl 5/54

Software Product Family

Dijstra’72

If a program has to exist in two different versions, I would rather not regard

(the text of) the one program as a modification of (the text of) the other. It

would be much more attractive if the two different programs could, in some

sense or another, be viewed as, say, different children from a common

ancestor, where the ancestor represents a more or less abstract program,

embodying what the two versions have in common.

Martin Leucker Dagstuhl 6/54

Software Product Line

Definition [Clements&Northrop]

A software product line is a set of software intensive systems sharing a

common, managed set of features that satisfy the specific needs of a

particular market segment or mission and that are developed from a

common set of core assets.

Martin Leucker Dagstuhl 7/54

Software Product Line

Definition [Clements&Northrop]

A software product line is a set of software intensive systems sharing a

common, managed set of features that satisfy the specific needs of a

particular market segment or mission and that are developed from a

common set of core assets.

Martin Leucker Dagstuhl 7/54

Software Product Line

Definition (Feature)

A feature is the ability of a product to cover a certain use case or meet a

certain customer need.

Feature Diagram

WiperSystem

manual mode interval mode

semi-automated fully automated

1..1

Martin Leucker Dagstuhl 8/54

Feature versus Product Line

Different views

◮ Feature: Customer view

◮ SPL: Technical view

◮ It is frequently impossible to map features independently to certain

technical properties (=core assets).

◮ Mapping features combinations to products is no homomorphism!

Martin Leucker Dagstuhl 9/54

Definition (Features to Products)

F : P → 2F is a feature function mapping products p ∈ P to features f ∈ F they

have.

Definition (Feasible Feature Combinations)

The set F ⊆ F is a feasible feature combination if ∃p ∈ P : F ⊆ F(p).

Martin Leucker Dagstuhl 10/54

The core (of PL-CCS)

Variability = Choice Points

wiper := wiper
1
⊕1 wiper

2
; sensor := sensor1 ⊕2 sensor2

Composition of assets

wiper‖sensor

Martin Leucker Dagstuhl 11/54

PL-CCS Semantics

Three semantics

◮ flat semantics

Martin Leucker Dagstuhl 12/54

PL-CCS Semantics

Three semantics

◮ flat semantics

◮ unfolded semantics

Martin Leucker Dagstuhl 12/54

PL-CCS Semantics

Three semantics

◮ flat semantics

◮ unfolded semantics

◮ configured-transitions semantics

Martin Leucker Dagstuhl 12/54

Flat Semantics

Definition (fully configured)

Given a well-formed PL-CCS program with N variants operators, we call a

corresponding configuration vector

θ ∈ {R, L, ?}N

fully configured if

θ ∈ {R, L}N

From a PL-CCS program to a set of CCS programs

config : P × {R, L, ?}N 7→ R

Definition (flat semantics)

[[Prog]]Flat =
{

[[V]]CCS | ∃θ : config(Prog, θ) = V
}

Martin Leucker Dagstuhl 13/54

Unfolded Semantics

Definition (PL-LTS)

A product-line transition system (PL-LTS) with N variants operators is a tuple

(S,A,∆, σ), where

◮ S is a (countably, possibly infinite) set of states,

◮ A is a set of actions, and

◮ ∆ is a finite set of transition relations of the form
α, ν
−−→⊆ S × S, where

α ∈ A, ν ∈ ×{R, L, ?}N,

◮ and σ ∈ S is the start state.

Martin Leucker Dagstuhl 14/54

From a PL-CCS program to a PL-LTS

SOS rules

P, ν
α, ν
−−→ P′, ν

C, ν
α, ν
−−→ P′, ν

, C
def
= P (constant definition)

α.P, ν
α, ν
−−→ P, ν

, for arbitrary ν ∈ {R, L, ?}N (prefix)

Pj, ν
α, ν
−−→ P′

j , ν

P1 + P2, ν
α, ν
−−→ P′

j , ν
, j ∈ {1, 2} (summation)

P, ν
α, ν
−−→ P′, ν

(P ‖ Q), ν
α, ν
−−→ (P′ ‖ Q), ν

(parallel composition (1))

...

Martin Leucker Dagstuhl 15/54

Presentation outline

Software Product Families

Features

Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Martin Leucker Dagstuhl 16/54

Model Checking

Definition (Model Checking)

◮ Specification of system

Martin Leucker Dagstuhl 17/54

Model Checking

Definition (Model Checking)

◮ Specification of system

◮ Implementation of system

Martin Leucker Dagstuhl 17/54

Model Checking

Definition (Model Checking)

◮ Specification of system

◮ Implementation of system

◮ Question: Does the system meet its specification??

Martin Leucker Dagstuhl 17/54

Model Checking

Definition (Model Checking)

◮ Specification of system given by logical formula ϕ

◮ Implementation of system

◮ Question: Does the system meet its specification??

Martin Leucker Dagstuhl 17/54

Model Checking

Definition (Model Checking)

◮ Specification of system given by logical formula ϕ

◮ Implementation of system given by Kripke structure K

◮ Question: Does the system meet its specification??

Martin Leucker Dagstuhl 17/54

Model Checking

Definition (Model Checking)

◮ Specification of system given by logical formula ϕ

◮ Implementation of system given by Kripke structure K

◮ Question: Does the system meet its specification??

K |= ϕ

Martin Leucker Dagstuhl 17/54

Model Checking

Definition (Model Checking)

◮ Specification of system given by logical formula ϕ

◮ Implementation of system given by Kripke structure K

◮ Question: Does the system meet its specification??

K |= ϕ

p

p

p

q

q

q

q

q

|= AG(EXtrue)

Martin Leucker Dagstuhl 17/54

Model Checking

Definition (Model Checking)

◮ Specification of system given by logical formula ϕ

◮ Implementation of system given by Kripke structure K

◮ Question: Does the system meet its specification??

K |= ϕ

Practical Definition

Model Checking is a powerful analysis tool

parameterized via a logical specification

Martin Leucker Dagstuhl 17/54

Model Checking

Definition (Model Checking)

◮ Specification of system given by logical formula ϕ

◮ Implementation of system given by Kripke structure K

◮ Question: Does the system meet its specification??

K |= ϕ

p

p

p

q

q

q

q

q

|= AG(EXtrue)

Martin Leucker Dagstuhl 17/54

State Space

c©Moritz Hammer

Martin Leucker Dagstuhl 18/54

Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

◮ Specification of a property

Martin Leucker Dagstuhl 19/54

Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

◮ Specification of a property

◮ Multi-valued model of system(s)

Martin Leucker Dagstuhl 19/54

Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

◮ Specification of a property

◮ Multi-valued model of system(s)

◮ Question: To which extent does system meet its specification??

Martin Leucker Dagstuhl 19/54

Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

◮ Specification of a property given by logical formula ϕ

◮ Multi-valued model of system(s)

◮ Question: To which extent does system meet its specification??

Martin Leucker Dagstuhl 19/54

Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

◮ Specification of a property given by logical formula ϕ

◮ Multi-valued model of system(s) given by mv-Kripke structure K

◮ Question: To which extent does system meet its specification??

p : {1, 2}

{1, 2}

{1, 2}

{1, 2}

{1, 2}
{1, 2}

{1, 2}

{1, 2}

{1, 2} {1, 2}

{1}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {2}

p : {1, 2}
{1, 2}

|= AG(EXtrue)

Martin Leucker Dagstuhl 19/54

Multi-valued (mv) Model Checking

Definition (Multi-valued Model Checking)

◮ Specification of a property given by logical formula ϕ

◮ Multi-valued model of system(s) given by mv-Kripke structure K

◮ Question: To which extent does system meet its specification??

[[ϕ]]
K
= v

p : {1, 2}

{1, 2}

{1, 2}

{1, 2}

{1, 2}
{1, 2}

{1, 2}

{1, 2}

{1, 2} {1, 2}

{1}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {1, 2}

p : {2}

p : {1, 2}
{1, 2}

|= AG(EXtrue)

Martin Leucker Dagstuhl 19/54

Thesis

Rational

Model Checking Product Lines is Multi-valued Model Checking

Martin Leucker Dagstuhl 20/54

However. . .

. . . there are different approaches

based on open system’s verification:

http://cs.brown.edu/~sk/Publications/Papers/Published/

lkf-verif-cc-features-open-sys/

and

http://cs.brown.edu/~sk/Publications/Papers/Published/

bfkv-param-int-open-sys-verif-prod-line/

but this is not considered here.

Martin Leucker Dagstuhl 21/54

http://cs.brown.edu/~sk/Publications/Papers/ Published/
lkf-verif-cc-features-open-sys/
http://cs.brown.edu/~sk/Publications/Papers/Published/
bfkv-param-int-open-sys-verif-prod-line/

Presentation outline

Software Product Families

Features

Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Martin Leucker Dagstuhl 22/54

Lattices

Lattices

◮ lattice is a partially ordered set (L,⊑)

◮ where for each x, y ∈ L, there exists
◮ a unique greatest lower bound (glb) x ⊓ y, and
◮ a unique least upper bound (lub) x ⊔ y.

◮ bottom ⊥ top ⊤

◮ distributive iff

x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)

x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z)

◮ DeMorgan

¬¬x = x

◮ Boolean iff complete, distributive, and

x ⊔ ¬x = ⊤ x ⊓ ¬x = ⊥

Martin Leucker Dagstuhl 23/54

Examples

Lattices

⊤

⊥

(⊤,⊤)

(⊤,⊥)

(⊥,⊥)

{1, 2}

{1}

{∅}

{2}

({1, 2}, {1, 2})

({1, 2}, {1})

({1}, {1})

({1}, {∅})

({1, 2}, {∅})

({∅}, {∅})

({1, 2}, {2})

({2}, {2})

({2}, {∅})

Product Lines

(2N,⊆) – The powerset of all products

Martin Leucker Dagstuhl 24/54

Multi-valued Modal Kripke Structure

Definition (Multi-valued Kripke structure (mv-KS))

T = (S,R, L)

◮ S states

◮ R(. , .) : S × S → L valuation function

◮ L : S → LP value of proposition

Martin Leucker Dagstuhl 25/54

Multi-valued µ-Calculus

Definition (mv-L
µ
—Syntax)

ϕ ::= true | false | q | ¬q | Z | ϕ ∨ ϕ | ϕ ∧ ϕ |

♦ϕ | �ϕ |

µZ.ϕ | νZ.ϕ

Martin Leucker Dagstuhl 26/54

Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f]}

Martin Leucker Dagstuhl 27/54

Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f]}

Martin Leucker Dagstuhl 27/54

Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f]}

Martin Leucker Dagstuhl 27/54

Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f]}

Martin Leucker Dagstuhl 27/54

Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f]}

Martin Leucker Dagstuhl 27/54

Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f]}

Martin Leucker Dagstuhl 27/54

Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f]}

Martin Leucker Dagstuhl 27/54

Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f]}

Martin Leucker Dagstuhl 27/54

Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f]}

Martin Leucker Dagstuhl 27/54

Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f]}

Martin Leucker Dagstuhl 27/54

Multi-valued Modal µ-Calculus

Definition (mv-L
µ
—Semantics)

[[true]]
ρ

:= λs.⊤

[[false]]
ρ

:= λs.⊥

[[q]]
ρ

:= λs.L(s)(q)

[[¬q]]
ρ

:= λs.¬L(s)(q)

[[Z]]
ρ

:= ρ(Z)

[[ϕ ∨ ψ]]
ρ

:= [[ϕ]]
ρ
⊔ [[ψ]]

ρ

[[ϕ ∧ ψ]]
ρ

:= [[ϕ]]
ρ
⊓ [[ψ]]

ρ

[[♦ϕ]]
ρ

:= λs.
⊔

{R(s, s′) ⊓ [[ϕ]]
ρ
(s′)}

[[�ϕ]]
ρ

:= λs.
d
{¬R(s, s′) ⊔ [[ϕ]]

ρ
(s′)}

[[µZ.ϕ]]
ρ

:=
d

{f | [[ϕ]]
ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]
ρ

:=
⊔

{f | f ⊑ [[ϕ]]
ρ[Z 7→f]}

Martin Leucker Dagstuhl 27/54

Multi-valued Modal µ-Calculus

Theorem (Computation of Fixpoints, Tarski’55)

For all MMKS T with state set S there is an α ∈ Ord s.t. for all s ∈ S we have: if

[[ηZ.ϕ]]
ρ
(s) = x then Zα(s) = x.

Martin Leucker Dagstuhl 28/54

Model Checking

Theorem (Correctness of Model Checking)

For all PL-CCS programs Prog = (E ,P1), every configuration vector ν, and

formulae ϕ ∈ mv-Lµ, we have

[[config(Prog, ν)]]CCS |= ϕ iff ν ∈ ([[Prog]]CT |= ϕ)(P1)

Martin Leucker Dagstuhl 29/54

Practical Model Checking?

Similar stories. . .

◮ On-the-fly: Adapt Shoham&Grumberg’s game-based approach

◮ Symbolic MC: . . .

◮ CTL: As restrictions of µ-calculus, Chechik et al.

◮ Automata-based for mv-LTL: Checkik et al.

◮ More specific integration of notion of features in on-the-fly mc: Legay et

al.

◮ Bounded MC: . . .

◮ Abstraction: see next

Martin Leucker Dagstuhl 30/54

Presentation outline

Software Product Families

Features

Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Martin Leucker Dagstuhl 31/54

Two-valued Abstraction

Idea

Check smaller over-approximation of the system

Martin Leucker Dagstuhl 32/54

Two-valued Abstraction

Idea

Check smaller over-approximation of the system

CEGAR

compute

abstrac-

tion A

A |= ϕ

true

compute

counter

example w

γ(w) ∈ C

false

refine

abstraction

yes yes

Martin Leucker Dagstuhl 32/54

Two-valued Abstraction

Idea

Check smaller over-approximation of the system

CEGAR

compute

abstrac-

tion A

A |= ϕ

true

compute

counter

example w

γ(w) ∈ C

false

refine

abstraction

yes yes

[Clarke, Grumberg, Jha, Lu, Veith’03] [Lakhnech, Bensalem, Berezin,

Owre:’01] [. . .]

Martin Leucker Dagstuhl 32/54

Three-valued Abstraction

Idea

◮ Yields conservative results for both, TRUE and FALSE

Martin Leucker Dagstuhl 33/54

Three-valued Abstraction

Idea

◮ Yields conservative results for both, TRUE and FALSE

◮ Requires third value: Don’t know

Martin Leucker Dagstuhl 33/54

Three-valued Abstraction

Idea

◮ Yields conservative results for both, TRUE and FALSE

◮ Requires third value: Don’t know

◮ Check over-approximation and under-approximation of the system

Martin Leucker Dagstuhl 33/54

Three-valued Abstraction

Idea

◮ Yields conservative results for both, TRUE and FALSE

◮ Requires third value: Don’t know

◮ Check over-approximation and under-approximation of the system

◮ carried out for the µ-calculus in [Bruns, P. Godefroid’99]

Martin Leucker Dagstuhl 33/54

Three-valued Abstraction

p

p

p

q

q

q

q

q

Martin Leucker Dagstuhl 34/54

Three-valued Abstraction

p

p

p

q

q

q

q

q

Martin Leucker Dagstuhl 34/54

Three-valued Abstraction

p

p

p

q

q

q

q

q

Martin Leucker Dagstuhl 34/54

Three-valued Abstraction

must/may transitions

p

p

p

q

q

q

q

q

Martin Leucker Dagstuhl 34/54

Three-valued Abstraction

p

p

p

q

q

q

q

q

Martin Leucker Dagstuhl 34/54

Three-valued Abstraction

p

p

p

q

q

q

q

q

Martin Leucker Dagstuhl 34/54

Three-valued Abstraction

p

p

p

q

q

q

q

q q

Martin Leucker Dagstuhl 34/54

Three-valued Abstraction

p

p

p

q

q

q

q

q q,¬p

Martin Leucker Dagstuhl 34/54

CBAR

CBAR—Cause-based Abstraction Refinement

compute

abstrac-

tion A

A |= ϕ

true

false

compute

cause for ?

refine one

state/tran-

sition

yes

no

?

Martin Leucker Dagstuhl 35/54

CBAR

CBAR—Cause-based Abstraction Refinement

compute

abstrac-

tion A

A |= ϕ

true

false

compute

cause for ?

refine one

state/tran-

sition

yes

no

?

[Grumberg, Lange, L_, Shoham’07]

Martin Leucker Dagstuhl 35/54

Presentation outline

Software Product Families

Features

Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Martin Leucker Dagstuhl 36/54

Abstraction by joining states

Idea

s10

s11

s2

s3

s4

{1}

{1, 2}

{3}

{3, 4}

s′1

s′2

s′3

s′4

({1, 2}, {1})

({3/4},∅)

({3/4}, {3/4})

Martin Leucker Dagstuhl 37/54

The abstract lattice

Definition (op-lattice)

Let L be a de Morgan lattice. The lattice

Lop = ({(m1,m2) ∈ L × L | m1 ⊒ m2},⊓op,⊔op,¬op)

with the operations ⊓op, ⊔op, ¬op given by

(m1,m2) ⊓op (m
′
1,m

′
2) := (m1 ⊓ m′

1,m2 ⊓ m′
2)

(m1,m2) ⊔op (m
′
1,m

′
2) := (m1 ⊔ m′

1,m2 ⊔ m′
2)

¬op(m1,m2) := (¬m2,¬m1)

is called the optimistic-pessimistic lattice (op-lattice) for L.

Martin Leucker Dagstuhl 38/54

Examples

Lattices and op-Lattices

⊤

⊥

(⊤,⊤)

(⊤,⊥)

(⊥,⊥)

{1, 2}

{1}

{∅}

{2}

({1, 2}, {1, 2})

({1, 2}, {1})

({1}, {1})

({1}, {∅})

({1, 2}, {∅})

({∅}, {∅})

({1, 2}, {2})

({2}, {2})

({2}, {∅})

Martin Leucker Dagstuhl 39/54

Abstraction by Joining States

Definition (State Abstraction Operator)

We call the function absS [. . .] by joining states according to the abstraction

complete function γ the state abstraction operator, where the set SA of abstract

states is implicitly given by γ, the lattice LA is the op-lattice of LC and

RA(sA, s
′
A) =





⊔

sC∈γ(sA)

⊔

s′
C
∈γ(s′

A
)

RC(sC, s
′
C) ,

l

sC∈γ(sA)

⊔

s′
C
∈γ(s′

A
)

RC(sC, s
′
C)





LA(sA, p) =





⊔

sC∈γ(sA)

LC(sC, p) ,
l

sC∈γ(sA)

L(sC, p)





Martin Leucker Dagstuhl 40/54

Abstraction by joining lattice elements

Idea

s10

s11

s2

s3

s4

{1}

{1, 2}

{3}

{3, 4}

s′1

s′2

s′3

s′4

({1, 2}, {1})

({3/4},∅)

({3/4}, {3/4})

Martin Leucker Dagstuhl 41/54

Abstraction of lattices

Definition (Galois Connection)

Let L1 and L2 be lattices. A pair (↑, ↓) of monotone functions ↑ : L1 → L2

and ↓ : L2 → L1 is a Galois connection from L1 to L2, if

∀l ∈ L1 : l ⊑ ↓(↑(l))

and

∀a ∈ L2 : ↑(↓(a)) ⊑ a

.

Martin Leucker Dagstuhl 42/54

Abstraction by joining lattice elements

Galois connection

{1, 2, 3}

{1, 2}

{1}

{2, 3}

{2}

∅

{1, 3}

{3}

{1/2, 3}

{1/2}

∅

{3}

↑

↓

Martin Leucker Dagstuhl 43/54

Abstraction by joining lattice elements

Definition (aop-lattice)

Let LC, Lo, and Lp be de Morgan lattices.

Let ↑o : LC → Lo and ↓o : Lo → LC and

↑p : Lp → LC and ↓p : LC → Lp be Galois connections.

We call the lattice

Laop =
(

{(mo,mp) ∈ Lo × Lp | ↓o(mo) ⊒ ↑p(mp)}, ⊓aop, ⊔aop, ¬aop
)

with the operations given by

(mo,mp) ⊓aop (m′
o,m′

p) := (mo ⊓ m′
o , mp ⊓ m′

p)

(mo,mp) ⊔aop (m′
o,m′

p) := (mo ⊔ m′
o , mp ⊔ m′

p)

¬aop(mo,mp) := (¬pmp , ¬omo)

the abstract optimistic-pessimistic lattice (aop-lattice) for the lattice LC.

Martin Leucker Dagstuhl 44/54

Abstraction by joining lattice elements

Definition (aop-lattice)

Let LC, Lo, and Lp be de Morgan lattices.

Let ↑o : LC → Lo and ↓o : Lo → LC and

↑p : Lp → LC and ↓p : LC → Lp be Galois connections.

We call the lattice

Laop =
(

{(mo,mp) ∈ Lo × Lp | ↓o(mo) ⊒ ↑p(mp)}, ⊓aop, ⊔aop, ¬aop
)

with the operations given by

(mo,mp) ⊓aop (m′
o,m′

p) := (mo ⊓ m′
o , mp ⊓ m′

p)

(mo,mp) ⊔aop (m′
o,m′

p) := (mo ⊔ m′
o , mp ⊔ m′

p)

¬aop(mo,mp) := (¬pmp , ¬omo)

the abstract optimistic-pessimistic lattice (aop-lattice) for the lattice LC.

Furthermore, let Lo and Lp be connected by two anti-monotone negation functions

¬o : Lo → Lp and ¬p : Lp → Lo with ¬o↑o(x) ⊑ ↓p(¬x) and ↑o(¬x) ⊑ ¬p↓p(x).

Martin Leucker Dagstuhl 44/54

Abstraction by joining lattice elements

aop-lattice

{1, 2, 3}

{1, 2}

{1}

{2, 3}

{2}

∅

{1, 3}

{3}

{1/2, 3}

{1/2}

∅

{3}

↑o

↓p

¬o

↑o

↓p

¬p

Martin Leucker Dagstuhl 45/54

Abstraction by joining lattice elements

Definition (Lattice Abstraction Operator)

Let (SA,LA,RA, LA) be a mv-KS, and ↑o, ↓p be two Galois connections with

corresponding negation functions ¬o,¬p. Then, the lattice abstraction operator

absL yields an abstracted mv-KS

absL

(

(SA,LA,RA, LA), ↑o, ↓p,¬o,¬p

)

= (S′
A,L

′
A,R

′
A, L

′
A)

labeled with an aop-lattice L′
A, where S′

A = SA and

R′
A(s, s

′) =
(

↑o

(

(RA(s, s
′))1

)

, ↓p

(

(RA(s, s
′))2

))

L′
A(s, p) =

(

↑o ((LA(s, p))1) , ↓p ((LA(s, p))2)
)

Martin Leucker Dagstuhl 46/54

Conservative Abstraction

Theorem (Correctness of abstraction)

[. . .]

↑p (mp) ⊑ [[ϕ]]
KC
∅

(sC) ⊑ ↓o (mo)

where (mo,mp) = [[ϕ]]
KA
∅

(sA) is the result of the evaluation of ϕ on KA.

Martin Leucker Dagstuhl 47/54

Presentation outline

Software Product Families

Features

Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Martin Leucker Dagstuhl 48/54

Towards Refinement

Question?

Why do optimistic and pessimistic assessment differ?

Relevant cases

(i) the evaluation of the labeling function L for some atomic proposition p

and state s

(ii) the evaluation of the transition relation function R for two states s and

s′,

(iii) the computation of negation, or

(iv) the computation of meet and join.

Φ := ¬Φ | Φ ⊓ Φ | Φ ⊔ Φ |
l

si

Φ |
⊔

si

Φ | L(si, p) | R(si, sj)

Martin Leucker Dagstuhl 49/54

Sources of Imprecision

{1, 2, 3, 5}

∅

({1, 2, 3, 5},∅)

{2, 3}

({1, 2, 3, 5},∅) {1, 2, 3}

{2, 3, 4}

({1, 2, 3, 4, 5},∅)

Martin Leucker Dagstuhl 50/54

Atomic propositions

causes(p(s),mo,mp, ξo, ξp, ζ) = {(s, p, (↓o(mo), ↑p(mp)))}

p evaluates to {1, 2, 3, 4, 5} in the optimistic and to {2, 3, 4, 5} in the

pessimistic account:

the cause is (s, p, ({1, 2, 3, 4, 5}, {2, 3, 4, 5})).

Martin Leucker Dagstuhl 51/54

Meet

◮ Imprecision due to lattice abstraction

◮ Precision due to meet: (⊤,⊥) ⊓ (⊥,⊥) = (⊥,⊥)

causes((ϕ1 ⊓ ϕ2)(s),mo,mp, ξo, ξp, ζ) =

{(↓o(ξo(ϕ1(s))) ⊓ ↓o(ξo(ϕ2(s))), ↑p(mp))} if components differ

∪
⋃

c∈ζ(ϕ1(s))∪ζ(ϕ(s))

fil(mo,mp, c)

fil(mo,mp, (k, (lo, lp))) = (k, lo ⊓ ↓o(mo), (lp ⊔ ↑p(mp)) ⊓ (lo ⊓ ↓o(mo)))

Martin Leucker Dagstuhl 52/54

Presentation outline

Software Product Families

Features

Modelling of Product Lines

(Multi-valued) Model Checking

Multi-valued µ-Calculus

Traditional Abstractions

Optimistic-Pessimistic Abstractions

Causes for Indefinite Results

Conclusions

Martin Leucker Dagstuhl 53/54

Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

Martin Leucker Dagstuhl 54/54

Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

◮ abstractions for multi-valued systems

Martin Leucker Dagstuhl 54/54

Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

◮ abstractions for multi-valued systems

◮ by joining states

Martin Leucker Dagstuhl 54/54

Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

◮ abstractions for multi-valued systems

◮ by joining states

◮ by abstraction of truth values

Martin Leucker Dagstuhl 54/54

Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

◮ abstractions for multi-valued systems

◮ by joining states

◮ by abstraction of truth values

◮ as multi-valued model checking problem

Martin Leucker Dagstuhl 54/54

Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

◮ abstractions for multi-valued systems

◮ by joining states

◮ by abstraction of truth values

◮ as multi-valued model checking problem

◮ identified causes for indefinite results

Martin Leucker Dagstuhl 54/54

Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

◮ abstractions for multi-valued systems

◮ by joining states

◮ by abstraction of truth values

◮ as multi-valued model checking problem

◮ identified causes for indefinite results

Martin Leucker Dagstuhl 54/54

Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

◮ abstractions for multi-valued systems

◮ by joining states

◮ by abstraction of truth values

◮ as multi-valued model checking problem

◮ identified causes for indefinite results

Future work

◮ abstractions for compact representations

Martin Leucker Dagstuhl 54/54

Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

◮ abstractions for multi-valued systems

◮ by joining states

◮ by abstraction of truth values

◮ as multi-valued model checking problem

◮ identified causes for indefinite results

Future work

◮ abstractions for compact representations

◮ implementation?

Martin Leucker Dagstuhl 54/54

Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

◮ abstractions for multi-valued systems

◮ by joining states

◮ by abstraction of truth values

◮ as multi-valued model checking problem

◮ identified causes for indefinite results

Future work

◮ abstractions for compact representations

◮ implementation?

◮ . . .

Martin Leucker Dagstuhl 54/54

Conclusions

We have shown

◮ product familily verification is multi-valued model-checking

◮ abstractions for multi-valued systems

◮ by joining states

◮ by abstraction of truth values

◮ as multi-valued model checking problem

◮ identified causes for indefinite results

Future work

◮ abstractions for compact representations

◮ implementation?

◮ . . .

◮ feature-based verification – Is it compositional (multi-valued) model

checking?

Martin Leucker Dagstuhl 54/54

	Software Product Families
	Features
	Modelling of Product Lines

	(Multi-valued) Model Checking
	Multi-valued -Calculus
	Traditional Abstractions
	Optimistic-Pessimistic Abstractions
	Causes for Indefinite Results
	Conclusions

