S CHAINSECURITY ETHzurich

=SRILAB

Security analysis of smart contracts in Datalog
https://securify.ch

Dr. Petar Tsankov
Senior researcher, SRl lab, ETH Zurich
Co-founder and Chief Scientist, ChainSecurity

https://securify.ch/

> CHAINSECURITY

~

=SRILAB

Inter-disciplinary research at Next-generation blockchain security
ETH Zurich using automated reasoning

https://chainsecurity.com

@chain_security

Blockchain Safety of Al Security
security and privacy

Why do we need reliable smart contracts?

Smart contract bugs in the news

Search Quotes, News & Video Q

CYBERSECURITY

TECH MOBILE | SOCIAL MEDIA ENTERPRISE CYBERSECURITY TECH GUIDE

$32 million worth of digital
currency ether stolen by

illion were taken by hackers on

f 8

allet was exploited by hackers.

The DAO, the distributed autonomous organization that had collected over $150m | day where $7 million worth of ether

ether, has reportedly been hacked, sparking a broad market sell-off.

A leaderless organization comprised of a series of smart contracts written on the e
DAO has lost 3.6m ether, which is currently sitting in a separate wallet after being

e The DAO Falls Vic _
Attack Leading (3. SpankChain Loses $40K in Hack Due to
Crash Over 20% Smart Contract Bug

The event is still ongoing as ha
stolen over 3.5 million ETH fror

M ET Thu, 20 July 2017

F:‘ Daniel Palmer &

NEWS
O Oct 9, 2018 at 14:00 UTC | Updated Oct'S, 2018 at 14:01 UTC

worth of ethereum

SpankChain, a cryptocurrency project focused on the adult indya
”. rid almost $40,000 in ethereum (ETH) stolen.

In a blog post published Tuesday, the SpankChain teg
(worth around $38,000 at the time) had been lost at §
which the post said was made possible by a bug in ti

blockchain st&

Smart contract coding company Parity yesterday
issued a security alert, warning of a vulnerability
in version 1.5 or later of its wallet software.
According to the company, so far 150,000 ethers
have been stolen, worth nearly $35 million at
current price levels. The amount of the stolen
ether has been confirmed by Etherscan.io.

Photo: Finance Magnates

Vision to secure smart contracts

Writing secure Audits are manual Most anomalies

contracts is hard

and miss issues are invisible

Development Code audit Post-deployment

Automated

a % Machine-checked
tools E]

c
e,
=
=
O
(%2
-
S
o

8 @ Monitoring
~ol audits Cltools

Our core technology

SECURITY SCANNER

- Discovers generic
vulnerabilities

- Supports Ethereum
and Hyperledger

SYMBOLIC VERIFIER

- Supports custom
properties

- Certifies
correctness

Al-BASED TESTING

- Generates high
coverage tests

- Learns from data
(contracts and
transactions)

June 2016: The DAO hack

The DAO hack

User contra DAO contract

function foo() {

}

function () payable {

}

dao.withdraw();

// log payment

address => uint) balan eIy v

"fallback” function

withdraw() {
mount = balances[msg.sender]
nder.call.value(amount) ();
es[msg.sender] = 0;

balance is zeroed
after transfer

The DAO hack

User contract DAO contract

function foo() { mapping(address => uint) balances;
dao.withdraw();
} function withdraw() {
- uint amount = balances[msg.sender];
function () payable { msg.sender.call.value(amount) ();
\ dao.withdraw(): \ balances[msg.sender] = 0;

}

calls withdraw()
before balance
issetto O

Many critical vulnerabilities

In 2017, more than

S300M

have been lost due
to these issues

Unexpected ether flows

03

Unprivileged writes

\¢

Use of unsafe inputs

Reentrant method calls

©
2

Transaction reordering

Wanted: Automated security analysis

function withdraw() {

uint amount = balances[msg.sender];
The DAO haCk msg.sender.call.value(amount) ();
balances[msg.sender] = 0;

}

Security property: No state changes after call instructions

Unsafe calls Safe calls

Unsafe call
Instruction L]

Safe call

Instruction

Can we automatically find all unsafe calls?
No, smart contracts are Turing-complete

Insight

When contracts satisfy/violate a security property,
they often satisfy/violate a simpler property

function withdraw() {

uint amount = balances[msg.sender];
The DAO haCk msg.sender.call.value(amount) ();
balances[msg.sender] = 0;

}

Security property: No state changes after call instructions

Unsafe calls Safe calls

Verifies 91% of
all calls

A write always
follows
call.value()

No writes

may follow
call.valuel()

Violation pattern Compliance pattern

I SECURIFY

www.securify.ch

Scalable and fully automated verifier for
Ethereum smart contracts

Impact

FXY Used daily by security auditors
®" (30K+ contracts scanned so far)

Grants: P ethereum

\4

foundation

Startup: [> CHAINSECURITY

SECURIFY

% 1K+ subscribers

Securify: System overview

push 0x04
dataload
push 0x08
jump
jumpdest
stop
jumpdest

1. decompile

Patterns

EVM byt . _
written in a DSL

TOTAL issues

Transaction Reordering

3. check patterns

Security report

Semantic repre

Suitable for

analysis

: a = 0x04
: b = load(a)
: abi 00(b)
: stop
abi 00(b)
5: c = 0x00
6: sstore(c,b)

~ WN R

Intermediate representation

2. infer facts

assign(1l, a, 0x04)
follow(2, 1)
mayDepOn (b, a)
load(2, b, a)
follow(3,2)
follow(5,3) Relevant
semantic

information

Step 1: Decompilation

push 0x04 1: a = 0x04
dataload 1. decompile 2: b = load(a)
push 0x08 ' P 3: abi_00(b)
jump 4: stop
jumpdest abi 00(b)
stop 5: c = 0x00
jumpdest 6: sstore(c,b)
EVM bytecode Intermediate representation

- Static single assignment form
- Control-flow graph recovery

10

Step 2: Inferring semantic facts

: a = 0x04
: b = load(a)
: abi 00(b)
: stop
abi 00(b)
5: c = 0x00
6: sstore(c,b)

~ WN R

Intermediate representation

2. infer facts

assign(l, a, 0x04)
follow(2, 1)
mayDepOn (b, a)
load(2, b, a)
follow(3,2)
follow(5,3)

Semantic representation

Step 2: Inferring semantic facts

Scalable inference of semantic facts using Datalog solvers

Datalog program MayFollow(i,j) < Follow(i, j)
MayFollow(i,j) « Follow(i, k), MayFollow(k, j)

1: a = 0x04 Follow(2,1) MayFollow(2,1)
g; gbz 53?%6‘) Follow(3,2) MayFollow(3, 1)
4: stop Follow(5, 3) MayFollow(4,1)

abi_00(b) Follow(6,5) MayFollow(5, 1)
5: c = 0x00 Follow(4, 6) MayFollow(6,1)

6: sstore(c,b)

IR Datalog input Datalog fixpoint

Step 2: Inferring semantic facts

Scalable inference of semantic facts using Datalog solvers

A~ WN -

ul

: a = 0x04

: b = load(a)
: abi 00(b)

: stop

abi 00(b)
c = 0x00
sstore(c,b)

IR

MayFollow(i, j) « Follow(i,j)
MayFollow(i,j) « Follow(i, k), MayFollow(k, j)

Follow(2, 1)
Follow(3, 2)
Follow(5, 3)
Follow(6,5)
Follow(4, 6)

Datalog input

MayFollow(2,1)
MayFollow(3,1)
MayFollow(4,1)
MayFollow(5, 1)
MayFollow(6, 1)

Datalog fixpoint

11

Step 2: Inferring semantic facts

Relevant semantic facts

Control-flow analysis

mayFollow(Lq,L,) Instruction at label L; may follow that at label L,

mustFollow(L,,L,) Instruction at label L; must follow that at label L,

Data-flow analysis

mayDepOn(X,T) The value of X may depend ontag T
eq(X,T) The values of X and T are equal
detBy(X,T) For different values of T the value of X is different

For real-world contracts, Securify infers 1 - 10M such facts
I\ I.JULUI\JB IIII\JUL I.JULUIUB III\P\JIIIL

11

Step 3: Check patterns

assign(1, a, 0x04) :Sﬁgnﬁl' aS 0x04)
follow(2, 1) rotrouts, 1

! ayDepOn(b, a)
mayDepOn(b, a) Pﬁ(zébé a)
load(2, b, a) follow(s.3)
follow(3,2) 3. check patterns

Security report Semantic representation

Security patterns language

A pattern is a logical formula over semantic predicates:

@ = instr(L,Y, X, ..., X)
| eq(X, T) | detBy(X,Y) | mayDepOn(X,Y)
| follow(L,L) | mayFollow(L,L) | mustFollow(L, L)
|13X.¢ |3L.@ |3T.0 | ~p | Ag

see paper for details

12

Example: No writes after calls

function withdraw() {
uint amount = balances[msg.sender];
msg.sender.call.value(amount) () ;
balances[msg.sender] = 0;

}

Security property: @ = “No state changes after call instructions”
Compliance pattern | ¢; = V call(L,, _,). =3 sstore(L,, ,). mayFollow(L,, L,)

Violation pattern @c =3 call(Ly,_,).3 sstore(L,,_,_).mustFollow(L,, L)

We can (manually) prove that: @ => @ and @y = =@

13

Security report

Unsafe calls Safe calls
Violation - 1, Compliance
pattern \ / pattern
Py Pcm
]
ol
]
]
@ Violation Warning B Safe

All unsafe calls are reported as either violations or

14

Patterns for relevant security properties

Property Type Security Pattern
LQ: Ether compliance all stop(L1). some goto(Ly, X, L3). X = callvalue A Follow(Ly, L4) A L3 # Ly A MustFollow(L4, L1)
liquidity compliance some call(L1, _, _, Amount).Amount # 0 V DetBy(Amount, data)
violation (some stop(L). ~MayDepOn(L, callvalue)) A (allcall(_,_,_, Amount). Amount = 0)
NW: No writes compliance all call(L1, , _,_). all sstore(Ly, _,). “MayFollow(L1, L3)
after call violation some call(Lq, _, _,_). some sstore(Ly, _,). MustFollow(L1, L)
RW: Restricted compliance all sstore(_, X,). DetBy(X, caller)
write violation some sstore(L1, X, _). "MayDepOn(X, caller) A ~MayDepOn(L1, caller)
RT: Restricted compliance all call(_,_, _, Amount). Amount =0
transfer violation some call(Ly, _, _, Amount). DetBy(Amount, data) A ~MayDepOn(L1, caller) A ~MayDepOn(L1, data)
HE: Handled compliance all call(L1,Y, _,). some goto(Lg, X, _). MustFollow(L1, L) A DetBY(X,Y)
exception violation some call(Ly, Y, _,_). all goto(L2, X, _). MayFollow(L1,Ly) = —MayDepOn(X,Y)
TOD: Transaction compliance all call(_, _,_, Amount). ~MayDepOn(Amount, sload) A =MayDepOn(Amount, balance)
ordering violation some call(_, _, _, Amount). some sload(_, Y, X). some sstore(_, X, _). DetBy(Amount, Y) A isConst(X)
dependency
VA: Validated compliance all sstore(Ly, _, X). MayDepOn(X, arg)
arguments = (some goto(Ly, Y, _). MustFollow(L2,L1) A DetBy(Y, arg))
violation some sstore(L1, _, X). DetBY(X, arg)

= —|(some goto(Lg, Y,). MayFollow(L2,L1) A MayDepOn(Y, arg))

14

Evaluation

1. Is Securify precise for relevant security properties?

2. How does Securify compare to other contract checkers?

15

How precise is Securify?

Dataset

First 100 real-world contracts uploaded to https://securify.ch

in 2018

Security properties

9 critical vulnerabilities (reentrancy, ...)

Experiment:
Measure % of violations, safe behaviors, and
Manually classify into true warnings and false
warnings

16

https://securify.ch/

How precise is Securify?

% of all potential vulnerabilities > 90% verified
100

80 :
No warnings ,
False warnings
60 True warnings
B Violations
0 \
N\
20
0 S

T TR TA NwW RW HE VA RT LQ

< 10% warnings for 6 out of 9 security properties

How does Securify compare to other
checkers?

‘x x u © Oyente
60
I W Mythril
NN B Violations
True warnings

False warnings

Unreported
vulnerabilities

> 50% false
negatives

Unhandled

Fewer false
warnings

Reentrancy exception

Unsafe
transfer

17

Summary

push 0x04 a = 0x04

1:
dataload 2: b = load(a)
push 0x08 3: abi 00(b)
jump 4: stop
jumpdest abi 00(b)
stop 5: c = 0x00
jumpdest 6: sstore(c,b)

assign(l, a, 0x04)
follow(2, 1)
mayDepOn(b, a)
load(2, b, a)
follow(3,2)
follow(5,3)

Try online: https://securify.ch

@ Violation /. Warning M Safe

Unsafe behaviors Safe behaviors
A
O [|
O “m
[|
A A

7

Lal.

TT TR TA NW RW HE VA RT LQ

High precision on real contracts

https://securify.ch/

