
Smart Contracts and
Opportunities for Formal Methods

Andrew Miller1, Zhicheng Cai2, Somesh Jha2

1 University of Illinois at Urbana-Champaign
2 University of Wisconsin Madison

Account Balances
฿
฿
฿

Users
Blockchain

Blockchain: a shared database implemented on top
of a peer-to-peer network, usually implementing a
digital currency.

Smart Contracts

Code
Storage

Data

Users Money

Digital currency is just one application
Smart contracts: programs running on a blockchain

Blockchain

Ethereum: the 2nd largest cryptocurrency,
features a general smart contract programing language (Solidity)

Solidity example: an ERC20 token

Source: Business insider

Ethereum’s brief history has been marred by high-
profile disasters caused by buggy and insecure
smart contract programs

Formal Methods are seen as a key part of the solution going forward

Lead Blockchain Researcher (Facebook)

https://whycardano.com/science-and
-engineering/#formal-specification-a
nd-verification

In this talk...

1. Stories of disasters from Ethereum’s first few years

2. What are the unique challenges about smart contracts that
lead to research opportunities for FM?

Parity Wallet disasters

The Parity wallet: Two massive failures in a row

- In July 2017, an exploitable vulnerability was exploited and $30M

153,037 Ether (worth $30+ million) was stolen from three wallet contracts

A remaining $78 million worth of tokens (half the value being BAT and
ICONOMI) plus 377,105+ ETH (around $72 million) were recovered by a daring
whitehat rescue, and returned to their rightful owners

- In November 2017, a second bug was triggered, leading to $150M frozen funds.

What is the Parity Wallet?

“Parity Wallet” is a Solidity smart contract
that Parity can create as part of its wallet
management feature.

It is a popular feature of Parity, though
separate its “full node” function

https://github.com/paritytech/parity/wiki/Par
ity-Wallet

https://paritytech.io/blog/security-alert.html

https://github.com/paritytech/parity/wiki/Parity-Wallet
https://github.com/paritytech/parity/wiki/Parity-Wallet
https://paritytech.io/blog/security-alert.html

Wallet contract:

contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount) returns
(bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
}

Wallet contract:

contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount) returns
(bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
}

Parity Wallet uses the “Prototype Inheritance” pattern

 contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount)
 returns (bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
 // fallback function gets called if no
 // other function matches
 function () payable {
 _walletLibrary.delegatecall(msg.data);
 }
} Multiple Wallet contracts, all refer to Wallet Library

Why? Reduces fees from duplicate data!

* Toy version of code

Wallet Library contract:

contract WalletLibrary {
 address owner;
 // called by constructor
 function initWallet(address _owner) {
 require(initialized == false);
 initialized = true;
 owner = _owner;
 // ... more setup ...
 }
 function changeOwner(address _new_owner)
 function () payable {
 // ... receive money, log events, ...
 }
 function withdraw(uint amount);
}

0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4

https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4#code

The WalletLibrary
contract

anyone can kill your contract #6995

Wallet Library contract:

contract WalletLibrary {
 address owner;
 // called by constructor
 function initWallet(address _owner) {
 require(initialized == false);
 initialized = true;
 owner = _owner;
 // ... more setup ...
 }
 function changeOwner(address _new_owner)
 function () payable {
 // ... receive money, log events, ...
 }
 function withdraw(uint amount);
}

0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4

Attacker calls:
library.call(“initWallet(address)”,
 attacker);
library.kill();

Parity wallet uses “Prototype Inheritance”
The WalletLibrary should only act as a template.
- It should not have any “state”
- Its constructor has never been called

But, the WalletLibrary is actually just a contract!

Thereafter, any method call to any instance
“Wallet” will fail, since the target of delegatecall
is destroyed

https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4#code

All about TheDAO

slock.it a Blockchain + IoT company
Example use case:

1. AirBnB user submits payment to
the Ethereum blockchain

2. Slock Home Server (Ethereum
client) receives the transaction

3. Power switch connected to Home
Server receives “unlock” command,
unlocks the door

slock.it built The DAO as a custom fundraising tool
“DAO”: Decentralized Autonomous Organization (coined by Vitalik in 2013)

Built by slock.it to raise funds for their company

Main idea: A decentralized hedge fund

Investors contribute funds, receive ownership “tokens”

Investors jointly decide how to spend funds, by voting in proportion to tokens

Many additional mechanisms:

“Splitting” to prevent hostile takeover

Reward disbursing

Raised ~150 million dollars in ~ 1 month

Contract DAO:

mapping (address => int64) balances;

function withdraw(uint amount) {
 if (balances[msg.sender] >= amount) {
 msg.sender.call.value(amount)();
 balances[msg.sender] -= amount;
 }
}

Excerpt from DAO contract (simplified)

 balances[user]

Contract DAO:

mapping (address => int64) balances;

function withdraw(uint amount) {
 if (balances[msg.sender] >= amount) {
 msg.sender.call.value(amount)();
 balances[msg.sender] -= amount;
 }
}

Re-entrancy hazards in Ethereum

Wallet Contract

function doWithdraw() {
 token.withdraw(100);
}
function() payable {
 EventMoneyReceived(msg.value);
}

0100

1000

300200

Balance

Ether Balance

 balances[attacker]

Contract DAO:

mapping (address => int64) balances;

function withdraw(uint x) {
 if (balances[msg.sender] >= amount) {
 msg.sender.call.value(amount)();
 balances[msg.sender] -= amount;
 }
}

Re-entrancy hazards in Ethereum

Attacker Contract

function startAttack() {
 token.withdraw(100);
}
function() payable{
 token.withdraw(100);
}

0100200300

1000-100-200

300200100

Balance

Ether Balance 0

-300

- Learn the hard way, adopt hindsight-oriented best practices

- Make iterative ergonomic improvements to the language

- Design new language abstractions for making secure-by-construction
programs

- Design program analysis tools to exclude classes of errors

Directions for improving smart contract security

Etherchain
verified source

Solidity
Compiler
Warnings

Heuristic
hazard
detection

Plutus

Michelson

Gas
Estimation

Geth

Simplicity

Prototype

Deployed

For new codeFor existing code

Vyper

Oyente

KEVM

EVM*

Erays

Decompilation

Safer Smart Contract Languages

- Scripting Languages
- Typed functional programming languages
- Formal logics
- Automata model

Safer Smart Contract Languages

Name Level Blockchain

Scilla Intermediate-level Zilliqa

FSolidM Higher-level, framework Ethereum

Rholang Higher-level RChain

Vyper Higher-level Ethereum

Type-coin Bitcoin

Simplicity Bitcoin

Safer Smart Contract Languages

Name Level Blockchain

Michelson Lower-level, Functional Tezos

Liquidity Higher-level, Functional Tezos

Plutus Higher-level IOHK

Plutus-Core Lower-level IOHK

Owlchain Framework BOSCoin

Program Analysis

More than 11 tools or frameworks to detect various types of
vulnerabilities:

- From the scale of checking abilities
- From the view of vulnerabilities
- From the view of programming analysis techniques
- Most are developed in Python

Semantics design

Program Analysis

Tools

CertiK Dr.Y’s Analyzer Maian

Manticore Mythril Oyente

porosity SmartCheck Securify

Solgraph ZEUS

Semantics
Design

eth-isabel F* (2016) TU Wien F*
(2018)

KEVM SMAC

Formal methods for smart contracts:
Opportunity or bubble?

What’s unique about smart contracts?

1. Ease of vulnerability monetization

2. Blockchain programming specialties (gas, public, …)

3. Tendency to rely on incentive mechanisms

4. For disruptive potential, must appeal to novice developers

Not all Cryptocurrency failures are
high-tech

What drives the “demand” for formal methods?

Fear-of-Missing-Out can outweigh Prudence

Externalities:

High profile failures drag the price down for everyone

Who should take responsibility for security?
Investors?
App developers?
Protocol engineers/stewards?

In Smart Contracts, bugs are easily monetized

 A 2003 study commissioned by the Department of Commerce’s National
Institute of Standards and Technology found that software bugs cost the US
economy $59.5 billion annually.

Smart Contract challenges in the blockchain model

- Transactions are processed after a delay
- Adversaries can re-order and “frontrun”
transactions
- All smart contract data is public
- Execution is expensive (gas costs, tx fees)
- Code is difficult to change (“Code is law”)

Incentive mechanism analysis
- Security deposits and penalties

(based on detected misbehavior)
Nash equilibrium (and variations...)

- Fees (charged based on market price)
 Bounding the consumption of “gas”
 apply methods for bounding space/time

We need tools for “crypto-economic” reasoning

We need tools for “cryptoeconomic” reasoning
Example: Sealed Bid Auction
Uses commit-and-reveal cryptography to prevent bid front running.
However, there remains a concern about misbehavior where players "abort"
and go away before revealing

The "cryptoeconomics" solution: require a security deposit, that you lose if you
do not reveal

Property 1: The security deposit at least covers the gas cost of the reveal
method

Property 2: Revealing should be an equilibrium strategy. (Vickrey auctions
assume all bids are committed simultaneously and then revealed, so it
becomes a proof obligation to show it still holds).

 Smart contracts are just one component of increasingly
complex protocols

Host Blockchain Side Blockchain
Off-chain Protocol Proofs-of-

Proofs-of-
Work

Digital Signatures
Zero Knowledge Proofs

Non-exhaustive list of startups focusing on inter-blockchain interaction:

Example of Offchain Protocol: Payment Channels

Blockchain

1. Alice deposits $10

2. Alice pays Bob by sending
signatures on incrementally
larger payments

signature(Alice, “$1”)

signature(Alice, “$2”)

….

3. At any point, Bob closes
the channel by posting the
largest signed message on
the blockchain.

4. If Bob aborts, Alice can
claim a refund (after a time
limit)

$2$8

def refund():
 assert(msg.sender == alice)
 assert(block.number > deadline) // only after deadline
 send(alice, self.balance)

def finalize(signature, amount):
 assert(msg.sender == bob)
 assert(verify_signature(alice, amount, sig)))
 send(bob, amount)
 send(alice, self.balance)

Example of Offchain Protocol: Payment Channels
(Implemented in Ethereum)

Blockchain

Some Thoughts

● Compositional Verification
○ Assume Guarantee Reasoning
○ Challenge: Various types of primitives

● Synthesis
○ Challenge: High-level architecture design drives

the implementation
○ Roles of various primitives is clear

- Several technical challenges for FM/PL research arising from
smart contracts, which are well motivated by the real world use
seen already

- Smart contracts, like other hot domains, such as Internet of
Things, have encountered expensive security failures early on,
shaping the field

- However, the close relationship between the smart contracts
industry and formal methods is a unique opportunity

Concluding remarks

Public debates are raging that amount to choosing
which layer of the system must improve

Should we change the underlying EVM virtual machine?

Or should we change the high level language?

Smart contracts are small components of larger
distributed applications (dApps)
A dApp includes:

- Smart contract used as a backstop / dispute resolution handler

- Cryptography computed locally by clients (signatures, zero knowledge proofs)

- Point-to-point messages exchanged out of band

Examples:

 - Multi-player Lotteries / Coin flips https://arxiv.org/abs/1612.05390 (WTSC’17)
 - Scalable payment channel networks https://arxiv.org/abs/1702.05812
 - Interactive games (e.g. Poker) https://arxiv.org/abs/1701.06726 (AsiaCrypt’17)

https://arxiv.org/abs/1612.05390
https://arxiv.org/abs/1702.05812
https://arxiv.org/abs/1701.06726

Blockchains are powerful, but expensive

- Blockchains derive their security through wide replication

- We do not fully understand the security consequences of scalable alternatives
 (incentive compatibility, plausibility of assumptions, etc.)

The “Off-chain” method:
Avoid blockchain transactions except in rare cases

Blockchain

Parties deposit money
into the smart contract

The “Off-chain” method:
Avoid blockchain transactions except in rare cases

Blockchain

Out-of-band communication

Parties deposit money
into the smart contract

The “Off-chain” method:
Avoid blockchain transactions except in rare cases

Blockchain

Out-of-band communication

Dispute raised
Blockchain determines outcome
Blockchain executes the remedy

Parties deposit money
into the smart contract

Unidirectional Payment Channels

Blockchain

Alice deposits $10

signature(Alice, “$1”)

Alice pays Bob by sending
signatures on incrementally
larger payments signature

Unidirectional Payment Channels

Blockchain

Alice deposits $10

signature(Alice, “$1”)

signature(Alice, “$2”)

….

Alice pays Bob by sending
signatures on incrementally
larger payments signature

Unidirectional Payment Channels

Blockchain

Alice deposits $10

Alice pays Bob by sending
signatures on incrementally
larger payments signature

signature(Alice, “$1”)

signature(Alice, “$2”)

….

At any point, Bob closes the
channel by posting the
largest signed message on
the blockchain.

If Bob aborts, Alice can claim
a refund (after a time limit)

$2$8

def refund():
 assert(msg.sender == alice)
 assert(block.number > deadline) // only after deadline
 send(alice, self.balance)

def finalize(signature, amount):
 assert(msg.sender == bob)
 assert(verify_signature(alice, amount, sig)))
 send(bob, amount)
 send(alice, self.balance)

Unidirectional Payment Channels
(Implemented in Ethereum)

Blockchain

Off-chain protocols for many applications

Application 1: Multi-player Lotteries / Coin flips https://arxiv.org/abs/1612.05390

Application 2: Payment channels https://arxiv.org/abs/1702.05812

Application 3: Amortized games (e.g. Poker) https://arxiv.org/abs/1701.06726

Outcome: Bitcoin requires either O(N2) more collateral, or else O(2N) more computation vs. Eth

Outcome: Bitcoin requires O(L) more collateral for path of length L vs. Eth

Outcome: Both amortization and cash distribution in Ethereum only

https://arxiv.org/abs/1612.05390
https://arxiv.org/abs/1702.05812
https://arxiv.org/abs/1701.06726

Model complex protocols with an Ideal Functionality

Real World

In the real world: multiple views
of the current state

- Models 1 consistent view
of sequential state

- Receives inputs from
each party (possibly
delayed)

- Delivers output (possibly
delayed)

- Real time guarantees:
 - Fast O(1) if all honest
 - At most O(D) always

- Always applies
update U correctly

- Has side effects ($)

STATE(U)

Ideal World

Payment Channels (spec)
Security Properties modeled:

- Balance / no overpay

 (side effect of moving money)

- Bounded delays

- Economic guarantee

Implementation: exchange off-chain signatures on increasing “y” (see next slide)

Future impact: can be linked into networks of collateral, e.g. Poker (AsiaCrypt’17)

FPayment
$X

“pay”, y

Delay is precisely bounded.
Important because the
underlying “blockchain”
introduces delay.
 -> off-chain optimism

 ”recv”, y
...

...

 ”settle”, $y ”settle”, $(X-y)

Functionality keeps track of the
“official” view of each party.

paid := 0
…

paid += y
sig ← sign(paid)

send (sig, paid), to Alice
…

Payment Channels (implementation)

ContractPayment

init: $X deposited from Alice at T

function settle(Y, sig) from Bob:
check(0 <= Y <= X)
checkSig(pkAlice, sig, h(Y))
send($(X-Y) to Alice
send($(Y) to Bob

function refund() from Alice:
check(now >= TDeadline)
send($X) to Alice

$X

receive (sig,paid)
Check signature
Discard unless “paid” is larger
oncheck , $y

after TDeadline ,
 call Contract.refund()

 ”settle”, $y

Backup slides

More detail about Parity Wallet disasters

Parity - The Rust Ethereum node
Parity is the Rust-Ethereum client.

Separate core development team to Ethereum Foundation.

Currently around 20% of the nodes (we think actually 6%)

Wallet contract:

contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount) returns
(bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
}

Wallet contract:

contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount) returns
(bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
}

1. Constructor is called, invokes initWallet

Wallet Library contract:

contract WalletLibrary {
 address owner;
 // called by constructor
 function initWallet(address _owner) {
 owner = _owner;
 // ... more setup ...
 }
 function changeOwner(address _new_owner)
 function () payable {
 // ... receive money, log events, ...
 }
 function withdraw(uint amount);
}

 contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount)
 returns (bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
 // fallback function gets called if no
 // other function matches
 function () payable {
 _walletLibrary.delegatecall(msg.data);
 }
}

0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3

https://etherscan.io/address/0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3#code

Wallet contract:

contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount) returns
(bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
}

Wallet contract:

contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount) returns
(bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
}

2. The withdraw function invokes withdraw

Wallet Library contract:

contract WalletLibrary {
 address owner;
 // called by constructor
 function initWallet(address _owner) {
 owner = _owner;
 // ... more setup ...
 }
 function changeOwner(address _new_owner)
 function () payable {
 // ... receive money, log events, ...
 }
 function withdraw(uint amount);
}

 contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount)
 returns (bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
 // fallback function gets called if no
 // other function matches
 function () payable {
 _walletLibrary.delegatecall(msg.data);
 }
}

0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3

https://etherscan.io/address/0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3#code

Wallet contract:

contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount) returns
(bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
}

Wallet contract:

contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount) returns
(bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
}

3. The fallback function can invoke any method

Wallet Library contract:

contract WalletLibrary {
 address owner;
 // called by constructor
 function initWallet(address _owner) {
 owner = _owner;
 // ... more setup ...
 }
 function changeOwner(address _new_owner)
 function () payable {
 // ... receive money, log events, ...
 }
 function withdraw(uint amount);
}

 contract Wallet {
 address _walletLibrary;
 address owner;

 function Wallet(address _owner) {
 _walletLibrary = ${hardcoded address};
 _walletLibrary.delegatecall(
 "initWallet(address)",
 _owner);
 }
 function withdraw(uint amount)
 returns (bool success) {
 return _walletLibrary.delegatecall(
 "withdraw(uint)",

 amount);
 }
 // fallback function gets called if no
 // other function matches
 function () payable {
 _walletLibrary.delegatecall(msg.data);
 }
}

0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3Attacker calls:
victim.call(“initWallet(address)”, attacker)

https://etherscan.io/address/0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3#code

Fixing the July 2017 Parity wallet bug

New Library contract:

contract WalletLibrary {
 address owner;
 // called by constructor
 function initWallet(address _owner) {
 require(initialized == false);
 initialized = true;
 owner = _owner;
 // ... more setup ...
 }
 function changeOwner(address _new_owner)
 function () payable {
 // ... receive money, log events, ...
 }
 function withdraw(uint amount);
}

0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4

Old Wallet Library contract:

contract WalletLibrary {
 address owner;
 // called by constructor
 function initWallet(address _owner) {
 owner = _owner;
 // ... more setup ...
 }
 function changeOwner(address _new_owner)
 function () payable {
 // ... receive money, log events, ...
 }
 function withdraw(uint amount);
}

0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3

https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4#code
https://etherscan.io/address/0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3#code

The White Hat Recovery Team

The Parity Wallet July ‘17 stolen coins are still idle

Root Cause and Post Mortem from Parity
- An “initialize()” function to set the owner of the contract, was missing the
“onlyOnce” modifier

- Process error more than anything -> mistriaged as “UX upgrade,” skipped review

In depth analysis of the event from IC3:

http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/

http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/

No one knows who devops199 was!

- June 12: slock.it developers announce that the bug is found, but no funds at risk

- June 17 (Morning): attacker drains ⅓ of the DAO’s Ether ($50M) over 24 hrs

Attacker’s funds were trapped in a subcontract for 40 days (July 27)

- June 17 (Evening): Eth Foundation proposes a “Soft Fork” to freeze the funds

- June 28: Cornell freshmen identify a flaw in the Soft Fork Proposal

- July 15 (Morning): Eth Foundation proposes a “Hard Fork” to recover funds

- July 15 (Evening): “Ethereum Classic” manifesto published on github

- July 19: “Hard Fork” moves funds from attacker’s contract to recovery contract

Ethereum Classic blockchain survives and is traded on exchanges

Both Ethereum and Ethereum Classic are both around, reached new peaks

Timeline and Aftermath of The DAO

https://www.sec.gov/litigation/investreport/34-81207.pdf

How has the Ethereum community
approached security improvements?

More resources on Smart Contract Security
- ConsenSys’s “Smart Contract Best Practices”
- K EVM Semantics http://hdl.handle.net/2142/97207
- Oyente tool

Symbolic engine catches some errors “Making Smart Contracts Smarter”
- Formal Verification of Smart Contracts - compiler written/checked in F*

Includes a verified Decompiler and proofs of gas bounds
- A survey of attacks on Ethereum smart contracts
- An empirical analysis of smart contracts: platforms, applications, and design
patterns
- Step by Step Towards a Safe Smart Contract
- Open Zeppelin https://openzeppelin.org/
- Under-optimized contracts devour your money https://arxiv.org/pdf/1703.03994.pdf

https://github.com/ConsenSys/smart-contract-best-practices
http://hdl.handle.net/2142/97207
https://github.com/oyente/oyente
https://eprint.iacr.org/2016/633.pdf
https://www.cs.umd.edu/~aseem/solidetherplas.pdf
https://eprint.iacr.org/2016/1007.pdf
https://arxiv.org/pdf/1703.06322.pdf
https://arxiv.org/pdf/1703.06322.pdf
http://fc16.ifca.ai/bitcoin/papers/DAKMS16.pdf
https://openzeppelin.org/
https://arxiv.org/pdf/1703.03994.pdf

The “Checks / Effects / Interactions” paradigm
A Best Practice guideline for safe smart
contract behavior

When receiving a message, do the
following in order:

1. Perform all input validation and
checks on current state. Discard the
message if validation fails.

2. Update local state.

3. Finally, pass on interactions to
trigger other contracts.

Contract A:
public address callee;
public int balance = 100;
…

function withdraw()
only(callee) {
 if (balance <= 0) return;
 var toSend = balance;
 balance = 0;
 callee.recv.value(toSend)();
}

Iterative improvements to Solidity
- “Modifier” macros

Language syntax that explicitly indicates checked preconditions

function refundInvestors() _only(admins) { … }

- “payable” modifier

In modern Solidity, functions by default refuse payments, return to sender

Better High Level Languages
More sophisticated type systems

VYPER

