Smart Contracts and
Opportunities for Formal Methods

Andrew Miller', Zhicheng Cai?, Somesh Jha?

W

" University of lllinois at Urbana-Champaign
2 University of Wisconsin Madison

Blockchain: a shared database implemented on top
of a peer-to-peer network, usually implementing a
digital currency.

Blockchain
Users . L e
“% | Account Balances

-+ [Alice: B10

| Bob: B15

Carol: B120

e e e e e e e e e e e e e e e e e e e =

T T S D L S e e =

Digital currency is just one application
Smart contracts: programs running on a blockchain

Blockchain

.

" Smart Contracts
| Storage

e e e e e e e e e e e e e e e e e e e =

T T S D L S e e =

Ethereum: the 2nd largest cryptocurrency,
features a general smart contract programing language (Solidity)

Cryptocurrencies ~ Exchanges ~ Watchlist
Name Market Cap Price Volume (24h)
1 Bitcoin $109,752,030,360 $6,324.88 $4,220,277,322

2 4 Ethereum $20,286,042,977 $197.11 $1,464,754,379

Solidity example: an ERC20 token

contract Token {
mapping (address => uint) balance;

function transfer(address to,

uint amount) {
require (balance[msg.sender] >= amount);
balance[msg.sender] -= amount;

balance[to] += amount;

Ethereum Tokens Market Capitalization
There are a total of 38562 Erc20 Token Contracts Total Market Cap: $48,943,200,901

USD Raised by ICOs in 2017 - Monthly Totals

$ 1250M $1,217

$ 1000M

$829 ¢go3

$ 750M o
$ 500M
$329
$ 250M
$2 4
$OM

Source: Business insider

Jan 17
Feb17 l

a7 [2
vey 17 [B

Mar 17 | @

Jun 17

Jul17
Aug 17
Sep17
Nov 17
Dec17

Ethereum'’s brief history has been marred by high-
profile disasters caused by buggy and insecure
smart contract programs

'$300m in cryptocurrency' accidentally
lost forever due to bug

KLINT- FINLEY BUSINESS 05.168.126 04:30 AM
User mistakenly takes control of hundreds of wallets containing A $ 5 0 M l L L l O N H AC H J l S I
cryptocurrency Ether, destroying them in a panic while trying to give S E S

them back

ALL TOO HUMAN

CRYTPO ENTOMOLOGY

A coding error led to $30 million in
ethereum being stolen

Formal Methods are seen as a key part of the solution going forward

Christian Reitwiessner September 1st, 2016

Today, | am delighted to announce that Yoichi Hirai (pirapira on github) is joining the Ethereum
project as a formal verification engineer. He holds a PhD from the University of Tokyo on the topic

of formalizing communicating parallel processes and created formal verification tools for

Ethereum in his spare time. I'm joining Ethereum as a formal verification engineer. My reasoning:
formal verification makes sense as a profession only in a rare situation

where

= the verification target follows short, simple rules (EVM);
= the target carries lots of value (Eth and other tokens);
= the target is tricky enough to get right (any nontrivial program);

« and the community is aware that it’s important to get it right

(maybe).

Lead Blockchain Researcher (Facebook)

FORMAL SPECIFICATION AND VERIFICATION

A significant strength of developing a protocol using a
provably correct security model is that it provides a
guaranteed limit of adversarial power. One is given a
contract that as long as the protocol is followed and the

proofs are correct, the adversary cannot violate the security
properties claimed.

https://whycardano.com/science-and
-engineering/#formal-specification-a
nd-verification

In this talk...

1. Stories of disasters from Ethereum’s first few years

2. What are the unique challenges about smart contracts that
lead to research opportunities for FM?

Parity Wallet disasters

The Parity wallet: Two massive failures in a row

- In July 2017, an exploitable vulnerability was exploited and $30M
153,037 Ether (worth $30+ million) was stolen from three wallet contracts

A remaining $78 million worth of tokens (half the value being BAT and
ICONOMI) plus 377,105+ ETH (around $72 million) were recovered by a daring
whitehat rescue, and returned to their rightful owners

- In November 2017, a second bug was triggered, leading to $150M frozen funds.

What is the Parity Wallet?

“Parity Wallet” is a Solidity smart contract
that Parity can create as part of its wallet
management feature.

It is a popular feature of Parity, though
separate its “full node” function

https://github.com/paritytech/parity/wiki/Par
ity-Wallet

https://paritytech.io/blog/security-alert.html

A Parity X

& C | ® 127.0.0.1:8180/#/accounts

WALLET TYPE

1 wallet type

Multi-Sig wallet

https://github.com/paritytech/parity/wiki/Parity-Wallet
https://github.com/paritytech/parity/wiki/Parity-Wallet
https://paritytech.io/blog/security-alert.html

Parity Wallet uses the “Prototype Inheritance” pattern

* Toy version of code

contract Wallet { i Wallet Library contract:

address walletLibrary; —_—— |

address owner; [T contract WalletLibrary {

address owner;

function Wallet(address _owner) { // called by constructor

_walletLibrary = ${hardcoded address}; function initWallet(address _owner) {
_walletLibrary.delegatecall(require(initialized == false);
"initWallet(address)", initialized = true;
_owner); owner = _owner;
¥ // ... more setup ...
function withdraw(uint amount) }

returns (bool success) {

function changeOwner(address _new_owner)
return _walletLibrary.delegatecall(

function () payable {

"withdraw(uint)", // ... receive money, lLog events,
amount) ; }

¥ function withdraw(uint amount);

// fallback function gets called if no }

// other function matches
function () payable {

, eliertibrany.delcgatecatinsg. data); 0x863dfBbfad469f3ead0be8i9f2aae51c91a907b4

Multiple Wallet contracts, all refer to Wallet Library

! Why? Reduces fees from duplicate data!

https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4#code

anyone can kill your contract #6995

devops199 opened this issue 22 hours ago - 12 comments

nL

The WalletLibrary
contract

devops199 commented 22 hours ago ¢ edited

| accidentally killed it.

https://etherscan.io/address/0x863df6bfad469f3ead0be8f9f2aae51c91a907b4

Hello, first of all i'm not the owner of that contract. | was able to make myself the owner of that contract

because its uninitialized.

These (https://pastebin.com/ejakDR1f) multi_sig wallets deployed using Parity were using the library located
at "0x863dfobfad4659f3eadObedf9f2aae51¢c91a907b4" address. | made myself the owner of
"0x863dfobfad469f3ead0be8f9f2aae51¢c91a907b4" contract and killed it and now when 1 query the
dependent contracts “isowner(<any_addr>)" they all return TRUE because the delegate call made to a died

contract.

| believe some one might exploit.

anyone can Kill your contract #6995

Parity wallet uses “Prototype Inheritance”

The WalletLibrary should only act as a template.
- It should not have any “state”

- Its constructor has never been called

But, the WalletLibrary is actually just a contract!

Attacker calls:

library.call (“initWallet (address)”,
attacker) ;

library.kill () ;

Thereafter, any method call to any instance
“Wallet” will fail, since the target of delegatecall
is destroyed

Wallet Library contract:

contract WalletLibrary {

address owner;
// called by constructor
function initWallet(address _owner) {
require(initialized == false);
initialized = true;
owner = _owner;
// ... more setup ...
}
function changeOwner(address _new_owner)
function () payable {
// ... receive money, log events, ...

}

function withdraw(uint amount);

0x863df6bfa4469f3eadObe8f9f2aae51c91a907b4

https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4#code

After a developer stumbled upon the bug — "accidentally" deleting a code library for the Parity
wallet and freezing more than $152 million-worth of ether — several startups and open-source
projects that recently launched initial coin offerings (ICOs) have come forward, stating that theirs
are among the 151 addresses impacted by the software failure.

According to crypto eli5, 151 wallets have been frozen, with their balances being 513,743 ETH or
$152 million in total. Parity Technologies announce that 573 wallets have been affected and their
total balance is unknown.

Parity MultiSig Freeze

Is your address affected?

Affected wallets: 584 Affected owners: 573

All about TheDAO

Slock Home Server

Slock Power Switch

In Progress
(with partners)

« Slock Door Lock
» Slock Bike Lock
« Slock Pad Lock
« Slock Car Lock

~slock.it a Blockchain + loT company

Example use case:

1. AirBnB user submits payment to
the Ethereum blockchain

2. Slock Home Server (Ethereum
client) receives the transaction

3. Power switch connected to Home
Server receives “unlock” command,
unlocks the door

slock.it built The DAQO as a custom fundraising tool

“‘DAQ”: Decentralized Autonomous Organization (coined by Vitalik in 2013)
Built by slock.it to raise funds for their company
Main idea: A decentralized hedge fund
Investors contribute funds, receive ownership “tokens”
Investors jointly decide how to spend funds, by voting in proportion to tokens
Many additional mechanisms:

“Splitting” to prevent hostile takeover DAOs, Democracy and Governance

by Ralph C. Merkle, merkle@merkle.com

Reward disbursing Version 1.9, May 31t 2016

P P il

tasks & orders

:—-1'— ¥ Aeward Vote Tasks:

- Vote on major decisions

T - Fund the development

- Control the funds (1)

’ i é - Profitable

Slock Home Server

= EH B 5N

supports:
- Z-\Wave
- Zigbee
- Bluetocoth LE

Slock Power Switch

Service provider

) e

Tasks:
- Produce Slocks
- Marketing
- Partnerships

In Progress
(with partners)

Slock Door Lock
Slock Bike Lock
Slock Pad Lock
Slock Car Lock

THE DAOQ IS

1071.36 M 1.10
10.73 M 15 hours
116 81 M 11 days

Raised ~150 million dollars in ~ 1 month

Excerpt from DAO contract (simplified)

Contract DAO:

mapping (address => int64) balances;

function withdraw (uint amount) {

if (balances[msg.sender] >= amount) {
msg.sender.call.value (amount) () ;
balances[msg.sender] -= amount;

}
}

Re-entrancy hazards in Ethereum

Ether Balance
balances|user]

200
%)

Contract DAO:

mapping (address => int64) bala

function withdraw (uint
if (balances[msg.sender]

ount) {
>= amou

msg.sender.call.value (amount)q) ;

balances[msg.sender] -
}
}

= amount;

Balance 100

Wallet Contract

function doWithdraw() {
token.withdraw (100) ;

}/ ()

, function () payable {

EventMoneyReceived (msg.value) ;

}

Re-entrancy hazards in Ethereum

Balance 300

Attacker Contract

Ether Balance 0
balances[attacker] -300 function startAttack() {

token.withdraw (100) ;
}/ ()
;function() payable({
mapping (address => int64) bala ; token.withdraw(100) ;
}

.

Contract DAO:

function withdraw (uint

if (balances[msg.sender] >= am)
msg.sender.call.value (amoun
balances[msg.sender] -= amounty;

}
}

Directions for improving smart contract security

- Learn the hard way, adopt hindsight-oriented best practices
- Make iterative ergonomic improvements to the language

- Design new language abstractions for making secure-by-construction
programs

- Design program analysis tools to exclude classes of errors

Token Tracker E] TheDAO

Static Analysis raised 2 warning(s) that requires your attention. %

Transactions Internal Transactions Token Transfers Contract Sourq Click here to show the warning(s).

A Warning: The compiled contract might be susceptible to ZeroFunctionSelector (ver browser/ballot.sol:19:5: Warning: Defining constX
SkipEmptyStringLiteral (low-severity), ConstantOptimizerSubtraction (low-severity), Ide function Ballot(uint8 numProposals) public
OptimizerStaleKnowledgeAboutSHA3 (medium-severity), SendFailsForZeroEther (low ~ (Relevant source part starts here and spar
severity), CleanBytesHigherOrderBits (medium/high-severity) Solidity compiler bugs. : 4

For existing code For new code

Prototype Decompilation @

Heuristic @
Gas hazard w
Estimation detection
Solidity m
Compiler

Warnings

Deployed Etherchain
verified source

Safer Smart Contract Languages

Scripting Languages

Typed functional programming languages
Formal logics

Automata model

Safer Smart Contract Languages

Name
Scilla
FSolidM
Rholang
Vyper
Type-coin
Simplicity

Level
Intermediate-level
Higher-level, framework
Higher-level

Higher-level

Blockchain
Zilliga
Ethereum
RChain
Ethereum
Bitcoin

Bitcoin

Safer Smart Contract Languages

Name
Michelson
Liquidity
Plutus
Plutus-Core

Owilchain

Level

Lower-level, Functional
Higher-level, Functional
Higher-level
Lower-level

Framework

Blockchain
Tezos
Tezos
IOHK

IOHK
BOSCoin

uages

Table 1: Languages

Descriptions (motivalion, exprassivity, typa sys-
tom, analysis-friendly features, etc)

jerance

Scilla
(intermediate-
level) Zilliga)

- motivated by achieving expressivity and
tractability

- based on communicating automata 50}

- provide limited translation from higher-level lan-
suages (ie., Solidity)

- provide translation into Coq for verification,
along with contract protocols, semantics, safe-
ty /liveness properties and proof machinery

lpaper {711
code 1701

FSolidM
(Ethereum, frame-
work, higher-level)

- aims to develop more secure smart contracts

- a formal, finite-state machine based model

- provide several plugins (ie., design patterns)
to enhance security and functionality, targeting at.
vulnerabilities as neentry bugs and transaction or-
dering, or design pattems as time constraint and
authorization.

- primarily for Ethereum, but it may applied on
other platforms

- provide translation into Solidity

paper (53]
code 50

- a strongly-typed, stack-based language

- It doesnt include many features like polymor-
phism, closures, or named functions.

- more as a way to implement pieces of business
logic than as a generic “world computer”

- Prog; writken in Michelson can be bly
analyzed by SMT solvers and formalized in Coq
without the need for more complicated techniques|
like separation logic.

- To provide a straightforward platform for busi-

Rholang (higher-
level, RChain)

- primitively for RChain, but could be used in oth-
er settings

- focus on !msag.-pasennb and lomuuy modeled
by the p-cal lus, & high der exten-
sion o‘ the w-calculus, which is good for concur-
rent settings

code (1)

Vyper (Ethereum,
higher-level)

- mainly target at security and auditability

- provide the following features bounds and over-

flow checking, support for signed integers and.

decimal fixed point numbers, decidability, strong

typing, small and understandable compiler code,

and limited support for pure functions

- does not support the following features: mod-
, class inheritance, inline assembly, opera-

tor uverloadu\b, necursive calling, infinite-length)

loops and binary fixed point.

- statically typed language

code 5]
doc [27]

Ty pe-coin (Bitcoin)

- a logical commitment mechanism
- the logic is linear and not rich to handle complex|
situations

paper [H]

Simplicity (Bitcoin)[2£*

- type-safety, no unbounded loops, no named vari-

no function types and thus no higher-order func-

paper 5],
lblog (211

tions,

Aichelan neas log, to provide a readable bytecode, and to[P2PeT B2
(Tezosilower- |y inrospectable. web ER
level)(t onal) - Entirely original mlplemm(auon in OCaml

- Isolated 1 rules, d. via

voting

- purely PoS

- Blockchain state in a git-like persistent store

- Highly functional, defensive coding style for the

critical parts

- designed with formal certification in mind

FreE - It uses the syntax of OCaml, and strictly complies|

Liquidity i g A code
(Tezos) (higher- to Michelson security restrictions lweb B3]
level)(functional)

- compiled to Plutus Core (lower level), Lisp-like

syntax

- a pure functional strictly
Plotus (higher- hnb“:z:m with user-defined data tvpes and poh e (7
level) and Plutus| ;-\'enl Snie b dad paper
(oo (lower-level) non-supporting abstract data types and data con-
(IOHK) structors.

T2 deadabi = T

consists of the Web Omolugy Language and the

Timed Aumn\au language OWL is defined as

W3C d. Bt that pro-

vides deddablhl’

fromy
. E TAL Timed Automata Language is a new lan- .

Owlcha{n guage that is used to create operators. It is a article [32]
(BOSCoin)

finite state programming environment with t-
wo cunsmunn: time limit and pure funmom
Timed deling can detect undefi

areas(reachability pmblem) in the code that devel-
opers missed. Pure function can eliminate side ef-

fcts that can occur during development

Program Analysis

More than 11 tools or frameworks to detect various types of
vulnerabillities:

- From the scale of checking abilities

- From the view of vulnerabilities

- From the view of programming analysis techniques
- Most are developed in Python

Semantics design

Program Analysis

CertiK Dr.Y’s Analyzer Maian
Manticore Mythril Oyente
Tools
porosity SmartCheck Securify
Solgraph ZEUS

TU Wien F*

eth-isabel F* (2016) (2018)

Semantics

Design

Table 2: Toels and frameworks for analyzing smart contracts

porosity

- find potential neentrancy vulnerability
- support decompilation and disassembly

code [,
[white

paper 73]
article [72]

Table 3 Language design and model translation

SmartCheck (target|-

at Solidity)

- detect eentry bugs

- check locked money

- detect possibly infinite or impractical loops

- detect unchecked low-level call

- check integer overflow and underflow, and rec-

d to use the SafeMath library [13]

check timestamp dependence

- Other: more better programming design pattern

recommendation

- Other: recommendations for standard ERC-20

function usages, and check style guide violation

- Other: some checking for recommended Solidity
ing style

code
23, web)
access [23]

Securify

heck Teentry bugs

- check mishandled exception
- check transaction-order-dependency
- check insecure coding patterns, e.g., unchecked
transaction data length, use of ORIGIN instruction|
and missing input validation
- check unexpected Ether flows, such as locked
Ether 55
- check use of untrusted inputs in security op-
erations, ie., checking whether the inputs to the
SHA3 depend on block information (imestamp,
number, coinbase)

web ac-

cess 200

Solgraph

- highlight potential unchecked money receiver
- generate function control flow of a Solidity con-
tract

code [B7]

Languages or se-JDescriptions (motivalion, exprassivity, type sys-|Referance
mantics tem, analysis-friendly features, etc)

“introduce ECF (Effectively callback free) property

for modular object-level analysis
SMAC (modular[- develop online detection algorithm which can|paper [
Teasoning) apply to Ethereum full node, and monitor non-

ECF executions, including the infamous DAO bug

- define the complete instruction set of EVM in

o Lem, a language that can be compiled into C
‘:{u*n‘::"" (6o iabelle/ HOL and HOLA 3 g s:g:‘g
- can prove invariants and safety pmpemes
t the plete small-step of|

EVM bytecode in the F* proof assistant
TU Wien F* (2018)[- define a number of cenlml security pmpemes. [paper 39,
(Ethereum) such as call integrity, icity, and indep code

from miner controlled parameters

- motivated by formal verification

- partial semantics for converting Solidity to F*,
P (2016){ EVM to F* paper (X
(Ethereum) - show the correspond: b Solidity and

EVM to some point
KEVM (seman-'a: mp l() s of the \nlualmd‘_ B
tics, high-level, | (paper
Ethereum)

ToofFramework [Capabilities forence
- target at fully trustworthy blockchain ecosy stems
in the future
) - specifications for each function can be expressed| . .
Cortik (Demo) | B K el indicating premndmoll,l. post.[V1ile P
dition and 1 pe ly, as com- P
ments in Solidity programs
DeY's Etheneum) -h:‘sz):\:ﬂs: ‘::emi:l\rn tool, reflecting contract be- code E)
Contract Analyzer P
- check locked money
A - detect unchecked suicide or Ether sending
Matin - generate inputs to validaw through private E:g:rag’
blockehain
- detect potential overflow and underflow condi-
tions on "ADD", “MUL” and "SUB" instructions
- detect potential uses of uninitialized memory or
storage
M : calemilate ench 5 article
- generate inputs which could trigger unique code [[II], code|
paths (Solidity source code needed) [doc|
- Other: offer a Python API for analysis of EVM [
bytecodes
- detect reentry bugs and extemal calls to untrust-|
ed contracts
- detect unchecked suicide or Ether sending
- check mishandled exceptions (ie., detect]
‘unchecked CALL return value)
: - check integer underflows :
Myfhell B deleau:g; of "borigin” B1I afl“ ﬂ
- check dep ony iables (e.g., M codel
coinbase, gaslimit, !mu.nsmmp, numb.-z etc) &2
- Other: generate control flow graph, blockchain)
exploration and some utilities
- support on-chain contracts analysis
- detect reentry bugs
- check mishandled exceptions (ie., detect
unchecked CALL return value)
- check transaction-order-dependency (ak.a. mon-
Oyente ey concurrency, or front running) papet -
- check timestamp dependency
- check possible assertion failune (Solidity source [cess -
code required) code [15]
- calculate code coverage

ZEUS

- support self-defined policy verification, e.g,
reentry bugs, unchecked “send”, possibly vulner-
able failed “send”, integer overflow, transaction s-
tate d«pendency (u.- usage of “ix.origin”), block
state d g all “block”

aper 7]

ers) and transaction order dependencv
- specification limited to quantifier-free logic with

integer linear arithmetic

Formal methods for smart contracts:
Opportunity or bubble?

What’s unique about smart contracts?

1. Ease of vulnerability monetization
2. Blockchain programming specialties (gas, public, ...)
3. Tendency to rely on incentive mechanisms

4. For disruptive potential, must appeal to novice developers

Not all Cryptocurrency failures are
high-tech

Hacker Allegedly Steals $7.4 Million in Ethereum
with Incredibly Simple Trick

Someone tricked would be investors during an
ethereum ICO into sending their
cryptocurrency to the wrong address.

What drives the “demand” for formal methods?

Fear-of-Missing-Out can outweigh Prudence
Externalities:
High profile failures drag the price down for everyone

Who should take responsibility for security?
Investors?
App developers?
Protocol engineers/stewards?

In Smart Contracts, bugs are easily monetized

COST OF A SOFTWARE BUG

If found in Gathering If found in QA testing phase If found in Production
Requirements phase

A 2003 study commissioned by the Department of Commerce’s National
Institute of Standards and Technology found that software bugs cost the US
economy $59.5 billion annually.

Smart Contract challenges in the blockchain model

- Transactions are processed after a delay

- Adversaries can re-order and “frontrun”
transactions

- All smart contract data is public
- Execution is expensive (gas costs, tx fees)
- Code is difficult to change (“Code is law”)

We need tools for “crypto-economic” reasoning

Incentive mechanism analysis

- Security deposits and penalties
(based on detected misbehavior)
Nash equilibrium (and variations...)

- Fees (charged based on market price)
Bounding the consumption of “gas”
apply methods for bounding space/time

We need tools for “cryptoeconomic” reasoning
Example: Sealed Bid Auction

Uses commit-and-reveal cryptography to prevent bid front running.
However, there remains a concern about misbehavior where players "abort"
and go away before revealing

The "cryptoeconomics" solution: require a security deposit, that you lose if you
do not reveal

Property 1: The security deposit at least covers the gas cost of the reveal
method

Property 2: Revealing should be an equilibrium strategy. (Vickrey auctions
assume all bids are committed simultaneously and then revealed, so it
becomes a proof obligation to show it still holds).

Smart contracts are just one component of increasingly
complex protocols

Host Blockchain Side Blockchain
Off-chain Protocol Proofs-of-
Digital Signatures Proofs-of-
o Zero Knowledge Proofs Work
7 X
% <
AN /

Non-exhaustive list of startups focusing on inter-blockchain interaction:

C 2 S M O S|Interledger
The protocol for connecting ledgers.|

PARSECLABS Celer Network
Bring Internet Scale to Every Blockchain

Example of Offchain Protocol: Payment Channels

3. At any point, Bob closes
the channel by posting the
largest signed message on
the blockchain.

1. Alice deposits $10

2. Alice pays Bob by sending

signatures on incrementally —,
——
larger payments "

4. If Bob aborts, Alice can
Blockchain claim a refund (after a time
limit)

signature(Alice, “$1”)

signature(Alice, “$2”)

Example of Offchain Protocol: Payment Channels
(Implemented in Ethereum)

def finalize(signature, amount):
assert(msg.sender == bob)
assert(verify signature(alice, amount, sig)))
send(bob, amount)
send(alice, self.balance) Blockchain

def refund():
assert(msg.sender == alice)
assert(block.number > deadline) // only after deadline
send(alice, self.balance)

Some Thoughts

e Compositional Verification
o Assume Guarantee Reasoning
o Challenge: Various types of primitives

e Synthesis
o Challenge: High-level architecture design drives
the implementation
o Roles of various primitives is clear

Concluding remarks

- Several technical challenges for FM/PL research arising from
smart contracts, which are well motivated by the real world use
seen already

- Smart contracts, like other hot domains, such as Internet of
Things, have encountered expensive security failures early on,
shaping the field

- However, the close relationship between the smart contracts
industry and formal methods is a unique opportunity

Public debates are raging that amount to choosing
which layer of the system must improve

Should we change the underlying EVM virtual machine?

Or should we change the high level language”?

Smart contracts are small components of larger
distributed applications (dApps)

A dApp includes:

- Smart contract used as a backstop / dispute resolution handler

- Cryptography computed locally by clients (signatures, zero knowledge proofs)
- Point-to-point messages exchanged out of band

Examples:

- Multi-player Lotteries / Coin flips https://arxiv.org/abs/1612.05390 (WTSC'17)
- Scalable payment channel networks https://arxiv.org/abs/1702.05812
- Interactive games (e.g. Poker) https://arxiv.org/abs/1701.06726 (AsiaCrypt'17)

https://arxiv.org/abs/1612.05390
https://arxiv.org/abs/1702.05812
https://arxiv.org/abs/1701.06726

Blockchains are powerful, but expensive

Unconfirmed Transaction Count (Mempool)

Pending ethereum transactions after CryptoKitties' release e P ———
12,000
10,000
8,000
6,000
4,000
2,000

0

Dec. 2 3 4

NNN

- Blockchains derive their security through wide replication

- We do not fully understand the security consequences of scalable alternatives
(incentive compatibility, plausibility of assumptions, etc.)

The “Off-chain” method:

Avoid blockchain transactions except in rare cases

Parties deposit money
into the smart contract

Blockchain

The “Off-chain” method:

Avoid blockchain transactions except in rare cases

Parties deposit money
into the smart contract

Blockchain

Out-of-band communication

The “Off-chain” method:

Avoid blockchain transactions except in rare cases

Parties deposit money

Dispute raised
into the smart contract

Blockchain determines outcome
Blockchain executes the remedy

Out-of-band communication

Unidirectional Payment Channels

Alice deposits $10

Alice pays Bob by sending

signatures on incrementally —
. h——t
larger payments signature

Blockchain

signature(Alice, “$1”)

Unidirectional Payment Channels

Alice deposits $10

Alice pays Bob by sending

signatures on incrementally —,
. e
larger payments signature

Blockchain

signature(Alice, “$1”)

signature(Alice, “$2”)

Unidirectional Payment Channels

Alice deposits $10

Alice pays Bob by sending
signatures on incrementally
larger payments signature

-
o]
e
b
=~ =

-

P
——) 8
= 3

Blockchain

signature(Alice, “$1”)

At any point, Bob closes the
channel by posting the
largest signed message on
the blockchain.

If Bob aborts, Alice can claim
a refund (after a time limit)

e
e’
——)

signature(Alice, “$2”)

Unidirectional Payment Channels
(Implemented in Ethereum)

def finalize(signature, amount):
assert(msg.sender == bob)
assert(verify signature(alice, amount, sig)))
send(bob, amount)
send(alice, self.balance) Blockchain

def refund():
assert(msg.sender == alice)

assert(block.number > deadline) // only after deadline
send(alice, self.balance)

Off-chain protocols for many applications

Application 1: Multi-player Lotteries / Coin flips https:/arxiv.org/abs/1612.05390

Outcome: Bitcoin requires either O(N?) more collateral, or else O(2N) more computation vs. Eth

Application 2: Payment channels https://arxiv.org/abs/1702.05812

Outcome: Bitcoin requires O(L) more collateral for path of length L vs. Eth

Application 3: Amortized games (e.g. Poker) https://arxiv.org/abs/1701.06726

Outcome: Both amortization and cash distribution in Ethereum only

https://arxiv.org/abs/1612.05390
https://arxiv.org/abs/1702.05812
https://arxiv.org/abs/1701.06726

Model complex protocols with an Ideal Functionality

In the real world: multiple views
of the current state

Real World

J STATE(U)

/

\

/

Ideal World

\

- Models 1 consistent view
of sequential state

- Receives inputs from
each party (possibly
delayed)

- Delivers output (possibly
delayed)

- Real time guarantees:
- Fast O(1) if all honest
- At most O(D) always

' - Always applies
U update U correctly

- Has side effects ($)

Functionality keeps track of the
“official” view of each party.

Delay is precisely bounded.
Important because the

Payment Channels (spec) /

Security Properties modeled:

$X - underlying “blockchain”
) —_— Payment introduces delay.

- Balance / no overpay / > off-chain optimism

side effect of moving mone PAYLY |

(g y) i / HreCV”, y
- Bounded delays

. "settle”, $(X- "settle”,

- Economic guarantee settie”, $(X-y) ‘settle”, Sy

(13 1]

Implementation: exchange off-chain signatures on increasing “y” (see next slide)

Future impact: can be linked into networks of collateral, e.g. Poker (AsiaCrypt'17)

Payment Channels (implementation)

8 -
paid ;=0

paic.l'-.+= y
sig < sign(paid)

after TD o
eadline
call Contract.refund()

Contractpaymem

init: $X deposited from Alice at T

function settle(Y, sig) from Bob:
check(0<=Y <=X)
checkSig(pk,,... Sig, h(Y))
send($(X-Y) to Alice
send($(Y) to Bob

function refund() from Alice:
check(now >=T,_ ..)
send($X) to Alice

"settle”, $y
e s

receive (sig,paid)
Check signature

Discard unless “paid” is larger
oncheck , $y

Backup slides

More detail about Parity Wallet disasters

Parity - The Rust Ethereum node

Parity is the Rust-Ethereum client.
Separate core development team to Ethereum Foundation.

Currently around 20% of the nodes (we think actually 6%)

1. Constructor is called, invokes initWallet

contract Wallet {
address _walletLibrary;
address owner;

function Wallet(address _owner) {
_walletLibrary = ${hardcoded éEEFE§§T7--—~
_walletLibrary.delegatecall(
"initWallet(address)",
_owner);
¥
tunction withdraw(ulnt amount)
returns (bool success) {
return _walletLibrary.delegatecall(
"withdraw(uint)",
amount) ;
}
// fallback function gets called if no
// other function matches
function () payable {
_walletLibrary.delegatecall(msg.data);
¥

Wallet Library contract:

contract WalletLibrary {
address owner;

VAV RSN B B B TR NSY "IPRT "
— Hofmaalbod by=constpuetor
|~ function initWallet(address _owner) {
owner = _owner;
// ... more setup ...

}

tunction changelwner(address _new_owner)
function () payable {
// ... receive money, log events,

}

function withdraw(uint amount);

0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3

https://etherscan.io/address/0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3#code

2. The withdraw function invokes withdraw

contract Wallet {
address _walletLibrary;
address owner;

function Wallet(address _owner) {
_walletLibrary = ${hardcoded address};
_walletLibrary.delegatecall(
"initWallet(address)",
_owner);
1
function withdraw(uint amount)
returns (bool success) {
return _walletLibrary.delegatecall(
"withdraw(uint)",
amount);
}
// fallback function gets called if no
// other function matches
function () payable {
_walletLibrary.delegatecall(msg.data);

}

Wallet Library contract:

contract WalletLibrary {
address owner;
// called by constructor
function initWallet(address _owner) {
owner = _owner;
// ... more setup ...
¥
function changeOwner(address _new_owner)
function () payable {
// ... receive money, log events,
1

function withdraw(uint amount);

0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3

https://etherscan.io/address/0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3#code

3. The fallback function can invoke any method

contract Wallet {

Iaddress owner; I

function Wallet(address _owner) {
_walletLibrary = ${hardcoded address};
_walletLibrary.delegatecall(
"initWallet(address)",
_owner);

}

function withdraw(uint amount)
returns (bool success) {
return _walletLibrary.delegatecall(
"withdraw(uint)",
amount);
}
// fallback function gets called if no
// other function matches
function () payable {
_walletlLibrary.delegatecall(msg.data);

}

Wallet Library contract:

contract WalletLibrary {

address owner;

// called by constructor

function initWallet(address _owner) {
owner = _owner;
// ... more setup ...

}

tunction changeuwner(address _new_owner)

function () payable {
// ... receive money, log events,

}

function withdraw(uint amount);

Attacker calls:

victim.call (“initWallet (address)”,

attacker)

https://etherscan.io/address/0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3#code

Fixing the July 2017 Parity wallet bug

Old Wallet Library contract:

contract WalletLibrary {

address owner;

// called by constructor

function initWallet(address _owner) {
owner = _owner;
// ... more setup ...

¥

function changeOwner(address _new_owner)

function () payable {
// ... receive money, log events,

}

function withdraw(uint amount);

0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3

New Library contract:

contract WalletLibrary {

address owner;

// called by constructor

function initWallet(address _owner) {
require(initialized == false);
initialized = true;
owner = _owner;
// ... more setup ...

¥

function changeOwner(address _new_owner)

function () payable {
// ... receive money, log events,

}

function withdraw(uint amount);

0x863dfobfa4469f3ead0be8f9f2aae51c91a907b4

https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4#code
https://etherscan.io/address/0xa657491c1e7f16adb39b9b60e87bbb8d93988bc3#code

2

devecon three

Developers Conference

U4 status

Microsoft

omise =3 MANKIANG

FUMNFalR

€ 5 b4l
L

¢ |

=

v £
v IAIN)

) o

1 .

Q’ -

, R

|
4

VL

[

1

‘
e
) CA

5 tand:

The White Hat Recovery Team

A white-hat recovery team (MEH-WH) developers identified and drained all
remaining vulnerable wallets into this wallet. They recovered a total of $78
million worth of tokens (half the value being BAT and ICONOMI) plus 377,105+

ETH (around $72 million). The funds will be returned to their owners as noted on
r/ethereum:

Overview | JordiBaylina (WHG)

ETH Balance: 0.119618491797361306 Ether
ETH USD Value: $56.47 (@ $472.10/ETH)

No Of Transactions: 4509 txns

KX A Modified Version of a Common Multisig Had A Vulnerability - The WHG Took Action & Will Return the Funds sese:
Submitted 4 months ago * (last edited 4 months ago) by jbaylina

The White Hat Group were made aware of a vulnerability in a specific version of a commonly used multisig contract. This vulnerability
was trivial to execute, so they took the necessary action to drain every vulnerable multisig they could find as quickly as possible.
Thank you to the greater Ethereum Community that helped finding these vulnerable contracts.

The White Hat account currently holding the rescued funds is
https://etherscan.io/address/Ox1dbal131000664b884a1ba238464159892252d3al!

If you hold a multisig contract that was drained, please be patient. We will be creating another multisig for you that has the same
settings as your old multisig but with the vulnerability removed and we will return your funds to you there. We will be using the
donations sent to us from The DAO Rescue to pay for gas.

Effectively we will upgrade your multisig contract for you, all you will have to do is, be patient, find your new multisig address once we
have finished, and it will be like nothing happened.

We will not be responding to any social media posts.

Edit: Do not trust any address posted below as a "donation address.” There are a lot of phishers in the community right now. In
general always verify any address or link you find on reddit.

125 comments source share save hide give gold report crosspost hide all child comments

The Parity Wallet July ‘17 stolen coins are still idle
I Address 0xB3764761E297D6f121e79C32A6582¢
Sponsored Link: Simple Token - Cryptocurrency for digital communities - 105% of target hit, Sale ends 1 Dec!

Public Note: There are reports that funds were maliciously diverted to this account by the MultiSig Blackhat Exploiters.

Overview | MultisigExploit-Hacker e Misc
ETH Balance: 83,017.074022098 Ether Address Watch
ETH USD Value: $39,286,169.94 (@ $473.23/ETH) Token Tracker

No Of Transactions: 30 txns

Root Cause and Post Mortem from Parity

- An “initialize()” function to set the owner of the contract, was missing the
“onlyOnce” modifier

- Process error more than anything -> mistriaged as “UX upgrade,” skipped review

In depth analysis of the event from IC3:

http://hackingdistributed.com/2017/07/22/deep-dive-parity-bua/

http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/

No one knows who devops199 was!

Tienus @Tienus
@devops199 you are the one that called the kill tx?

devops199 @c
yes

i'm eth newbie..just learning

gqx133 @qx133
you are famous now haha

devopsl99 @
sending kill() destroy() to random contracts

you can see my history

s (CCCcceceeceeceeceeceeceecec

Deleted user
ghost

Timeline and Aftermath of The DAO

- June 12: slock.it developers announce that the bug is found, but no funds at risk

- June 17 (Morning): attacker drains Vs of the DAO’s Ether ($50M) over 24 hrs
Attacker’s funds were trapped in a subcontract for 40 days (July 27)

- June 17 (Evening): Eth Foundation proposes a “Soft Fork™ to freeze the funds

-June 28: Cornell freshmen identify a flaw in the Soft Fork Proposal

- July 15 (Morning): Eth Foundation proposes a “Hard Fork” to recover funds

- July 15 (Evening): “Ethereum Classic” manifesto published on github

- July 19: “Hard Fork” moves funds from attacker’s contract to recovery contract
Ethereum Classic blockchain survives and is traded on exchanges

Both Ethereum and Ethereum Classic are both around, reached new peaks

SECURITIES AND EXCHANGE COMMISSION
SECURITIES EXCHANGE ACT OF 1934
Release No. 81207 / July 25, 2017

Report of Investigation Pursuant to Section 21(a) of the Securities Exchange Act of 1934:
The DAO

L. Introduction and Summary

The United States Securities and Exchange Commission’s (“Commission’) Division of
Enforcement (“Division”) has investigated whether The DAO, an unincorporated organization;
Slock.it UG (“Slock.it”), a German corporation; Slock.it’s co-founders; and intermediaries may
have violated the federal securities laws. The Commission has determined not to pursue an
enforcement action in this matter based on the conduct and activities known to the Commission
at this time.

https://www.sec.gov/litigation/investreport/34-81207 .pdf

How has the Ethereum community
approached security improvements?

More resources on Smart Contract Security

- ConsenSys’s “Smart Contract Best Practices”

- KEVM Semantics http://hdl.handle.net/2142/97207

- QOyente tool
Symbolic engine catches some errors “Making Smart Contracts Smarter’

- Formal Verification of Smart Contracts - compiler written/checked in F*
Includes a verified Decompiler and proofs of gas bounds

- A survey of attacks on Ethereum smart contracts

- An empirical analysis of smart contracts: platforms, applications, and design

patterns
- Step by Step Towards a Safe Smart Contract

- Open Zeppelin https://openzeppelin.org/
- Under-optimized contracts devour your money https://arxiv.org/pdf/1703.03994.pdf

J

https://github.com/ConsenSys/smart-contract-best-practices
http://hdl.handle.net/2142/97207
https://github.com/oyente/oyente
https://eprint.iacr.org/2016/633.pdf
https://www.cs.umd.edu/~aseem/solidetherplas.pdf
https://eprint.iacr.org/2016/1007.pdf
https://arxiv.org/pdf/1703.06322.pdf
https://arxiv.org/pdf/1703.06322.pdf
http://fc16.ifca.ai/bitcoin/papers/DAKMS16.pdf
https://openzeppelin.org/
https://arxiv.org/pdf/1703.03994.pdf

The “Checks / Effects / Interactions” paradigm

A Best Practice guideline for safe smart
contract behavior

. Contract A:
When receiving a message, do the public address callee;

fo||owing in order: public int balance = 100;

1. Perform all input validation and

function withdraw ()

checks on current state. Discard the only (callee) |
message if validation fails. 2L (lopleniee S) R
var toSend = balance;
balance = 0;
2. Update local state. callee.recv.value (toSend) () ;

1
J

3. Finally, pass on interactions to
trigger other contracts.

contract MyBank { module MyBank

mapping (address = uint) balances; open Solidity
function Deposit() { type state = { balances: mapping address uint; }
balances[msg.sender] += msg.value; val store : state = {balances = ref empty_map}

}

let deposit () : Eth unit =

function Withdraw(uint amount) { update__map store.balances msg.sender
if(balances[msg.sender] > amount) { (add (lookup store.balances msg.sender) msg.value)
msg.sender.send(amount);
balances[msg.sender] —= amount; let withdraw (amount:uint) : Eth unit =
} if (ge (lookup store.balances msg.sender) amount) then
} send msg.sender amount;
update__map store.balances msg.sender
function Balance() constant returns(uint) { (sub (lookup store.balances msg.sender) amount)
return balances[msg.sender|;
} let balance () : Eth uint =
} lookup store.balances msg.sender

Figure 3. A simple bank contract in Solidity translated to F*

let x_ 29 = pow [0x02uy] [0xAQuy] in

let x 30 =subx_29 [0xO1luy] in

let x_31=get_caller()in

let x_32=land x_31x_30in

burn 17 (% opcodes: SUB, CALLER, AND, PUSH1 00, SWAP1, DUP2 %),
mstore [0x00uy] x__32;

burn 9 (x opcodes: PUSHI 20, DUP2, DUP2 %),
mstore [0x20uy] [0x00uy];

burn 9 (* opcodes: PUSHI 40, SWAPI, SWAP2 %),
let x 33 =sha3 [0x00uy] [0x40uy] in

let x_34 =sload x_33in

burn 9 (x opcodes: PUSHI 60, SWAPI1, DUP2 %),
mstore [0x60uy] x_ 34;

loadLocal [0x60uy] [0x20uy] (* returned value *)

Figure 4. Decompiled version of the Balance method of
the MyBank contract, instrumented with gas consumption.

Iterative improvements to Solidity

- “Modifier” macros
Language syntax that explicitly indicates checked preconditions
function refundInvestors () _only(admins) { .. }
- “payable” modifier

In modern Solidity, functions by default refuse payments, return to sender

Some examples of what Vyper does NOT have and why: VYPER

e Modifiers - eg. in Solidity you can do function foo() mod1 { ... },where mod1 can be defined elsewhere in the code
to include a check that is done before execution, a check that is done after execution, some state changes, or possibly
other things. Vyper does not have this, because it makes it too easy to write misleading code. mod1 just looks too
innocuous for something that could add arbitrary pre-conditions, post-conditions or state changes. Also, it encourages
people to write code where the execution jumps around the file, harming auditability. The usual use case for a modifier is
something that performs a single check before execution of a program; our recommendation is to simply inline these
checks as asserts.

¢ Class inheritance - requires people to jump between multiple files to understand what a program is doing, and requires
people to understand the rules of precedence in case of conflicts (which class's function X is the one that's actually
used?). Hence, it makes code too complicated to understand.

¢ |nline assembly - adding inline assembly would make it no longer possible to Ctrl+F for a variable name to find all
instances where that variable is read or modified.

e Operator overloading - waaay too easy to write misleading code (what do you mean "+" means "send all my money to
the developer"? | didn't catch the part of the code that says that!).

e Recursive calling - cannot set an upper bound on gas limits, opening the door for gas limit attacks.
¢ [nfinite-length loops - cannot set an upper bound on gas limits, opening the door for gas limit attacks.

e Binary fixed point - decimal fixed point is better, because any decimal fixed point value written as a literal in code has an
exact representation, whereas with binary fixed point approximations are often required (eg. 0.2 -> 0.001100110011...,
which needs to be truncated), leading to unintuitive results, eg. in python .3 + 0.3 + 8.3 + 0.1 != 1.

