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Abstract

The High Performance Data Processor (HPDP) is a novel processor architecture for
stream-based data processing applications in space systems. It combines a coarse-grained
reconfigurable dataflow array, sequential processing units, and space-oriented periph-
erals. Flexibility and an in-orbit programmable core provide a full range of processing
capabilities for a long operational lifetime.
This work analyses the current development state of the HPDP chip, followed by estab-
lishing a suitable on-board test method for commissioning. In particular, the test concept
covers critical internal components, memories, as well as interfaces at the processor’s op-
erational speed using the instruction set. The correctness of the developed test programs
is demonstrated in ModelSim using an accurate design of the HPDP.

Zusammenfassung

Der High Performance Data Processor (HPDP) basiert auf einer neuen Prozessortechno-
logie für Stream-basierte Datenverarbeitungsprogramme in der Raumfahrt. Es vereint ein
konfigurierbares Datenfluss-Array, sequenzielle CPUs und raumfahrttaugliche Schnitt-
stellen. Eine breite Anwendung und lange Einsatzzeit sind durch die flexible Program-
mierung während einer Mission gewährleistet.
Die vorliegende Arbeit analysiert den aktuellen Entwicklungsstatus des HPDPs und stellt
darauf aufbauend eine geeignete Testmethode für die Inbetriebnahme vor. Das verwende-
te Konzept beinhaltet das Testen von kritischen internen Komponenten, Speichermodulen
und Chip-Schnittstellen unter der operativen Geschwindigkeit des Prozessors. Die ent-
wickelten Testprogramme wurden in ModelSim mit einem vollständigen HPDP Design
simuliert.
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1 Introduction

The demand for high-performance earth observation satellites is significantly growing.
New sensor technologies with increasing resolutions and rising instrumental data rates
require a cost-effective, real-time performance of on-board data management and high-
speed downlink to earth. A high-performance data processor is required, which can
handle the rising amount of data, and further, can lower costs of other on-board equip-
ment by reducing downlink data. Moreover, new transmission formats and standards
demand in-space reconfigurability to avoid a limitation of satellite’s functionality for its
whole life. [SHW+08]

A suitable hardware architecture must support pipelining and data flow parallelism on
the one hand, and on the other, offer an in-orbit programming flexibility for the processing
components. Application-Specific Integrated Circuits (ASIC) is an advanced architecture
providing high operating performance while energy consumption is low. Flexibility
might be reached by implementing multiple functionalities on a single or multiple con-
nected chips. However, the lack of reconfiguration capabilities is an inevitable drawback
of ASICs. A more flexible architecture are Field Programmable Gate Arrays (FPGA) based
on SRAM, offering reconfiguration at the gate level, but they need more space and a higher
power consumption at less operational frequency than an ASIC. Also, there are some con-
cerns about radiation effects, and internal data can not be stored during reconfiguration.
Another approach solving the arising problems might be a digital signal processor (DSP).
Its architecture is specialised for data-processing applications, and the algorithms are
coded in software. While a high flexibility and in-orbit reconfiguration is given, high
power consumption is disadvantageous. Moreover, the computational performance for
stream-based applications is not as high as FPGAs or ASICs. [BEM+03, SHW+08]

A new emerging technology is an array processor that combines the benefits of other
established architectures. A high computational performance with low power consump-
tion, while being reprogrammable at any time, makes that processor class a promising
technology for the earth observation field. The eXtream Processing Platform (XPP) archi-
tecture is based on such a reprogrammable array processor technology and forms the core
of the High Performance Data Processor (HPDP), that is used throughout this work. The
flexible and reliable architecture can process a high amount of data concurrently and is re-
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1 Introduction

programmable at runtime. Pipeline, instruction level, data flow, and task level parallelism
fulfil the requirements of heterogeneous applications in fields such as telecommunication,
simulation, digital signal processing, and cryptography [PAC09g, SAH13].
Moreover, a new radiation-hard, 65-nm semiconductor technology is used for manufac-
turing the HPDP chip. This technology is not space-proven yet.

The HPDP comprises various complex and heterogeneous components those are ar-
ranged on a single chip. A whole set of testing challenges has arisen through the long
development process. Signal integrity (SI) must be preserved in digital circuits as such
problems can cause a failure to operate at the planned operational speed, that makes the
circuit unreliable. Known causes are crosstalks, ringing, ground bounce or noise in the
power supply. Those may lead to wrong or delayed signals, or reduce the lifetime of
processor chip due to additional hardware stress.

1.1 Purpose of the Thesis

The goal of this work is to develop a test strategy bringing the new HPDP chip with its
new semiconductor technology into operation. A commissioning test plan shall be estab-
lished along with the on-board test software to verify the reliability of internal features
and interfaces of the new array processor technology. Meanwhile, the first HPDP demon-
strator chip is in the manufacturing phase and, therefore, not provided throughout this
thesis. Suitable verifications are required to ensure the reliability of developed commis-
sioning tests. Simple usability and good extensibility are essential because later the test
method will be used by an HPDP chip reviewer.
The processor utilises a new manufacturing process of a 65-nm radiation-hard technology
which also must show its reliability in practice. However, testing of the physical persis-
tence under extreme conditions in space is not part of this thesis. Whereas, stress tests
under normal circumstances shall be included.

1.2 Structure of the Thesis

The first section introduces the HPDP architecture from its top level design down to the
module level. The subsequent section analysis the verification process of the HPDP de-
sign and shows which test will be applied in manufacturing. After that, a discussion about
additional tests for commissioning is given. The fourth section starts with an introduction
of different approaches in hardware testing along with a short review of the literature.
After introducing the test setup, the detailed concept including test flow and individual
test cases is described. Next, the implementation section explains the realized of on-board
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1.3 Software used throughout this Thesis

tests into detail. Afterwards, the next section shows how the commissioning tests are ver-
ified, and presents the results. Finally, a conclusion summarizes the work and addresses
open issues.

1.3 Software used throughout this Thesis

The commissioning method is implemented using two different development kids. First,
the PACT XPP SDK provides several tools for compiling, simulating, visualizing, and
debugging source code for the XPP-Core of the new array processor. Second, a ModelSim
testbench provides a more detailed and comprehensive simulation model of the HPDP
design.
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2 High Performance Data Processor (HPDP) architecture

The target applications of the High Performance Data Processor (HPDP) are for high data
volumes in the signal-processing domain. The flexible and in-orbit reconfigurable core
is fully programmable and provides a full range of processing capabilities. The HPDP
includes the eXtreme Processing Platform (XPP) Intellectual Property (IP) from PACT
that combines a coarse-grained reconfigurable dataflow array with sequential processing
units. Additional, space-oriented modules such as data transfer and memory interfaces
are added by Astrium. [PAC09a]

The final semiconductor technology for the HPDP is 65 nm wide and radiation-hardened.
The planned operational clock frequency is 250 MHz due to the space conditions. This
chapter gives an overview of the processor design and its functionality from the top level
design down to the module layer.

2.1 Top Level Design

The HPDP chip comprises the XPP IP core along with useful peripherals. The XPP-Core
is based on the 40.16.2 XPP Dataflow Array and two Functional Processor Array Units
(FNC-PAE), surrounded by different memory access and streaming objects, as well as a
packet-oriented communication network. [PAC09h]

The high-speed interfaces SpaceWire with three links and the Stream-IO block with four
channels offer access for controlling and data transfer with other board elements such
as additional HPDP chips or instruments. The System Controller manages the different
clock frequencies of the chip and peripherals. It also has a JTAG (Joint Test Action Group)
interface and different operation modes for testing and debug purposes. The XPP Memory
Arbiter provides interfaces for three memory ports. The first port can connect the chip to
an EEPROM or SRAM, mainly to store instruction code. The second port is suitable for
a large SRAM or SDRAM storage, and the third interface already connects an internal 4
Mbyte SRAM. Further, a watchdog module observes a program execution and throws an
interrupt if a program does not reset the watchdog timer in a chosen period. [SH10] The
Top Level Design is represented in figure 2.1, where the blue area shows the XPP part that
is explained in more detail in section 2.2. The following section describes the peripheral
components represented in the white area of figure 2.1.
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Figure 2.1: Overview of the HPDP architecture; the blue area contains the XPP-Core, the
white part additional pheripherals; the arrows show the directions of data and
event flow

2.2 XPP-Core

The integrated XPP-Core comprises the XPP Array, two FNCs, storage components, vari-
ous memory access modules, as well as a communication network with point to point or
point to multi-point connections. The dataflow array consists of two different Processor
Array Elements, ALU-PAEs and RAM-PAEs, and runtime-configurable communication
buses. The operational fields are high-bandwidth stream-based applications. Two FNC-
PAE are coupled to the array’s communication channels and perform high-performance
execution of irregular and control-dominated algorithms. They are also in charge of the
system management, i.e., control DMA operation. Various DMA controllers transfer data
between external memories and the XPP components. Integrated FIFOs uncouple the
DMA channels from the system memory bursts and potentially stalled pipelines within
the XPP core. At runtime, configurable X-Bar switches connect the streaming input and
output ports of on-chip components. The SYSMEM-Arbiter handles concurrent RAM ac-
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2.2 XPP-Core

cesses of various memory channels from the XPP side to the three memory ports, or vice
versa. [PAC]

2.2.1 XPP Dataflow Array

The dataflow array has about 150 16 bit-wide ALUs and 16 small 512 Mbyte SRAMs and is
fully reprogrammable by the Config-DMA. Vertical routing registers and horizontal rout-
ing buses connect the components via 16-bit data and 1-bit event connections. I/O objects
on the left and right sides offer functionality for the link with other XPP components via
crossbars. Thereby, a ready/acknowledge protocol for communication is employed guar-
anteeing self-synchronization. [PAC09g]
Each array unit performs its programmed operation as soon as all required data or event
input packets are available. Afterwards, the ALU forwards the result once it is computed.
Hardware protocols handle pipeline stalls automatically. During a clock cycle, an XPP
Dataflow object consumes data and event packets from its input ports, performs the con-
figured operation and releases the result on the output ports if the previous packet has
been consumed. If not all required input ports for the set operation are covered by a
packet, the computation unit does not perform any action. Further, there are two different
Processor Array Elements: Arithmetic Logic Unit PAEs (ALU-PAE) and Random Access
Memory PAEs with I/O (RAM-PAE with I/O). [PAC09h]

ALU-PAE

An ALU-PAE, shown in figure 2.2, consists of three different objects that can execute a
separate opcode from a limited list of operations. The ALU-object is located in the mid-
dle and performs arithmetical and boolean operations, as well as comparisons. The For-
ward Register-object (FREG) and Backward Register-object (BREG) offer operations for
flow control, data manipulation, counters and shift operations, and are in charge of ver-
tical routing. Additionally, FREG and BREG objects have two input FIFOs with one and
four stages each to support pipeline balancing. During the configuration phase, preload-
ing of values into FIFOs is possible. The output registers can store one value to guarantee
that pipeline stalls do not lead to packet loss. [PAC09g]

RAM-PAE

The left- and the rightmost column of the Data-flow Array consists of RAM-PAE objects.
Those have one internal RAM object, one I/O object, and also an FREG and BREG object
for vertical routing. The I/O object provides the ability for direct communication of the
Array with other XPP components such as the FNCs or memory access objects. Both
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2 High Performance Data Processor (HPDP) architecture

(a) FREG (b) ALU (c) BREG

Figure 2.2: The three objects of an ALU PAE: Forward Register-, ALU- and Backward reg-
ister objects with input FIFOs and funtional units (red: event channels, blue:
data channels)[PAC09g]

(a) IO (b) RAM

Figure 2.3: The objects of an RAM PAE: I/O-object with streaming ports and input FIFOs,
RAM-object with interal memory and input FIFOs[PAC09g]

data and events can be transferred between the ports of an I/O object and the connected
network ports.

The internal RAM object works as a cache for the other array elements. It is not directly
accessible from the outside but can be filled with arbitrary values at configuration time.
Each RAM object can store up to 512 Mbytes and a RAM mode as well as a FIFO mode
are available. Figure 2.3 depicts the RAM-PAE object. [PAC09g]

Bus Switch Object

The XPP Array includes unidirectional data and event buses for horizontal routing. Bus
switches have a delay of one register and also includes one FIFO stage in their input ports.
[PAC09h]

Data and Event Streams

In the XPP architecture, single data and event packets travel through the flow graph se-
quentially. Thereby, 1-bit events may be used for synchronizing external devices.

All array components work with self-synchronization which means that an output packet
is only generated when all required input data and event packets are available. That
simplifies programming and compiling of dataflow-oriented algorithms because only the

8



2.2 XPP-Core

Figure 2.4: A FNC-PAE includes eight ALUs arranged in two colums, a Special Functional
Unit (SFU), 16 bit registers, 32-bit address generator (AG) and a L1 Instruction
cache and data cache [PAC09g]

number and order of packets travelling through a graph representation is important rather
than the timing of the pipeline. [PAC09g]

2.2.2 FNC-PAE

The HPDP architecture has two Function Processing Array Elements (FNC-PAE) that are
sequential 16-bits Harvard architecture processors and comprises a design similar to the
Very Long Instruction Word (VLIW). The differences are an implicit conditional operation
and sequential and parallel execution of eight ALUs in one clock cycle. Four ALU ele-
ments are arranged in one data path so that four ALUs can be chained. Also, predicted
execution can be implemented. [PAC09a]

Therefore, an FNC-PAE is specialised for typical signal processing algorithms and for
housekeeping tasks such as programming DMA components or reconfiguring the XPP
Array. An FNC-ELF-GCC compiler provides the ability to execute legacy C-code. Each
FNC-PAE includes L1 data and instruction cache, whereby the L1 D-cache can be used as
tightly-coupled memory (TCM) alternatively. Further, a Special Functional Unit (SFU) for
executing instructions like multiplication is available. [PAC09g]

2.2.3 Memory Access

Three different direct memory access (DMA) types can transfer data streams between XPP
components and the System Memory Arbiter (SYSMEM Arbiter) that forwards the data
to the different memory ports.
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2 High Performance Data Processor (HPDP) architecture

SYSMEM Arbiter

The System Arbiter processes all memory read and write requests from XPP Core compo-
nents such as FNC-PAE, Linear DMA, and 4D-DMA to the corresponding memory out-
puts. The arbiter routes the requests independently, is fully pipelined and supports burst
memory access and programmable prioritization. [PAC09h]

Linear DMA

The HPDP has three Linear DMA controllers that provide data stream accesses from the
core to the memories connected to SYSMEM Arbiter, or vice versa. It automatically gen-
erates linear increasing addresses from a given address range and converts a 16-bit input
stream into 64 bit-wide sequence for write access. Likewise, a memory read access is
transformed into an output stream. [PAC09h]

4D-DMA

If a more complex, multi-dimensional address pattern is required, the 4D-DMA controller
can be used to generate 4-dimensional address patterns. The HPDP owns four indepen-
dent 4D-DMA modules for read and write access. Each 4D-DMA operates in one direction
and has various modes from single 16-bit streaming until using the full 64-bit of a memory
channel. [PAC09g]

RAM-IO

The RAM-IO object is a custom-built model that provides arbitrary access pattern for un-
restricted 32-bit memory access between the XPP Array and external RAMs because a
Dataflow Array element can only deal with 16 bit. Three data ports and one event port
are available, and integrated FIFOs and buffers provide fully pipelined access to memo-
ries. [PAC09b]

2.2.4 Other components

X-RAM

The X-RAM is a small local buffer memory that is only accessible from the dataflow array
via write 4D-DMA-L0 controller or the RAMIO-L object. It provides 8192 words of 16 bit
each. [PAC09g]
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X-FIFO

The X-FIFO module can be used as a buffer for any XPP 16-bit data stream. It uncouples a
data source from a target of a stream-based processing chain, for example, to avoid stalling
in data exchange between an FNC-PAE and the XPP-Array. [PAC09c]

X-Bars - Network on Chip

The XPP communication includes data streams, event streams and memory streams. The
X-Bar components build the routing network on the XPP-Core and routes data or events
from one input to one or more outputs. The data flow is automatically synchronized, and
up to four packets can be stored if the pipeline stalls. Therefore, a component consumes
a packet only if all required input packets are available, and the result is only forwarded
if the previous results have been consumed. The transmitting system transfers one packet
by cycle, and no packets can get lost during a pipeline stall or re-configurations process.
[PAC09e]

2.3 Periphery

The Periphery extends the XPP IP core with interfaces for communication, data transfer
and external memories to customize the array processor for the target area in space appli-
cations.

2.3.1 SpaceWire

The standardized SpaceWire is a spacecraft communication network specified by ESA (Eu-
ropean Space Agency). It is used for controlling and monitoring the HPDP chip, as well
as loading new configurations or programs into RAM. The SpaceWire module consists
of three links and implements RMAP (Remote Memory Access Protocol) for path address
routing and limited logical address routing from one SpaceWire link to another. That rout-
ing capability allows a large number of HPDP chips to interface with a single SpaceWire
port on the command & control module. After chip reset, all three links are in autostart
mode so that a start configuration for activating a link is not necessary. The target data
rate of the packet transport is 200 Mbits/s. [Lem10]

2.3.2 Stream-IO Block

The Stream-IO module of the HPDP chip is a 16-bit wide, point-to-point bidirectional data
stream interface. It provides four high-speed data communication channel links with
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Figure 2.5: The state machine of the watchdog module

external devices, such as other HPDP chips or FPGAs, or on-board instruments. Addi-
tionally, a simple hardware protocol provides full handshake control, and different clock
domains for both communication sides are possible. [PAC09d]

2.3.3 Memory Ports

The HPDP architecture includes three memory ports. All interfaces are connected with the
SYSMEM Arbiter that provides a 64-bit memory channel interface. All external memories
provide an EDAC (Error Detection and Correction) based on Hamming Code for protec-
tion against radiation effect. Port 0 is used as configuration memory and can be connected
to a PROM/EEPROM or SRAM device storing boot code or application code. Its address
space is divided into two parts. The lower address space belongs to the external mem-
ory interface, and the higher one targets the AHB master bridge to control various HPDP
registers such as SpaceWire or Watchdog. Therefore, it is possible to send data from mem-
ory port 0 to external devices via SpaceWire. Memory port 1 can link either an SRAM or
SDRAM memory. Port 2 is already connected to an integrates 4-Mbyte SRAM module.
[Lem10] Appendix A.1 contains a tabulated overview of the connected memories (table
A.1) and other technical data of the HPDP chip.

2.3.4 Watchdog

A watchdog is a necessary module for fault detection in space equipment. It is used
to detect failures that affect cyclic program execution by the HPDP. Whenever the time
elapses, an interrupt is set to detect the error by the controller [Skl76].
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Figure 2.5 depicts the state machine of the watchdog module. If the wdog vector is
unequal zero, the watchdog automatically starts and increases the value of wdog at every
clock cycle by 1. When the value is higher than the programmed vector, the state machine
switches to the wdog bark state where an interrupt is triggered. Afterwards, the wdog
resets by itself. The wdog vector is divided into two registers, a prescaler and a value, to
provide 32-bits since 16 bits would not be enough [Lem10]

2.3.5 GPIO

The GPIO (General-purpose input/output) provides eight pins for input and output sig-
nals those can be written or read by the FNC-IO-BUS. The GPIO should be used for simple
input and output signals under FNC-PAE software control. Particularly, an input signal
can be used to read configuration switches or to capture the status of external devices. An
output pin is useful to steer debug LEDs or control external devices. [PAC08]

2.3.6 System Controller

The HPDP System Controller includes several PLLs (Phase-locked loop) that are respon-
sible for the input clock generation of the XPP array, FNC-PAEs, SpaceWire, memory con-
troller, and Steam-IO. All clocks are synchronous and can be adjusted by a divider and
multiplier. Furthermore, the System Controller contains a debug controller and JTAG in-
terface. [Bau15]
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The HPDP development started around ten years ago. Several design verification meth-
ods and techniques have been applied on the functional level and hardware level. This
chapter analyses what has been done, followed by a discussion of what additional tests
should be done to bring the new array processor technology into operation.

3.1 Previous design verification

The complex System-on-Chip (SoC) design consists of an enormous number of modules,
different bus systems, and memories. Thereby, two design methodologies characterise
the chip due to historical reasons. That follows a proper verification strategy is needed to
guarantee the correct function of the HPDP chip [LS10].
The following subsections give an overview of tests performed on the HPDP chip. The
outline based on the documents [LS10] and [PAC09f].

3.1.1 Verification by PACT

The XPP-III IP core of the HPDP chip was developed by PACT, which has created inte-
grated test suites and test benches during the design process. That includes functionality
as well as top-level design tests. Moreover, all XPP-III components are co-designed in
Verilog and System-C. A Design Checker reviews the Verilog code. The test benches are
self-checking and can be used for RTL and gate level simulations.
Besides small component tests, application tests have shown that the processor archi-
tecture is capable of executing relevant applications using the full ability of XPP core.
Examples are a JPEG encoder, FIR filter or Fast Fourier transform.

The FNC-PAE is the most complex module of the HPDP architecture. Therefore, own
sample applications have been created. Both an FNC Software Simulator xfncsim as well
as an RTL simulator for the Verilog specification, execute test cases to prove functional
correctness. These two test frameworks generate the same kind of trace files that con-
tain detailed information about the internal state of an FNC-PAE in every clock cycle.
These trace files are useful to prove the equality of both test results since the Verilog and
SystemC code are based on the same HPDP specification. Besides, line coverage of the
Verilog code is analysed using hardware development tools.
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However, the simulators have a different cycle accuracy due to the complexity of some
modules like L1-caches or hardware dependencies. The simulation language SystemC
is not able to simulate an asynchronous clock domain that is located between the FNC-
Container and the system memory arbiter. The simulation uses a simplified model that
mocks a corresponding number of cycles for a cross-domain simulation.

An additional SystemC simulation tests the XPP Array and the interacting modules
for networking and direct memory access on the system level. The same trace file strategy
as for the FNCs is used.
Further, simple and complex access patterns verify the memory interfaces. The Stream-IO
block is also provided by PACT in an extra module with an own test suite because it is not
part of the actual XPP IP core.

3.1.2 Verification of complete HPDP design

The final version of HPDP combines the PACT modules XPP-III 40.16.2 core and Stream-
IO block, and supplemental modules such as a SpaceWire module, three memory ports, a
System Controller, and a JTAG Controller.

Verification tests consist of several steps that are performed on a module, a sub-system
and at top-level. Those tests ensure that the HPDP chip is operating correctly, according
to its specification.
In the first step, the complete integration of Astrium-modules is verified at the design
and subsystem levels. Besides, test cases check interconnections and module overlapping
functionalities such as interrupts, read and write on memories and registers.
The second step contains integration of the PACT testbench in the Astrium developed
test benches to simplify the integration of Astrium modules into PACT-IP.System level
functionalities, top-level modules, and pad interconnections are tested.
To achieve a sufficient design coverage, test generation application (TGA) generate a cou-
ple of tests automatically. Several of those TGAs are contained in the verification en-
vironment and create multiple tests to cover different fault classes of a certain feature.
Moreover, single XPP components are tested with an extensive regression regression test
suite.
Included application tests have been written to nearly cover all modules of the top-level
design. Several component tests use connectivity modules of the top-level design such as
crossbars and memory arbiters in passing. Therefore, those components are also assumed
to be fault-free.
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Two memory ports connect an external data carrier with the HPDP chip. Those memory
blocks come from external providers, and it may assume that those are well tested.
Hardware must resist certain physical conditions. Primarily space equipment is exposed
to high and very low temperatures during operation and idle state. The maximal power
consumption and the consequent cooling demand can be calculated with tools, and the
chip vendor will guarantee the estimated thresholds.

3.1.3 Manufacturing tests

Two steps of equivalence checking will be done during the implementation process. First,
Astrium proved the equivalence between the RTL code and the netlist transferred to the
Backend Design house using formal verification techniques. Second, equivalence checks
between the transferred and the final produced netlist will be performed before delivery.
These controls shall guarantee a proper functionality of final hardware relation to design.

The HPDP netlist is designed by using the design for testability (DFT) technique which
means that testing features are added to the chip simplifying developing and applying
manufacturing tests to the designed hardware. Therefore, the processor contains scan-
chains, boundary scans, and two additional debug modes next to the regular operation
mode. That offers the option to observe and test every flip-flop in debug mode, included
read and write to internal RAMs or FNC instructions.
A BIST (Built-in self-test) logic and the corresponding BIST mode verify the correctness of
each internal RAM cell by applying different test patterns created by an ATPG (Automatic
Test Pattern Generator). [Lie10]
Further, static timing analysis (STA) will be done following the rules from the chip vendor.
It contains best and worst case analysis in typical modes. STA is capable of checking every
structural path and can detect glitches, slow parts and clock skews using scan shifts, stuck-
at capture and delay capture. Power Distribution, Voltage (IR) Drop and Electro-migration
on chip shall be tested, as well as observation of the PLL performance. [Bau15]

3.2 Discussion

The HPDP chip is based on a new technology of array processors that is not well es-
tablished yet. Therefore, carefully testing of the semiconductor could be necessary after
manufacturing. As the previous section has shown, many tests are already done before
commissioning. The design is thoroughly verified using various tools and testbenches;
the circuit is designed for testability (DFT) and post-production tests as boundary scans
and delay tests will be applied. Consequently, the assumption is that the manufactured
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Phase Part Verification

A. Design by PACT XPP-Core design Verilog design tests
SystemC simulations

Stream-IO Block Verilog design tests

B. Extension by Astrium HPDP design (XPP-Core + pe-
riphery)

VHDL design tests with
ModelSim

C. Manufacturing Pre-production netlist Equivalence checking be-
tween RTL design and netlist

Post-production Various random vector tests
on ASIC tester

Open issues for → Stress test of whole HPDP chip in operational mode
commissioning → Functional connectivity of internal and external memories

→ Functionality of SpaceWire module
→ Data transfer via Stream-IO ports
→ Operability of the Watchdog timer

Table 3.1: An overview about the different design phases and open issues. Each phase is
divided into the central parts and tests those are done or are going to happen
before delivery.

chip comprises the expected design and should be free of hardware faults.

However, additional tests on the fabricated HPDP chip are required to ensure the compli-
ance of realised technology, because the simulations cannot fully guarantee the intended
hardware behaviour of the manufactured semiconductor, and the manufacturing tests
do not run software programs. Thus, the regular interaction of written software and
the designed HPDP architecture must still be demonstrated on real hardware. The next
subsections analyse and discuss the available software tools for developing, as well as
internal features and interfaces those are interesting for commissioning tests. Table 3.1
gives an overview of the analysis.

3.2.1 Drawbacks of software simulations

Various SystemC simulations and a given ModelSim testbenches can simulate the complex
HPDP design and prove its correctness. However, those have different disadvantages
regarding the limited scope and simulation time.

Due to the nature of the system-level of SystemC tools, the simulations for the XPP core
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or only the FNC-PAE are quite fast and can simulate millions of clock cycles in a reason-
able amount of time. Some modules, like the SpaceWire, have been added later and are
not included, which limits the SystemC simulations and makes it impossible to develop
a whole commissioning test suite. Also, the system-level simulations simplify the steps
for computing but prevent the simulation of correct timing. In particular, the timing of
Clock Domain Crossings, FNC caches, and external memories are not represented cor-
rectly [LS10].

The ModelSim tool follows a different approach simulating Verilog or VHDL code at the
register-transfer (RT) level. Consequently, the simulation is very close to the real hard-
ware and details are much better represented than a SystemC simulation does. However,
the enormous complexity of the HPDP design makes an RT-level simulation very costly
in runtime and required memory. Hence, a simulation time of a few milliseconds can take
several hours. Although all components of the final HPDP chip are present in the Model-
Sim testbench, testing of complex algorithms is very time-consuming for fast prototyping
of commissioning tests.

As an example, it is acceptable to verify the watchdog with a small timer so that the watch-
dog interrupt is triggered after a short simulation time. When the timer, however, adds
up to a couple of seconds to trigger, in the case of testing also high values, it would take
days of simulation only for one test. Of course, the design is standardised, and if the logic
works for milliseconds with a complete code coverage, it should also work for seconds or
minutes. However, the hardware is complex and must also be proven if that is the case.
Besides, the watchdog timer is a peripheral module and is not included in the XPP-Core.

3.2.2 Testing HPDP interfaces

Using the HPDP chip requires a board that provides ports and slots for SpaceWire, Chan-
nel links (Stream-IO), GPIO, and memories. As the planned board and processor chip are
manufactured independently, the connections between the board and chip are not verified
before commissioning.

Thus, an important part of the commissioning testing is the verification of the reliability
of all interfaces. Chapter 4 introduces the test setup and describes the available interfaces
in detail.

3.2.3 Accessibility of memory modules

The planned board provides two board memories which utilise the HPDP for data and
program storage. Further, the processor chip contains several internal RAMs and caches.
With the design for testability (DFT), each memory has a Built-in-Self-Test (BIST) that is
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an approved standard and checks every memory cell with different addresses and value
patterns. Moreover, external memories can be assumed to be well tested by suppliers.

However, the functional accessibility of each memory by the computation units remains
an open question. Data processing validation must show that each memory is probably
connected and addressable by functional units or the SYSMEM arbiter. For this, a test
may apply different input vectors such as all-zero pattern, all-one-pattern, random, or
counter pattern. Further, L1 data cache and instruction cache of FNC-PAEs can not be
directly addressed by C-Code or Assembler (only a half of L1-D-Cache is usable as Tightly
Coupled Memory (TCM) [PAC]. Hence, FNC stress tests are also required to reach a good
test coverage of FNC memories.

3.2.4 Clock-domain crossings and power supply

The HPDP is expected to have an operational speed of 250 MHz. That clock frequency ap-
plies to the central part of the XPP-Core, which includes the XPP-Array and the memory
access components. The FNC-container, in turn, runs on a unique clock domain, which
has half of the XPP-Core’s operational speed, i.e. 125 MHz. All data transfer modules need
to deal with the frequency of the channel connected to the HPDP. Therefore, clock-domain
crossings are included whenever two clock domain meet. There are also several clock do-
mains inside the chip, since planned clock frequencies for external memories, SpaceWire
and Stream-IO may less than the HPDP reference clock. Delay faults make those clock-
domain crossings vulnerable to metastability, data loss, and data incoherency. Although
the manufacturing tests should be quite comprehensive, their effectiveness under opera-
tional conditions is questionable [KCGP12].

For that reason, stress tests are suitable to determine the stability of clock-domain cross-
ings and power distributions under operational conditions. The higher the processor fre-
quency, the more vulnerable the hardware is for such defects [CDS+00]. That implies that
component tests should also be done on a real HPDP to guarantee a correct behaviour of
internal features and interfaces under full load.

A software program is suitable for stress testing since instructions utilise the entire chip
rather than only a few units. Consequently, comprehensive stress tests should be done
running with a maximum number of functions and interfaces to discover potential side-
effects on the power supply and establish the proper integration of critical components.
[KLC+02]

20



3.2 Discussion

3.2.5 XPP Array test

An array processor architecture gets more and more into focus as it has advantages in
the stream-based processing domain over traditional DSPs or SIMD processors. This pro-
cessing part of the HPDP is located in the XPP IP core, and various testbenches have per-
formed cycle-accurate tests on system-level as well as RT-level. Further, the entire array
runs in one clock domain and does not utilise any chip interface. The comprised RAM-
PAEs has a BIST structure, and the netlist of the array has several scan-chains. Thus, the
XPP Array has been extensively tested and a complete verification program that checks
every opcode and connection is not necessary. A simple test which shows the basic func-
tionalities, as well as a memory test for the included RAM-PAEs, should be sufficient.

3.2.6 Components tests

Even though components such as an ALU-PAE or DMA controller are well verified before
commissioning, it does not mean that it works in every case. Assumed that the worst case
will happen, and a component does not operate in a case where an FNC program executes
specific instructions, an agile test methodology would show the exact fault function after
running a particular set of tests. However, the HPDP design is intricate, and providing
detailed test cases for every functionality goes beyond the scope of this work. Instead, this
thesis focuses on the development of a test suite that covers all critical features assuming
that non-critical features work as expected. Together, the test cases include all compo-
nents, targeting each of them at least once. The JTAG interface can be used in combination
to investigate a occurred fault in more detail.
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The purpose of this work is to develop an on-board test environment software that runs
on the new HPDP chip. In particular, critical internal features and interfaces of the array
processor shall be tested. As the analysis has shown, several test suites and simulation
tools already exist, and some are suitable for planning the commissioning tests. However,
a real HPDP demonstrator chip is not available so that individual test programs cannot be
verified on manufactured semiconductor.

This chapter starts with an introduction of hardware testing approaches and detailing
the preferred software-based self-testing methodology. Subsequently, the test setup for
commissioning the HPDP chip in the laboratory is presented. Finally, a proper test concept
is discussed in detail by explaining the order of required tests as well as the steps of every
single test.

4.1 Test approaches in Processor Testing

Advanced technologies, increasing clock frequencies and decreasing sizes of integrated
circuits have revealed new challenges for hardware testing to guarantee the reliability of
devices meeting the requirements set up during the design phase. As a result, three major
test approaches have been established in the testing field of processor chips to deal with
testing challenges such as potential structural and functional faults.

4.1.1 External tester

The first testing strategy uses an external high-speed tester that proves the reliability of
a semiconductor using scan-chains and boundary tests, for instance. Due to rapidly in-
creasing device speed, a performance gap raised between such automated test equipment
(ATE) and I/O speed of devices under test. This problem has led to over-testing and may
cause many false positives, resulting in yield loss [KLC+02, BCD03].

Consequently, self-testing, the ability of a circuit to test itself by generating the required
test patterns on-chip and applying the tests at-speed, has become into focus and eliminates
the need for high-speed testers [CDS+00].
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4.1.2 Built-in self-test (BIST)

A well researched self-testing methodology is the built-in self-test (BIST), that uses an
embedded hardware test generator and test response analyser to generate and apply test
patterns on-chip and at the operational speed of the circuit under test.

Structural BIST, such as scan-based BIST, have an acceptable test quality but cause a per-
formance and design time overhead for the additional dedicated test circuit. Also, a struc-
tural BIST consumes much more power than normal system operation which arises new
complex timing issues in areas like multiple clock domains and can stress the device ad-
ditively [KLC+02]. However, BIST is useful in components such as integrated memories
and can reduce the yield loss stemming from tester accuracy problems.

As mentioned before, all internal RAMs have an integrated BIST structure and can be used
for manufacturing tests as well as the scan-chains by the tester.

4.1.3 Embedded software-based self-testing (SBST)

The newest approach is the software-based self-testing (SBST) that was introduced to alle-
viate the problems of high-speed testers and BIST. SBST utilise the instruction set of a pro-
grammable core and its functionality to run an automatically synthesized test program.
An on-chip pattern generator and response analyser can verify buses and interfaces. The
test program is then stored either in a dedicated ROM or loaded into RAM by a low-cost
tester. The approach is non-intrusive and analog, digital and mixed-signal components
can be tested. [KLC+02]

SBST has several benefits over structural BIST and high-speed testers. The methodology
does not need an explicit on-chip controller, what also avoid an area, performance, and
power consumption overhead. Moreover, SBST is suitable for processor cores, memories
or interconnections, and testing at the processor’s operational speed is possible avoiding
under- and over-testing.

However, there are also a few drawbacks compared to BIST. Creating test programs cost
additional runtime; the intern memories must have enough capacity, and the SoC needs a
programmable processing unit. [AOM06]

This work deals with the commissioning of a completely new designed and manufactured
HPDP chip. The design can not be extended by additional structures like a hardware pat-
tern generator. Tests which are only steered by an external tester has speed drawbacks for
testing analysed tasks such as memory connectivity or stability of power supply. Thus,
the intended test approach should be related to SBST.
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4.1.4 Previous Work for SBST

An extensive review of different methodologies in SBST is given in [KLC+02]. The first
time SBST was mentioned was by Chen at al. [CDS+00, CD01]. They use pseudorandom
test pattern generation on-chip, which is motivated by testing a processor with a sequence
of instruction [BP99]. The pseudorandom strategy yields to a large self-test code size and
test program. The researched test core was a simple Parwan chip.
Due to the weakness of pseudorandom patterns guaranteeing a high fault coverage,
Paschalis at al. introduced a deterministic test approach which targeted the ALU and
shifter object [PGK+01]. Later, the researcher team published an expanded strategy tar-
geting each component of a Parwan CPU and reduced the code size [KPGZ02, KPGZ03].
Furthermore, Chen at al. represents a scalable methodology using program templates
and statistical regression method for functional mapping [CRRD03]. The same researcher
team introduced a diagnostic tree featuring the splitting of one major test program into
smaller ones where each program only covers a few faults [CD02]. The approach is based
on a tree structure for storing a full fault dictionary introduced in [BHF96].
Based on the processor’s SystemC description, Goloubeva at al. presents a mutable al-
gorithm to generate low-level test vectors reaching a high fault coverage [GRV03]. They
believe that high-level generated test vectors are not sufficient to cover all possible failures
of the system.
All those introduced approaches focus on the processor core and target stuck-at faults.
They do not consider other components of a SoC, such as network elements, controllers,
and memories. Also, functional and stuck-at testing does not target more complex prob-
lems like target delay faults.

Lei at al. present a self-testing methodology for path delay faults using processor in-
struction [LKC00]. Their conclusion is that delay faults in none-functional testable paths
will not affect the chip and do not lead to failure. The set of functionally testable paths is
a subset of all structurally testable paths, and a none-functionally testable path is never
performed in normal operation mode. Singh et al. come to the same conclusion by using
a finite state machine of the controller to find path delay faults in functionally testable
paths [SISF05].
Bai at al. describe a more advanced approach where the authors tackle crosstalk faults
which can only be detected by sequences of test vectors at operational speed [BCD03].
Figure 4.1 gives an overview of issues discovering crosstalk faults. Further, Benso at al.
address a lack of focus on the more complex functional blocks, such as the pipelining in-
terlock mechanism or the cache hierarchy. Those components can not be ignored while
testing microprocessor’s core, but are usually directly addressable by the processors in-
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struction set. [BBPS06]

(a) Positive glitch (b) Negative glitch (c) Rising delay

(d) Falling delay (e) Rising speeup (f) Falling speedup

Figure 4.1: Possible crosstalk faults in integrated circuits which must be tackeled at oper-
ational speed of the processor [BCD03]

Discussion

Altogether much work has been done in SBST for single-core, multi-core, pipeline pro-
cessors and bus systems. Nonetheless, the literature does not treat with the recent array
architecture like the HPDP has. Also, the publications are concentrated on manufactur-
ing tests. According to the technical documents [LS10, Lie10, Bau15], the FNC instruction
set is not used to discover functional paths or crosstalk faults. Hence, a high need for
commissioning programs is required.

However, the HPDP owns a very complex architecture, and all components are config-
urable by the FNC instruction set or configuration registers directly programmable. More
precisely, the FNC has over 100 different instructions, the processor units of the XPP Ar-
ray more 27 other instructions and the periphery modules such as SpaceWire, Memo-
ryPorts, Watchdog, and Stream-IO have more than 800 controllable registers altogether
[PAC09g, Lem10]. Also, the previous analysis has shown that a complete test is not
mandatory to achieve the objective of commissioning.

Hence, the test concept differs from the introduced software-base self-testing methodol-
ogy represented in the literature. On the one hand, the instruction set of the processing
units shall be used to cover complex hardware problems which occur only at maximal op-
erational speed, and on the other, not each instruction and especially not all combinations
of instructions have to be included in commissioning testing.
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4.2 Test setup

An HPDP chip must be placed on the main board, which provides ports and slots for in-
terfaces and external memories. For test purposes, the board needs further connections to
a master tester to send commands the HPDP then. Even though a real HPDP demonstra-
tor chip is not supplied during the implementation, the commissioning tests must regard
the provided test setup.
Figure 4.2 depicts the test setup including a test system, a board, and an HPDP chip. The
test system runs on a Board Level Test System (BLTS) that is explained in the following
subsection. The depicted board is a multi-chip board that has slots for up to four HPDP
chips. Both, single-chip and multi-chip board are in development, and they are described
afterwards.

4.2.1 Board Level Test System (BLTS)

An HPDP chip will be tested with the provided Board Level Test System (BLTS) that in-
cludes an off-the-shelf industrial computer for manual testing and automated test execu-
tion. The HPDP BLTS is designed for testing maximum data throughput of the HPDP
module. Required software and hardware modules are installed. A front-end application
manages the communication between the HPDP board and a UMDS Runtime System
(Universal Data Management System). UDMS is a generic database driven tool and ap-
proved in many space test system projects. The off-the-shelf industry PC has an Intel Core
i5-4570 CPU with 16 GBytes RAM. [Bro15]

Industry PC

BLTS
HPDP HPDP

HPDP HPDP

HPPM

SpW Router Daisy Chain

SpW Router 4x DataLinks

Channel Link IN

Channel Link OUT
Control Signals & Board ID

Power Supply

Figure 4.2: A simplified representation of the HPDP-BLTS (Board Level Test System) envi-
ronment including the High Performance Processing Modul (HPPM) with four
HPDP chips. [Bro15]

With such a test system, a manual command or even an automated test script can read or
write, if possible, every accessible register of the HPDP via the Daisy Chain and the HPDP
SpaceWire module. Thus, the system can configure the HPDP chip, copy a program into
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code memory, test specific functions by static access, start the boot process, or monitor a
whole program execution only via the SpaceWire connection.

Further, high-speed SpaceWire DataLinks and Channel Links are available to simulate the
data transfer of on-board instruments. Each of the Channel Link IN and OUT utilises one
Stream-IO port. Also, a board has an ID that is readable from GPIO pins by the HPDP
chip. The BLTS environment can assign every board a unique ID as board chaining is
planned in future.

4.2.2 Single-chip Board

The single-chip board is the preferred one for commissioning of the first delivered HPDP
chip. It offers all necessary ports for the HPDP interfaces and contains two fixed board
memories. At port 0 is an 1 Mbyte EEPROM interconnected and should mainly be used as
code memory since the write speed is slower than SRAM or SDRAM. The latter memory
type is linked to memory port 1 and provides 512 Mbyte storage capacity for the HPDP
chip.

Besides the SpaceWire Daisy Chain, data can also be transferred from and to the board by
a SpaceWire DataLink, or by a ChannelLink IN and ChannelLink OUT. Thereby, only the
Stream-IO ports 0 and 2 are used. The other two ports are interconnected to a loop back.
That means that data send to Stream-IO port 1 is transmitted to port 3 or vice versa.

Moreover, the single-chip board utilises six GPIO (General Purpose Input/Output) pins
of the HPDP chip. The first two pins are used to activate the ChannelLink or SpaceWire
DataLink connections, and the next three pins can steer three LED lights. All of them are
used as output by the HPDP. The last pin is an input pin for reading the board ID bitwise.
Appendix A.1 contains a tabulated overview of the technical data of the HPDP chip.

4.2.3 Multi-chip Board (HPPM)

Up to four HPDP chips can be placed on a multi-chip board called High Performance
Processing Module (HPPM). All four chips are connected to a ring structure using two
Stream-IO ports. Another Stream-IO port of each chip can be linked to another HPPM,
and the fourth port is connected to a Channel Link. Further, the GPIO assignment and
both board memories are equal to the single-chip board.

This work comprises a commissioning test software for the first demonstrator chip, and
the single-chip board is firstly delivered and sufficient. Multi-chip programs are out of
scope, and the tests shall primary be designed for one processor chip. Nevertheless, the
operational capability for multi-chip testing is shortly discussed in section 5.4.
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Figure 4.3: Events per second in a target system for different abstraction layers [ESL01]

4.3 Test strategy

The beginning of this chapter introduced different approaches in processor testing. The
conclusion is that one essential characteristic of a test program is running at operational
speed since sensitive timing affects only arise when the chip runs under that condition.
SBST is a proper approach to reach that goal.
Another advantage of system-level testing, like SBST does, illustrates the figure 3. Due to
the high abstraction level, fewer visible events occurs in a second what motivates a top-
down testing strategy. Testing at the register-transfer level, or even harder on gate level
increases the number of events to handle and also the number of checks if an error has
occurred. This section describes the test approach in detail.

4.3.1 Source and sink pattern

Wrapper

Embedded
core SinkSource test access

mechanism
test access

mechanism

Figure 4.4: Source and sink pattern for testing an embedded core; a test sequence (or pro-
gram) is transferred via a test access mechanism from a source to a wrapper
that includes the core-under-test; the respond is forwarded to a sink [ZMD98]

The procedure of the SBST methodology can be nearer described by the source and sink
pattern introduces in [ZMD98]. Figure 4.4 shows an architecture composed of three struc-
tural elements. The first component contains the source that generates the test patterns,
and the sink, that compares the response to the expected result. The second element,
the test access mechanism, transports the patterns from the source to the core-under-test
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and the produced responds back to the sink. The central feature is a wrapper forming an
interface between the embedded core and the test environment.

This pattern can directly be mapped to the given test setup where the source and sink rep-
resent the external tester (BLTS). The SpaceWire and Channel Links are equal to the test
access mechanism, and the wrapper stands for the single-chip board (or multi-chip board).
The tester loads an FNC-program into the code memory through the serial SpaceWire in-
terface and waits for the response of the HPDP chip, sent via SpaceWire likewise. Hence,
the illustrated pattern is a black box testing technique.

4.3.2 Procedure of a single test program

Start

Config
HPDP

Copy
FNC-Prog.

Boot
FNC 0

Wait for
Response

Compare
Response

FailedPassed

(is reset)

(FNC runs)

equal

error⊥

Figure 4.5: Test program flow of the script file. Each test program should start after a
reset, and initialize the HPDP as required. The wait sequence for the HPDP
responses follows after the boot. Finally, the results are evaluated.

The control flow of the source and sink pattern can be either executed manually by a test
user or represented in a script that includes all instructions for the BLTS from the begin-
ning until the end of a single test program. A script has several advantages compared to
manual work. Repetitive and redundant work can be combined in a file to provide a com-
mon basis for simple maintainability and reusability. A typical test sequence of a script is
illustrated in figure 4.5.
Every test program shall start after a reset of the HPDP chip to avoid side-effects between
consecutive programs. A reset can be accomplished by disconnecting the power supply
which sets all registers back to their default values. The configuration of the processor is
the first step and takes a few milliseconds so that a reset should not be an obstacle. When
the HPDP is in the intended state, the tester can start copying the FNC-program into the
code memory and initiate the boot process. While the FNC runs, the tester (sink) waits
for the responses and compares them with the expected result. A test case fails if at least
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one result does not match the one expected. Otherwise, it has passed.

Figure 4.6 depicts a typical test sequence for the embedded chip. After the boot instruc-
tion reaches to the HPDP, it starts with fetching the first instructions from code memory
and executing them. Those instructions usually include the default configuration actions,
contained in the boot code library. Also, each FNC program includes specific configu-
ration instructions which are required by the test case. Next, the program executes the
programmed test sequence, which includes sending back one or multiple responses via
SpaceWire to the tester. Finally, the system is cleaned up. That last step could be omitted
since the next test starts after a reset.

Start

Boot
Config.
HPDP

Execute
test

Send
response

Clean-up

End

⊥

Figure 4.6: Each FNC-program starts with a configuration of the HPDP, continues with the
intrinsic test sequence and clean up the system at the end. A test sequence may
send messages to the external tester.

4.3.3 Sequence of several programs

A couple of test programs are required to cover all analysed, possible problem. Of course,
one huge test might treat everything, but this is not beneficial for the test user regarding
maintainability and reusability. In particular, some tests need to run several times with
different parameters to cover everything. That concerns memory tests as test user may
diverge from what is important and what is not. Besides, it does not make much sense
to run two or more different tests on the same chip in parallel since side-effects or limited
resources would affect the test results.

Incremental integration testing

The commissioning has to deal with a couple of problems. On the one hand, there could
be HPDP specific internal issues, and on the other, an interface connection with the board
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and the external tester could not work properly. Since a verification of an HPDP feature
requires working interfaces, the order of tests should be planned carefully. That could
simplify the classification of errors as previous tests have indicated that individual com-
ponents work presumably. Big-bang testing does not make much sense here and therefore
the chosen approach is inspired by incremental integration testing. In this method, every
following test extends the number of tested modules with the least components as possi-
ble.

Advanced strategies

Researchers have introduced some advanced strategies like a tree structure for extracting a
distinct fault from overlapping tests [BHF96]. There, each test is related to a couple of sub-
tests which are executed if the test fails. Further, a smart tree structure with the knowledge
about possible errors of each test could then be used to spot the defect accurately. As the
analysis section already discussed, an advanced strategy is out of scope for commissioning
and a simple sequential order is sufficient. Additional detailed tests can be performed by
the JTAG interface to investigate the origin of an arisen fault.

4.3.4 Memory testing

The HPDP architecture includes several internal and external memories, supporting al-
gorithms with different storage strategies for big data sets. Each memory contains a
BIST structure for comprehensive memory tests during manufacture or running in debug
mode.

Usually, a RAM module comprises a memory cell array, an address decoder circuit, and
a read-write circuit. A wide-spread memory test technique finding all known faults in
SRAMs is the algorithm "length 9N" (included faults are: memory cell stuck-at-1/0 faults,
stuck-open faults, state transition 1-to-0 and 0-to-1 faults, state coupling faults to another
cell, multiple access and wrong addressing faults, and data retention faults). [TNF01]

Even though the internal functionality of each memory seems to be sufficiently tested, the
functional integration into the HPDP environment and the functional connectivity have to
be verified. For instance, the interaction between the SYSMEM arbiter and a board mem-
ory address decoder is not tested by BIST and both components are separated while man-
ufacturing. However, the SYSMEM arbiter is tested using boundary-scan-chains before
commissioning. A simple test strategy looking for multiple accesses and wrong address-
ing faults should be sufficient. Section 5.3.1 discusses an adequate implementation.
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I. Basic-functional tests

1. GPIO test The first test accesses the board and HPDP chip via SpaceWire
and switches on the LED lights which are connected to GPIO
pins. The result is observable.
→ Power Supply, SpaceWire 1 RMAP, GPIO (output)

2. Memories test Verify the operational capability of the two board memories by
writing values to specific addresses. Reading of the same ad-
dresses shall return the written values.
→ Board memories 0 and 1

3. SpaceWire test Check the basic functionality of each SpaceWire link (1/2/3).
That includes the RMAP module as well as DMA module.
→ SpaceWire 1/2/3 RMAP & DMA

4. Stress test Write an enormous amount of data to memory 0, 1 and 2 via the
SpaceWire links to evince their functionality under stress.
→ FNC-program can be copied faultless to code memory

5. Boot test Load a small FNC-program into memory and start the boot unit
FNC0. The program may activate the LEDs.
→ The HPDP can boot and switch on the LEDs

Table 4.1: Enumeration of basic-functional tests; more detailed descriptions are available
in appendix A.3; tests of the subsequent phase are given in table 4.2.

4.4 Test phases

After analysing the verification status, clarifying the test setup, and introducing the test
strategy, this section suggests an order for the incremental integration approach. Thereby,
all tests are divided into two categories. The first one contains tests those should ensure
that the basic functions are available or accessible. If that is the case, more exhaustive tests
targeting critical internal features and interfaces can be performed in the second phase.

4.4.1 Basic-functional tests

The System-on-Chip is embedded into a board and its interfaces. The first test cases
should check the responsiveness of the HPDP chip and required interfaces such as the
SpaceWire link and board memories. That means that the test setup shall verify if every
connection is set up correctly and if the HPDP is addressable. Only when this situation
is given, more exhaustive tests should be done. Table 4.1 shows each test associated with
this category.

The commissioning testing should start simple. Therefore, the first step is to program
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the GPIO registers via SpaceWire so that the three board-LEDs, connected to the GPIO
pins, are turned on. If that test is working, the HPDP is responsive and programmable via
SpaceWire, and the power supply works.

The second test verifies all memory interfaces. The software-based self-tests are not exe-
cutable if at least one of the three memories is not addressable. Therefore, that test case
addresses different cells of each memory and verifies the read and write ability.

The next test focuses on the SpaceWire module and tests all three links and the SpaceWire
DMA module. That SpaceWire part is required to send data back via an FNC unit. Because
the SpaceWire DMA test requires the board memories, that test shall be performed after
the previous memory test.

After it, all interfaces, except the Stream-IO connection, are mainly responsive. The fourth
test features the possibility to stress the SpaceWire module and memories. This test should
show if a larger amount of data, i.e. an FNC-program, can be written into memory without
errors. Here, it is also possible to test different clock frequencies of the SpaceWire or
memories, if required.

Lastly, a small FNC-program should run on the HPDP chip to demonstrate the bootability.
The test may also activate the LED lights making the result more observable.

4.4.2 Functional integration tests

After verifying that the basic functions are available, further tests have to show the relia-
bility of components such as memories and interfaces under the processor’s operational
speed. Moreover, the second test phase continues with the incremental integration strat-
egy and tries to not use too many new critical components in a single test. Table 4.2 lists all
constructed tests in planned order, and the following subsections discuss why choosing
that order.

General tests

The second test phase starts with a simple response test verifying that an FNC can utilise
the SpaceWire DMA for sending a response to the BLTS. If that functionality does not
work correctly, all following tests do not perform either properly since they are all using
the SPW DMA concept.

The subsequent test extends the initial GPIO test by testing the input direction at GPIO pin
5, where the board ID is bitwise available. An FNC program needs to set the output pins
[4:2] to select the right bit of the board ID at pin 5. u An important test for space equipment
is the verification of the watchdog timer. The watchdog is programmable via its own
registers and a test with a high timer value has to be executed to show its functionality for
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II Extended-functional

G1 General

Response test Check that an FNC-PAE can handle a SpaceWire DMA transfer.
→ FNC⇔ SpaceWire DMA

Board ID Read the board ID bitwise from GPIO pin 5. The GPIO pins [4:2]
are used to select the corresponding bit of the ID.
→ GPIO (input), Board ID

Watchdog Check the Watchdog interrupt with a very high timer value.
→Watchdog

G2 FNC Container

FNC-XBAR Transfer data and events between both FNC-PAEs via the X-BAR.
→ FNC 1, FNC-XBAR

FNC-TCM Stress the entire TCM of each FNC.
→ FNC-TCM

FNC-Memories Stress the memories connected to the three memory ports by writ-
ing and reading back various pattern.
→ Board memories 0 / 1 and internal SRAM at port 2

G3 XPP-Core

XPP Array func. Test the basic behaviour of the XPP Array.
→ XPP Array (partial), Config DMA

CDC-FNC-Array Stress the clock-domain crossing between the both FNCs and the
XPP Array by utilising all ports for a data transfer.
→ Clock-domain crossing: FNC⇔ XPP Array

RAM-PAE Verify the functional connectivity of all RAM-PAEs.
→ RAM-PAEs

X-RAM Prove the accessibility of the X-RAM module.
→ Right and left 4D-DMAs, X-RAM.

X-FIFO Utilise the Linear DMAs to test the X-FIFO component.
→ Linear DMAs, X-FIFO

G4 General II

Stream-IO test Exchange memory content via the Stream-IO ports.
→ Stream-IO

Full load test Use as much as possible modules and interfaces at the same time.
→ Power Supply Voltage

Table 4.2: Overview of the chosen component, stress and memory tests. The list is in or-
der planned to correspond the incremental integration testing. More detailed
descriptions are given in appendix A.3.
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an extended period.

FNC-Container

The first test of this section is only about checking the second FNC-PAE and the FNC-
XBAR that connects both FNCs. That test follows the incremental integration strategy
since the FNC 1 is required in the following tests.

After that, the Tightly Coupled Memory (TCM) of both FNCs can be stressed by writing
and reading a big amount of data. Each TCM block has a size of 4 Kbyte, which is the half
of L1 D-Cache. Hence, an exhaustive verification may also stress and verify the other half
of the D-Cache, which is not directly accessible with the available instruction set.

Subsequently, a broad stress test has to check the three memories connected to the SYS-
MEM arbiter. That test writes a high data volume into each memory and checks the func-
tional connectivity of all addresses. The implementation section 5.3.1 explains how to
verify the memories accurately in more detail.

XPP Array

The array processor architecture is a new arising technology. Even though the design has
been extensively tested in simulations, small XPP Array tests are appropriate for the real
semiconductor chip. In particular, the timing might be faulty under operational speed
whereas the overall logical behaviour should not cause errors. Further, the XPP Array
contains functional and path components. The first class has a good testability since each
ALU can be programmed directly so that the tester has full control over what the array
does. The latter might be problematic for a complete test since a routing algorithm au-
tomatically generates paths between Array-PAEs. A manual connection of Array-PAEs
is not possible. Therefore, a test only verifies the timing by provoking stalling and no-
stalling.

Between the FNC Container and the XPP Array is a clock-domain crossing that could
be sensitive to crosstalk faults as the analysis has indicated. Thus, that crossing area must
be stressed under operational speed during commissioning, showing its reliability. The
verification can be achieved by transferring data between both sides using as many ports
as possible.

Further, the XPP Array includes an own memory component that is accessible by the 16
RAM-PAE objects. After proving that the timing of the XPP Array and the clock-domain
crossing is as expected, the internal memory can be stressed with the same method as the
one applied to the board memories.
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XPP-Core

Two internal memories, various memory access components, and a network with direct
connections surround the XPP Array. The various DMA components are a well-known
technology in hardware architectures. Only the RAM-IO component is custom-built and
provides 32-bit memory access for the 16-bit computing XPP Array [PAC09b]. However,
those components are comprehensively verified and do not contain critical features such
as a clock-domain crossing. Consequently, particular tests targeting only those modules
may not be necessary. The X-FIFO and X-RAM memory tests utilise memory access com-
ponents and interconnections to demonstrate the proper timing. Therefore, the X-RAM
may be stressed with either the 4D-DMA or RAM-IO module, and the Linear DMAs are
helpful for checking the X-FIFO module.

The remainder interface to test is the Stream-IO block that is interconnected with Channel
Links. That module can be verified by sending data through the interface to the board
memory and back. Even though the Stream-IO ports are suitable for bidirectional connec-
tions, the chosen board limits a complete test. In particular, the single-chip board and the
BLTS only provide one Channel Link IN at port 0 and one Channel Link OUT at port 2.
Port 1 and 3 are interconnected with a loopback and testable in both directions.

Full load

After stressing all critical internal features and interfaces separately, a comprehensive test,
utilising as many parts of the HPDP as possible, has to show the stability of the power
supply voltage. Adverse effects on signal integrity influencing the correctness must not
occur. Thereby two strategies are possible. Either a test program employs as many as pos-
sible components during execution or one of the researched algorithms demonstrating
the computational capability of the XPP-Core is used. For example, such algorithms are
developed in other student works to investigate the portability of image processing algo-
rithms on the array architecture [Tru15, Bar14]. However, there is an open question about
the integration of the algorithms into the testbench developed throughout this work. The
algorithms are implemented for a plain XPP-Core ignoring peripheral components like
SpaceWire. Section 5.3.5 introduces the integration of the ported image detection algo-
rithm for space debris detection [Tru15].

4.4.3 Summarizing

Table 4.3 summarizes the proposed tests. Compared with figure 2.1, all interfaces and
internal modules are included in the commissioning concept.
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Proposed tests

XPP Core Short timing tests
→ XPP Array, DMAs, X-Bars

Memories Functional connectivity checks with partial March test
→ Board and internal memories, and FNC caches

Streaming interfaces Connectivity and stress tests
→ SpaceWire, Stream-IO

Watchdog Long-run functionality test
GPIO interface Pin tests regarding board specification
Power supply Stressing the whole HPDP chip to check the power supply

voltage

Table 4.3: A short overview of the proposed tests

Additionally, the components SYSMEN Arbiter, X-Bar network, XPP-configuration, Sys-
tem controller, L1 I and D-Caches, and address decoders are also tested besides.
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The previous chapter enumerated required tests for the commissioning. This chapter deals
with the realization by showing the implementation step by step and addresses rising is-
sues. Each test will be applied to the first delivered HPDP chip and single-chip board.
Since the practical demonstration is not part of this thesis, the implementations are thor-
oughly developed for and tested in a given ModelSim testbench.

5.1 Tools and target platform

The development environment does not provide real-time hardware and the complexity
of the VHDL design leads to a low simulation speed in ModelSim. Therefore, the simula-
tion tool xsim is employed. It provides a fast system-level simulation of the XPP-Core and
is convenient for developing and debugging but the missing HPDP peripherals are lim-
iting the application. Thus, the tests need the variability of running in three operational
applications where each of them represents a different model of the processor design.

• xsim

• ModelSim

• Board Level Test System (BLTS)

The differentiation is realized by various Makefile-targets. Every target compiles the
source code and runs the aimed environment with particular arguments.

5.1.1 xsim

The XPP-Core simulator xsim runs machine code based on Assembler or C. The same
machine code is executable by the real HPDP chip. The two available FNCs are pro-
grammable via two separate main-functions. Implementing concurrency is, therefore,
simple to establish. The system-level simulation is much faster than ModelSim so that
comprehensive programs need an acceptable amount of time.
However, some HPDP parts such as SpaceWire interactions and the Watchdog registers
cannot be addressed, and the source code must provide two separate compilations using
a preprocessor target. Otherwise, xsim throws an error due to prohibited write or read
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accesses, which may also lead to an unexpected behaviour of an algorithm executed on
the XPP-Core.

The preferred programming language for coding hardware programs is FNC-PAE-
Assembler because the compiled code is smaller than code compiled with the FNC-GCC.
This different infect the startup overhead and is typically critical for device simulators
[PAC09f]. Nevertheless, programming with C is more convenient, and the startup over-
head does not matter for real hardware tests that are much faster as simulations.

Next to the FNC-GCC, an FNC-ELF-GCC compiler is also provided. The target format
is the Executable and Linkable Format (ELF) because only this is interpretable of a real
HPDP chip. In some cases, ModelSim runs into an unexpected behaviour while using
FNC-ELF-compiled code. For that reason, the Makefile offers a flag to switch quickly
between both demanded compilers. The evaluation section 6.2.3 presents that problem in
more detail.

5.1.2 ModelSim

A very precise RTL model of the HPDP chip represents the VHDL design used in the
ModelSim testbench. All HPDP components and almost the entire board is included, and
the SpaceWire protocol can be simulated. The only missing parts are the board modules.
Therefore, the exact Channel Link configuration to the Stream-IO ports and the connec-
tions to GPIO pins are not provided. However, both interfaces can be controlled and
observed.

An SpW-script controls a ModelSim simulation and is based on a Tcl-script (Tool com-
mand language). The SpW-script steers the flow of each test program, and contains com-
mands for ModelSim management, and sending and receiving SpaceWire commands. A
disadvantage is the rigid sequential flow, meaning that loops and branches are only possi-
ble under some restrictions. In particular, advanced Tcl instructions and ModelSim man-
agement instructions are not mixable. Figure 5.1 depicts the interaction of an SpW-script
and ModelSim. The latter starts with loading the HPDP VHDL-design and runs the given
SpW-script sequentially. Additional files like the FNC-program may be loaded.

Compiler challenges

A given FNC-GCC compiler translates the FNC-program into machine code. Initially, the
compiler is only adjusted for the XPP-Core, and not for the final HPDP design, which
leads to some challenges in program development for the HPDP.

The original compiler assumes to have three 32 Mbyte memories connected to the SYS-
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ModelSim

HPDP design
(VHDL)
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Figure 5.1: Schematic representation of the ModelSim testbench which simulates the
HPDP design. A SpW-script contains SpaceWire instructions and advances
Tcl-commands for monitoring ModelSim.

MEM arbiter and does not make a distinction between fast and slow memory. The final
512 Mbyte SDRAM connected to port 1 is much quicker and bigger than the 1 Mbyte EEP-
ROM connected to port 0. Hence, the compiler should use the board memory connected
to port 1 organizing stack and heap. A more verbose discussion is given in section 5.2.2.

Another concern is the Stream-IO block that is interconnected with Channel Links to
other boards or instruments. The boot code, customized for xsim, set the four Stream-IO
links in bypass mode because the xsim tool deals with files as an instrumental dummy.
That configuration is not useful in ModelSim or on the real device. Consequently, an
FNC-program has to reverse the boot settings and configure the Stream-IO ports correctly.
Alternatively, the boot library could be modified, and the source code must provide an
extra configuration during development with xsim.

Moreover, modules such as Watchdog and SpaceWire are missing in xsim. If the simula-
tion tries to access a address of the missing components, errors occur, and the program
behaviour is not as expected. Hence, preprocessor flags have to provide different versions
depending on the target platform.

5.1.3 Single-chip board and the HPDP chip

ModelSim und xsim are just tools to simplify the development and verify the functional
behaviour. The intended target platform is the HPDP chip placed on board. As ModelSim
executes a complete HPDP design, the developed FNC-programs should not need further
adjustments. On the contrary, the Tcl-scripts are implemented for a ModelSim environ-
ment that has much more functionality for monitoring and controlling than a real HPDP
chip has. Moreover, the Board Level Test System and its UMDS Runtime System exe-
cutes a C# script that is different from Tcl. Consequently, a SpaceWire command file must
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be translated into the required format to be interpretable of the UMDS Runtime System.
That task is excluded from this thesis, only a description of all containing commands is
provided and shown in table 5.1. Figure 5.2 depicts the translation flow.

Tcl-script SpW-script UMDS script

Figure 5.2: Each test case is steered by SpaceWire commands (and Tcl commands for mon-
itoring ModelSim). That test sequence is scripted in a Tcl-script and translated
by a Tcl-interpreter into an SpW-script, which can be interpreted by ModelSim
(an example is given in appendix A.2). Dotted: Another translator may convert
the SpW-script into a UMDS script, which is excluded in this thesis.

Script commands

SPW_[1/2/3] byte Sends the given byte via the SpaceWire link [1/2/3]
SPW_[1/2/3] cp byte Waits until receiving a byte from the SpaceWire link [1/2/3] and

compares it with an expected value; ModelSim exits if the values
are not equal

#e# arg Prints arg as a comment; may be interesting for observing the test
flow

run x [ns/us/ms/s] Continues the simulation for x time units and executes the next
script instruction afterwards; perhaps ModelSim only

tcl> arg Executes the given tcl command arg; ModelSim only, mostly
used for monitoring the current simulation state

Table 5.1: Explains the most interesting SpW-script commands

The two most important commands are for SpaceWire control. The first one sends a given
byte to the selected port of a SpaceWire interface; the second command arranges a wait-
ing until a byte is received at the given port. The function also compares the received
byte with the given expectation and stops the simulation in the case of a mismatch. The
comment command is optional but could be useful for monitoring the test sequence also
with the UMDS runtime environment. ModelSim requires the usage of the run command
sometimes because the an action must wait until the result of the previous step has ap-
plied. In particular, in the boot test follows an FNC-halted check after booting for about 1
ms, which needs about 2 minutes of ModelSim computation. Therefore, ModelSim has to
break the script execution until the FNC has finished. The last Tcl-command, tcl> arg, is
ModelSim only and not required for the real target platform. It serves mainly monitoring
purposes of the ModelSim state and is not applicable on real hardware.
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Appendix A.2 shows the C-Code, implemented Tcl-script, and resulting SpW-Script of the
Boot test as an example.

5.2 Test flow realization

Each test case is unique and needs an adapted test sequence. For example, the first test
switches on the LEDs connected to GPIO via SpaceWire, and is much simpler and requires
fewer steps than the Full Load stress test. Also, the result verification of the LED test is
done by additional SpaceWire commands instead of an FNC-program. Figure 5.3 depicts
the most complex test flow with an FNC-program and multiple response messages. De-
pending on the test case, a test script does not contain all listed steps. The basic-functional
tests, except the boot test, does not have an FNC-program, and many test cases only have
one SpaceWire response. The following subsections give a detailed explanation of each
step.

Start

Init
ModelSim

Config
HPDP

Copy
FNC-prog.

Set
Properties

Boot
FNC 0

Wait for
Response

Compare
Response

FailedPassed

(is reset)

(FNC runs)

equal

error⊥

Figure 5.3: The flow chart shows the final implemented script sequence. The hashed nodes
are new compared to the conceptualized strategy illustrated in figure 4.5 (the
orange node is required for ModelSim tests, and the blue one extends the ad-
justable script technique).
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5.2.1 Configuration phase

As the analysis has shown, a test should start after a chip reset to avoid side-effects be-
tween consecutive test executions. A reset sets all registers in its default state, but not
all default values are appropriate for a test case. Therefore, every program begins with
a configuration step, which is similar for all test cases. A common Tcl-file provides the
setup procedure allowing an easier maintainability of the test suite. For instance, each
program calls the same configuration process to ensure that there is only one code section
that needs to be adjusted if the memory layout changes. It is also easier to use two differ-
ent setups, one for the given ModelSim testbench and one for the real single-chip board.
The next section explains why two different memory layouts are necessary.
The start process performs several sub-steps. First, the appropriate SpaceWire, memory,
and Stream IO clocks are set, and the bypass PLLs is activated. Second, the script config-
ures the SYSMEM arbiter and removes the memory write protection. Last, the procedure
needs to wait until a legal PLL status is set.

5.2.2 Program copy

Before the FNC0 can start the boot process and execute the chosen test program, the ma-
chine code needs to be copied into a memory of the HPDP chip. That may be the non-
volatile EEPROM at memory port 0 or the volatile SDRAM / SRAM at port 1 and 2.

Copy the machine code

After the configuration phase, an FNC-program is copied into the chosen memory via the
SpaceWire interface. Thereby, the machine code is given in binary format after compi-
lation, and the tester needs to disassemble the machine code and transfer it in the right
order to the HPDP memory. The command

xfncasm -v binary sysmem.in

does the conversion of the binary. Afterwards, a simple script can extract the content line-
by-line and send it by SpaceWire packets. The xfncasm outcome contains 64-bit lines in
Little-Endian order. The script must reverse every line to Big-Endian, and separate it into
two 32-bit SpaceWire packets. Figure 5.4 illustrates the process.

FNC-program location

As introduced in section 4.2, the single-chip board and the HPDP chip provide three dif-
ferent internal and external memories which are capable of storing instruction code - one
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One line of sysmem.in: 0 1 2 3 4 5 6 7

64-bit line

1 byte

Two SpaceWire packets: 7 6 5 4

32-bit packet

3 2 1 0

32-bit packet

conversion

Figure 5.4: Every line of a program code given in file sysmem.in needs to be reversed and
split into two SpaceWire packets.

8-bit EEPROM, one 64-bit SDRAM, and one 64-bit SRAM. The SDRAM with a size of 512
Mbyte is much bigger than the other two memories. However, the 1 Mbyte EEPROM
may be sufficient for the simple test programs. There are two major disadvantages to use
the EEPROM for exhaustive testing. First, it is much slower than an SRAM or SDRAM,
and second, many write cycles reduce the lifespan of the EEPROM much faster. Hence,
choosing the fast SDRAM for multiple tests is the best option.
The HPDP chip is in non-volatile mode after a reset. That means the processor boots from
address 0x0. Usually, the EEPROM is located at that address, and the SYSMEM Memory
arbiter must be configured to route the address 0x0 to memory port 1 where the targeted
SDRAM is located.

ModelSim adjustment

A couple of obstacles have shown up during the implementation. The code copy pro-
cedure in ModelSim is accelerated by using the mem load command that copies the in-
struction code directly into the memory without using SpaceWire. That takes only a few
milliseconds instead of multiple minutes (real time). Unfortunately, an accurate layout
model of the memory must be provided. Otherwise, the command cannot be used. That
situation occurs when using a model of the preferred SDRAM. Thus, only a SRAM mod-
ule is usable during development because waiting minutes just for copying the code is not
convenient.
Moreover, another problem has arisen during the implementation process. The synthe-
sized SRAM module for memory port 1 of the given testbench has a faulty timing that
makes a correct behaviour impossible during the boot process.
As a consequence, the FNC-program is copied to memory port 0 where a fast 8-bit SRAM
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is located for ModelSim development. The HPDP configuration is adjusted and provides
two different SYSMEM arbiter setups. One is for ModelSim with an SRAM at port 0, and
the other one is for the real chip with an EEPROM at port 0 and boot address at port 1.
A different command line argument for the test scripts guarantees the right behaviour for
each situation. However, the configuration case for the real HPDP cannot be tested.

5.2.3 Keep the duration optional

The idea behind stress testing is using a component or the entire processor under opera-
tional speed for a long duration. A discussion about the optimal duration is not done in
this work since the XPP Array architecture, and the 65-nm rad-hard semiconductor mate-
rial is brand new and needs further investigations. Consequently, functional stress tests
have the possibility to run a certain number of repetitions or endless. The test user can
break a test at every time without damaging the chip or board. The goal of a long duration
test is finding sporadic hardware faults those only appears under certain conditions.

Another goal is clean programming, avoiding subsequent changes in C-code by the test
user. All adjustable variables should be available in the corresponding script so that the
user only needs to change those in the case of testing a module with different properties
or number of repetitions.

A test script has two possibilities of transferring the selected properties to the HPDP chip.
First, writing the values into free board memory before booting, or second and less com-
plicated, writing the values into the Scratchpad Registers via SpaceWire. Two of those
registers are provided and offer 32-bit storage altogether. Using the both Scratchpad Reg-
isters is less complicated and free of side-effects. In turn, 32 bits are not much if many
settings with high numbers are required.

Using board memory as a property section does also have a drawback. Side-effects may
happen if the properties overlap with code memory, heap, or stack. In particular, the
FNC could override the given properties during the boot process and before reading it. A
proper solution is using the third memory module, whereas the first and second memories
are reserved for code, heap, and stack. Both strategies are implemented depending on the
property size of each test case.

5.2.4 Waiting for response

Each functional test has one or more results which need an evaluation at the end, verifying
whether a test passed or failed. There are two main approaches to achieve that goal. Either
all result values are sent to the tester or an FNC checks directly the outcome on-chip and
only sends a few status bytes to the tester.
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5.2 Test flow realization

If the latter approach is employed, the FNC-program needs the knowledge about the ex-
pected outcome and the assumption that a processing unit compares accurately must be
true. According to the analysis made in chapter 3, that assumption is given. Otherwise,
far more basic instruction must be checked before testing the integration of modules.
The first described comparison approach has a disadvantage as many of data may be
transmitted over SpaceWire. In particular, a complete X-RAM test has to send at least
4096 32-bit packets. Equal to the code copy problem, that would influence the duration
of ModelSim executions a lot. On the contrary, the FNC already knows the expected test
outcome because the test patterns are given in the memory or created by a generator run-
ning on the FNC. Random patterns are avoided by using reasonable test values. Thus, an
overhead of sending reference values does not occur, and the on-chip verification remains
the preferred solution.

The final response is different for every test depending on the tested feature. Some
programs return a couple of bytes just at the end. Other do it after every repetition. A
SpaceWire packet has a length of four bytes, and due to a ModelSim restriction, the last
byte of a response packet is always the crucial pass-or-fail-byte. That means that the given
ModelSim testbench breaks immediately if a received byte is unequal to the expectation.
As a result, the first three bytes of a SpaceWire response packet can be used for general
information such as details about the faulty module or the repetition. That compresses
the reply message because of fewer SpaceWire packets. More detailed information can
help to spot a possible defect. In particular, if the repetition number and pattern type
differ between several faulty test executions, the defect may be classified as a sporadic
hardware fault instead of a wrong logical behaviour.

Using the SpaceWire DMA module

The SpaceWire DMA module has six primary registers for a data transfer that contains a
header and a data field. The start and end addresses of the header and data section need
to be set before starting the data transfer. That mean that the FNC stores the content of
the header and the data field in a free memory location, and writes the border addresses
into the four SpaceWire registers. Both data fields should be declared as non-cacheable.
Otherwise, the content can still be in the L1 D-Cache when the DMA transfer starts, be-
cause the SpaceWire does not initiate an FNC-cache cleaning before starting a transfer.
Cacheable variables could lead to an unexpected behaviour since the SpaceWire module
would transfer data with unknown content. The header section contains routing data at
the beginning and may include additional information such as the size of the data field or
the task id to distinguish multiple responses. The implemented header uses a protocol to
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differentiate between parallel tests on multiple chips. Section 5.4 discusses the protocol in
more detail. Unlike the header, the data field may be empty.
The data delivery starts when the second bit of the DMA control register is set. If the
SpaceWire module has finished the transfer, the corresponding interrupt is set. Therefore,
busy waiting is possible while an FNC routine waits for the completion of the current
transfer. The FNC-program has to delete the interrupt if a subsequent DMA transfer
should also be observable.

The given ModelSim testbench forces some particular implementations which are not
necessary for the real processor check. One example is putting the pass-or-fail-byte at
the end of a 32-bit response packet since the test execution breaks immediately if an un-
expected byte occurs. Another particular adjustment demands the time-out after 100000
cycles if nothing happens at the SpaceWire ports. That is a convenient behaviour for the
previous verification which tests functions using SpaceWire commands only. In turn, the
time-out is not useful for commissioning tests where an individual FNC-program may
perform much longer than 100000 cycles. Two strategies can be applied to avoid a time-
out. First, the RUN command is used to stop the cycle counter, or second the time-out
logic is deactivated by a force command. The latter approach is adopted because it is
much easier to use than determine the expected runtime of a test program.

5.3 Test case implementation

This section describes particular implementations of various test programs in more detail.

5.3.1 Memory connectivity testing

A variable software strategy is implemented in addition to the comprehensive BIST struc-
ture. A free usage of different parameters allows the creation of various test pattern to
perform more memory tests from the operational side.
Concept section 4.3.4 has introduced the length 9N algorithm for memory testing. The
march test applies different patterns to every address of a memory-under-test [TNF01].
Since that should already be completed by BIST, the commissioning tests mainly verify
the functional connectivity between a memory module and the processing units. That can
be achieved by using the counter pattern in both directions. Figure 5.5 illustrates why
writing in both directions is necessary. In the worst case, a multiple-write fault may be
overlooked if the test runs only in one direction. A more comprehensive solution would
be reading the entire memory after every write command, which would cause a much
higher complexity and is, therefore, not implemented.
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0 1 1 U U U 0 1 2 U U U

wr1 1 to m1

wr2 2 to m2unknown

Figure 5.5: If the counter pattern for memory testing is only used in one direction, a mul-
tiple write access fault may be overlooked. Here, the write command wr1 ac-
cesses also the right neighbour cell which is going to be overwritten by the next
write wr2. Thus, the read-verification cannot detect the fault.

Nevertheless, stressing the memories with also other patterns may be attractive. Hence,
each memory test script contains a start address, end address, 32-bit pattern (= start value),
increment, end value, direction, write cycles, and read cycles. The number of read repe-
titions r is performed after every write cycle w, meaning that a test executes r × w read
cycles in total. This approach should provide the option to avoid too much stress to the
EEPROM module. Pattern such as 0b0000, 0b0101, 0b1010, 0b1111 in both directions or
with different increments are possible. Also, the duration is entirely controllable.

Concurrency

Test cases like the FNC-TCM test using both FNC-PAEs, and have, therefore, a concurrent
program flow. Both processor units can communicate either via the FNC-Crossbar and
transfer events or data among each other, or utilise the board memory as shared memory.
A shared L2 data cache is not available. Atomic access to the board memory is possible,
although there are not needed for the test cases. [PAC09g]

Whenever a synchronization between both FNCs is required, the board memory is used,
because the C-implementation is less complicated than configure and transfer via the
FNC-Crossbar. Shared variables need to be declared as volatile to prevent the com-
piler from storing those variables into L1-cache of an FNC. There is no runtime logic
available which checks whether a utilised variable is still in the cache of the other FNC
or not. Consequently, the runtime behaviour is undefined for a shared variable which is
not volatile.

Further, an FNC also works in parallel with the XPP-Array. If an FNC generates test data
that is accessed by DMAs or the SpaceWire afterwards, the data must also be volatile
to ensure the expected behaviour.
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5.3.2 XPP Array

The implementation of the XPP Array test is kept small since no exhaustive tests are re-
quired according to the analysis. The add operation with carry (addc) is programmed at
one ALU-PAE. The input paths are provided in different configurations to test different
timings of the input parameters. Further, four different operands and two events are used
in all possible combinations. The event represents the carry bit. The XPP Array config-
uration sends the result back to the FNC, which does the same operation with the same
operands and compares both.

5.3.3 Interfaces

The HPDP chip has two high-speed interfaces for purposes of controlling and data trans-
fer. Both, the SpaceWire and the Stream-IO interface, are emulated in ModelSim. Bytes are
sent via SpaceWire as introduced in table 5.1. The Stream-IO communication is imitated
by files, implying that one input file and one output file for each port must be available or
is generated during execution. Testing a loopback, as it is available between port 1 and 3
on the single-chip board, is not possible because ModelSim cannot access the same file for
one input and one output port. A loopback must directly be available in VHDL.
The script for the interface verification provides an optional repetition value to stress the
interface as long as needed. Also, different clocks can be chosen, and the test data is easy
expandable by the Tcl-script.

5.3.4 Watchdog timer

The watchdog module has to be tested during commissioning since long-run simulations
are costly in ModelSim. The implementation provides two options. On the one hand, a
stand-alone test script, motivated by the given testbench, can check the watchdog func-
tionality for any arbitrary timer value. On the other, an FNC implementation sets a given
timer and checks whether the interrupt is set too early or too late. However, with an
FNC-program is the border not as accurately testable as with a script. In particular, the
difficulty is to wait exactly for the required amount of cycles after the program resets the
timer, without analysing the FNC instructions.
One solution would be using the assembler instruction NOP, letting the FNC doing noth-
ing for one cycle. However, bypassing a long duration requires many NOP instructions,
which, in turn, makes a loop preferable. That needs further investigations of timing be-
cause branching also takes FNC cycles. Following the reasoning, using the FNC solution
is possible, but the test script solution using only SpaceWire commands for verifying the
watchdog is recommended.
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5.3.5 Stressing the entire HPDP chip

An on-chip test program should stress the entire chip showing the reliability of the power
supply voltage. Two possibilities are discussed in section 4.4.2. The first test uses as many
as possible components at once, and the second shows the integration of a researched
algorithm for the XPP-Core into the commissioning testbench.

The full load test

The aim of the Full Load realization is to utilise as many as possible components of the
HPDP by avoiding a too complex implementation. Therefore, all components are allo-
cated to two tasks, which are executed on both FNCs in parallel.

After booting and setting up the configuration by FNC 0, both FNCs start with the task
execution. The FNC 0 has two sub-tasks. One steers a data transfer from board mem-
ory to X-RAM over the XPP Array, and the other sends the current progress status via
SpaceWire to the tester. The other processing unit, FNC 1, controls two sub-tasks, as well.
A data transfer between Stream-IO ports and memory is performed, as well as a transfer
between the X-FIFO module and memory. Both sub-tasks utilise the three Linear DMA
components. Altogether, both FNCs, streaming interfaces, all internal and external mem-
ories, as well as memory access components are used to stress the whole HPDP. Only the
XPP Array is not completely utilised.

Integration of an algorithm

All commissioning tests shall demonstrate the operational capability of a delivered HPDP
chip. In the case of positive feedback, the chip can be employed to evaluate researched
algorithms in praxis. One of those works represents the implementation of an algorithm
for on-board space debris detection. The algorithm is realized for an XPP-Core using xsim
as a simulation tool. The final HPDP design and a SpaceWire interface are not included.
The input image is provided in a file and loaded via the Stream-IO interface, whereas the
output image stays in memory. [Tru15]

Consequently, some adjustments are required to make the source code ready for an opera-
tion on an HPDP chip. The following enumeration lists general required steps to integrate
an algorithm into the commissioning testbench.

• Replace the Makefile with one of the testbench and set the name of the application
and Stream-IO files if required

• Add a Tcl-script to automatise the configuration step
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• Add Stream-IO and SYSMEM arbiter configuration to C-code (done by a library call)

• Add a SpaceWire response if needed

• For ModelSim, replace calls of the XBAR-Connect C-API by assembler

The first bullet point is only necessary if the source code is used for different platforms,
avoiding the creation of an own Makefile. The second and third point offer the possi-
bility to include created Tcl and C-libraries. Those provide useful functions to config-
ure the HPDP chip probably. Also, the Tcl-library manages the code copy procedure via
SpaceWire. If a SpaceWire response should be added, the C-library offers tested functions.
The last bullet point addresses an arisen problem. The complex X-Bar network can set
up with assembler instruction, which is not very handy. Therefore, a comprehensive
C-API provides concise functions to connect X-Bar ports. xsim and the C-API work to-
gether without issues. However, ModelSim runs into memory errors and an unexpected
behaviour calling functions of the C-API. The problem is similar to the arisen FNC-ELF-
GCC issue, which the evaluation section 6.2.3 explains it more detailed. A workaround
is to use another tool which generates fewer X-Bar assembler instructions. However, the
C-Code must be rewritten into another format.

Altogether, the enumerated steps are applied to the given code base of the space de-
bris detection algorithm. The first three steps take code from existing commissioning
tests. Whereas, the last two need costly code changes.

5.4 Multi-chip board (HPPM) testing

The focus throughout this work is on commissioning testing of the first HPDP chip oper-
ating on a single-chip board. Nevertheless, a multi-chip board, which has space for up to
four chips, is developed in parallel. Differences between both boards are the SpaceWire
and the Stream-IO interfaces. As the section 4.2 introduced, the four chips on a multi-chip
board can transfer data to each other over direct links. There are no shared memories or
other concurrency critical components on a multi-chip board.
Consequently, all single-chip test programs can also be used for the multi-chip board. Two
additional tests may be useful then. One which checks the direct communication ability
across the board via SpaceWire, and one for the direct Stream-IO connections. By the
way, those tests are not testable in ModelSim because there is no multi-chip environment
provided.

However, there is one design problem using one tester and multiple chips at the same
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time. All chips use the same SpaceWire to receive data from the tester and send a response
back. Accordingly, the test environment needs two adjustments. On the one hand, the
Tcl-script needs to set right header values for the SpaceWire protocol sending the data to
the right chip. On the other, every response message must have something like a unique
process id and probably also a message id. Otherwise, the tester cannot identify the
sender of the message.
Moreover, the design of the multi-chip board allows the interconnection of several multi-
chip boards via Channel Link connected to Stream-IO ports. If a multi HPPM program
should be developed, this link needs to be activated by activating GPIO pin 0 in output
direction.
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A real HPDP chip is not provided, and the introduced test setup cannot be utilised. The
first part of this chapter describes the verification methods, which are used to check the
correctness of the implemented test programs. Subsequently, the runtimes of ModelSim
and xsim simulations are presented. The chapter completes with a discussion of arisen
problems.

6.1 Verification

A realizable verification strategy is required to ensure the correct behaviour of each test
program. In other words, further tests have to show that every test program finds the
possible, aimed faults and provides a suitable error message. Three various methods are
applicable. First, SpaceWire commands can manipulate memory cells or register values
at runtime. Second, the C-code may provide a routine which changes the state during
execution, or third, the ModelSim ability to force a command to a faulty value may be
applied.

6.1.1 Inserting faults via SpaceWire

SpaceWire commands can induce errors by manipulating memory cells or registers dur-
ing a test execution. Here, the steering Tcl-script provides logic that sends SpaceWire
commands after the first iteration of the test to manipulate the investigated component. If
the next repetition responses with an error message, the fault was recognized. Otherwise,
the realization of the test program is not sufficient.

That method, however, has several drawbacks which make a correct implementation of
the verification tests difficult. One limitation is that not all registers or memories are ad-
dressable via the SpaceWire, i.e. memories such as X-RAM or TCM are not manageable
from SpaceWire. Another issue concerns the right timing. The execution runs for an un-
certain amount of time between monitoring the state of the HPDP and sending manipula-
tion packets. That makes an injection of a timing-critical error impractical. Additionally,
manipulated register contents may lead to an unpredictable behaviour, so that the HPDP
cannot send a response. Then, it is not clear if the missing response is caused by the ma-
nipulation message or something else.
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6.1.2 Using faulty C-routines

The timing-critical disadvantage of the previous method can be eliminated by directly
handling the faulty routines in the C-code. In particular, while the FNC 0 runs, the FNC 1
could execute a function that manipulates cells employed by FNC 0. That approach also
has some restrictions. The manipulation is only as powerful as the regular test code since
the instruction set is limited and X-RAM or caches are not directly manageable. Further,
the first four basic-functional tests do not have an FNC-program to execute such a routine.
Another significant disadvantage concerns the extra pieces of C-code, which may reduce
readability and extensibility if the program needs further adjustments later.

6.1.3 Forcing signals motivated by Mutation testing

ModelSim is already widely used throughout the implementation process and provides
a command to force any signal of the HPDP chip to a particular value. That method is
related to mutation testing.

Mutation Testing is a widely-research fault-based testing technique, where the original
program is seeded with simple syntactic changes to create a faulty version, called mutant.
A set of mutants is executed on the input test set to assess the quality of the test set. If
the result of a tested mutant differs from the result of the original version for any test
case of the input test set, the seeded fault is detected. A mutation score can be calculated
and indicates the quality of the input test set. The Mutation technique is mainly used in
software testing. Verification of hardware designs is also possible by either seeding a fault
into the VHDL/ Verilog code or by forcing signals to wrong values. [JH11, SBR07]

Changing the HPDP’s source code requires knowledge of the used programming lan-
guage and extensive architecture. Usually, many mutants are necessary to reach a high
mutation score.

Forcing a signal to a wrong value has the same timing-critical obstacle as the SpaceWire
approach has. In particular, if the signal force comes too late, the FNC-program has al-
ready finished the critical part, and the fault is perhaps not detected. Otherwise, if the
signal is changed too early, the force could affect a previous process and lead to another
unexpected failure. ModelSim provides some options to observe the state of the HPDP
and pushes a signal at the right moment.
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6.1.4 Final realisation

Altogether, using the force command of ModelSim would be the best solution. However,
the HPDP layout comprises an elaborate design with thousands of signals. Knowing the
right signal to force requires a broad knowledge base of the HPDP implementation. Suffi-
cient documentation is not available. For example, the addressable registers of the periph-
ery are explained in documentations, but the names and addresses do not coincide with
the signal names visible in ModelSim. Thus, finding the right signals is costly. Small, im-
plemented C-Code routines or sending manipulation messages via SpaceWire is mainly
used to verify the capability of error detection.

6.2 Results

6.2.1 Runtimes

Table 6.1 presents the runtime of each test executed in ModelSim and xsim. The lat-
ter measures the simulation time in cycles without some periphery modules like the
SpaceWire. The first four tests shall show the general responsiveness and do not have
an FNC-program that could run in xsim. The watchdog test is only executed by Tcl-
commands since xsim does not contain the watchdog module and ModelSim is too slow
for a long-run test. The runtimes of the ModelSim simulations include the whole script
flow from the HPDP configuration until the response checking. ModelSim measures the
simulation time itself. One millisecond simulated in ModelSim needs around two real
minutes. The code copy procedure from the tester to the HPDP is only demonstrated once
in ModelSim and takes around 51 ms. Each listed test result in table 6.1 is simulated with
the mem load command that skips the copy procedure.

On the one hand, ModelSim contains more modules and calculates the entire SpaceWire
protocol. On the other, xsim simulates some additional debug functions like the print
commands for observing the current state in the terminal. Consequently, both measured
durations does not correlate. In particular, the Boards ID test only requires slightly more
time than the reply test in ModelSim but needs about 50 percent more cycles in xsim.
Another big gap is observable between the RAM-PAE and X-RAM test. The reason could
be the extensive use of the print statement in the former one (the code for printing a string
in the terminal is ignored by the preprocessor if the target platform is ModelSim because
the stream cannot access to the ModelSim terminal).
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Runtime of each test programs

Test name Conditions xsim ModelSim
(in cycle) (in ms)

GPIO - 0.158
MEM - 0.947
SPW - 1.208
STRESS 1024 Mbyte each MEM - 5.141
BOOT 9817 1.379

REPLY 24423 1.501
BOARD ID 38447 1.571
WATCHDOG script only. timer=1500 - 0.652
FNC-XBAR 48850 2.311
FNC-TCM complete. 2 repetitions 3381920 6.987
FNC-MEM 990 hexaddr., 2w, 1r 335252 12.900
XPP-ARRAY 29710 2.242
CDC-FNC-ARY 30 repetitions 241698 3.506

300 repetitions 2537772 11.671
RAM-PAE complete, 1 rep 2157864 57.301
X-RAM 4DDMA complete, 1 rep 1367487 60.413
X-FIFO complete 756685 10.780
STREAM-IO 13 values 68359 2.643
FULL LOAD 4 rep., 64 Mbyte XRAM, 32 Mbyte XFIFO 129985 8.879

8 rep., 256 Mbyte XRAM, 1024 Mbyte XFIFO 364027 23.351
Integration of [Tru15] image 128 x 128 3144286 -

Table 6.1: The runtime in xsim and ModelSim of each test case under given conditions.
The conditions are adjustable in the script to expand the runtime.

6.2.2 Integration of further algorithms

The given source code of the algorithm for space debris detection is integrated into the
testbench. Some adjustments for SpaceWire support and memory usage were necessary
to compile and start the algorithm in the testbench. The algorithm is calculation-intensive
and runs around one real second for a 2048x2048 image [Tru15]. Therefore, constants
and the size of the input image are changed to only process a 128x128 input image. That
reduces the runtime significantly. Despite those adjustments, the full algorithm is only
executable in xsim. ModelSim struggles while reading the input image at the Stream-IO
port. The reason for this open issue could be the format or size.
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6.2.3 Arisen problems

The implementation chapter has already described some challenges which been arisen
during the development phase. Section 5.2.2 talks about selecting suitable memory mod-
ules for the three SYSMEM arbiter ports. Those should match the real test setup, which is
not possible in ModelSim.

Using mem load

The test procedure converts the machine code into a format that fits the mem load command
to speed up the initialization procedure. Tests have turned out that the assigned memory
port throws an interrupt and a single bit error during the boot process of the FNC 0. Using
the regular procedure and copying the code via SpaceWire instead of using mem load does
not lead to a single-bit error. As the result, the acceleration procedure causes a small failure
but does not influence the behaviour of the written test programs.

Difference in timing

One testing objective is verifying the correct timing of FIFO queues. Those are integrated
into many parts of the XPP-Core, i.e, the X-Bars contains FIFO queues, as well as several
XPP Array elements. Correct timing, therefore, must also work under stalling conditions,
meaning that many packages are sent to a port before the first packages are consumed.
Different results have appeared during the evaluation. In particular, the X-FIFO test case
simulated in xsim can store up to 1041 packets before a deadlock occurs. In turn, Mod-
elSim already runs into a deadlock after 1038 packages. Thus, the SystemC design stores
four packages more than the Verilog/VHDL design. That is surprising because the analy-
sis section discussed about different methods which check the similarity between both.
The reason could be located in the memory model since xsim emulates different memories
than ModelSim does. Nevertheless, the exact reason remains unclear, and it is tricky to
implement tests which provoke maximal stalling. Test user needs to adjust the values in
the Tcl-script to test maximal stalling or solve an occurred deadlock.

FNC-ELF-GCC problem

The testbench provides a compilation process with the standard FNC-GCC, as well as
with the FNC-ELF-GCC for micro controllers. The latter is the aspired format for the real
HPDP. In fact, both compilers produce machine code interpretable by xsim or ModelSim.
However, a runtime failure occurs while using the Executable and Linkable Format (ELF)
and X-Bars for ModelSim. The error message "Illegal Value of Address Bus during Read Cycle.
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Memory and Output Corrupted" reveals that the simulation tries to read from a uninitialized
memory cell. Consequently, a simple boot test works, but a complex test using the net-
work of the XPP-Core leads to an unpredictable behaviour, usually sticking in the current
state. As a result, all tests running in ModelSim use the normal GCC format while xsim
tests also work with the machine code compiled by the GCC-ELF.
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7 Conclusion

7.1 Conclusion

The HPDP design is based on an XPP-Core that comprises a new array architecture. The
current verification state of the HPDP architecture was analysed and open issues dis-
cussed. Afterwards, a commissioning concept was established and implemented. The
performance of the on-board test software is shown in ModelSim since no HPDP demon-
strator chip was provided to employ the created tests on real hardware. The test programs
are bundled to a testbench. Universal Makefiles and shared libraries (one for C and one for
Tcl) avoid redundant code and allow an easy extensibility. The order of the test programs
is arbitrary, although a sequence of tests was recommended according to an incremental
integration strategy.

7.1.1 Extensibility

The potential of the XPP Array architecture has been analysed by different case studies
and previous student works. Those are developed using xsim, and their implementations
do not deal with the full extent of a real HPDP chip. This study analysed and established a
process flow from code copying, over booting, until receiving a response message, so that
the source codes of other works can make use of the developed framework and run on
a complete HPDP chip. The necessary integration steps for an algorithm of space debris
detection are shown.

7.1.2 Using ModelSim

The array architecture requires graph-based algorithms. Therefore, a known algorithm
of the streaming-based field needs to be reimplemented to take advantage of the array’s
potential. The analysis explains several drawbacks in developing a complete program
with xsim for the HPDP. Also, the implementation has revealed significant issues of Mod-
elSim. Testing complex algorithms with a large amount of input and output data is not
comfortable for the developer. Debugging with ModelSim is only possible with a deep
knowledge of the VHDL design, and mapping of source code and machine code running
in ModelSim is hard to manage when a wrong behaviour needs to be investigated. Hence,
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7 Conclusion

another developing tool is required to support the implementation and testing of a whole
HPDP program in a sufficient amount of time.

7.2 Open questions

The most important open question is the operation of each test program on a real single-
chip board and HPDP chip, also because of several issues with the ModelSim simulation.
The memory setup of the single-chip board could not be used. The implementation chap-
ter shows problems with setting up the memories equal to the planned board. Further, the
emulation of the hardware connected to GPIO pins is missing, and the loopback between
Stream-IO port 1 and 3 is not available in ModelSim.
The evaluation revealed that the machine code compiled with FNC-ELF-GCC leads to ac-
cesses of uninitialized memories and consequently unpredictable behaviour in ModelSim.
Even though that problem does not occur in xsim, the right execution on a real HPDP is
still questionable.
Finally, the SpW-script and Stream-IO input files require a further translation to be inter-
pretable by the UMDS runtime system.
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A.1 Technical data

Mem. port Placement Size Type ModelSim type

0 board 1 Mbyte 8-bit EEPROM 8-bit SRAM
1 board 512 Mbyte 64-bit SDRAM 32-bit SRAM
2 intern 4 Mbyte 64-bit SRAM 64-bit SRAM

Table A.1: The SYSMEM arbiter has three memory port. The first two ports are connected
with a board memory, and the last one is linked to internal SRAM. The Model-
Sim testbench utilises different types with unlimited size.

XPP-Core memory Number Size Direct addressable

X-RAM 1 8196 x 16 bit yes
X-FIFO 1 1024 x 16 bit yes
RAM-PAE 16 512 x 16 bit yes
L1 D-Cache (Cache mode) 1 per FNC 8192 Bytes no
L1 D-Cache (TCM mode) 1 per FNC 4096 Bytes yes
L1 I-Cache 1 per FNC 32768 Bytes no

Table A.2: All internal memories of the XPP-Core. X-RAM, X-FIFO, and RAM-PAEs are
volatile memories supporting the XPP Array; the D-Cache has an optional TCM
(Tightly Coupled Memory) mode making one half direct addressable by FNC
instructions. [PAC09g]

Stream-IO port Configuration

0 Input
1 Loopback to port 3
2 Output
3 Loopback to port 1

Table A.3: Stream-IO configuration of the single-chip board (multi-chip board: all four
chips has a different configuration that does not matter here)
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GPIO pin Direction Allocation

0 out SpaceWire select
1 out Channel Link select
2 out LED 1 & Board-ID MUX input
3 out LED 2 & Board-ID MUX input
4 out LED 3 & Board-ID MUX input
5 in Board-ID MUX output
6 to 15 - unused

Table A.4: Allocation of the GPIO (General Purpose Input/Output) pins

Module Planned frequency (in MHz)

System clock (XPP-Core) 250
(FNC-Container) 125
Basic clock of periphery 50
SpaceWire 200
Memory ports 100
Stream-IO 100

Table A.5: The planned frequencies for each part of the HPDP chip. The FNC-Container
has always the System clock divided by 2. The SpaceWire, Memory port, and
Stream-IO module are based on the Basic Clock combined with a multiplier and
divider. [Bau15]

A.2 Code example

1 #include "hpdp_regs.h" // contains register definitions

2

3 int main(void) // instructions executed on FNC 0

4 {

5 // set direction to output

6 *GPIO_DIRECTION = 0x0000;

7

8 // activate output of pin [4:2] (LED on)

9 *GPIO_OUTPUT = 0x001C;

10

11 return 0;

12 }

13

14 int main_fnc1(void); // instructions executed on FNC 1

Listing A.1: C-code of the test case Boot test
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A.2 Code example

1 #!/usr/bin/tclsh

2 # load script with global functiona

3 source "$env(HPDPTEST_COMMON_DIR)/tcl/common.tcl"

4

5 setDefaultHPDPConfiguration

6

7 loadFNCcode

8

9 startFNC0

10

11 e # Verify that the FNC0 is running

12 rmap_rd SPW_1 FNC_IOREGS_FNCCTRL_START 0x0001

13

14 e # Run 700 us to bypass the boot time

15 waitForFNC 700

16

17 e # Verify that all FNCs halted

18 rmap_rd SPW_1 FNC_IOREGS_FNCCTRL_START 0x0000

19 e # Verify GPIO settings

20 rmap_rd SPW_1 GPIO_DIRECTION 0x0000

21 rmap_rd SPW_1 GPIO_OUTPUT 0xFFFF

22

23 reachedEndOfTest

Listing A.2: Tcl-script of the test case Boot test

1 tcl> coverage attribute -test BOOT_LED_TEST

2 [[Initialization]]

3 #e# # Load FNC Code (Fast - ModelSim only)

4 tcl> mem load -i mti.mem /hpdp_tb/g0/sram_8bit_memories__0/memport0_8bit_sram/memory/ram

5 #e# # Start FNC 0

6 #e# Write to [SPW_1] [FNC_IOREGS_FNCCTRL_START] 0x0001

7 SPW_1 30

8 SPW_1 01

9 SPW_1 60

10 SPW_1 93

11 SPW_1 20

12 SPW_1 00

13 SPW_1 13

14 SPW_1 00

15 SPW_1 30

16 SPW_1 00

17 SPW_1 01

18 SPW_1 00

19 SPW_1 00

20 SPW_1 00
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21 SPW_1 04

22 SPW_1 76 # Header CRC

23 SPW_1 00 # Data Byte 3

24 SPW_1 00 # Data Byte 2

25 SPW_1 00 # Data Byte 1

26 SPW_1 01 # Data Byte 0

27 SPW_1 91 # Data CRC

28 SPW_1 EOP

29 #e# # Verify that the FNC0 is running

30 #e# Read from [SPW_1] [FNC_IOREGS_FNCCTRL_START] expect 0x0001

31 [[Header bytes]]

32 SPW_1 01 # Expected Data Byte 0

33 SPW_1 00 # Expected Data Byte 1

34 SPW_1 00 # Expected Data Byte 2

35 SPW_1 00 # Expected Data Byte 3

36 SPW_1 04

37 SPW_1 6F # Header CRC

38 SPW_1 EOP

39 #e# Wait for Reply Packet

40 [[Header bytes]]

41 SPW_1 CP 00 # Data Byte 3

42 SPW_1 CP 00 # Data Byte 2

43 SPW_1 CP 00 # Data Byte 1

44 SPW_1 CP 01 # Data Byte 0

45 SPW_1 CP 91 # Data CRC

46 SPW_1 CP EOP

47 #e# # Run 700 us to bypass the boot time

48 RUN 700 us

49 [[Check final state]]

50 #e# # --- PASSED! Reached end of test as expected! ---

51 END

Listing A.3: Translation of the Tcl-script (listing A.2) into an SpW-script. The initialization
of the HPDP, recurring header, and result checks are skipped (indicated with
double brackets; the full size is over 500 lines of code)

A.3 Test cases
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List of abbreviations

ALU-PAE Arithmetic Logic Unit Processing Array Element

ASIC Application-Specific Integrated Circuit

BIST Built-in-self-test

BLTS Board Level Test System

BREG Backward Register-object

CDC Clock-domain crossing

DFT Design For Testablity

DMA Direct Memory Access

DSP Digital Signal Processor

EDAC Error Detection and Correction

EEPROM Electrically Erasable Programmable Read-Only Memory

ELF-GCC Executable and Linkable Format GNU Compiler Collection

ESA European Space Agency

FPGA Field Programmable Gate Array

FREG Forward Register-object

FNC-PAE Functional Processing Array Element

GPIO General-purpose input/output

HPDP High Performance Data Processor

HPPM High Performance Processing Module

IP Intellectual Property

JTAG Joint Test Action Group
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PLL Phase-locked loop

RAM-PAE Random Access Memory Processor Array Element

RMAP Remote Memory Access Protocol

RTL Register-Transfer Level

SBST Software-based self-testing

SDRAM Synchronous Dynamic Random Access Memory

SFU Specific Functional Unit

SI Signal integrity

SIMD Singel instruction, multiple data

SoC System-on-Chip

SpW SpaceWire

SRAM Static Random-Access Memory

STA Static Timing Analysis

SYSMEM-Arbiter System Memory Arbiter

TCM Tighlty Coupled Memory

Tcl Tool command language

UMDS Universal Data Management System

VHDL VHSIC Hardware Description Language

XPP eXtream Processing Platform
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