
Local Parallel Model Checking
for the Alternation-Free µ-Calculus

Benedikt Bollig1, Martin Leucker2, and Michael Weber1

1 Lehrstuhl für Informatik II, RWTH Aachen, Germany
{bollig,michaelw}@informatik.rwth-aachen.de

2 Dept. of Computer and Information Science, University of Pennsylvania, USA�

leucker@cis.upenn.edu

Abstract. We describe the design of (several variants of) a local par-
allel model-checking algorithm for the alternation-free fragment of the
µ-calculus. It exploits a characterisation of the problem for this fragment
in terms of two-player games. For the corresponding winner, our algo-
rithm determines in parallel a winning strategy, which may be employed
for debugging the underlying system interactively, and is designed to run
on a network of workstations. Depending on the variant, its complexity is
linear or quadratic. A prototype implementation within the verification
tool Truth shows promising results in practice.

1 Introduction

Model checking [8] is a key tool for verifying complex hardware and software
systems. However, the so-called state-space explosion still limits its application.
While partial-order reduction or symbolic model checking reduce the state space
by orders of magnitude, typical verification tasks still take modern sequential
computers to their memory limits. On the other hand, cheap yet powerful parallel
computers can be constructed of Networks Of Workstations (NOW s). From the
outside, a NOW appears as one single parallel computer with high computing
power and, more importantly, huge amount of memory. This enables parallel
programs to use the accumulated resources of a NOW to solve large problems.
Hence, it is important to find parallel model-checking algorithms, which then
may be combined with well-known techniques to avoid the state-space explosion
gaining even more speedup and further reduce memory requirements.

A well-known logic for expressing specifications is Kozen’s µ-calculus [14], a
temporal logic offering Boolean combination of formulae and, especially, labelled
next-state, minimal fixed-point, and maximal fixed-point quantifiers. For practi-
cal applications, however, it suffices to restrict the µ-calculus to the alternation-
free fragment, denoted by L1

µ, in which nesting of minimal and maximal fixed-
point operators is prohibited. It allows the formulation of many safety as well as
liveness properties and subsumes the logic CTL [10], which is employed in many
practical verification tools. It can be shown that the model-checking problem
for this fragment is linear in the length of the formula as well as the size of the
� Most of the work was done during the author’s employment at the RWTH Aachen.

D. Bošnački and S. Leue (Eds.): SPIN 2002, LNCS 2318, pp. 128–147, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Local Parallel Model Checking for the Alternation-Free µ-Calculus 129

underlying transition system. Several sequential model-checking procedures are
given in the literature (cf. [4] for an overview). The algorithms can be classified
into global and local algorithms. The first require the underlying transition sys-
tem to be completely constructed while local ones compute the necessary part
of a transition system on-the-fly.

In complexity theory, it is a well-accepted view that P-complete problems are
so-called inherently sequential. It was shown in [23,15,5] that model checking L1

µ

is P-complete. Thus, all we can hope is to find a linear-time algorithm and no one
in the parallel complexity class NC, unless NC equals P. We present a parallel
local model-checking algorithm and several of its variations which have linear or
quadratic time complexity, thus matching the perfect bounds. We implemented
the algorithm within our verification tool Truth [17] and learned that it behaves
well for practical problems.

Our algorithm uses a characterisation of the model-checking problem for this
fragment in terms of two-player games [11,21]. Strictly speaking, we present a
parallel algorithm for colouring a so-called game graph answering the underlying
model-checking problem. We show that the game graph has a certain charac-
teristic structure when considering the alternation-free µ-calculus. This is one
of the crucial observations and guides us to define a sequential algorithm (with-
out cycle detection) that can easily be parallelised, which we do to obtain our
parallel model-checking algorithm. Furthermore, we explain how to extend our
algorithm for computing winning strategies without further costs. A strategy
may be employed by the user of a verification tool for debugging the underlying
system interactively [21].

A different characterisation of the model-checking problem can be given in
terms of so-called 1-letter-simple-weak alternating Büchi automata [15]. These
are related to games in a straightforward manner [11,16]. Hence, our algorithm
can also be understood as a parallel procedure for checking the emptiness of these
automata, thus, also as an automata-theoretic model-checking algorithm, which
are in general considered to be local algorithms. Indeed, our parallel algorithm is
inspired by a solution of the model-checking problem described in [15]. However,
the proposed algorithm employs a detection of cycles, which is unlikely to be
parallelised in a simple way. Our key observation is that we can omit this step
yielding a simple parallel algorithm. Note that the game graph is also a Boolean
graph and that our algorithm has similarities with the ones of [1,18].

Until today, not much effort has been taken to consider parallel model-
checking algorithms. In [20], a parallel reachability analysis is carried out. The
distribution of the underlying structure is similar to the one presented here.
But their algorithm is not suitable for model checking temporal-logic formulae.
[13,22,2] present parallelised data structures which employ further computers
within a network as a substitute for external storage. The algorithms described
in [19,7] divide the underlying problem into several tasks. However, they are
designed in the way that only a single computer can be employed to sequentially
handle one task at a time. In [5], we presented a parallel algorithm for a frag-
ment of L1

µ. [12] introduced a symbolic parallel algorithm for the full µ-calculus.

130 Benedikt Bollig, Martin Leucker, and Michael Weber

However, both are global so that the transition system has to be constructed
totally. [6] presents a model-checking algorithm for LTL using a costly parallel
cycle detection. Confer [4] for further related work. Our main contribution is the
first local parallel model-checking algorithm for L1

µ that supports interactive de-
bugging and omits a cycle detection, which allows a powerful parallel realisation
of it.

In Section 2, we fix some notions on graphs, recall the syntax and seman-
tics of the µ-calculus as well as the definition of model checking. Furthermore,
we describe model-checking games for the µ-calculus and provide an important
characterisation of the game graph, which will be the basis for our sequential
and parallel algorithms. To simplify our presentation, we start in Section 3 with
the presentation of sequential model-checking algorithms that admit a simple
parallel version. The corresponding parallel model-checking procedure is shown
in Section 4. Before we draw the conclusion of our approach, we present our
experimental results in Section 5. A full version of the paper including precise
definitions, proofs, and further explanations is available in [4].

2 Graphs, µ-Calculus, and Games

Graphs. A tree order is a pair (Q,≤) such that ≤ is a partial ordering relation
on Q and its covering relation is a tree. More specifically, assume ≤ is a reflexive,
antisymmetric, and transitive relation and � =≤ −(≤ ◦ ≤) its covering relation.
We call ≤ a tree order iff � is a tree in the usual sense. Notions of parents and
children for elements of Q wrt. ≤ correspond to the usual ones for elements of
Q wrt. �.

A directed graph G is a pair G = (Q,→) where Q is a set of nodes and
→⊆ Q×Q is the set of (directed) edges. We use notions as path, cycle, (strongly
connected) components, (induced) subgraphs as usual. Let G′ = (Q′,→′) and
G′′ = (Q′′,→′′) be two components of G with Q′ ∩ Q′′ = ∅. Assume that →
∩ (Q′′ × Q′) = ∅. Then every edge from a node q′ ∈ Q′ to a node q′′ ∈ Q′′

(q′ → q′′) is called a bridge.
In the next sections, we consider graphs that are labelled by formulae. We

say that a cycle contains a formula ϕ iff the cycle contains a node labelled by ϕ.
Q1, . . . , Qm is a tree decomposition of a graph (Q,→) iff the Qi form a par-

tition of Q, i.e., Q =
⋃

i∈{1,...,m}Qi and for all i, j ∈ {1, . . . ,m} with i �= j, it
holds Qi ∩Qj = ∅, and furthermore, there exists a tree order ≤ on the collection
of the Qi’s such that we have Qi�Qj iff there is a bridge from Qi to Qj . Without
loss of generality, we may assume that Qi ≤ Qj implies i ≤ j.

The µ-Calculus. Let Var be a set of fixed-point variables and A a set of actions.
Formulae of the modal µ-calculus over Var and A in positive form as introduced
by [14] are defined as follows:

ϕ ::= false | true | X | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [K]ϕ | 〈K〉ϕ | νX.ϕ | µX.ϕ

where X ∈ Var and K ⊆ A 1. For a formula ϕ of the µ-calculus, we introduce
the notion of subformulae (denoted by Sub(ϕ)), free and bound variables, and
1 〈−〉ϕ is an abbreviation for 〈A〉ϕ.

Local Parallel Model Checking for the Alternation-Free µ-Calculus 131

sentences as usual. We call ϕ a µ-formula iff ϕ = µX.ψ for appropriate X and
ψ. ν-formulae are introduced analogously. From now on, we assume all formulae
to be sentences.

A formula ϕ is normal iff every occurrence of a binder µX or νX in ϕ
binds a distinct variable. For example, (µX.X) ∨ (µX.X) is not normal but
(µX.X) ∨ (µY.Y) is. By renaming, every formula can easily be converted into
an equivalent normal formula. If a formula ϕ is normal, every (bound) variable
X of ϕ identifies a unique subformula µX.ψ or νX.ψ of ϕ where X is a free
variable of ψ. We call X a ν-variable iff it identifies a ν-formula, and µ-variable
otherwise. From now on, we assume all formulae to be normal.

Throughout the paper, let us fix a labelled transition system T = (S, T,A, s0)
where S is a finite set of states, A a set of actions, and T ⊆ S × A × S denotes
the transitions. As usual, we write s a→ t instead of (s, a, t) ∈ T . Furthermore,
let s0 ∈ S be the initial state of the transition system. The satisfaction of ϕ wrt.
T and a state s ∈ S is denoted by T , s |= ϕ and defined as usual [21,4]. We use
identifiers like ϕ,ψ, . . . for formulae, s, t, . . . for states, and a, b, . . . for actions of
the transition system under consideration. K denotes a set of actions. Whenever
the sort of the fixed point does not matter, we use σ for either µ or ν.

Essential for our further development is a formula’s graph representation.
To simplify the definition, let us recall its tree (term) representation. Let ϕ be
a formula. The occurrence set of ϕ, denoted by Occ(ϕ), is inductively defined
by ε ∈ Occ(ϕ), iπ ∈ Occ(ϕ) if i ∈ {1, 2}, ϕ = ϕ1 � ϕ2, and π ∈ Occ(ϕi), and
1π ∈ Occ(ϕ) if ϕ = #ϕ1 and π ∈ Occ(ϕ1), where � denotes a binary and # a
unary operator. Let ϕ|π denote the subformula of ϕ at position π, that is ϕ|ε = ϕ
and ϕ|iπ = ϕi|π where i ∈ {1, 2} and ϕ = ϕ1 � ϕ2, or i = 1 and ϕ = #ϕ1.

We can now assign to every ϕ a Sub(ϕ)-labelled tree with nodes Occ(ϕ)
and edge set → defined by →= {(π, iπ) | π, iπ ∈ Occ(ϕ), π ∈ IN∗, i ∈ IN}.
The labels are assigned in the expected manner by λ(π) = ϕ|π. Altogether,
T (ϕ) = (Occ(ϕ),→, λ) is defined to be the tree representation of ϕ.

We are now ready to define the graph representation of a formula ϕ. Basically,
a formula’s graph is its canonical tree representation enriched by edges from
fixed-point variables back to the fixed-point formula it identifies.

Definition 1. Let ϕ be a formula of the µ-calculus and T (ϕ) = (Occ(ϕ),→, λ)
its tree representation. The graph of ϕ, denoted by G(ϕ), is (Occ(ϕ),→′, λ) where
→′=→ ∪{(π, π′) | λ(π) = X and λ(π′) = σX.ϕ′ for X ∈ Var and appropriate
ϕ′}.

The graph of the formula µX.((νY.〈b〉Y)∨〈a〉X)∨µX ′.((νY ′.〈b〉Y ′)∧〈a〉X ′)
is shown in Figure 1(a).

The alternation-free fragment of the µ-calculus is the sublogic of the µ-
calculus where no subformula ψ of a formula ϕ contains both a free variable
X bound by a µX in ϕ as well as a free variable Y bound by a νY in ϕ. In terms
of the graph representation, a formula ϕ is alternation free iff G(ϕ) contains no
cycle with a ν-variable as well as a µ-variable. Figure 1(b) shows the graph of an
alternating formula which has a cycle containing X as well as Y . Contrary, Fig-

132 Benedikt Bollig, Martin Leucker, and Michael Weber

µX.((νY.〈b〉Y) ∨ 〈a〉X) ∨ µX.((νY.〈b〉Y) ∧ 〈a〉X)

µX.((νY.〈b〉Y) ∨ 〈a〉X)

(νY.〈b〉Y) ∨ 〈a〉X

νY.〈b〉Y

〈b〉Y

Y

〈a〉X

X

µX ′.((νY ′.〈b〉Y ′) ∧ 〈a〉X ′)

(νY ′.〈b〉Y ′) ∧ 〈a〉X ′

νY ′.〈b〉Y ′

〈b〉Y ′

Y ′

〈a〉X ′

X ′

(a)

νX.µY.(Y ∨ X)

µY.(Y ∨ X)

Y ∨ X

Y X

(b) alternation

νX.(µY.Y) ∨ X

(µY.Y) ∨ X

µY.Y X

Y

(c) alternation-free

Fig. 1. Graphs of formulae

ure 1(c) shows the graph of an alternation-free formula which has two maximal
strongly connected components, one on which X occurs, a second containing Y .

An essential observation is that the graph of an alternation-free formula can
naturally be decomposed into so-called µ- and ν-components (cf. Figure 1(a)).

Theorem 1. Let ϕ be an alternation-free formula that contains at least one
fixed-point formula and let G(ϕ) = (Q,→, λ) be its graph representation. Then
there exists a tree decomposition Q1, . . . , Qm of G(ϕ) such that every subgraph
induced by Qi either contains only µ-cycles (called µ-component in the following)
or only ν-cycles (ν-component).

In our graphical representation, the previous components are enclosed by a
(red) dashed line and the latter by a (green) dotted line. Note that the com-
ponents are no-longer necessarily strongly connected. For formulae without any
fixed-point formula, we will get a single component, which we call arbitrarily a
µ-component.

Proof. Consider the nodes of maximal non-trivial strongly connected compo-
nents. Alternation freeness guarantees that not both a ν-variable as well as a
µ-variable is reached on a cycle in such a component. It is now easy to see
that all remaining nodes form trees. Since a formula’s graph is connected, the
strongly connected components can be canonically ordered by bridges. Please
note that maximality of the strongly connected components and trees guarantees
the order defined to be a tree order. To obtain the required type of components,
strongly connected components are united with their children (components) that
are trees. If the root component is a tree, this is united with the first strongly
connected component. See [4] for details.

Note that, for the previous decomposition, it is essential that we distinguish
between syntactically identical subformulae, which is achieved by using occur-
rences of formulae instead of directly formulae. In Section 4, we will discuss an
alternative definition of a formula’s graph, which yields partially ordered but no
longer tree ordered components and, as we will see, a slightly different parallel
algorithm.

Local Parallel Model Checking for the Alternation-Free µ-Calculus 133

It is easy to see that the time complexity of computing the decomposition
is linear wrt. the formula’s length. Thus, we can label every subformula of a
formula with its component number within linear time wrt. the length of the
formula.

Model-checking games for the µ-calculus. Let us recall Stirling’s characterisation
of the model-checking problem in terms of games [21]. As we will see, deciding
whether a given transition system satisfies a formula is reduced to the colouring
of a structure called game graph. We will explain that the decomposition of
a formula’s graph induces a decomposition of the game graph. The latter will
simplify our sequential as well as parallel colouring algorithm. The experienced
reader will notice that our definition is a little different from Stirling’s original
approach. We do so to obtain a tree-like decomposition of the game graph instead
of a more general dag-like decomposition (cf. Section 4).

Consider the transition system T and the formula ϕ. The model-checking
game of T and ϕ has as the board the Cartesian product S × Q of the set of
states and ϕ’s positions. The game is played by two players, namely ∀belard (the
pessimist), who wants to show that T , s0 |= ϕ does not hold, whereas ∃loise (the
optimist) wants to show the opposite.

The model-checking game G(s, ϕ) for a state s and a formula ϕ is given
by all its plays, i.e. (possibly infinite) sequences C0 ⇒P0 C1 ⇒P1 C2 ⇒P2 . . .
of configurations, where for all i, Ci ∈ S × Q, C0 = (s, ε), and Pi is either
∃loise or ∀belard. We write ⇒ instead of ⇒Pi

if we abstract from the players.
Each next turn is determined by the current subformula of ϕ. Hence, the label
of the second component of a configuration Ci determines the player Pi who
has to choose the next move. ∀belard makes universal ⇒∀-moves, ∃loise makes
existential ⇒∃-moves. More precisely, whenever Ci = (s, π) and

1. λ(π) = false, then the play is finished.
2. λ(π) = ψ1 ∧ ψ2, then ∀belard chooses j = 1 or j = 2, and Ci+1 = (s, πj).
3. λ(π) = [K]ψ, then ∀belard chooses a transition s

a→ t with a ∈ K and
Ci+1 =(t, π1).

4. λ(π) = νX.ψ, then Ci+1 = (s, π1).

If λ(π) ∈ {true, ψ1 ∨ ψ2, 〈K〉ψ} (moves 5–8), it is ∃loise’s turn; her rules are
dually defined to the ones for ∀belard. For λ(π) = X, let π′ be the position of
the µ-/ν-formula X identifies. Then Ci+1 = (s, π′) (move 9). We will speak of
∀belard-moves in cases 1–4 and 9, and ∃loise-moves in all other cases. Ci is called
∀-configuration or ∃-configuration, respectively (cf. [4]).

A configuration is called terminal if no (further) move is possible. A play
G is called maximal iff it is infinite or ends in a terminal configuration. The
winner of a maximal play is defined in the following way: If the play is finite,
thus ending in a configuration (s, π), then ∀belard wins G iff λ(π) = false or
λ(π) = 〈K〉ψ 2. Dually, ∃loise wins G iff λ(π) = true or λ(π) = [K]ψ 2. An
infinite play is won by ∀belard iff the outermost fixed point that is unwinded
2 Note that, due to maximality, we have �t : s

a→ t for any a ∈ K.

134 Benedikt Bollig, Martin Leucker, and Michael Weber

infinitely often is a µ-fixed point. Otherwise, when the outermost fixed point
that is unwinded infinitely often is a ν-fixed point, then ∃loise wins the game.

A strategy is a set of rules for a player P telling her or him how to move in
the current configuration. It is called history free if the strategy only depends
on the current configuration without considering the previous moves. A winning
strategy guarantees that the play that P plays according to the rules will be won
by P . [21] shows that model checking for the µ-calculus is equivalent to finding
a history-free winning strategy for one of the players: Let T be a transition
system with state s and ϕ a µ-calculus formula. T , s |= ϕ implies that ∃loise
has a history-free winning strategy starting in (s, ϕ), and T , s �|= ϕ implies that
∀belard has a history-free winning strategy starting in (s, ϕ).

All possible plays for a transition system T and a formula ϕ are captured in
the game graph whose nodes are the elements of the game board (the possible
configurations) and whose edges are the players’ possible moves. The game graph
can be understood as an and-/or-graph where the or-nodes (denoted by

∨
) are

∃-configurations and the and-nodes (denoted by
∧

) are ∀-configurations.
The following characterisation of the game graph for this fragment is essential

for formulating our sequential and parallel algorithms, but only holds for the
alternation-free µ-calculus.

Theorem 2. Let T be a labelled transition system and let ϕ be a formula of the
alternation-free µ-calculus. Furthermore, let GG = (Q,E) be their game graph.
Then there exists a tree decomposition Q1, . . . , Qm of GG such that in every sub-
graph induced by Qi, either µ-formulae and no ν-formulae are unwinded or ν-
formulae and no µ-formulae. We call Qi µ-component or ν-component, resp.

Proof. By Theorem 1, ϕ’s graph admits a decomposition into either µ- or ν-
components Q′1, . . . , Q

′
m. Let Qi be the set of configurations whose formulae are

in Q′i. It is a simple task to show that the Qi have the desired properties.

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X) ∨ µX.((νY.〈b〉Y) ∧ 〈a〉X)

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X)

s1, (νY.〈b〉Y) ∨ 〈a〉X

s1, νY.〈b〉Y

s1, 〈b〉Y

s2, Y

s2, νY.〈b〉Y

s2, 〈b〉Y

s1, 〈a〉X

s1, X

Q2 Q4

Q3

Q1

s1, µX ′.((νY ′.〈b〉Y ′) ∧ 〈a〉X ′)

s1, (νY ′.〈b〉Y ′) ∧ 〈a〉X ′

s1, νY ′.〈b〉Y ′

s1, 〈b〉Y ′

s2, Y
′

s2, νY ′.〈b〉Y ′

s2, 〈b〉Y ′

s1, 〈a〉X ′

s1, X
′

Fig. 2. A partitioned game graph.

Figure 2 shows a game
graph for a transition system
that has two states s1 and s2,
an a-loop from s1 to itself, and
a b-edge from s1 to s2, and the
formula Φ = µX.((νY.〈b〉Y) ∨
〈a〉X) ∨ µX ′.((νY ′.〈b〉Y ′) ∧
〈a〉X ′). ∀belard-configurations
are marked by rectangular
boxes while ∃loise-configura-
tions are drawn as oval nodes.
The dashed and dotted lines
identify µ-components and re-
spectively ν-components.

Let us fix the decomposition of the game graph shown in the previous proof
and further helpful notions in the following definition:

Local Parallel Model Checking for the Alternation-Free µ-Calculus 135

Definition 2. Let T be a labelled transition system and let ϕ be a formula of the
alternation-free µ-calculus. Furthermore, let GG = (Q,E) be their game graph.

– The canonical decomposition of GG is the decomposition according to Theo-
rem 2 into Q1, . . . , Qm, which are tree-like ordered by ≤.

– The escape configurations of a component Qi (denoted by �Qi�) are the con-
figurations which are in a child component and are successor configurations
of a configuration in Qi. That is:

�Qi� = {q ∈ Qj | Qj is a child of Qi and ∃q′ ∈ Qi such that (q′, q) ∈ E}

– The component number of a configuration of the game graph is the (unique)
index i of a component that contains the configuration.

It is obvious that every infinite play gets trapped within one Qi. If the com-
ponent is a ν-component, then ∀belard has lost the game. So he tries to leave
a ν-component by reaching an escape configuration. Note that the second com-
ponent of an escape configuration is labelled by a fixed-point formula and that
�Qi� = ∅ iff it is a leaf wrt. ≤.

The number of a component of a game graph’s canonical decomposition is
identical to the number of the component of the formula’s graph according to
Theorem 1. Even more, the component number of a configuration is identical
to the number of the component of its formula label (which is defined in the
obvious manner). Thus, once computed the component number of a (sub)formula
as described in Section 2, it is a constant operation to check the component
number of a configuration.

3 Sequential Model Checking

In the following, we restrict to the alternation-free µ-calculus. In this section,
we present two sequential approaches for determining winning strategies, hereby
solving the model-checking problem. The algorithms are designed in the way
that they can easily be parallelised, which is carried out in the next section.

The basic idea of both algorithms is labelling a configuration q by green or
red, depending on whether ∃loise or ∀belard has a winning strategy for the game
starting in this configuration q. Furthermore, they both employ the canonical
decomposition of the game graph (cf. Section 2). They differ in the order in which
the several components are processed. The first algorithm proceeds bottom-up,
the second top-down.

Colouring bottom-up. First, let us discuss how to colour a single component. Let
Qi be a component of the canonical decomposition. To simplify the presentation,
assume that Qi is a µ-component. The forthcoming explanation can be dualised
for ν-components. Let �Qi� denote its set of escape configurations and assume
that every configuration in �Qi� is either labelled with green or red expressing
that either ∃loise or ∀belard has a winning strategy from this configuration, resp.
It is now obvious, that every play starting in a configuration of Qi will either

136 Benedikt Bollig, Martin Leucker, and Michael Weber

1. eventually reach an escape configuration and never touch a configuration of
Qi again,

2. will end in a terminal configuration within Qi, or
3. will go on infinitely within Qi.

In the first situation, the winner is determined by the colour of the escape
configuration. In the second case, the terminal configuration signalises whether
∃loise or ∀belard has won. The last case goes to ∀belard since a µ-formula is
unwinded infinitely often.

The second case justifies colouring every terminal configuration within Qi

in the following way: If the formula component of the configuration is true or
a box formula, then the configuration is coloured with green. Otherwise, when
the formula component is false or a diamond formula, then the configuration
is coloured with red .

Once a configuration q ∈ Qi ∪ �Qi� is labelled with red or green, its pre-
decessors are labelled if possible: An

∧
-node q′ is labelled with red if q is red ,

but labelled green, if all successors, i.e., q and all its neighbours, are green. An∨
-node is treated dually. If the predecessor has obtained a new colour, the la-

belling is propagated further. It is easy to see that, once a configuration obtained
a colour, the colour is never changed.

Lemma 1. The colouring process is terminating.

However, the labelling process may leave some configurations of Qi un-
coloured. Let us understand that all remaining uncoloured configurations can
be labelled with red .

Theorem 3. For any game starting in a configuration without a colour, ∀belard
has a winning strategy for a game starting in this configuration.

Proof. First, check that every uncoloured configuration has at least one un-
coloured successor configuration. ∀belard’s strategy will be any choosing one
uncoloured successor in this situation. Then he will win every play. Every un-
coloured ∃loise-configuration has red or uncoloured successors, so ∃loise has the
choice to move to configurations which are winning for ∀belard or to move to
an uncoloured configuration. ∀belard will choose in an uncoloured configuration
an uncoloured successor, or, if ∃loise has moved to a red configuration, he will
choose a red successor. Summing up, every play will either end in a red terminal
configuration, lead to a red escape configuration in which ∀belard has a winning
strategy, or will go on infinitely often within Qi and ∀belard wins.

The previous theorem is the crucial observation allowing a powerful parallel
version of this algorithm. Unlike in many existing works on model checking this
fragment, we do not use any cycle detection algorithm in the labelling process.
We know that the described backward colour propagation process leaves only
configurations uncoloured that are on or lead to a cycle which furthermore can
be controlled by ∀belard.

Local Parallel Model Checking for the Alternation-Free µ-Calculus 137

The first sequential algorithm now processes the components in a bottom-up
fashion. First, leaf components which have no escape configurations are consid-
ered and coloured. Now, for any parent component, the escape configurations
are labelled and, again, our procedure will colour the component.

Let us turn back to our example shown in Figure 2. We have four compo-
nents, Q1, . . . Q4. One leaf component is Q2. The single terminal configuration
(s2, 〈b〉Y) requires ∃loise to present a b-successor of s2. However, in the under-
lying transition system, there is no successor. Thus, the configuration will be
labelled with red . Propagating the colours to the predecessor configurations will
colour every configuration of Q2 with red .

The other leaf component Q4 will be treated in the same manner as Q2.
The next component to handle wrt. our tree order is Q3. It has the single

escape configuration (s1, νY ′.〈b〉Y ′) which is already coloured with red . This
colour is propagated to (s1, νY ′.〈b〉Y ′∧〈a〉X ′) which now is coloured red . Further
propagation will colour the whole component Q3 with red .

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X) ∨ µX.((νY.〈b〉Y) ∧ 〈a〉X)

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X)

s1, (νY.〈b〉Y) ∨ 〈a〉X

s1, νY.〈b〉Y

s1, 〈b〉Y

s2, Y

s2, νY.〈b〉Y

s2, 〈b〉Y

s1, 〈a〉X

s1, X

Q2 Q4

Q3

Q1

s1, µX ′.((νY ′.〈b〉Y ′) ∧ 〈a〉X ′)

s1, (νY ′.〈b〉Y ′) ∧ 〈a〉X ′

s1, νY ′.〈b〉Y ′

s1, 〈b〉Y ′

s2, Y
′

s2, νY ′.〈b〉Y ′

s2, 〈b〉Y ′

s1, 〈a〉X ′

s1, X
′

Fig. 3. Before the second phase

We have to proceed with
Q1. (s1, νY.〈b〉Y) propagates
red to (s1, νY.〈b〉Y ∨ 〈a〉X).
Since the latter is an ∃loise-
configuration, it remains un-
coloured. A similar situation
occurs for the propagation
due to (s1, µX ′.((νY ′.〈b〉Y ′) ∧
〈a〉X ′)). Thus, all colour infor-
mation is propagated within
Q1. The current situation is
depicted in Figure 3, in which
red configurations are filled
with . Now, the second
phase of colouring a compo-
nent comes into play. All remaining configurations will be labelled with red since
Q1 is a µ-component. Thus, ∀belard has a winning strategy for the presented
game and we know that the underlying formula is not valid in the initial state
of the transition system.

Complexity. It is a simple matter to see that the previous labelling algorithm
has a linear running time (in the worst case) wrt. the size of the game graph. The
latter is bounded by the size of the underlying transition system (denoted by s)
times the length of the formula (denoted by l). Hence, it is bounded by s × l.
However, only the part of the transition system related to the underlying formula
has to be considered. For example, checking 〈a〉ϕ in a state s requires only to
look for a successor reachable by an action a that satisfies ϕ. All successors
reachable by different actions need not be considered. While in the worst case,
the whole transition system has to be considered checking a formula, only a part
of the system has to be generated in typical examples. Thus, we can call our
algorithm to be local or on-the-fly.

138 Benedikt Bollig, Martin Leucker, and Michael Weber

Colouring top-down. For the second algorithm, assume that the game graph
is again partitioned into components Qi which form a tree. To consider as few
components as possible, the algorithm will process the components in a top-down
manner.

Again, let us first discuss how to colour a single component. Let Qi be a
component of the canonical decomposition. Again, we assume that Qi is a µ-
component recalling that the forthcoming explanation can be dualised for ν-
components. Let �Qi� denote its escape configurations. However, we will not
assume that every configuration in �Qi� is already coloured. Still, every play
will either

1. eventually reach an escape configuration and never touch a configuration of
Qi again,

2. will end in a terminal configuration within Qi, or
3. will go on infinitely within Qi.

Again, the winner of a play is clear in Case 2. Furthermore, if ∃loise has nei-
ther a way to reach a winning terminal configuration, nor to leave the component
she will loose. So, if she has no chance to reach a winning terminal configuration,
the best we can hope for her, is that she indeed has a chance to leave the com-
ponent successfully. The crucial point of our algorithm is that we initially colour
all escape configurations of the component under consideration with lightgreen
denoting that this configuration is probably a winning configuration for ∃loise.

As before, the colour information (full as well as light colours) is propagated
to predecessor configurations and used for colouring it. That means, an

∧
-node

is labelled with red if one successor is red , labelled with lightred , if no successor is
red but at least one is lightred , labelled lightgreen, if all successors are lightgreen
or green, and labelled with green, if all successors are green. In all other cases,
the configuration remains unlabelled. An

∨
-node is treated dually. Note that

lightred comes only into play for ν-components. If the predecessor has got a new
colour, the labelling is propagated further. A simple case analysis shows that
once a configuration obtained a full colour, the colour is never changed. A light
colour is only changed to the corresponding full colour.

Lemma 2. The colouring process is terminating.

Again, the labelling process may leave some configurations of Qi uncoloured.
Let us now understand, that all remaining uncoloured configurations can be
labelled with red .

Theorem 4. For any game starting in a configuration without a colour, ∀belard
has a winning strategy for a game starting in this configuration.

Proof. First, check that every uncoloured configuration has at least one un-
coloured successor configuration. ∀belard’s strategy will be any choosing one
uncoloured successor. Then he will win every play. Every uncoloured ∃loise-
configuration has red , or uncoloured successors, so ∃loise has the choice to move
to a configuration which is winning for ∀belard or to move to an uncoloured

Local Parallel Model Checking for the Alternation-Free µ-Calculus 139

configuration. ∀belard will choose in an uncoloured configuration an uncoloured
successor, or, if ∃loise has moved to a non-terminal red configuration, he will
choose a red successor. Summing up, every play will either end in a red termi-
nal configuration, move to a red escape configuration, in which ∀belard has a
winning strategy, or will stay infinitely often within Qi and ∀belard wins.

Still, the previous theorem is crucial for getting a powerful parallel algorithm.
Our component now may contain configurations which are coloured with

lightgreen. However, we cannot guarantee that ∃loise has indeed a winning strat-
egy for games starting in such a configuration. Thus, we remove the colour of such
a configuration. If the initial configurations of the component are coloured, we
are done. If not, we have to consider a child component to get further evidence.

Let us turn back to our example shown in Figure 2. We introduce the colour
white to identify uncoloured configurations, assuming that initially every config-
uration has a white colour. We start with the root component Q1. Both escape
configurations are initially labelled with lightgreen (Figure 4(a)3).

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X) ∨ µX ′.((νY ′.〈b〉Y ′) ∧ 〈a〉X ′)

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X)

s1, (νY.〈b〉Y) ∨ 〈a〉X

s1, νY.〈b〉Y s1, 〈a〉X

s1, X

s1, µX ′.((νY ′.〈b〉Y ′) ∧ 〈a〉X ′)

Q1

(a) Starting with Q1

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X) ∨ µX ′.((νY ′.〈b〉Y ′) ∧ 〈a〉X ′)

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X)

s1, (νY.〈b〉Y) ∨ 〈a〉X

s1, νY.〈b〉Y s1, 〈a〉X

s1, X

s1, µX ′.((νY ′.〈b〉Y ′) ∧ 〈a〉X ′)

Q1

(b) Propagating assumptions

Fig. 4. Two steps in the algorithm.

As shown in Figure 4(b), propagating the colour information will colour every
configuration of Q1 with lightgreen.

The subsequent phase of colouring white-configurations red and lightgreen-
configurations white will turn the whole component to a complete white one
so that the corresponding system looks similar to the one in the beginning.
Thus, the assumptions did not help to find a winner. Therefore, we have to
check a child component of Q1. Let us proceed with Q2. Since there are no
escape configurations, the whole component is coloured as before. We learn that
the lightgreen assumption for the initial configuration of Q2 was too optimistic.
Redoing the colouring of Q1, now with more but still not full information, will
colour some configurations of Q1 red but will still leave the initial configuration
uncoloured. Figure 5(b) shows the coloured game graph right before recolouring
the assumed coloured lightgreen back to white.

We turn our attention to Q3. We assume that ∃loise has a chance to leave
the component via (s1, νY ′.〈b〉Y ′). Thus, we colour this configuration lightgreen.
3 lightgreen configurations are identified by writing their label in the following style:

xxx

140 Benedikt Bollig, Martin Leucker, and Michael Weber

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X) ∨ µX.((νY.〈b〉Y) ∧ 〈a〉X)

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X)

s1, (νY.〈b〉Y) ∨ 〈a〉X

s1, νY.〈b〉Y

s1, 〈b〉Y

s2, Y

s2, νY.〈b〉Y

s2, 〈b〉Y

s1, 〈a〉X

s1, X

Q2

Q1

s1, µX ′.((νY ′.〈b〉Y ′) ∧ 〈a〉X ′)

(a)

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X) ∨ µX.((νY.〈b〉Y) ∧ 〈a〉X)

s1, µX.((νY.〈b〉Y) ∨ 〈a〉X)

s1, (νY.〈b〉Y) ∨ 〈a〉X

s1, νY.〈b〉Y

s1, 〈b〉Y

s2, Y

s2, νY.〈b〉Y

s2, 〈b〉Y

s1, 〈a〉X

s1, X

Q2

Q3

Q1

s1, µX ′.((νY ′.〈b〉Y ′) ∧ 〈a〉X ′)

s1, (νY ′.〈b〉Y ′) ∧ 〈a〉X ′

s1, νY ′.〈b〉Y ′ s1, 〈a〉X ′

s1, X
′

(b)

Fig. 5. Subsequent steps in the algorithm.

However, the propagation does not influence the preceding
∧

-node. So all re-
maining configurations are coloured red . Now, all escape configurations of Q1
are coloured and a further colouring process will colour the complete component
Q1 red . Note that we saved the time and especially space for considering Q4.
Figure 5(b) shows the coloured game graph, again right before recolouring the
assumed coloured lightgreen back to white.

Complexity. It is a simple matter to see that the previous labelling algorithm
has a running time bounded by n×m where n is the number of configurations
and m is the size of the maximum length of a path from the root component to
a leaf component. The latter number is bounded by the nesting of fixed-point
formulae, which is at most the length of the formula. Thus, we get as an upper
bound s× l2 where s is the size of the underlying transition system and l is the
length of the formula. While in the worst case, this complexity is worse than
in the bottom-up approach, we found out that the algorithm often detects the
truth-value of a formula in a given state much faster. Note, that this algorithm
behaves even more on-the-fly than the previous one.

4 Parallel Model Checking

Given a transition system and an L1
µ-formula, our approach is both to construct

the game graph as well as to determine the colour of its nodes in parallel. The
idea of our parallel algorithm is that all processors are working in parallel on
one component, whereas the components are treated one-by-one.

Distributing the game graph. We employ a somehow standard approach dis-
tributing and constructing a (component of the) game graph in parallel [20,4,5].
As a data structure, we employ adjacency lists. We need also links to the pre-
decessor as well as to the successor of a node for the labelling algorithm. A
component is constructed in parallel by a typical breadth-first strategy. Given

Local Parallel Model Checking for the Alternation-Free µ-Calculus 141

a node q, determine its successors q1, . . . , qn. To obtain a deterministic distri-
bution of the configurations over the workstation cluster, one takes a function
in the spirit of a hash function assigning to every configuration an integer and
subsequently its value modulo the number of processors. This function f de-
termines the location of every node within the network uniquely and without
global knowledge. Thus, we can send each q ∈ {q1, . . . , qn} to its processors f(q).
If q is already in the local store of f(q), then q is reached a second time, hence
the procedure stops. If predecessors of q were sent together with q, the list of
predecessors is augmented accordingly. If q is not in the local memory of f(q), it
is stored there together with the given predecessors as well as all its successors.
These are sent in the same manner to their (wrt. f) processors, together with the
information that q is a predecessor. The corresponding processes update their
local memory similarly.

Please consult [4] for a thoroughly discussion of this and other possible ap-
proaches storing distributed transition systems.

Labelling the game graph. As many of the existing model-checking algorithms
that we are aware of, use cycle detection algorithms, which are unlikely to be
parallelised in a simple way, we extend our sequential algorithms described in
Section 3 towards a parallel implementation. As explained in the previous para-
graph, it is easy to construct (a component of) the game graph in parallel em-
ploying a breadth-first search. When a terminal configuration is reached, a back-
wards colouring process can be initiated as described in Section 3. This can be
carried out in parallel in the obvious manner. If all colour information is propa-
gated, the sequential algorithm performs a colouring of uncoloured nodes and an
erasing of light colours (cf. Section 3). It is no problem to do this recolouring on
the distributed game graph in parallel. Thanks to Theorem 3 or Theorem 4, no
cycle detection is necessary but every workstation can do this recolouring step
on its local part of the game graph.

However, to check that all colour information has been propagated, a dis-
tributed termination-check algorithm is employed. We use a token termination
algorithm due to [9]. It has the advantage that it scales well wrt. the number
of workstations and that its complexity is independent of the size of the game
graph. The components may be labelled in a bottom-up or top-down manner as
described in Section 3. Thus, we get a set of algorithms differing in the order
the components are processed.

The algorithm. To describe our approach in more detail, we show several frag-
ments of our algorithm in pseudo code. Especially, we note that the two steps
of constructing the game graph and labelling the nodes can be carried out in
an integrated way. The most important function is shown in Figure 6(a). Given
a component number, it expands all nodes of the component. It can be applied
either for a parallel bottom-up or top-down labelling algorithm. Since the colour
information of a terminal node is always a correct (full) colour, a colouring pro-
cess is initiated, if a terminal configuration is reached.

142 Benedikt Bollig, Martin Leucker, and Michael Weber

1 Function processSuccs(node) // compute and expand succs
2 succs ← computeSuccs(node.conf)
3 for s ∈ succs do
4 sendMessageTo (Expand s node.conf) f(s)
5 succss ← [(suc.conf ← s , suc.colour ← white) | s in succs]
6 node.succs ← succss
7 end
8
9 Function expandComp(comp)

10 for node in graph[comp].initialNodes // start with initial nodes
11 processSuccs(node)
12 until hasTerminated do
13 msg ← readMessage;
14 case msg of
15 Expand conf pred:
16 if lookupGraph(conf, node) �= fail then // node already visited
17 if node.colour �= white and pred /∈ node.preds then
18 sendMessageTo (Colour pred node.conf colour) f(pred)
19 addPreds(node.preds, pred)
20 else
21 node ← newNode, node.conf ← conf, node.pred ← pred
22 if isTerminal(node) then
23 node.colour ← InitialColor (node.conf)
24 sendMessageTo (Colour pred node.conf colour) f(pred)
25 else // new node
26 node.colour ← white
27 if not (isTerminal(node) or (IsEscapeConf(comp,s))) then
28 processSuccs(node)
29 Colour conf child colour:
30 lookupGraph(conf, node)
31 updateSucc(node.succs, child, colour)
32 newcolour ← computeColour(node)
33 if newcolour �= oldcolour then
34 node.color ← newcolour
35 for p ∈ preds do sendMessageTo (Colour p conf newcolour) f(p)
36 end

(a) Expanding a component

1 Function recolourComp(comp)
2 case type(comp) of
3 µ : colour := red
4 ν : colour := green
5 for node in graph[comp]
6 if node.color = white then
7 node.color := colour
8 if node.color in
9 {lightred , lightgreen} then

10 node.color := white
11 end

(b) Recolouring

1 Function computeColour(node,succs)
2 begin
3 case
4 node is

∨−node:
5 case
6 all (= Red) succs: Red
7 any (= Green) succs: Green
8 else : White
9 node is

∧−node:
10 case
11 all (= Green) succs: Green
12 any (= Red) succs: Red
13 else : White
14 end

(c) Computing the colour

Fig. 6. The algorithms

Local Parallel Model Checking for the Alternation-Free µ-Calculus 143

We assume that the game graph is represented as a list of nodes where each
node is a record containing the label of the current configuration, its colour, and
a list of predecessors and successors. Furthermore, we assume that initial config-
urations are already stored in the graph when calling the function expandComp.
The latter are first expanded (lines 10–11). Then, the function enters a message
loop awaiting either expand or colour requests. If a configuration should be ex-
panded, it is checked whether the configuration has already been processed (16).
If so, a possible new predecessor of this configuration is stored. Furthermore,
the predecessor is informed about the colour of the current node, if it has been
coloured already. Otherwise, the node is added to the graph, and the configu-
ration and the predecessor are stored (21). A colouring process is initiated, if
the current node is a terminal one (22–26). Furthermore, if the node is neither
terminal or an escape configuration, its successors are considered (28). Thus, its
successors are computed and expanded (2–4). Furthermore, the successors to-
gether with an initially white-colour are stored in the current node (5–6). Colour
informations are processed in the expected manner (29–35).

The function expandComp is the main ingredient for building a complete
algorithm. If one is interested in a bottom-up algorithm, one can call expand-
Comp in a depth-first manner for the components of the game-graph. Then,
starting from the leafs, the function recolourComp (Figure 6(b), light colours
are only present in the top-down version) can be called in a bottom-up manner.
Of course, after processing a component, a colour propagation process for the
initial nodes of the component has to be initiated before recolouring the next
component.

For the bottom-up algorithm, the colour can be computed as described in
Figure 6(c).

For the top-down colouring version of our algorithm, the expandComp func-
tion is called first. Then, a colouring process with light colours is initiated start-
ing from the escape configurations of the component. Now, a recolour process
(Figure 6(b)) is started.

There are several possibilities to process the components. In the examples
shown in Section 3, we suggested a depth-first strategy. However, one could
also use a breadth-first, bounded depth-first, or parallel breadth-first strategy.
Depending on the employed strategy, the run-time of our algorithm is linear or
quadratic. Note that the space required by our algorithm is linear in the size
of the game graph. The employment of light colours might save considering a
significant part of the game graph but may also augment the runtime, if the
whole game graph has to be considered.

Theorem 5. The algorithms described before label a node (s, ψ) of the game
graph with green if T , s |= ψ. Otherwise, the node is labelled with red.

Variations of the algorithm. We already mentioned that there are several pos-
sibilities to process the components. Note that only the colour of the escape
configuration is needed when colouring a component. Thus, all other nodes of a
child component can be deleted for colouring the current component. In general,

144 Benedikt Bollig, Martin Leucker, and Michael Weber

it is possible to formulate the algorithm in the way that only a single component
plus some control information is stored in the workstation cluster at the same
time certainly lifting the limits for systems to be model checked in practice. For
lack of space, we do not provide the details.

Another variant of our algorithm can be obtained by taking subformulae
instead of the occurrence set of the subformulae for defining the graph of the
formula (Definition 1). The resulting effect will be that the components of the
game graph no longer constitute a natural tree order but form a directed acyclic
graph which is no longer necessarily a tree. Although the resulting game graph
can be expected to be smaller, the tree order simplifies the decision when a
component can be removed, as described in the previous paragraph.

Winning strategies. As pointed out already when motivating the use of games,
the winning strategy does not only provide an answer to the model-checking
question but can also be applied for interactively debugging the underlying sys-
tem. It is easy to extend our algorithm towards providing a winning strategy.
Note that the colour of a terminal node in the game graph indicates a winning
position for one of the players. If the colour information is propagated to a pre-
decessor without a colour (white) and this leads to a colour of the predecessor, it
is clear how the corresponding winner has to chose. In other words, when a node
gets a colour because of a (Colour conf succ colour) message, the strategy
is choosing succ in configuration conf. If a node is coloured in the function
recolourComp, we pointed out in the proof of Theorem 3 and Theorem 4 that
the right strategy is choosing a previously white successor.

5 Experimental Results

We have tested our approach within our verification tool Truth [17] imple-
mented in Haskell as well as with a stand-alone version written in C++.

The Haskell version. We implemented the distribution routine on its own as well
as the combined iterative labelling routine described in the previous section. As
implementation language we have chosen the purely functional programming
language Haskell allowing us to embed this algorithm in the verification tool
Truth and to prototype a concise reference implementation. The actual Haskell
source code of the algorithm has less than 280 lines of code. As the distribution
routine is the same as in [5], we refer to this paper for the positive results
we obtained using this distribution mechanism. Figure 7 shows the measured
runtime results of the state distribution integrated with the parallel labelling
algorithm for a single component on a NOW consisting of up to 52 processors
and a total of 13GB main memory, which are connected with a usual 100MBit
Fast-Ethernet network.

Our approach also scales very well with regard to the overall runtime (Fig-
ure 7). Note that, because of the size of the game graphs we inspected, we did
not get results when running the algorithm on less than five workstations due to
memory restrictions. Therefore, the shown speedups are calculated relative to 5

Local Parallel Model Checking for the Alternation-Free µ-Calculus 145

processors instead of one. We found that we gain a linear speedup for reason-
ably large game graphs (in fact, for graphs with more than 500.000 states, we

0

2

4

6

8

10

12

14

0 10 20 30 40 50

sp
ee

du
p

re
la

tiv
e

to
 5

 p
ro

ce
ss

or
s

size of NOW in processors

1:1
Big (NoDeadlock)

Big2 (NoDeadlock)
Big4 (NoDeadlock)
Big8 (NoDeadlock)
ATM (NoDeadlock)

Fig. 7. runtime results

even got superlinear speedups,
which we will discuss later).
The results are especially sat-
isfying, if one considers that
– for reasons of simplicity –
we did not try to employ well-
known optimisation means, for
example reducing the commu-
nication overhead by packing
several states into one mes-
sage.

Also, due to our choice of
Haskell as implementation lan-
guage and its inherent ineffi-
ciency, we did not focus on op-
timising the internal data structures either. We use purely functional data struc-
tures like balanced trees and lists rather than destructively updateable arrays or
hash tables. This is also the reason for the superlinear speedups we mentioned
before. We found that the overhead for insertions and lookups on our internal
data structures dramatically increases with the number of stored states. We ver-
ified this by running all processes on a single processor in parallel and replacing
the network message passing with inter-process communication. The expected
result would have been to find similar runtimes as one process would achieve in
this situation, or even slightly worse due to operating-system context switches
between the processes running in parallel. However, we found that there is a
significant speedup, because the internal data structures are less crowded and
therefore lookups and insertions are considerably cheaper.

The C++ version. We have implemented a simple prototype tailored for tran-
sition systems computed by the µCRL tool set [3]. We have tried the version
on a transition system with 13 million states. We were able to check a mutual
exclusion property within 9 minutes on the NOW. Note that existing model
checkers for µCRL failed to show the property due to memory restrictions. How-
ever, we have to learn that the algorithm does not scale as good as the Haskell
version. As soon as the transition system fits into the accumulated memory of
the computers, further computers provide no significant speed-up. The reason is
that, in contrast to the Haskell version where the transition system is computed
on-the-fly from a given system of CCS process equations, the system is already
computed in the C++ version, a fact which is not used by our algorithm. Thus,
every computer is mainly concerned with labelling the game graph and sending
colour information to the other computers, and communication is a costly op-
eration within a NOW. It is therefore important to interleave the computation
of the transition system together with the computation of the model-checking
algorithm. Note that it took 3 hours to produce the mentioned transition system

146 Benedikt Bollig, Martin Leucker, and Michael Weber

with the µCRL tool set before we were able to check the system within 9 minutes
with our tool.

Since our C++ version is just a simple prototype and provides a lot of opti-
misation possibilities, we currently work on a sophisticated version of our parallel
model checker, which can be applied for getting further insights to the run-time
behaviour of our approach. This will be integrated with the routines of µCRL
for generating a transition system, so that we will get a parallel on-the-fly model
checker for µCRL 4.

6 Conclusion
In this paper, we have presented a parallel game-based model-checking algorithm
for an important fragment of the µ-calculus. The demand for parallel algorithms
becomes visible by considering the memory and run-time consumptions of se-
quential algorithms. Since the employed fragment of the µ-calculus subsumes
the well-known logic CTL, it is of high practical interest. We have implemented
a prototype of our approach within the verification platform Truth. We found
out that the algorithm scales very well wrt. run-time and memory consumption
when enlarging the NOW.

With our parallel algorithm, answers are computed more quickly, and, more
importantly, there are numerous cases in which the sequential algorithm fails
because of memory restrictions and the parallel version is able to check a formula.
From the practical point of view, it is a central feature of a verification tool to
give an answer in as many cases as possible. Thus, a decent implementation of
this algorithm will be carried out to get further practical results.

References
1. H. R. Andersen. Model checking and Boolean graphs. Theoretical Computer Sci-

ence, 126(1):3–30, 11 Apr. 1994.
2. S. Basonov. Parallel implementation of BDD on DSM systems. Master’s thesis,

Computer Science Department, Technion, 1998.
3. S. Blom, W. Fokkink, J. F. Groote, I. van Langevelde, B. Lisser, and J. van de Pol.

µCRL: a toolset for analysing algebraic specifications. In G. Berry, H. Comon, and
A. Finkel, editors, Proc. of the 13th Conference on Computer-Aided Verification
(CAV’01), LNCS 2102, p. 250–254. Springer, July 2001.

4. B. Bollig, M. Leucker, and M. Weber. Local parallel model checking for the alter-
nation free µ–calculus. Technical Report AIB-04-2001, RWTH Aachen, 03/2001.

5. B. Bollig, M. Leucker, and M. Weber. Parallel model checking for the alternation
free µ-calculus. In T. Margaria and W. Yi, editors, Proc. of the 7th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’01), LNCS 2031, p. 543–558. Springer, Apr. 2001.

6. L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed LTL model-checking
based on negative cycle detection. In Proc. of 21st Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’01), LNCS.
Springer, Dec. 2001.

4 This is also the reason why we did not optimise our algorithm wrt. an a-priori-known
transition systems.

Local Parallel Model Checking for the Alternation-Free µ-Calculus 147

7. G. Cabodi, P. Camurati, and S. Que. Improved reachability analysis of large FSM.
In Proc. of the IEEE International Conference on Computer-Aided Design, p. 354–
360. IEEE Computer Society Press, June 1996.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

9. E. W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren. Derivation of a termi-
nation detection algorithm for distributed computations. Information Processing
Letters, 16(5):217–219, June 1983.

10. E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

11. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of
mu-calculus. In C. Courcoubetis, editor, Proc. 5th International Computer-Aided
Verification Conference, LNCS 697, p. 385–396. Springer, 1993.

12. O. Grumberg, T. Heyman, and A. Schuster. Distributed symbolic model checking
for µ-calculus. In G. Berry, H. Comon, and A. Finkel, editors, Proc. of the 13th
Conference on Computer-Aided Verification (CAV’01), of LNCS 2102, p. 350–362.
Springer, July 2001.

13. H. Hiraishi, K. Hamaguchi, H. Ochi, and S. Yajima. Vectorized symbolic model
checking of computation tree logic for sequential machine verification. In K. G.
Larsen and A. Skou, editors, Proc. of Computer Aided Verification (CAV ’91),
LNCS 575, p. 214–224, Berlin, Germany, July 1992. Springer.

14. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333–354, Dec. 1983.

15. O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, Mar. 2000.

16. M. Leucker. Model checking games for the alternation free mu-calculus and al-
ternating automata. In H. Ganzinger, D. McAllester, and A. Voronkov, editors,
Proc. of the 6th International Conference on Logic for Programming and Auto-
mated Reasoning ”(LPAR’99)”, LNAI 1705, p. 77–91. Springer, 1999.

17. M. Leucker and T. Noll. Truth/SLC - A parallel verification platform for concur-
rent systems. In G. Berry, H. Comon, and A. Finkel, editors, Proc. of the 13th
Conference on Computer-Aided Verification (CAV’01), LNCS 2102, p. 255–259.
Springer, July 2001.

18. A. Mader. Verification of Modal Properties Using Boolean Equation Systems. PhD
thesis, Technische Universität München, 1996.

19. A. A. Narayan, J. J. J. Isles, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Reachability analysis using partitioned–roBBDs. In Proc. of the IEEE Interna-
tional Conference on Computer-Aided Design, p. 388–393. IEEE Computer Society
Press, June 1997.

20. U. Stern and D. L. Dill. Parallelizing the Murϕ verifier. In O. Grumberg, editor,
Computer-Aided Verification, 9th International Conference, LNCS 1254, p. 256–
267. Springer, June 1997. Haifa, Israel, June 22-25.

21. C. Stirling. Games for bisimulation and model checking, July 1996. Notes for
Mathfit Workshop on finite model theory, University of Wales, Swansea,.

22. A. L. Stornetta. Implementation of an efficient parallel BDD package. Master’s
thesis, University of California, Santa Barbara, 1995.

23. S. Zhang, O. Sokolsky, and S. A. Smolka. On the parallel complexity of model
checking in the modal mu-calculus. In Proc. of the 9th Annual IEEE Symposium
on Logic in Computer Science, p. 154–163, Paris, France, 4–7 July 1994. IEEE
Computer Society Press.

	1 Introduction
	2 Graphs, mu-Calculus, and Games
	3 Sequential Model Checking
	4 Parallel Model Checking
	5 Experimental Results
	6 Conclusion
	References

