
TeSSLa: Runtime Verification of Non-synchronized
Real-Time Streams∗

Martin Leucker

ISP, Univ. of Lübeck, Germany

leucker@isp.uni-luebeck.de

César Sánchez

IMDEA Software Inst., Spain

cesar.sanchez@imdea.org

Torben Scheffel

ISP, Univ. of Lübeck, Germany

scheffel@isp.uni-luebeck.de

Malte Schmitz

ISP, Univ. of Lübeck, Germany

schmitz@isp.uni-luebeck.de

Alexander Schramm

IMDEA Software Inst., Spain

alexander.schramm@imdea.org

ABSTRACT
We present TeSSLa, a specification language based on stream run-

time verification, designed for monitoring a specific class of real-

time signals. Our monitors can observe concurrent systems with a

shared clock, but where each component reports observations as

signals that arrive to the monitor at different speeds and with dif-

ferent and varying latencies. The signals and streams that TeSSLa

supports (including inputs and final verdicts) are not restricted

to be Booleans but can be data from richer domains, including

integers and reals with arithmetic operations and aggregations.

Consequently, TeSSLa can be used both for checking logical prop-

erties, and for computing statistics and general numeric temporal

metrics (and properties on these richer metrics). We present an

online evaluation algorithm for TeSSLa specifications and show a

formal proof of the correctness of concurrent implementations of

the evaluation algorithm. Finally, we report an empirical evaluation

of a highly concurrent Erlang implementation of the monitoring

algorithm.

CCS CONCEPTS
• Theory of computation→ Logic and verification;Modal and
temporal logics; Online algorithms; Semantics and reasoning;

KEYWORDS
Runtime Verification, Online Monitoring, Stream Processing

ACM Reference Format:
Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Alexan-

der Schramm. 2018. TeSSLa: Runtime Verification of Non-synchronized

Real-Time Streams. In Proceedings of SAC 2018: Symposium on Applied Com-
puting (SAC 2018). ACM, New York, NY, USA, 16 pages. https://doi.org/10.

1145/3167132.3167338

∗
This work is supported in part by EU COST Action IC1402 “ArVi”, the BMBF projects

ARAMIS II with funding ID 01 IS 16025 and CONIRAS with funding ID 01 IS 13029, the

EU H2020 project COEMS under num. 732016, the EU H2020 project Elastest under

num. 731535 and by Spanish MINECO Project “RISCO (TIN2015-71819-P)”.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SAC 2018, April 9–13, 2018, Pau, France
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5191-1/18/04.

https://doi.org/10.1145/3167132.3167338

1 INTRODUCTION
Runtime verification (RV) is an applied formal technique for ver-

ifying, analyzing and supporting software reliability. In contrast

to static verification, in RV only one trace of the system under

scrutiny is considered. Thus, RV sacrifices completeness guaran-

tees to obtain an immediately applicable and formal extension of

testing and debugging. A central problem in runtime verification is

how to generate monitors from formal specifications (see [17, 23]

for RV surveys).

In this paper we study how to perform runtime verification on

concurrent systems that have a shared global clock but whose con-

current components emit events to the monitor at different speeds

and with different delays. This assumption is common, for example,

when observing embedded systems or when observing execution

traces of software running on multi-core processors. At the low-

level software analysis, the signals that these systems emit are

real-time signals that remain constant between two observations,

also known as piece-wise constant signals.
We are interested in online monitoring performed while the

system is running (as opposed to offline monitoring through post-

mortem analysis of dumped traces). Our target application also

requires non-intrusive monitoring, meaning that the monitoring

activity cannot perturb the execution of the system under observa-

tion. We use some hardware capabilities to obtain run-time infor-

mation while the concurrent system executes. This information is

dispatched to an external monitoring infrastructure that executes

outline (as opposed to inlining themonitors within the system itself).

See [22] for a definition and classification of these RV concepts.

In a nutshell, the goals of this paper are (1) to study how to

describe sophisticated properties of continuous piece-wise constant

signals, and (2) to efficiently monitor these properties against sys-

tems where each component is an event source that can emit events

at different speeds and with different latencies. We say that these

systems emit “non-synchronized in-order streams”. In our setting

it is relevant to distinguish between the system time and monitor
time. System time refers to the moments at which events are pro-

duced within the observed system. These instants are captured by

the synchronized global clock that is used to time-stamp events.

Monitor time refers to the instants at which events arrive at the

monitor and when these events are processed in order to produce

verdicts.

Event streams from hardware processors come at very high

speeds, which imposes the additional requirement of crafting highly

efficient monitoring implementations. We explore here how to

1

https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1145/3167132.3167338

SAC 2018, April 9–13, 2018, Pau, France M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and A. Schramm

exploit parallelism and distributed implementations using multi-

core platforms, while still formally guaranteeing the correctness of

the monitors.

We propose here the specification language TeSSLa to achieve

these goals. TeSSLa stands for Temporal Stream-based Specifica-

tion Language. TeSSLa is based on Stream Runtime Verification

(SRV) and has already been used for creating monitors in FPGA

hardware in [10] without providing a concrete definition or further

theoretical background. Early specification languages for RV were

based on their counterparts in static verification, typically logics

like LTL [25] or past LTL adapted for finite paths [5, 12, 18]. Similar

formalisms proposed are based on regular expressions [31], timed

regular expressions [2], rule based languages [3], or rewriting [28].

Stream runtime verification, pioneered by the tool LOLA [9], is an al-

ternative to define monitors using streams. In SRV one describes the

dependencies between input streams of values (observable events

from the system under analysis) and defined streams (alarms, er-

rors and output diagnosis information). These dependencies can

relate the current value of a depending stream with the values

of the same or other streams at the present moment, in past in-

stants (like in past temporal formulas), or in future instants. In SRV

there is a clean separation between the evaluation algorithms—that

exploit the explicit dependencies between streams—and the data

manipulation—expressed by each individual operation. SRV allows

to generalize well-known evaluation algorithms from runtime ver-

ification to perform collections of numeric statistics from input

traces.

SRV resembles synchronous languages [8]—like Esterel [6], Lus-

tre [16] or Signal [14]—but these systems are causal because their

intention is to describe systems and not observations, while SRV

removes the causality assumption allowing to refer to future values.

Another related area is Functional Reactive Programming (FRP)

(see [13]), where reactive behaviors are defined using functional pro-

grams as building blocks to express reactions. As with synchronous

languages, FRP is a programming paradigm and not a monitoring

specification language, so future dependencies are not allowed in

FRP. On the other hand SRV, was initially conceived for monitoring

synchronous systems. See [7, 15, 26] for further developments on

SRV. The semantics of temporal logics can also be defined using

declarative dependencies between streams of values. For example,

temporal testers [27] defined these dependencies for LTL. Likewise,

the semantics of Signal Temporal Logic (STL) [11, 24] is defined in

terms of the relation between a defined signal and the signals for

its sub-expressions, based on Metric Interval Temporal Logic [1].

Here we extend SRV to real-time piece-wise constant signals,

and study how to deal with the non-synchronized arrival of events.

All previous approaches to SRV assume synchronous sampling and

synchronous arrivals of events in all input streams. It is theoretically

feasible, in some cases, to reduce the setting in this paper to the

synchronous SRV, for example by assuming that all samples are

made at instants multiple of a minimum delay, and executing the

specification synchronously after every delay. However, the fast

arrival of events would render such an approach impractical due to

the large number of processing steps that would be required.

STL has also been used to create monitors on FPGAs [20] and

for monitoring in different application areas (see for example [21,

30]). However, the assumptions of STL on the signals is different,

because the goal of STL is to analyze arbitrary continuous signals

and not necessarily changes from digital circuits with accurate

clocks. Sampling ratios and sampling instants are important issues

in STL, while our signals are accurately represented by the stream

of events at the changing points of the signal. In timed regular

expressions (TRE) [2] the signals are also assumed to be piece-

wise constant. However, our framework can handle much richer

data domains than TREs and STL
1
. TREs have been combined with

STL [29] to get the advantages of both domains but again the signals

analyzed are not necessarily piece-wise constant. Consequently, the

results are approximate and sampling becomes, again, an important

issue.

Contributions. In summary, the contributions of this paper are:

(1) TeSSLa, an SRV-based specification language for real-time piece-

wise constant signals. The syntax and semantics of TeSSLa are

presented in Section 2, including the numerous core and library

functions.

(2) A method for the systematic generation of parallel and asyn-

chronous online monitors for software monitoring TeSSLa spec-

ifications. These monitors handle the non-synchronized arrival

of events from different input stream sources. In Section 3 we

introduce a computational model for asynchronous concurrent

monitors which allows to implement an online evaluation algo-

rithm for TeSSLa specifications. Section 4 describes a prototype

implementation developed in Erlang and an early empirical

evaluation.

Finally, Section 5 concludes. Missing proofs appear in the appendix.

2 SYNTAX AND SEMANTICS OF TESSLA
We introduce in this section the real-time specification language

TeSSLa
2
. We first present some preliminaries, and then introduce

the syntax and semantics of TeSSLa.

2.1 Preliminaries
We use two types of stream models as underlying formalism: piece-

wise constant signals and event streams. We use T for the time

domain (which can be N, Q, R, etc), and D for the collection of

data domains (Booleans, integers, reals, etc). Values from these

data domains model observations and the output produced by the

monitors.

Definition 2.1 (Event stream). An event stream is a partial function

η : T ⇁ D such that E(η) := {t ∈ T | η(t) is defined} does not
contain bounded infinite subsets. The set of all event streams is

denoted by ED .

The set E(η) is called the set of event points of η. When η is not

defined at a time point t , that is t ∈ T \ E(η), we write η(t) = ⊥.

We use ⊤ as the “unit” value (the singleton domain). A finite event

stream η can be naturally represented as a timed word, that is, a

sequence sη = (t0,η(t0))(t1,η(t1)) · · · ∈ (E(η)×D)∗ ordered by time

(ti < ti+1) that contains a D value at all event points.

1
In the synchronous non-real-time case, [7] contains a thorough theoretical comparison

of SRV versus temporal logics, regular expressions, etc. A similar comparison for real-

time piece-wise signals is out of the scope of this paper.

2
TeSSLa is available at www.isp.uni-luebeck.de/tessla

2

https://www.isp.uni-luebeck.de/tessla

TeSSLa: Runtime Verification of Non-synchronized Real-Time Streams SAC 2018, April 9–13, 2018, Pau, France

The second type of stream model that we consider is piece-wise

constant signals, which have a value at every point in time. These

signals change value only at a discrete set of positions, and remain

constant between two change points.

Definition 2.2 (Signal). A signal is a total function σ : T → D
such that the set of change points

∆(σ) := {t ∈ T | �t ′ < t : ∀t ′′.t ′ < t ′′ < t : σ (t) = σ (t ′′)}

does not contain bounded infinite subsets. The set of all signals is

denoted by SD .

Every piece-wise constant signal can be exactly represented by

an event stream that contains the change points of the signal as

events, and whose value is the value of the signal after the change

point. Hence, one can convert signals into event streams and vice-

versa. Note that while in STL sampling provides an approximation

of fully continuous signals, in TeSSLa event streams represent piece-

wise constant signals with perfect accuracy.

Example 2.3. Consider the following streams e, s and e2, where
e and e2 are interpreted as event streams and s as a signal.

Event stream e
0 7 2 2 15

Signal s 0 7 2 15

Event stream e2
7 2 15

The signal s has been created from e by using the value of the

last event on e as value, with a default value 0. In turn, stream e2
is defined as the changes in value of s. When converting an event

stream into a signal, only events that represent actual changes are

generated. ■

We define next the syntax and semantics of TeSSLa.

2.2 Syntax of TeSSLa
We beginwith an example to illustrate a simple TeSSLa specification.

Specifications are written by defining streams in terms of other

streams (and ultimately in terms of input streams). Streams marked

as out are the verdict of the monitor and will be reported to the

user.

Example 2.4. Consider the following TeSSLa specification:

in e: Events<Unit>

in s: Signal<Int>

define comp := eventCount(e) > s

define allowed := within(-1, 1, filter(e, comp))

define ok := implies(s > 5, allowed)

out ok

The first two lines define two input streams, e (an event streamwith-

out values) and s (a signal of integers). The Boolean signal comp is

true if the number of events of e (denoted by eventCount(e))
is greater than the current value of s, and false otherwise. The
Boolean signal allowed is true when there is an event that has

not been filtered out from e in the interval [−1,+1] around the

current instant. The function filter eliminates an event if the

Boolean signal as the second parameter is false. Finally, the Boolean
signal ok is false whenever s is greater than 5 and allowed is false.
Consider the input shown in the box below.

Event stream e

Signal s 1 0 3 2 4 7 6

Signal comp

Signal allowed

Signal ok

When allowed is true, so will be ok. The signal ok will also be

true as long as s is lower than 6. When s becomes 7, not enough

events have happened on e and then comp is false. Consequently,
no event is left through the filter and allowed is false too. But
because s is greater than 5, ok becomes false. When s is set back

to 6 and more events on e have happened, allowed becomes true
again. ■

The basic syntax of a TeSSLa specification spec is

spec ::= define name[: stype] := texpr | out name |

in name: stype | spec spec

texpr ::= expr [: type]

expr ::= name | literal | name(texpr (, texpr)∗)

type ::= btype | stype

stype ::= Signal<btype> | Events<btype>

A name is a nonempty string. Basic types btype cover typical types
found in programming and verification like Int, Float, String
or Bool. One of the main contributions of SRV is to generalize

existing monitoring algorithms for logics (that produce Boolean

verdicts) to algorithms that compute values from richer domains.

The production in introduces input stream variables, and define
introduces defined stream variables (also called output variables).

Given a specification φ we use I for the set of input variables and
O for the set of output variables, and write φ(I ,O). For example,

in Example 2 above, I = {e,s} and O = {comp,allowed,ok}.
The marker out is used to denote those output variables that are

the result of the specification and will be reported to the user.

Each defined variable x is associated with a defining equation Ex
given by the expression on the right hand side of the := symbol.

Literals literal denote explicit values of basic types such as integers

−1, 0, 1, 2, . . . , floating point numbers 0.1,−3.141593 or strings "foo",

"bar" (enclosed in double quotes).

We expand the syntax of basic TeSSLa by adding builtin functions,

user defined macros and timing functions.

name ::= defName | timingFun | builtinFun | macro

timingFun ::= delay | shift | within

A defName is simply a name of a previously defined stream or

constant. Timing functions allow to describe timing dependencies

between streams. The function delay delays the values of a signal

(or events of an event stream) by a certain amount of time. The

function shift shifts the values of an event stream one unit into the

future, that is, the first event becomes the second event, etc. The

function within defines a signal which is true as long as some event

of the given stream exists within the specified interval.

Macros are user defined functions identified by the construct

fun. Macros can be expanded at compile time using their definition

on a purely syntactical level because macros are not recursive.

3

SAC 2018, April 9–13, 2018, Pau, France M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and A. Schramm

Example 2.5. An example of a macro has already been used in

the Example 2.4 because implies is not a builtin function, but the

following macro:

fun implies(x, y) := or(not(x),y)

The full expressivity of TeSSLa is obtained using a set of builtin
functions. Before describing the builtin functions, we define the

temporal core of TeSSLa (which allows to define real time relations

between streams) and the general semantics of TeSSLa.

2.3 Semantics
Semantics of Timing Functions. There are three timing functions

delay, shift and within. The function delay is overloaded for signals

delay : SD × T × D → SD

delay(σ ,d,v)(t) =

{
σ (t − d) if t − d ≥ 0

v otherwise

and for event streams

delay : ED × T→ ED

delay(η,d)(t) =

{
η(t − d) if t − d ≥ 0

⊥ otherwise

The function delay delays a signal or an event stream by a given

amount of time units. Since signals must always carry a value, a

value v is provided as default. For event streams, the occurrence of

each event is delayed by the indicated amount of time.

The shift function receives an event stream and produces the

event stream that results from moving the value of each event to

the next event. We use the following notation. Let

sη = (t0,η(t0))(t1,η(t1))(t2,η(t2)) . . . ,

we use s→η for the stream (t1,η(t0))(t2,η(t1)) The signature and
interpretation of shift is:

shift : ED → ED

shift(sη) =

{
ε if sη = (t0,η(t0)) or sη = ε

s→η otherwise

The last timing function is within, which already appeared in

Example 2.4. It produces a Boolean valued signal that captures

whether there is an event within a timing window:

within : T × T × ED → SB

within(a,b,η)(t) =

{
true if E(η) ∩ [t + a, t + b] , ∅

false otherwise

Semantics of TeSSLa. We define the semantics of TeSSLa in terms

of evaluation models, as commonly done in SRV [9]. The intended

meaning of TeSSLa specifications is to define output signals and

event streams from input signals and event streams.

Consider a TeSSLa specification over input variables I and de-

fined variables O . A valuation of a signal variable x of type D is an

element of SD . Similarly, a valuation of a stream variable y of type

D is an element of ED . We extend valuations to sets of variables in

the usual way. If σI and σO are valuations of sets of variables I and

ok

implies

>

5

within

−1 1 filter

>

eventCount

es

Figure 1: The dependency graph for the spec in Example 2.
Inputs are shown in brown, constants in blue, outputs in
green, computation nodes in red and some possible merges
of computation nodes in dashed red.

O with I ∩O = ∅ then we use σI ∪ σO for the valuation of I ∪O
that coincides with σI on I and σO on O .

Let [[l]] be the value of a literal l , which is an element of its

corresponding domain. Also, given a function name f we use [[f]]
for the mathematical function that gives an interpretation of f
(that is, a map from elements of the domain to an element of the

co-domain). Given a valuation σ for each of the variables I ∪O of a

specification φ(I ,O), we can extend the valuation to expressions E
over variables I and O , written [[E,σ]], recursively as follows:

– variable name (E = name):

[[name,σ]] = σ (name);

– literal (E = l):
[[l ,σ]] = [[l]];

– function application (E = f (e1, . . . , en)):

[[E,σ]] = [[f]]([[e1,σ]], . . . , [[en ,σ]])

An evaluation model of a specification φ(I ,O) is a valuation σ for

variables I and O for every x ∈ O with defining equation Ex :
[[x ,σ]] = [[Ex ,σ]]. Informally, a valuation σ is an evaluation model

whenever, for every defined variable x , the value that results when
evaluating x and when evaluating its defining expression Ex coin-

cide. We say that a specification φ(I ,O) is well-defined whenever for

every valuation σI of input variables I there is a unique valuation
σO of output variables O such that σI ∪ σO is an evaluation model

of φ.

Non-recursive specifications. In order to guarantee that every

specification is well-defined, we restrict TeSSLa specifications such

that no variable x can depend on itself. More formally, given a

specification φ(I ,O) we say that a variable x directly depends on a

variable y if y appears in the defining equation Ex , and we write

x → y. We say that x depends on y if x →+ y (where →+ is the

transitive closure of →). The dependency relation x →+ y gives

a necessary condition for y to affect in any way the value of x .
The dependency graph has variables as nodes and the dependency

relation as edges. Note that input variables and constants are leafs

4

TeSSLa: Runtime Verification of Non-synchronized Real-Time Streams SAC 2018, April 9–13, 2018, Pau, France

in the dependency graph. The dependency graph of legal TeSSLa

specifications must be non-recursive (i.e. for every x , x ↛+ x),
which is easily checkable at compile time. If this is the case, the

dependency graph is a DAG and a reverse topological order gives

an evaluation order to compute the unique evaluation model. If all

variables y preceding x have been assigned a valuation (the only

one for which [[y]] = [[Ey]]) then [[Ex]] can be evaluated, which is

the only possible choice for x .
Hence, this restriction guarantees that all TeSSLa specifications are

well-defined. Figure 1 shows the dependency graph of the specifi-

cation from Example 2.4.

Note also that if one merges a node n and the nodes n directly

depends on, and replaces the function of n with the composition

of the functions of the merged nodes, the resulting graph is still a

DAG, and the streams computed will be the same. For example in

Figure 1 nodes > and eventCount could be merged. Such a node is

called computation node or node for short.

TeSSLa Library of Builtin Functions. There are five types of func-
tions in TeSSLa, apart from logical functions: arithmetic functions,

aggregations, stream manipulators, timing functions (explained

above) and temporal property functions. Tables 1 and 2 show a

representative set of the functions provided by TeSSLa and the

semantics of some of these functions. See Section A in the appendix

for the complete collection of functions with their semantics.

Simple arithmetic functions provide capabilities for performing

arithmetic operations on streams. In general, these functions take a

set of signals as input and output another signal. Examples include

basic arithmetic operations like add,mul, etc. More complex calcula-

tion functions in TeSSLa are aggregations, which take event streams

as input and output a signal. Examples are sum that computes the

sum of all events that happened on an event stream, and eventCount
that counts the events. Another important aggregation function is

mrv : ED × D → SD which converts an event stream into a signal

that receives the most recent value in the event stream (or a default

value of type D provided as second argument).

Sampling functions convert a signal into an event stream. The

function changeOf : SD → ED returns an event stream with an

event at the point in time at which the signal changes. The function

sample : SD × ED → ED samples a signal by an event stream and

returns an event stream with the values obtained from the signal.

Stream manipulators allow to process event streams. Examples

include a filter operator which allows to delete events and merge
which fuses two event streams.

The monitor function delivers a scope for specifying properties

in temporal logics like LTL or SALT [4] with classical or three-

valued semantics [5]. Input properties are then compiled into a

state machine which can be executed using Boolean signals as

propositions and an event stream to step the monitor every time

an event happens on this stream (to model discrete inputs).

3 ONLINE EVALUATION OF EFFICIENTLY
MONITORABLE SPECIFICATIONS

The semantics provided in the previous section is denotational in the

sense that it associates for each complete input valuation, the unique

output valuation. We develop now an operational semantics for

online monitoring TeSSLa specifications. In this section we restrict

TeSSLa specifications to refer to present and past values only. These
specifications are known as efficiently monitorable [9], and satisfy

that the values of an output variable x can immediately be resolved

to their unique possible values (by evaluating Ex on the variables

lower in the dependency graph) when a new input is processed.

This fact leads to an online algorithm, which is implemented in the

evaluation engines presented in this section. TeSSLa specifications

are compiled into a single monitor that receives multiple inputs

from the system under observation (each input is called a source

and is associated with an input stream of the TeSSLa specification).

Recall that each source can send events at different speeds and with

different delays.

We represent behaviors of monitors as transducers on timed

finite words, whose input is the stream of events arriving from any

source. Let A be an input alphabet and B be an output alphabet

(which correspond to the domains of input and output streams). A

timed input letter is an element of (A×T) and a timed output letter

is an element of (B×T). Given a timed letter a we use t(a) to denote
its time component. We use source(a) to represent the source of

an input letter. We reserve the special symbol $ (not in A or B) to
denote the end of a timed word a0 . . . an$. We use Σ for (A × T)
and Γ for (B × T), and ε for the empty word. Given a word w we

use L(w) for the letters occurring inw and pos(a) for the position
of a inw . The time-stamps of letters model the system time, while
the position of a letter in the world models the monitoring time. We

will show that every execution of a TeSSLa specification generates

the exact same output if each input stream is the same even if the

streams are non-sychronized, as long as these streams are in-order.

Definition 3.1 (In-order & Synchronized Inputs). We say that an

input wordw is

– in-order whenever for every a,b ∈ L(w) if pos(a) < pos(b) and
source(a) = source(b) then t(a) ≤ t(b).

– synchronized whenever for every a,b ∈ L(w) if pos(a) < pos(b)
then t(a) ≤ t(b).

Example 3.2. Consider two input sources, one receives (T, 0)(T, 3)
and another receives (F, 1)(F, 6). The following two inputs

– w1 : (T, 0)(F, 1)(T, 3)(F, 6) and

– w2 : (T, 0)(F, 1)(F, 6)(T, 3)

are in-order inputs for these sources. However,w1 is synchronized

butw2 is not, because inw2 (T, 3) is received after (F, 6). The input

w2 is in-order because the input sources are different for the letters

received in reverse order of time-stamps. ■

3.1 Evaluation Engines
We introduce evaluation engines to define the operational semantics

and reason about the correctness of different implementations of

TeSSLa online monitors. Consider a dependency graph G for a

given specification φ(I ,O), and let N be the collection of nodes

of G. Nodes will be implemented by separate execution entities,

possibly executing concurrently and asynchronously. Nodes that

read some input stream are called sources nodes. Nodes communicate

by sending timed letters, which we call (internal) events. Events are
sent along the reversed edges ofG. Evaluation engines equip each

node with one queue for each of the node’s inputs, which stores the

non-processed events in that input. Queues support the standard

5

SAC 2018, April 9–13, 2018, Pau, France M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and A. Schramm

Arithmetics Aggregations Sampling & Filter

add : SN × SN → SN max : SN × SN → SN sma : EN × N → EN timestamps : ED → ET
sub : SN × SN → SN min : SN × SN → SN maximum : EN × N → SN changeOf : SD → E{⊤}

mul : SN × SN → SN abs : SN → SN maximum : SN → SN ifThen : ED1
× SD2

→ ED2

div : SN × SN + → SN abs : EN → EN minimum : EN × N → SN sample : SD1
× ED2

→ ED1

gt : SN × SN → SB and : SB × SB → SB minimum : SN → SN filter : ED × SB → ED
geq : SN × SN → SB or : SB × SB → SB sum : EN → SN ifThenElse : SB × SD × SD → SD
leq : SN × SN → SB not : SB → SB eventCount : ED1

× ED2
→ SN occursAny : ED1

× ED2
→ E{⊤}

eq : SD × SD → SB neg : EB → EB mrv : ED × D → SD occursAll : ED1
× ED2

→ E{⊤}

N ∈ {N,Z,R}, N+ = N \ {0} merge : ED × ED → ED

Table 1: A representative collection of the set of builtin functions.

add(σ1,σ2)(t) = σ1(t) + σ2(t)

div(σ1,σ2)(t) =
σ1(t)
σ2(t)

ge(σ1,σ2)(t) = σ1(t) > σ2(t)

max(σ1,σ2)(t) = max{σ1(t),σ2(t)}
not(σ)(t) = ¬σ (t)

neg(η)(t) =

{
¬η(t) if t ∈ E(η)

⊥ otherwise

timestamps(η)(t) =

{
t if t ∈ E(η)

⊥ otherwise

mrv(η,d)(t) =

{
η(maxE(η) ∩ [0, t]) if E(η) ∩ [0, t] , ∅

d otherwise

changeOf(σ)(t) =

{
⊤ if t ∈ ∆(σ)

⊥ otherwise

sample(σ ,η) = ifThen(η,σ)

filter(η,σ)(t) =

{
η(t) if t ∈ E(η) and σ (t) = true
⊥ otherwise

merge(η1,η2)(t) =

η1(t) if t ∈ E(η1)

η2(t) if t ∈ E(η2) \ E(η1)

⊥ otherwise

occursAny(η1,η2)(t) =

{
⊤ if t ∈ E(η1) ∪ E(η2)

⊥ otherwise

Table 2: Semantics for some of the representative builtin functions.

operation for lists to get the head, the tail or to append to the end

of the queue.

Formally, an evaluation engine is a transition system E : ⟨S,T , s0⟩,
where the set of states S consists of the internal state of each node

n, together with the state of each queue. In the initial state s0 ∈ S
all queues are empty and all internal states of the nodes are set to

their initial values.

An evaluation engine can be fed with input events from the input

wordw , which are placed into the input queues of the corresponding

source nodes. During execution the evaluation engine can produce

output events in the streams marked as output streams. A transition
τ ∈ T involves the execution of exactly one node. A transition

is enabled if there are events present in every input queue of the

node. Firing a transition follows the operational semantics of the

TeSSLa operation associated with the node, and consumes at least

one event from some of the node’s input queues, producing events

into the output queues and updating the internal state of the node.

The events produced are pushed to the corresponding input queues

of the nodes directly depending on the executing node. We add

the special transition λ ∈ T for the empty transition where no

event is consumed. We use apply : S ×T → S for the application

of a transition to a state of the evaluation engine. The function

node : T \ {λ} → N returns the node involved in a transition. A

run is obtained by the repeated application of transitions.

Definition 3.3 (Run). A run of an evaluation engine

r = (λ, s0)(τ1, s1)(τ2, s2) . . . ∈ (T × S)∗

is a sequence of transitions and states such that for every i > 1,

node(τi) is enabled at state si−1 and apply(si−1,τi) = si .

Given an input w ∈ Σ∗ and a run we get the output of the

evaluation engine by concatenating all the output events produced

in the run.

It is possible that more than one node is enabled in a given

state. A scheduler chooses a transition to fire among the enabled

transitions. While output events produced by any given node are

ordered, outputs produced by different nodes may not be ordered,

so concatenating output streams does not necessarily lead to a

timed order sequence.

Lemma 3.4 (All Runs are Finite). Let E be an evaluation engine
andw ∈ Σ∗ be an input. All runs r ∈ (T × S)∗ of E onw are of finite
length.

3.1.1 Output Completeness. An event carries information about

its occurrence, but there is so far no means to convey information

about the absence of an event. We introduce extra events, called

progress events whose only purpose is to inform nodes downstream

about absences of events. A node n of an evaluation engine is called

output complete if whenever n fires it produces at least one event in

its output queue, either a real event or a progress event. In order to

guarantee that all queues are emptied after a run finishes we extend

the operational semantics of all TeSSLa operators to be output

complete, while still implement the intended function. To see the

importance of output completeness, consider a node n that is not

output complete. This node could just consume all inputs without

producing any events in its output (e.g a filter whose condition

is always false). Every other nodem depending directly on n will

never be enabled, because the input queue of m coming from n
will always be empty. Ifm has other input queues filled with some

events, these queues will not be emptied at the end of the run.

6

TeSSLa: Runtime Verification of Non-synchronized Real-Time Streams SAC 2018, April 9–13, 2018, Pau, France

Lemma 3.4 guarantees that the run will terminate (because no node

is enabled) but not necessarily that all queues are empty.

Progress events indicate that an input has progressed up to the

time-stamp in the progress event, with no value change. It is easy

to see that with output complete building blocks all nodes consume

at least one input and all nodes generate exactly one output.

3.2 Timed Transducers
In order to prove properties of evaluation engines, in particular

that for any given input the scheduler does not affect the events

emitted in the output, we introduce a theory of timed asynchronous

transducers. The main result is Theorem 3.12 which states that all

runs of an engine are observationally equivalent, independently of

the scheduler.

A “classical” synchronous transducer is an element of (Σ × Γ)∗.
However, we wish to model asynchronous transducers because

we want to decouple the rate of arrival at input sources from the

internal execution of the evaluation engine. A timed transducer F
is F ⊂ Σ∗ × Γ∗. Our timed transducers will relate every input to

some output (possibly ε). A timed transducer F is complete if for all
w ∈ Σ∗ there is some v ∈ Γ∗ such that (w,v) ∈ F .

Definition 3.5. A timed transducer F is strictly deterministic if for
allw ∈ Σ∗, and for all v,v ′ ∈ Γ∗, if (w,v) ∈ F and (w,v ′) ∈ F , then
v = v ′

.

As an example consider a transducer that delays every input let-

ter by one time instant. Such a transducer is complete and strictly de-

terministic and would translate (a, 0)(b, 1)(c, 2) into (a, 1)(b, 2)(c, 3).
However, strict determinism is too fine grained for our purposes,

because we want to allow output letters to be produced out of order.

We introduce a timed reordering function timed : Γ∗ → Γ∗ which
reorders a word according to the time-stamps:

timed(b0 . . .bi−1bibi+1 . . .bn) = bi · timed(b0 . . .bi−1bi+1 . . .bn)

if t(bi) < t(bj) for all j , i

Since words are finite, this recursive definition is well-defined. The

following notion of asynchronous determinism captures more pre-

cisely the deterministic nature of asynchronous evaluation engines.

Definition 3.6 (Asynchronous determinism). A timed transducer

F is called asynchronous deterministic if for allw ∈ Σ∗ and for all

v,v ′ ∈ Γ∗ with (w,v) ∈ F and (w,v ′) ∈ F , timed(v) = timed(v ′).

Asynchronous determinism allows non-deterministic transduc-

ers to produce different outputs for the same input as long as the

outputs are identical up-to reordering. Another important notion is

asynchronous causality. We usew ⊑ w ′
to denote thatw is a prefix

ofw ′
.

Definition 3.7 (Asynchronous causality). A timed

transducer F is called asynchronous causal if for all w,w ′ ∈ Σ∗

with w ⊑ w ′
and v,v ′ ∈ Γ∗ with (w,v) ∈ F and (w ′,v ′) ∈ F ,

timed(v) ⊑ timed(v ′).

Finally, we introduce observational equivalence between trans-

ducers.

Definition 3.8 (Observational Equivalence). Let F and G be two

timed transducers over the same input and output alphabets, and

letw ∈ Σ∗. We say that F and G are observational equivalent, and

we write F ≡O G whenever for all v,u ∈ Γ∗ with (w,v) ∈ F and

(w,u) ∈ G, timed(v) = timed(u).

It is easy to see that observational equivalence is an equiva-

lence relation for asynchronous deterministic transducers, because

the definition of ≡O is symmetric and transitive, and if F is asyn-

chronous deterministic then F ≡O F .

3.3 Correctness
Before we give the main result we need some preliminary lemmas.

Lemma 3.9 (Persistence of Enabledness). Consider a run r ∈

(T × S)∗. If a node n is enabled in a state si of r , then n stays enabled
until it gets scheduled. In particular, the run contains a transition
which involves n.

We say that a node n is independent of a node m if n is not a

descendant ofm in the dependency graph. Similarly, let τ1,τ2 ∈ T
be two transitions. We say that τ1 is independent of τ2 whenever
node(τ1) is independent of node(τ2).

Lemma 3.10 (Exchange of Independent Transitions). Let τ
be independent of τ ′, then the following holds:
If

r1 = (λ, s0) . . . (τi−1, si−1)(τ , s)(τ ′, s ′′)(τi+1, si+1) . . . (τl , sl)

is a run then

r2 = (λ, s0) . . . (τi−1, si−1)(τ
′, s ′)(τ , s ′′)(τi+1, si+1) . . . (τl , sl)

is a run.

Definition 3.11 (Distance between Runs). Let r , r ′ ∈ (T × S)∗ be
two runs of an engine for the same input. Let p be the common

prefix between r and r ′ and let τ be the transition taken in r after p
(that is, the first different transition).We define the distance between
r and r ′ as δ (r , r ′) = (|r | − |p |, j) where j is the position in r ′ at
which τ is taken after p.

Note that this is well-defined because two runs for the same

input: (1) are of the same length, because it takes exactly the same

number of transitions to empty all the queues in all cases and

(2) contain exactly the same transitions, but possibly in different

order. For any run r ∈ (T × S)∗ we get δ (r , r) = (0, 0).

Let r = r0 . . . rn be a run of an engine for a given inputw . The

output of r is output(r) = o1 . . . on where oi is the output produced
by taking τi at si−1 (or ε otherwise). The timed transducer defined

by an engine E is:

{(w,v) ∈ (Σ∗×Γ∗) | there is a run r of E onw with output(r) = v}.

We are now ready to prove the main result.

Theorem 3.12. Let E be an engine,w ∈ Σ∗ an input and r and r ′

two runs of E onw . Then timed(output(r)) = timed(output(r ′)).

The proof of Theorem 3.12 proceeds by induction on the distance

δ between runs defined above proving that all runs are equivalent

using Lemma 3.10.

Corollary 3.13. All evaluation engines are asynchronous deter-
ministic and asynchronous causal.

7

SAC 2018, April 9–13, 2018, Pau, France M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and A. Schramm

number of cores

4 8 12 16

t [s]

1

2

3

number of events in input [k]

2 4 6 8 10

t [s]

1

2

t [ms]

0.5

1

number of nodes in spec.

30 60 90 120

t [s]

0.6

0.8

1.0

t [ms]

20

40

60

Figure 2: Benchmarks. The black solid plot indicates the total time and the blue dashed line indicates the relative time per
event or node, resp.

Theorem 3.12 allows to conclude that the scheduler has no im-

pact on the output of an engine, up-to timed reorderings of the

output. Hence, one can take a very deterministic scheduler to reason

about the outcome, because every other scheduler is guaranteed to

produce an observationally equivalent output (for the same input).

For example, a simple reverse topological order allows to easily

prove that the resulting deterministic transducer corresponds to

the intended denotational semantics of the corresponding TeSSLa

specification.

4 IMPLEMENTATION AND EVALUATION
We report here an empirical evaluation of an implementation of

the TeSSLa evaluation engine
3
. Our implementation consists of

two parts. First, a compiler translates a TeSSLa specification into a

dependency graph (and performs type checking, macro expansion,

and type inference for the defined streams, and also checks that the

specification is non-recursive). Then, the evaluation engine, written
in Elixir, takes an input trace and the dependency graph generated

by the compiler and produces an output trace. Elixir, built on top

of Erlang, is based on the actor model [19] which allows to deploy

code over multiple cores or even distributed systems. Our imple-

mentation maps nodes to actors. Theorem 3.12 guarantees that the

outcome of an execution is independent on the concrete execution

of the Erlang scheduler. Additionally, we also implemented auxil-

iary tools to use TeSSLa for the runtime verification of C programs

based on a software instrumentation. See Section C in the appendix

for more details. To evaluate the performance of our implemen-

tation we created several artificial benchmarks. We measured the

execution time in relation to the number of processor cores, the

length of the input trace and the size of the specification. All bench-

marks were performed on the same machine with up to 16 cores

and 48GB of RAM. The results displayed in Figure 2 are the average

of 20 runs (details appear in Appendix D).

Number of cores. For this benchmark we created a TeSSLa specifi-

cation with 16 computation nodes, consisting of a chain of abs func-
tions. The input trace contains exactly 10, 000 events. The results

show that the execution time decreases drastically with an increase

on the number of cores available, suggesting that our implementa-

tion is able to make an effective use of parallelism even though the

3
Tools available at www.isp.uni-luebeck.de/tessla

dependency graph is completely linear. Our asynchronous imple-

mentation is able to exploit parallelism automatically in a pipeline

fashion.

Number of events in the input. To study the dependency of the

execution time with the input length we modified the specification

with different input sizes. We also display (with a dash line) the

average time per event. With an increase on the input length, the

static overhead is amortized quickly and the length of the trace

becomes less relevant for the average event time. Consequently,

the relative time shows a decay as more events are added.

Number of nodes in the specification. The execution time also

grows linearly in the size of the specification. For this benchmark

we used input traces of 1, 000 events and increased the number

of computation nodes in the specification by adding more calls to

abs to the composition chain. Again, the relative time per event

shows a decay as more nodes are added, because the static overhead

becomes less relevant.

5 CONCLUSION
We presented TeSSLa, a stream-based runtime verification language

for non-synchronized streams of piece-wise constant real-time sig-

nals. We defined the operational semantics of TeSSLa in terms of

evaluation engines. We defined a version of timed transducers to

prove that all evaluations of a TeSSLa specification produce the

same output up-to timed reordering, independently of the sched-

uler. This result enables different evaluation engines, including

asynchronous evaluation engines based on actors—which allow

to exploit multi-core parallelism—and evaluation engines imple-

mented in FPGAs which enable the utilization of massive hardware

parallelism. We report in this paper an implementation of an evalu-

ation engine written in Elixir/Erlang.

For simplicity, our timed transducers operate on finite words,

but all definitions and results can be extended to infinite words

under the assumption of a fair scheduler. Similarly, the interleaving

semantics of the evaluation engine can be extended to true concur-

rency between independent nodes. We are currently working on

an extension of the TeSSLa language that allows to define the time

dependencies between streams explicitly (in a controlled way) and

a library of builtin functions on top of the resulting core language.

8

https://www.isp.uni-luebeck.de/tessla

TeSSLa: Runtime Verification of Non-synchronized Real-Time Streams SAC 2018, April 9–13, 2018, Pau, France

ACKNOWLEDGMENTS
We thank Jannis Harder and Sebastian Hungerecker for their work

on TeSSLa and its compiler.

REFERENCES
[1] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. 1996. The benefits of

relaxing punctuality. J. ACM (1996).

[2] Eugene Asarin, Paul Caspi, and Oded Maler. 2002. Timed regular expressions. J.
ACM 49, 2 (2002), 172–206.

[3] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. 2004.

Rule-Based Runtime Verification. In Proc. of VMCAI’04 (LNCS 2937). Springer,
44–57.

[4] Andreas Bauer and Martin Leucker. 2011. The Theory and Practice of SALT. In

NASA Formal Methods (NFM). Springer, 13–40.
[5] Andreas Bauer, Martin Leucker, and Chrisitan Schallhart. 2011. Runtime Verifi-

cation for LTL and TLTL. ACM T. Softw. Eng. Meth. 20, 4 (2011), 14.
[6] Gérard Berry. 2000. Proof, language, and interaction: essays in honour of Robin

Milner. MIT Press, Chapter The foundations of Esterel, 425–454.

[7] Laura Bozelli and César Sánchez. 2014. Foundations of Boolean Stream Runtime

Verification. In In Proc. RV’14 (LNCS), Vol. 8734. Springer, 64–79.
[8] Paul Caspi and Marc Pouzet. 1996. Synchronous Kahn Networks. In Proc. of

ICFP’96. ACM Press, 226–238.

[9] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd

Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. 2005. LOLA:

Runtime Monitoring of Synchronous Systems. In Proc. of TIME’05. IEEE, 166–174.
[10] Normann Decker, Philip Gottschling, Christian Hochberger, Martin Leucker,

Torben Scheffel, Malte Schmitz, and Alexander Weiss. 2017. Rapidly Adjustable

Non-Intrusive Online Monitoring for Multi-core Systems. In 20th Brazilian Sym-
posium on Formal Methods (SBMF 2017). Springer.

[11] Alexandre Donzé, Oded Maler, Ezio Bartocci, Dejan Nickovic, Radu Grosu, and

Scott A. Smolka. 2012. On Temporal Logic and Signal Processing. In In Proc. of
ATVA’12 (LNCS), Vol. 7561. Springer, 92–106.

[12] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and

David Van Campenhout. 2003. Reasoning with Temporal Logic on Truncated

Paths. In Proc. of CAV’03 (LNCS 2725), Vol. 2725. Springer, 27–39.
[13] Conal Eliot and Paul Hudak. 1997. Functional Reactive Animation. In Proc. of

ICFP’07. ACM, 163–173.

[14] Thierry Gautier, Paul Le Guernic, and Löic Besnard. 1987. SIGNAL: A declarative

language for synchronous programming of real-time systems. In Proc. of FPCA’87
(LNCS 274). Springer, 257–277.

[15] Alwyn E. Goodloe and Lee Pike. 2010. Monitoring distributed real-time systems: A
survey and future directions. Technical Report. NASA Langley Research Center.

[16] Nicolas Halbwachs, Paul Caspi, D. Pilaud, and J.A. Plaice. 1987. Lustre: a declara-

tive language for programming synchronous systems. In Proc. of POPL’87. ACM
Press, 178–188.

[17] Klaus Havelund and Allen Goldberg. 2005. Verify your runs. In Proc. of VSTTE’05
(LNCS 4171). Springer, 374–383.

[18] Klaus Havelund and Grigore Roşu. 2002. Synthesizing Monitors for Safety

Properties. In Proc. of TACAS’02 (LNCS 2280). Springer, 342–356.
[19] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal Modular

ACTOR Formalism for Artificial Intelligence. IJCAI (1973), 235–245.
[20] Stefan Jaksic, Ezio Bartocci, Radu Grosu, Reinhard Kloibhofer, Thang Nguyen,

and Dejan Nickovic. 2015. From signal temporal logic to FPGA monitors. In Proc.
of MEMOCODE 2015. 218–227.

[21] Stefan Jaksic, Ezio Bartocci, Radu Grosu, and Dejan Nickovic. 2016. Quantitative

Monitoring of STL with Edit Distance. In Prov. of RV’16 (LNCS), Vol. 10012. 201–
218.

[22] Martin Leucker. 2011. Teaching Runtime Verification. In Proc. of RV’11 (LNCS).
Springer, 34–48.

[23] Martin Leucker and Christian Schallhart. 2009. A Brief Account of Runtime

Verification. J. Logic Algebr. Progr. 78, 5 (2009), 293–303.
[24] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of

Continuous Signals. In FTRTFT. 152–166.
[25] Zohar Manna and Amir Pnueli. 1995. Temporal Verification of Reactive Systems:

Safety. Springer, New York.

[26] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. 2010. Copilot: A

Hard Real-Time Runtime Monitor. In Proc. of RV’10 (LNCS 6418). Springer.
[27] Amir Pnueli and Aleksandr Zaks. 2006. PSL Model Checking and Run-Time

Verification Via Testers. In Proc. of FM’06 (LNCS 4085). Springer, 573–586.
[28] Grigore Roşu and KlausHavelund. 2005. Rewriting-Based Techniques for Runtime

Verification. Automated Software Engineering 12, 2 (2005), 151–197.

[29] Konstantin Selyunin, Stefan Jaksic, Thang Nguyen, Christian Reidl, Udo Hafner,

Ezio Bartocci, Dejan Nickovic, and Radu Grosu. 2017. Runtime Monitoring

with Recovery of the SENT Communication Protocol. In Proc. of CAV’17 (LNCS),
Vol. 10426. Springer, 336–355.

[30] Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, and Radu Grosu. 2016. Ap-

plying Runtime Monitoring for Automotive Electronic Development. In Proc. of
RV’16 (LNCS), Vol. 10012. 462–469.

[31] Koushik Sen and Grigore Roşu. 2003. Generating Optimal Monitors for Extended

Regular Expressions. ENTCS 89, 2 (2003), 226–245.

9

SAC 2018, April 9–13, 2018, Pau, France M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and A. Schramm

A FULL SEMANTICS OF TESSLA LIBRARY OF
BUILTIN FUNCTIONS

A.1 Denotational Semantics
Note that the semantics for the timing functions delay, shift and
withinwere already discussed in the paragraph Semantics of Timing
Functions in Section 2 and are not repeated in the following list.

add : SD × SD → SD , D ∈ {N,Z,R}

add (σ1,σ2)(t) := σ1(t) + σ2(t)

sub : SD × SD → SD , D ∈ {Z,R}

sub (σ1,σ2)(t) := σ1(t) − σ2(t)

mul : SD × SD → SD , D ∈ {N,Z,R}

mul (σ1,σ2)(t) := σ1(t) · σ2(t)

div : SD × SD′ → SD , D ∈ {N,Z,R}, D ′ = D \ {0}

div (σ1,σ2)(t) :=
σ1(t)
σ2(t)

gt : SD × SD → SB, D ∈ {N,Z,R}

ge (σ1,σ2)(t) := σ1(t) > σ2(t)

geq : SD × SD → SB, D ∈ {N,Z,R}

geq (σ1,σ2)(t) := σ1(t) ≥ σ2(t)

leq : SD × SD → SB, D ∈ {N,Z,R}

leq (σ1,σ2)(t) := σ1(t) ≤ σ2(t)

eq : SD × SD → SB, any D with equality

eq (σ1,σ2)(t) := σ1(t) = σ2(t)

max : SD × SD → SD , D ∈ {N,Z,R}

max (σ1,σ2)(t) := max{σ1(t),σ2(t)}

min : SD × SD → SD , D ∈ {N,Z,R}

min (σ1,σ2)(t) := min{σ1(t),σ2(t)}

abs : SD → SD , D ∈ {N,Z,R}

abs (σ)(t) := |σ (t)|

abs : ED → ED , D ∈ {N,Z,R}

abs (η)(t) :=

{
|η(t)| if t ∈ E(η)

⊥ otherwise

and : SB × SB → SB

and (σ1,σ2)(t) := σ1(t) ∧ σ2(t)

or : SB × SB → SB

or (σ1,σ2)(t) := σ1(t) ∨ σ2(t)

not : SB → SB

not (σ)(t) := ¬σ (t)

neg : EB → EB

neg (η)(t) :=

{
¬η(t) if t ∈ E(η)

⊥ otherwise

timestamps : ED → ET

timestamps (η)(t) :=

{
t if t ∈ E(η)

⊥ otherwise

maximum : ED × D → SD

maximum (η,d)(t) := max({d} ∪ {η(t ′) | t ′ ∈ E(η), t ′ ≤ t})

maximum : SD → SD

maximum (σ)(t) := max{η(t ′) | t ′ ∈ T, t ′ ≤ t}

minimum : ED × D → SD

minimum (η,d)(t) := min({d} ∪ {η(t ′) | t ′ ∈ E(η), t ′ ≤ t})

minimum : SD → SD

minimum (σ)(t) := min{η(t ′) | t ′ ∈ T, t ′ ≤ t}

sum : ED → SD

sum (η)(t) := Σ{t ′∈E(η) |t ′≤t }η(t
′)

eventCount : ED1
× ED2

→ SN

eventCount (η1,η2)(t) :=

|{t ′ ∈ E(η1) | t
′ ≤ t ∧ ∀t ′′ ≤ t ∈ E(η2) : t

′ > t ′′}|

mrv : ED × D → SD

mrv (η,d)(t) :={
η(maxE(η) ∩ [0, t]) if E(η) ∩ [0, t] , ∅

d otherwise

10

TeSSLa: Runtime Verification of Non-synchronized Real-Time Streams SAC 2018, April 9–13, 2018, Pau, France

sma : ED × N → ED , D ∈ {N,Z,R}

sma (η,n)(t) :={ Σt ′∈maxn {t ′′∈E(η)|t ′′≤t }η(t ′)
|maxn {t ′∈E(η) |t ′≤t } |

if t ∈ E(η)

⊥ otherwise

changeOf : SD → E{⊤}

changeOf (σ)(t) :=

{
⊤ if t ∈ ∆(σ)

⊥ otherwise

ifThen : ED1
× SD2

→ ED2

ifThen (η,σ)(t) :=

{
σ (t) if t ∈ E(η)

⊥ otherwise

sample : SD1
× ED2

→ ED1

sample (σ ,η) := ifThen(η,σ)

filter : ED × SB → ED

filter (η,σ)(t) :=

η(t) if t ∈ E(η)

and σ (t) = true
⊥ otherwise

ifThenElse : SB × SD × SD → SD

ifThenElse (σ1,σ2,σ3)(t) :=

{
σ2(t) if σ1(t) = true
σ3(t) otherwise

merge : ED × ED → ED

merge (η1,η2)(t) :=

η1(t) if t ∈ E(η1)

η2(t) if t ∈ E(η2) \ E(η1)

⊥ otherwise

occursAny : ED1
× ED2

→ E{⊤}

occursAny (η1,η2)(t) :=

{
⊤ if t ∈ E(η1) ∪ E(η2)

⊥ otherwise

occursAll : ED1
× ED2

→ E{⊤}

occursAll (η1,η2)(t) :=

{
⊤ if t ∈ E(η1) ∩ E(η2)

⊥ otherwise

A.2 Operational Semantics
For the operational semantics we use the following definition of a

queue, which stores incoming events. We represent an event as an

object with attributes time and value, where value can be either be

a concrete value or⊤ as only instance of Unit or progress to indicate
a progress event.

Definition A.1 (Queue). A queue Q can be accessed with the

following functions

– enqueue(Q,a) adds a to Q ,
– dequeue(Q) removes the next element from the queue and returns

it,

– peek(Q) returns the same as dequeue(Q) without changing Q ,
– last(Q) returns the last element which was dequeued from Q .

Note that our queues remember the last element dequeued, which

can be accessed using last.
We now present the operational semantics of the TeSSLa func-

tions listed in the last section. The code is executed if the associated

computation node is enabled, i.e. if for all input queues Q we have

peek(Q) , nil. We use the statement emit(a) to indicate that a is

send to the output, that is a is enqueued in the corresponding in-

put queues of nodes corresponding to functions which are directly

depending on the running node in the dependency graph.

A.2.1 Binary Arithmetic Functions. For add : SD × SD → SD
we have two input queues A and B and the following code:

1 if peek(A).time = peek(B).time then
2 a = peek(A).value,b = peek(B).value
3 t = peek(A).time
4 if a = progress then a = last(A).value
5 if b = progress then b = last(B).value
6 dequeue(B)
7 else if peek(A).time < peek(B).time then
8 a = peek(A).value , b = last(B).value
9 t = peek(A).time
10 if a = progress then a = last(A).value
11 dequeue(A)
12 else
13 a = last(A).value , b = peek(B).value
14 t = peek(B).time
15 if b = progress then b = last(B).value
16 dequeue(B)
17 emit(value = a + b, time = t)

Note that for the progress events we assume an automatic storage

and proper initialization of the last value, e.g. for a queue Q iff

peek(Q).value = progress we have the following implicit behavior

for a call of dequeue(Q):

tmp = last(Q).value
dequeue(Q)
last(Q).value = tmp

Furthermore, for signals the command emit does only emit the

first event if called multiple times in a row with exactly the same

event. Otherwise the above implementation of processing progress

events would lead to multiple emission of the same event. Finally,

emit converts events with a value into progress events if the value

is the same as the value of the last emitted event.

By changing the applied arithmetics, the code above can be ap-

plied to the following binary operators on signals as well: sub, mul,
11

SAC 2018, April 9–13, 2018, Pau, France M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and A. Schramm

div, gt, geq, leq, eq, max, min, and and or. This is simply achieved

by replacing line 14 as follows.

• For sub:

14 emit(value = a − b, time = t)

• For mul:

14 emit(value = a · b, time = t)

• For div:

14 emit(value = a/b, time = t)

• For gt:

14 emit(value = a > b, time = t)

• For geq:

14 emit(value = a ≥ b, time = t)

• For leq:

14 emit(value = a ≤ b, time = t)

• For eq:

14 emit(value = a = b, time = t)

• For max:

14 emit(value = max(a,b), time = t)

• For min:

14 emit(value = min(a,b), time = t)

• For and:

14 emit(value = a ∧ b, time = t)

• For or:

14 emit(value = a ∨ b, time = t)

A.2.2 Unary Arithmetic Functions. For abs : SD → SD we have

one input queue A and the following code:

1 if peek(A).value = progress then
2 emit(value = progress, time = peek(A).time)
3 else
4 emit(value = |peek(A).value|, time = peek(A).time)
5 dequeue(A)

By changing the applied arithmetics, the code above can be ap-

plied to the following unary operators as well: abs : ED → ED ,

not : SB → SB, neg : EB → EB, timestamps : ED → ET,

mrv : ED × D → SD and changeOf : SD → E{⊤} . This is accom-

plished by changing line 4 in the code of abswith the corresponding
operation.

A.2.3 Aggregation Functions. For sum : ED → SD we have

one input queue A, the internal state ∈ D initialized with 0 and the

following code:

1 if peek(A).value = progress then
2 emit(value = progress, time = peek(A).time)
3 else
4 state = state + peek(A).value
5 emit(value = state, time = peek(A).time)
6 dequeue(A)

By changing the applied arithmetics, the code above can be

applied to the following aggregating operators as well: maximum :

ED ×D → SD ,maximum : SD → SD ,minimum : ED ×D → SD ,

minimum : SD → SD and sma : ED × D. This is accomplished by

replacing line 4 with the right operation.

For eventCount : ED1
× ED2

→ SN we have two input queues A
and B, the internal state ∈ N initialized with 0 and the following

code:

1 if peek(A).time = peek(B).time then
2 if peek(A).value = progress and
3 peek(B).value = progress then
4 emit(value = progress, time = peek(A).time)
5 else if peek(B).value = progress then
6 state = state + 1
7 emit(value = state, time = peek(A).time)
8 else
9 state = 0

10 emit(value = 0, time = peek(A).time)
11 dequeue(A), dequeue(B)
12 else if peek(A).time < peek(B).time then
13 if peek(A).value = progress then
14 emit(value = progress, time = peek(A).time)
15 else
16 state = state + 1
17 emit(value = state, time = peek(A).time)
18 dequeue(A)
19 else
20 if peek(B).value = progress then
21 emit(value = progress, time = peek(B).time)
22 else
23 state = 0

24 emit(value = state, time = peek(A).time)
25 dequeue(B)

A.2.4 Filtering Functions. For ifThen : ED1
× SD2

→ ED2
we

have two input queues A and B and the following code:

1 if peek(A).time = peek(B).time then
2 if peek(A).value = progress then
3 emit(value = progress, time = peek(A.time)
4 else if peek(B).value = progress then
5 emit(value = last(B).value, time = peek(A).time)
6 else
7 emit(value = peek(B).value, time = peek(A).time)
8 dequeue(A), dequeue(B)
9 else if peek(A).time < peek(B).time then

12

TeSSLa: Runtime Verification of Non-synchronized Real-Time Streams SAC 2018, April 9–13, 2018, Pau, France

10 if peek(A).value = progress then
11 emit(value = progress, time = peek(A.time)
12 else
13 emit(value = last(B).value, time = peek(A).time)
14 dequeue(A)
15 else
16 emit(value = progress, time = peek(B.time))
17 dequeue(B)

For filter : ED × SB → ED we have two input queues A and B
and the following code:

1 if peek(A).time = peek(B).time then
2 if (peek(B).value = progress and last(B).value) or
3 peek(B).value then
4 emit(value = peek(A).value, time = peek(A).time)
5 else
6 emit(value = progress, time = peek(A.time)
7 dequeue(A), dequeue(B)
8 else if peek(A).time < peek(B).time then
9 if last(B).value then
10 emit(value = peek(A).value, time = peek(A).time)
11 else
12 emit(value = progress, time = peek(A.time)
13 dequeue(A)
14 else
15 emit(value = progress, time = peek(B.time))
16 dequeue(B)

For ifThenElse : SB×SD×SD → SD we have three input queues

A, B and C , but apart from more cases the operative semantics is

very similar to ifThen and filter above.
For merge : ED × ED → ED we have two input queues A and B

and the following code:

1 if peek(A).time = peek(B).time then
2 if peek(A).value = progress then
3 emit(value = peek(B).value, time = peek(A).time)
4 else
5 emit(value = peek(A).value, time = peek(A).time)
6 dequeue(A), dequeue(B)
7 else if peek(A).time < peek(B).time then
8 emit(value = peek(A).value, time = peek(A).time)
9 dequeue(A)
10 else
11 emit(value = peek(B).value, time = peek(B).time)
12 dequeue(B)

With slight modifications the code above can be applied to

occursAny : ED1
×ED2

→ E{⊤} and occursAll : ED1
×ED2

→ E{⊤}

as well.

A.2.5 Timing Functions. For delay : SD ×T×D → SD we have

one input queues A and a constant d ∈ T and the following code:

1 emit(value = peek(A).value, time = peek(A).time + d)
2 dequeue(A)

Taking into account the additional default value this can be

extended to delay : ED × T→ ED on signals, too.

For shift : ED → ED we only have one input queue A and the

following code:

1 emit(value = last(A).value, time = peek(A).time)
2 dequeue(A)

For within : T × T × ED → SB we have one input queue X
belonging to a stream x ∈ ED and the two constants a,b ∈ T, such
that we compute within(a,b,x). For the operative semantics we

assume a < b < 0. We then have the following code:

1 if last(X).time + b < peek(X).time + a then
2 emit(value = false, time = last(X).time + b)
3 emit(value = true, time = peek(X).time + a)
4 emit(value = progress, time = peek(X).time)
5 dequeue(X)

All the constructs have no loops, so it is easy to see that all con-

structs consume at least one event from at least one input queue, and

produce one event. Moreover, the inputs are consumed in increas-

ing time-stamps and the outputs are also generated in increasing

time-stamps. All constructs are output-complete. The operational

semantics for all functions except the timing functions only use

time-stamps for the input in their outputs. To show that the op-

erational semantics adhere to the denotational semantics one can

show that for each building block, the output signal or event stream

encodes (with legal progress events) the output of the denotation

function on a given input stream. The detail proof then proceeds by

induction on the size of the specification, but it is out of the scope

of this paper.

B MISSING PROOFS
Lemma B.1 (All Runs are Finite). Let E be an evaluation engine

and let a ∈ (I × T)∗ be an input. All possible runs r ∈ (T × S)∞ of E
on a are finite.

Proof. Consider an evaluation order < (a reverse topological

order of the dependency graph). We create a lexicographic order

as tuple with one entry per queue ordered according to <. Each

entry represents the size of the corresponding queue. For a given

input word a the initial value consists of the sizes of the input

queues according to a, with all the other entries being 0 (empty

queues). Firing a transition consists on decreasing an entry (the

size of the queue corresponding to the node) and increasing only

entries in lower positions of the lexicographic order. Hence every

firing decreases a (well-founded) lexicographic order and the firing

relation is terminating. □

Lemma B.2 (Persistence of Enabledness). Let r ∈ (T × S)∗ be
a run. A node n which is enabled in a state si of r stays enabled at
least until it gets scheduled, i.e. the run contains a transition which
involves n.

Proof. Let (τx , sx) = ri+1 be the next element in the run after

ri . If node(τx) , n, then the only influence that τx can have on

the internal state of n is by appending some event to one of the

input queues. Since the input queues of n can only grow, n will stay

enabled. By induction on the distance from i to the end of the trace,

13

SAC 2018, April 9–13, 2018, Pau, France M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and A. Schramm

n stays enabled at every later step until a transition involving n is

taken. □

Lemma B.3 (Exchange of Independent Transitions). Let τ
be independent of τ ′, then the following holds: If

r1 = (λ, s0) . . . (τi−1, si−1)(τ , s)(τ ′, s ′′)(τi+1, si+1) . . . (τl , sl)

is a run then

r2 = (λ, s0) . . . (τi−1, si−1)(τ
′, s ′)(τ , s ′′)(τi+1, si+1) . . . (τl , sl)

is a run.

Proof. Because τ ′ is independent of τ , τ ′ is guaranteed to be

enable after s (otherwise it would not be take in r1. Similarly, τ is

enabled at s ′ because τ ′ cannot turn false the enabling condition of

τ . We just need to show that the state s ′′ does not change bymoving

τ ′ before τ . By definition we know that applying a transition τ only

modifies the internal state of node(τ) and only the queues of node(τ)
and those dependent of node(τ). Because τ ′ is independent of τ , we
get

sj = apply(apply(si−1,τ),τ ′) = apply(apply(si−1,τ ′),τ).

and the results follows. □

Theorem B.4. Let E be an engine, a ∈ Σ∗ an input and r and r ′

two runs of E on a. Then timed(output(r)) = timed(output(r ′)).

Proof. If r and r ′ are identical we are done. Otherwise, let p be

the longest common prefix of r and r ′ and let τ be the transition

in r taken after p. Let j be the first position after p at which τ is

taken in r ′ (this guaranteed to happen because τ is continuously

enabled in r ′ after p). The distance between r and r ′ is (|r | − |p |, j).
We create a run r3 from r ′ by swapping (τ , sj−1) and (τ ′, sj−2),
which produces a legal run of E on a by Lemma 3.10. Moreover, the

timed(output(r ′)) = timed(Output(r ′′)) because the queues for τ
and τ ′ are the same in r ′ and r ′′, and the states before j−2 and after

j are the same in both runs. Also, δ (r , r ′′) < δ (r , r ′). Since δ is a

well-founded it follows, repeating the same argument by induction

(on δ (r , r ′)) shows that timed(output(r)) = timed(output(r ′)) as
desired. □

C INSTRUMENTATION & TOOL CHAIN
As mentioned in the introduction, TeSSLa is designed to simplify

FPGA based implementations of the evaluation engine. Addition-

ally, we also implemented auxiliary tools to use TeSSLa for the

runtime verification of C programs, like a simple software instru-

mentation tool realized as a compiler pass of the LLVM Compiler

Infrastructure. We added the TeSSLa functions function_call and
function_returnwhich generate an input streamwith an event every

time the function is called or returns, respectively, during the run

of the program. This additional TeSSLa functions are preprocessed

into a list of functions that need to be instrumented and replaced

with input streams for further processing of the specification. This

leads to the following tool chain from a TeSSLa specification φ:
(1) Process φ into dependency graph G and identify the func-

tions to instrument.

(2) Compile the C code to LLVM IR code.

(3) Instrument the LLVM IR code and compile the result to an

executable.

(4) Run the executable, which generates the input trace r .
(5) Run the TeSSLa evaluation engine with G and r as inputs.

The integrated tool chain is available as an Atom plugin,
4
which is

shown in Figure 3 on the next page.

D RUNTIME BENCHMARK DATA
All data from the benchmarks is shown on the next pages in Table 3,

Table 4 and Table 5.

4
www.isp.uni-luebeck.de/tessla

14

https://www.isp.uni-luebeck.de/tessla

TeSSLa: Runtime Verification of Non-synchronized Real-Time Streams SAC 2018, April 9–13, 2018, Pau, France

Figure 3: Atom plugin for TeSSLa based runtime verification of C programs.

Run # 1 2 4 8 16

1 3.620 1.598 1.024 0.948 1.010

2 3.483 1.650 0.964 0.974 0.971

3 3.488 1.753 0.989 0.959 0.989

5 3.439 1.597 1.009 1.033 1.082

6 3.521 1.651 1.013 0.931 1.151

7 3.448 1.725 0.976 0.987 0.982

8 3.550 1.648 0.994 0.979 1.098

9 3.496 1.624 1.098 0.967 1.137

10 3.586 1.615 1.039 1.011 1.042

11 3.504 1.634 1.092 1.075 1.101

12 3.443 1.580 0.944 1.003 1.060

13 3.840 1.609 1.017 1.009 1.071

14 3.605 1.579 0.964 1.083 1.189

15 3.499 1.535 0.981 0.997 1.023

16 3.535 1.608 0.989 1.287 1.121

17 3.446 1.739 1.015 1.007 1.129

18 3.505 1.544 1.047 1.175 1.161

19 3.586 1.680 1.013 1.035 1.067

20 3.377 1.611 1.008 1.096 1.100

Table 3: Execution time in seconds of multiple runs with
10 000 input events with different number of used processor
cores

Run # 500 1000 5000 10000

1 0.4415 0.5358 1.4555 1.9343

2 0.4569 0.5471 1.4538 1.9907

3 0.4549 0.4996 2.8283 1.9546

5 0.4569 0.4985 1.8618 1.9731

6 0.4603 0.5482 1.3788 1.9725

7 0.4610 0.5489 1.1817 2.0493

8 0.4585 0.5302 1.1973 1.9670

9 0.4407 0.5581 1.3172 2.2681

10 0.4414 0.5407 1.3002 2.0725

11 0.4392 0.5349 1.2226 1.9567

12 0.4652 0.5557 1.2435 1.9850

13 0.4436 0.5462 1.2375 2.0038

14 0.4458 0.5240 1.2271 2.0334

15 0.4480 0.5093 1.2287 1.9577

16 0.4508 0.5071 1.8341 2.0005

17 0.4498 0.5390 1.5943 2.1850

18 0.4820 0.5252 1.4755 2.4828

19 0.4365 0.5576 1.2696 2.5152

20 0.4379 0.5334 1.2343 2.3986

Table 4: Execution time in seconds of multiple runs of with
different number of input events

15

SAC 2018, April 9–13, 2018, Pau, France M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and A. Schramm

Run # 8 16 32 64 128

1 0.534 0.548 0.611 0.784 1.027

2 0.510 0.533 0.598 0.741 1.039

3 0.501 0.546 0.631 0.718 1.057

5 0.494 0.552 0.594 0.731 1.293

6 0.489 0.563 0.598 0.747 1.231

7 0.521 0.539 1.041 0.737 1.236

8 0.496 0.548 0.676 0.721 1.221

9 0.507 0.541 0.618 0.745 1.262

10 0.483 0.559 0.579 0.748 1.229

11 0.507 0.554 0.579 1.271 1.342

12 0.487 0.539 0.836 0.739 1.060

13 0.507 0.526 0.574 0.720 1.174

14 0.545 0.530 0.586 0.782 1.274

15 0.518 0.563 0.597 0.888 1.218

16 0.561 0.528 0.606 1.214 1.278

17 0.605 0.528 0.602 1.006 1.247

18 0.550 0.557 0.651 0.738 1.043

19 0.550 0.523 0.645 0.750 1.027

20 0.541 0.534 1.051 0.735 0.987

Table 5: Execution time in seconds of multiple runs of in
regard to different amount of nodes in a specification

16

	Abstract
	1 Introduction
	2 Syntax and Semantics of TeSSLa
	2.1 Preliminaries
	2.2 Syntax of TeSSLa
	2.3 Semantics

	3 Online Evaluation of Efficiently Monitorable Specifications
	3.1 Evaluation Engines
	3.2 Timed Transducers
	3.3 Correctness

	4 Implementation and Evaluation
	5 Conclusion
	References
	A Full Semantics of TESSLA Library of Builtin Functions
	A.1 Denotational Semantics
	A.2 Operational Semantics

	B Missing Proofs
	C Instrumentation & Tool Chain
	D Runtime Benchmark Data

