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Abstract. In this tutorial, we present a comprehensive approach to non-
intrusive monitoring of multi-core processors. Modern multi-core proces-
sors come with trace-ports that provide a highly compressed trace of
the instructions executed by the processor. We describe how these com-
pressed traces can be used to reconstruct the actual control flow trace
executed by the program running on the processor and to carry out
analyses on the control flow trace in real time using FPGAs. We further
give an introduction to the temporal stream-based specification language
TeSSLa and show how it can be used to specify typical constraints of a
cyber-physical system from the railway domain. Finally, we describe how
light-weight, hardware-supported instrumentation can be used to enrich
the control-flow trace with data values from the application.

1 Introduction

Software for embedded, hybrid and cyber-physical systems often operates under
tight time and resource constraints. Therefore, testing, debugging and monitor-
ing is particularly challenging in this setting. Strong limitations on timing and
resource consumption prohibit usual approaches for the acquisition and analysis
of execution information. First, comprehensive logging output during develop-
ment built into the software (e.g. via instrumentation) decreases the performance
significantly. Second, breakpoint-based debugging features of the processor are
slow due to the potentially high number of interruptions. Both methods are
highly intrusive as they modify the software temporarily for the analysis or in-
terrupt the execution. This is especially problematic for concurrent programs
running on multi-core processors or real-time applications. Errors due to race
conditions or inappropriate timing may be introduced or hidden.
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To allow for a non-intrusive observation of the program trace, many modern
microprocessors feature an embedded trace unit (ETU) [3,13,11]. An ETU deliv-
ers runtime information to a debug port of the processor in a highly compressed
format. State-of-the-art debugging solutions, such as ARM DSTREAM [4], allow
the user to record this information for offline reconstruction and analysis.

The essential disadvantage of this technology is, however, that traces can be
recorded for at most a few seconds because high-performance memory with very
fast write access is required to store the delivered information. For example, the
ARM DSTREAM solution offers a trace buffer of 4GB for a recording speed of 10
Gbit/s or more which means that the buffer can only hold data of less than four
seconds. While the majority of errors can be found immediately within a short
program trace, some of them may only be observable on long-running executions
or under specific, rarely occurring (logical or physical) conditions. It is therefore
desirable for the developer and maintainer to be able to monitor the program
execution for an arbitrary amount of time during development and testing and
even in the field after deployment.

This paper is based on [9] which presented an earlier version of the monitoring
techniques discussed in this paper. This tutorial gives a more extensive intro-
duction into our monitoring approach and comprises the recent improvements
made to the monitoring hardware, tools and specification language.

Related work. For a general introduction into the field of runtime verifica-
tion especially in comparison with static verification techniques such as model
checking see [16,17].

Non-intrusive observation of program executions is a long-standing issue [21]
and several approaches have been suggested. We rely on dedicated tracing in-
terfaces as they are provided by many modern processors. Such interfaces have
already been suggested in [26]. Another line of research focuses on the modifi-
cation of processors [18] or complete systems on chips [25]. These approaches
allow access to a wider range of information but require access to the processor
or system hardware design and modifications have to be possible. In [6] a proces-
sor is monitored by synchronizing a second, emulated processor via a dedicated
synchronisation interface. In [20] it is described that even side-channels can be
used to monitor certain events on a processor.

There are also several approaches to execute monitors on FPGAs for various
applications: synthesis for STL for observation of embedded systems is described
in [14,15,24] and synthesis for past time LTL for observation of hardware buses
is described in [22]. While these approaches directly synthesize FPGA designs
from monitor specifications, we use processing units that are synthesized once
and can be reconfigured quickly. Approaches also allowing for reconfiguration
are described in [19] for past-time LTL and in [23] for past-time MTL.

The basic idea of stream-based runtime verification and stream transforma-
tions specified via recursive equations has been introduced with the language
LOLA [8,10]. LOLA however is synchronous in the following sense: Events ar-
rive in discrete steps and for every step, all input streams provide an event and



all output streams produce an event, which means that it is not suitable for han-
dling events with arbitrary real-time timestamps arriving at variable frequencies.

Outline. The rest of this paper is organized as follows: Section 2 gives an
overview of the general workflow and mechanism of hardware-based runtime
monitoring as discussed in this paper. Section 3 describes how the program
flow can be reconstructed online and how events are generated and fed into the
monitoring engine. Section 4 describes how to specify monitors in the stream
processing language TeSSLa. Section 5 introduces a simple cyber-physical sys-
tem that is used as an example throughout the rest of the paper. Section 6
demonstrates how to check timing constraints and Section 7 shows how to check
event ordering constraints using hardware-based runtime monitoring. Section 8
describes how the tracing of data values works and demonstrates how to check
data-values. Finally, Section 9 describes the practical hardware setup in order
to do hardware-based runtime monitoring.

2 Interactive Hardware Monitoring Workflow

To overcome the limitations of current technology we developed a novel runtime
verification methodology for evaluating long-term program executions which is
suitable for development, debugging, testing, and in-field monitoring. Based
on the runtime information provided by the ETU, we perform a real-time re-
construction of the program trace. The latter is evaluated with respect to a
specification formulated by the user in the stream-based specification language
TeSSLa [7]. To deliver sufficient performance for online analysis, both the recon-
struction and monitoring system are implemented using FPGA hardware.

FPGAs have become a very popular technology to implement digital systems.
They contain thousands of programmable logic elements which can be configured
to realize different boolean functions These functions can be connected to each
other in an arbitrary way by means of configurable routing elements. Additional
features like flip-flops, digital signal processing blocks and blocks of RAM add
more flexibility and performance to the implemented circuit. Designing digital
circuits with FPGAs typically starts from hardware description languages like
VHDL or System Verilog. Synthesis software is responsible for mapping such
designs to the elements available in an FPGA and then these elements must be
positioned and routed on the FPGA fabric. Even for moderately large designs,
this process can take hours. In case the design should run at high clock speed,
this time is dramatically increased. Additionally, a designer must be familiar
with the FPGA elements and must have thorough experience in FPGA design
to be able to create fast designs.

Our monitoring system therefore does not rely on synthesizing a specific
FPGA-design for each property specification that has to be evaluated. Instead,
it builds on a set of event processing units implemented on the FPGA. These
units can be configured quickly via memory to evaluate arbitrary specifications.



We provide a tool chain for mapping TeSSLa specifications to these units auto-
matically within seconds. This allows the user to focus on writing the correctness
properties instead of working with the complex FPGA synthesis tool chain. For-
mulating hypotheses, adapting property specification and checking them on the
target system can be iterated quickly without time-intensive synthesis.
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Fig. 1. General overview of the workflow cycle.

Figure 1 provides an overview of the proposed workflow based on our ap-
proach to rapidly adjustable embedded trace online monitoring. The user, e.g.
the developer, tester, or maintainer, specifies the correct behaviour of the pro-
gram under test based on program events such as function calls or variable
accesses. The program is compiled and the binary is uploaded to the processor
as usual. The property compiler automatically generates a corresponding config-
uration for the monitoring and trace reconstruction units that is then uploaded
to the platform. When running the program on the processor, the monitoring
platform reports the computed output stream to the user who can then use the
information to adjust the program or the property.

Technically, all such events are represented in the reconstructed trace as so-
called watchpoints, so the trace reconstruction provides a watchpoints stream to
the monitoring platform. The reconstruction can already filter the full trace for
those watchpoints (i.e., events) that are relevant for the property.

In this tutorial, we demonstrate how our approach can be applied to an
example system from the railway domain. We first give an introduction to the
specification language TeSSLa and show how it can be used to specify typical
properties in such a setting. We then explain how our hardware implementation
can be used to monitor these properties non-intrusively.

3 Monitoring Program Flow Trace

Fig. 2 shows an overview of the program flow trace monitoring setup: The cores of
the multi-core processor are communicating with periphery, such as the memory,



through the system bus. Every core is observed by its own tracer. The core is not
affected at all by this kind of tracing. The trace data is sent through the trace
buffer and concentrator to the trace port without affecting the core. This tracing
is separated from the system bus and does not interfere with it. The trace port of
the processor is connected to the monitoring hardware, i.e. the FPGA on which
the program flow reconstruction, the interpretation and the actual monitoring
are located.

The user of this system provides the C code of the system under observation
and the specification for the monitoring. The specification contains information
about the events of interest and the actual monitor expressed in terms of these
events. The C compiler compiles the C source code, so that the resulting binary
can be executed on the processor. The C compiler provides debug information
which can be used to determine the instruction pointer addresses of the events
of interest in the program, the so called tracepoints. The trace reconstruction
is configured with the observation configuration which contains the tracepoints.
The TeSSLa compiler compiles the monitor specification to the monitor config-
uration which is used to configure the actual trace monitoring.

The final monitoring output coming from the dedicated monitoring hardware
undergoes some post-processing on a regular PC using metadata provided by the
frontend such as the names and types of the output events. The final monitoring
report is a sequence of events that can be either stored or processed further.

We explain the concept of the trace reconstruction with the ARM CoreSight
[3] trace technology as a widely available example of an ETU, which is included
in every current ARM processor (Cortex M, R and A). In particular, we use the
Program Flow Trace (PFT) [2] to acquire trace data of the operations executed
by the ARM processors.

As stated in the PFT manual [2] the “PFT identifies certain instructions in
the program, and certain events as waypoints. A waypoint is a point where in-
struction execution by the processor might involve a change in the program flow.”
With PFT we only observe as waypoints conditional and unconditional direct
branches as well as all indirect branches and all other events, e.g. interrupts and
other exceptions, that affect the program counter other than incrementing it.
In order to save bandwidth on the trace bus, the Program Flow Trace Protocol
(PFTP) does not report the current program counter address for every cycle.
Especially for direct branches, the target address is not provided but only the
information on whether a (conditional) jump was executed or not. The full pro-
gram counter address is sent irregularly for synchronization (I-Sync message).
In case of an indirect branch those address bits that have changed since the last
indirect branch or the last I-Sync message are output.

In typical state-of-the-art applications the trace is recorded and the actual
program flow is reconstructed from the trace offline. This approach does not
work well for the purpose of runtime verification because we want to

1. react to detected failures as early as possible and
2. watch the system under test for a long time.



System	under	Observa�on
(ARM	Cortex-A9	/	Cortex-A53)

Tr
ac
e
Bu

ff
er
&
Co
nc
en
tr
at
or

Tr
ac
e	
Po

rtCPU	0

CPU	1

CPU n

PFT/ETM

PFT/ETM

PFT/ETM

PFT/ETM

STM/ITM

Per

Mem

Mem

CPU	2

Analyzer
(Binary)

TeSSLa	Compiler

C	Compiler

Trace	Preprocessing
and	Reconstruc�on

Trace	Analysis
Monitoring

Monitoring

Monitoring	Hardware

Events
Post	Processing

ReportEvents Events

Specifica�onC	Code

Binary

Frontend

Ob
je
ct	
Co
de

De
bu
g	
Sy
m
bo
ls

Observa�on
Configura�on

Monitor
Configura�on

Observa�on
Specifica�on

Monitor
Specifica�on

Meta	Info
rma�on

Fig. 2. Overview of the program flow trace monitoring setup. Operations of the cores
are traced by the ETU, the trace is then reconstructed, filtered and monitored on the
FPGA.

Currently, even with high technical effort, you can only record rather short se-
quences of trace data. For many real-world applications this might be not enough
to spot errors, especially as you cannot start the recording based on complex
events as you do not have the trace without reconstructing it from the way-
points.

Hence, we use an online (real time) program-flow-reconstruction method im-
plemented on FPGA hardware [27,28]: From a static analysis of the binary run-
ning on the CPU we know all the jump targets of conditional direct jumps and
can store those in a lookup table in the memory of the FPGA. Due to the high
parallelism of the FPGA, we can split the trace data stream and reconstruct
the program flow using the lookup table. The trace data stream can be split
at the synchronization points that contain the full program counter address. A
FIFO buffer stores the trace data stream until we reach the next synchronization
point. For further processing we then immediately filter the reconstructed trace
by comparing the reconstructed addresses to the tracepoints that correspond to
the input events used in the TeSSLa specification. This comparison is realized
by adding an additional tracepoint flag to the lookup table. After putting the
slices back together in the right order we end up with a stream of tracepoints.
Every tracepoint contains an ID and a timestamp. The timestamp is either as-
signed by the ARM processor if cycle accurate tracing is enabled or during the



reconstruction on the FPGA otherwise. Cycle accurate tracing is only available
for certain processor architectures, because it requires high bandwidth on the
trace port in order to attach timing information to every message.

Note that PFT traces logical addresses used in the CPU before the memory
management unit (MMU) translates them to physical addresses, which are used
to address concrete cells in the memory. The MMU is part of the cores and
translates logical addresses to physical addresses. Because logical addresses are
used in the program binary and by the CPU, we do not need to handle physical
addresses.

In a typical multithreaded application, we have multiple threads running on
different cores and multiple threads running on the same core using any kind
of scheduling. While we can distinguish instructions traced from the different
CPUs, we have to consider the actual thread ID in order to distinguish different
threads running on the same core. This information is provided by a so-called
context ID message [3], sent every time when the operating system changes the
context ID register of the CPU. The logical addresses for different threads might
be exactly the same, because the MMU is reconfigured in the context switch to
point to another physical memory region. If we see a context switch to another
thread, we have to change the lookup table for the program flow reconstruction
information.

4 Monitoring Properties with Stream Processing

The specification language TeSSLa has been designed as a general purpose
stream-based specification language, but with the prerequisites in mind that
come with the setting of hardware-based monitoring of embedded systems. That
is, technical prerequisites stemming from the processor architectures and the
evaluation on FPGAs and prerequisites from the targeted use cases and targeted
user groups relevant for the field of embedded systems. The TeSSLa compiler
and interpreter are available online3.

4.1 Technical Prerequisites

The most important technical prerequisite arises from the fact that due to the
large amounts of trace data generated by multi-core CPUs, monitoring has to
be performed in hardware. More specifically the monitoring specification has to
be executed by a specialized engine implemented on an FPGA. This imposes
several limitations that have to be addressed by the language design.

On an FPGA only a very limited amount of memory is available. There-
fore the specification language should make it easy to specify monitors that are
guaranteed to require only a small amount of memory. If memory is required
to monitor a certain property, the user should have precise control of when and
how memory is used.

3 https://www.tessla.io

https://www.tessla.io


The complexity of logic on an FPGA is limited. While a CPU can process
programs of practically unlimited size, on an FPGA all logic has to be repre-
sented in hardware. Hence the basic operations of the specification language have
to be simple. Also, the number of operations required to express the properties
of interest should be relatively low.

Some properties and analyses are too complex to be evaluated on an FPGA
but the amount of observation data is too high to evaluate them completely in
software. They have to be split up in simpler parts suitable for evaluation on an
FPGA and more complex parts that can be evaluated on an reduced amount of
data. TeSSLa has been designed to be suitable for the restricted hardware setting
but at the same time be flexible enough to not limit the user in the software
setting.

It has to be easy to specify properties involving time in TeSSLa, because
timing is a crucial aspect of embedded and cyber-physical systems.

Another important aspect is that of data. For many properties it is not
enough to only specify the order and timing relation between certain events. It
is also important to analyse and aggregate the associated data values.

4.2 Design Goals

TeSSLa’s design goals described in this section are based on the prerequisites dis-
cussed in the previous section. On one hand, TeSSLa is a specification language
rather than a programming language, to allow for simple system descriptions.
TeSSLa should provide a different and perhaps more abstract perspective on the
system under observation than its actual implementation. Specifying correctness
properties in the same programming language that was also used to implement
the system might lead to a repetition of the same mistakes in the implemen-
tation and the specification. On the other hand, TeSSLa should feel natural
to programmers and should not be too abstract or require previous knowledge
in mathematical logic. TeSSLa is a stream processing language, which can be
used to describe monitoring algorithms, and not a mathematical logic describ-
ing valid runs of the systems. Aside from making TeSSLa easier to use for the
practical software engineer this also allows to use TeSSLa for event filtering and
quantitative and statistical analysis as well as live debugging sessions.

Time is a first-class citizen in TeSSLa, making the specification of timed prop-
erties as simple as possible. This does not change the expressiveness of TeSSLa
specifications but makes it more natural to reason about time constraints. In
cyber-physical systems events are often caused by external inputs of the physi-
cal system and hence not following regular clock ticks, but are appearing with
variable frequency. In order to simplify specifications over such event streams,
every event in TeSSLa always carries a time stamp and a data value.

TeSSLa has a very small set of basic operators which have a simple semantics.
Such a small operator set simplifies the implementation of software and hard-
ware interpreters and the corresponding compilers. TeSSLa transforms streams
by deriving new streams from existing streams in a declarative functional way:
One can define new streams by applying operators to the existing streams but



all streams are immutable. To gain the full expressiveness with such a small set
of basic operators together with immutable streams we use recursive equation
systems, which allow to express arbitrary computations over streams as combi-
nations of the basic operators.

To allow adjustments of TeSSLa for different application domains and make
it easier to use for practical software engineers without extending the set of basic
operators we use a macro system. With TeSSLa’s macro system we can build
different libraries which support abstractions, code reuse and extension to allow
the specification of more complex analyses. These libraries can use the domain
knowledge and terms of the application knowledge without the need of adjusting
the TeSSLa compiler and interpreter infrastructure.

TeSSLa’s basic operators are designed to be implementable with limited
memory, independent of the number of observed events. This allows for building
TeSSLa evaluation engines in hardware without addressable memory. For every
TeSSLa operator one only needs to store a fixed amount of data values, usually
only one data value. TeSSLa allows to add additional data types to the language
to adapt the language easily to different settings. Such data types can also be
complex data types such as maps or sets, which then explicitly introduce infinite
memory. To make the use of memory explicit via data types makes it very easy
to identify the TeSSLa fragment that can be executed on hardware.

4.3 Basic Concepts

This section provides an overview on the monitoring specification language
TeSSLa (Temporal Stream-based Specification Language).

Its basic modelling primitives are timed event streams, i.e. sequences of events
carrying a time stamp and some arbitrary data value. These streams are well
suited to model the (timed) behaviour of all kinds of systems with one or multiple
time sources.

Properties and analyses are then described by stream transformations. These
transformations are expressed via recursive equations over a set of basic opera-
tors. We cover here the operators directly available on the hardware. See [7] for
a complete, formal definition of TeSSLa’s semantics.

The most central operator is signal lift which allows to lift operations on ar-
bitrary data types to streams. For example, the addition on integer numbers can
be lifted to streams of integers. This operator follows the intuition of piecewise
constant signals, i.e. a stream of events is interpreted as a piecewise constant
signal where events indicate changes in the signal value. Addition of two integer
streams therefore results in a stream of events indicating the changes of the sum
of two corresponding signals. Further examples are the negation of booleans that
can be lifted to a stream of booleans and the ternary if-then-else function that
can be lifted to a stream of booleans and two streams of identical type.

a 2 4

b 1 3
a + b 3 5 7

a true false true
¬a false true false



a 1 3

b 2 4

a > b false true false
if a > b then a else b 2 3 4

Note that the signal lift is implicitly applied when you use the built-in oper-
ators on integer numbers or booleans on streams of the corresponding types.

In order to define properties over sequences of events the operator last has
been defined. It allows to refer to the values of events on one stream that occurred
strictly before the events on another stream.

1 2 3 4x

y

1 3 3last(x, y)

The time operator can be used to access the timestamp of events. It produces
streams of events where the events carry their timestamps as data value. Hence
all the computations available to data values can be applied to timestamps, too.

1 3 4
x

1 3 4time(x)

1 3last(time(x), x)

2 1time(x)− last(time(x), x)

Furthermore, the language contains two operators to process streams in an
event-oriented fashion, filter and merge. Filter allows to filter the events of one
stream based on a second boolean stream interpreted as piecewise constant sig-
nal. Merge combines two streams into one, giving preference to the first stream
when both streams contain identical timestamps.

2 4x

1 3y

2 1 4merge(x, y)

1 2 3 4 5x

a true false true

1 4 5filter(x, a)

Using the last operator in recursive equations, aggregation operations like the
sum over all values of a stream can be expressed. The merge operation allows
to initialize recursive equations with an initial event from an other stream, e.g.
s := merge(last(s, x) + x, 0).

2 1 3x

0 2 3last(s, x)

s 0 2 3 6



Finally, there is the constant nil for the empty stream and the operator const
converting a value to a stream starting with that value at timestamp 0.

These operators are enough to express arbitrary stream transformations. The
recursion is limited to recursive expressions involving last. This guarantees that
the specifications are directly executable and thereby efficiently monitorable. It
also allows the user to think of such specifications as programs which can be more
convenient for programmers than the mathematical view of recursive equations.

All of these operators can be implemented using finite memory, i.e. a small
amount of memory independent of the amount of data that has to be monitored.

The specification language facilitates abstract specifications and extensibility
through a macro system. Here, macros are functions that can be evaluated at
compile time. Therefore specifications can be structured in a functional fashion
without requiring memory for a call stack at runtime. These macros can also be
used to provide a library of common specification patterns.

Another extension point is that of data types. The language is defined agnos-
tically with respect to any time or data domain. Depending on the application
domain and the restrictions of the execution domain, different data structures
can be used to represent time and data. For hardware monitoring this will typ-
ically be restricted to different atomic data types such as integer and floating
point numbers. For software monitoring this might also comprise more complex
data structures like lists, trees and maps.

5 Example Scenario

Speed
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Engine
Controller

TrainEngine

braking
acceleration

emergency
break

signals & speed

signals & speed

Fig. 3. Example scenario consisting of the train with its engine, the discrete speed
supervisor and the engine controller.

In this paper we use a highly simplified engine controller of a train as an
example system that we want to analyse and monitor using the hardware mon-
itoring technique presented in this paper. One of the most important aspects
of (autonomous) train driving is adhering to the speed limits and the railway
signals. Hence we only consider the process of braking a train in front of a stop
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Fig. 4. Diagram showing the speed of the train (in blue) in relation to the train’s
position. The red curve shows the allowed speed of the train.

signal. Since the braking distance for trains is rather long, there are additional
distant signals positioned in front of the actual stop signal which indicate cau-
tion if the train has to stop at an stop signal further down the track. To make
sure that the train really stops in front of the stop signal an automatic speed
supervision system checks if the train never exceeds the allowed maximal speed.

To keep our example scenario simple, we consider the speed limits of the
intermittent automatic train running control system (in German Punktförmige
Zugbeeinflussung, PZB): We consider passenger trains with a maximal allowed
speed of 165 km/h. If the train passes a distant signal indicating caution, it has
to reduce its speed to 85 km/h in 23 s. The actual stop signal is located 1000 m
after the distant signal. 250 m in front of the stop signal the train must have a
speed below 65 km/h which must be reduced to 45 km/h over the next 153 m.

The intermittent automatic train running control system detects special in-
ductors mounted on the tracks which indicate distant and stop signals as well
as the point 250 m in front of the stop system. The maximal allowed speed is
shown in red in Fig. 4. The speed of an allowed execution of the system is shown
in blue in the same diagram.

The simulated system as depicted in Fig. 3 consists of three major compo-
nents:

– The engine controller gets information about the current speed of the train
and the signals and the 500 Hz inductor the train passed by. It controls the
engine by setting the brake acceleration.

– The speed supervisor gets the same information about the train and com-
putes the currently allowed speed. It compares this with the actual speed
and performs an emergency brake if the current speed exceeds the currently
allowed speed.



– The train is simulated using a highly simplified model with the initial speed
and the acceleration set by the controller.

6 Measuring Timing Constraints

Timing is important for cyber-physical systems. Timing constraints encompass
the runtime of tasks, functions or chains of dependant tasks, as well as response
times and idle times. Checking such timing constraints or measuring the worst-
case or average time consumed is an important task of hardware monitoring.

In this first example we want to measure the runtime of one execution of the
speed supervisor. The supervisor is implemented in a function supervisor,
hence we want to measure the runtime of this function. Therefore we have to
specify that we are interested in the events of entering and leaving this function:

def call := function_call("supervisor")
def return := function_return("supervisor")

Using the runtime macro of the standard library we can now produce an
event stream which has an event every time the functions returns. The data
value of this event is the runtime of the function that did just return.

def supervisorRuntime := runtime(call, return)

The function runtime is defined in the standard library as follows:

def runtime(call: Events[Unit], return: Events[Unit]) :=
at(return, time(return) - time(call))

def at[A,B](trigger: Events[A], values: Events[B]) :=
filter(values, time(trigger) == time(values))

Events[T] is the type representing streams of elements of type T. The
function at filters the values stream down to the events happening exactly
when an event on the trigger stream happens. The runtime can then be
defined as the difference of the timestamps of the last return and the last
call event evaluated only at the return events.

Apart from measuring and checking timing constraints one can also use
TeSSLa to aggregate statistical data. In this case lets compute the maximal
runtime of the speed supervisor using the function max of the standard library:

def maxSupervisorRuntime := max(supervisorRuntime)

This maximum aggregation function is defined in the standard library by
first defining the maximum of two integer values:

def maximum(a: Int, b: Int) := if a > b then a else b

This can now be aggregated in a similar recursive definition as the sum
explained above:



def max(x: Events[Int]) := {
def result := merge(maximum(last(result, x), x), 0)
result

}

This pattern of aggregating functions can be generalized using TeSSLa’s
higher order functions. A fold function which takes a function and recursively
folds it over an input stream is defined in TeSSLa as follows:

def fold[T,R](f: (Events[R], Events[T]) => Events[R],
stream: Events[T], init: R) := {

def result: Events[R] :=
merge(f(last(result, stream), stream), init)

result
}

Now we can define the aggregating max function simply by folding the
maximum over the input stream x:

def max(x: Events[Int]) := fold(maximum, x, 0)

Especially these last examples show one of the strengths of the integrated
hardware monitoring, where the online monitors are part of the system: We do
not need to store the trace to analyse it. Hence we compute statistical data like
the maximal runtime over very long executions of even multiple days or weeks
since only the important events are stored and not the complete trace.

7 Checking Event Ordering Constraints

Another important class of properties of cyber-physical systems are event order-
ing constraints: Here we are not interested in the exact timing of the events, but
in their order or presence. So for example one can check if certain events are
always preceded or followed by other events.

As an example we again consider the speed supervisor which calls several local
helper functions in order to compute the currently maximal allowed speed. The
function getAllowedSpeed returns the currently allowed speed. Depending on
the last seen signal or magnet it either calls computeAllowedSpeedDistant
or computeAllowedSpeedMagnet. So first we want to assure that every call
to getAllowedSpeed leads to a call of at least one of these two helper func-
tions. To do so we have to declare these function calls as in the previous examples:

def call := function_call("getAllowedSpeed")
def return := function_return("getAllowedSpeed")
def computeDistant :=

function_call("computeAllowedSpeedDistant")
def computeMagnet :=

function_call("computeAllowedSpeedMagnet")



Using these three event streams we can now check every time the function
getAllowedSpeed returns if one of the two other functions was called after
the function getAllowedSpeed was entered. Such ordering constraints are
expressed in TeSSLa as a comparison of the timestamps of the events:

def computation := on(return,
time(computeDistant) > time(call) ||
time(computeMagnet) > time(call))

As another example we can analyse a complete execution of the braking
sequence: Once the function computeAllowedSpeedMagnet was called for
the first time we must be past the 500 Hz inductor and hence the function
computeAllowedSpeedDistant must not be called any more. The following
TeSSLa specification checks whether all events on the stream computeMagnet
are happening after all events on the computeDistant stream:

def magnetAfterDistant :=
time(computeMagnet) > time(computeDistant)

By combining timing and event ordering constraints one can express arbitrary
complex constellations. As an example we consider the burst pattern known from
automotive modelling languages such as the AUTOSAR Timing Extension [5]
and the EAST-ADL2 timing extension TADL2 [12]. Such a pattern checks if
events happen in bursts. The pattern is parametrized in the maximum number
of events allowed in the burst, the maximal length of the burst and the mini-
mum time without any event after the burst. In TeSSLa such a pattern can be
implemented as macro and used as follows:

def p := bursts(x, burstLength = 2s,
waitingPeriod = 1s,
burstAmount = 3)

The following event pattern satisfies this burst pattern:

x

2 s 1 s 2 s 1 s 2 s 1 s
p true

To violate the burst pattern you can either have too many events during one
burst, or an event during the waiting period after the burst:

x

2 s 1 s 2 s 1 s 2 s 1 s
p true false true false true

Such complex event patterns can be used to spot variations in event patterns
of complex systems without a detailed knowledge of the dependencies of the
individual events. For example in our scenario we can take the combination of
all the function calls described above. If the supervisor is called roughly every
second, this should adhere the following specification:



def e := merge3(call, computeDistant, computeMagnet)
def b := bursts(e, burstLength = 100ms,

waitingPeriod = 500ms,
burstAmount = 3)

With this specification you can spot abnormal behaviour, e.g. too many func-
tion calls during the computation. Such an abnormal behaviour is not necessarily
a bug, but automatic detection of interesting parts of traces can be very helpful
to speed up the debugging process, especially for partially unknown systems.

8 Monitoring Data Values

The previous examples were limited to the program flow trace, but in some
situations one needs the actual values of variables or arguments to check the
correct behaviour of the system under test. For example if we want to check
that the allowed speed computed by the supervisor is equal to 85 km/h 23 s
after the distant signal we need this computed value.

The Instrumentation Trace Macrocell (ITM) is part of the ARM CoreSight,
see Chapter 12 of the CoreSight Technical Reference Manual [1], and allows
programs to explicitly write small portions of data to the trace port. While the
program flow trace can be monitored completely non-intrusively as described in
the previous sections, one has to instrument the C code in order to use the ITM
data trace. Figure 5 shows how the tooling and the workflow is adjusted in order
to integrate such ITM trace messages into the system:

To make the usage of the ITM data trace comfortable, the instrumentation
of the C code happens automatically. Therefore the C code and the given spec-
ification are analysed with regard to what data is used in the specification. The
instrumenter than adds corresponding statements writing this information to
the trace port.

Coming back to the example of verifying the computed allowed speed we
need to know the last seen signal and the computed allowed speed. We can
define TeSSLa signals of both values as follows:

def signal := function_argument("getAllowedSpeed", 1)
def allowed_speed := function_result("getAllowedSpeed")

signal now contains the value of the first argument of getAllowedSpeed
and is updated with every function call. allowed_speed contains the return
value of the same function and is updated every time the function returns. The
instrumenter adds the following debug_output statements to the function:

double getAllowedSpeed(int signal, ...) {
debug_output(1, (int64_t) signal);
double result = ...
tessla_debug(2, (int64_t) (result * 1000));
return result;

}
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Fig. 5. Overview of the ITM trace setup.

The ITM tracing provides several data value slots, so in order to distinguish
the two data values we are interested in we map them to the ITM slots 1 and 2.
The TeSSLa specification is rewritten in terms of the current value and slot as
follows:

in debug_slot: Events[Int]
in debug_value: Events[Int]
def signal := filter(debug_value, debug_slot == 1)
def allowed_speed := filter(debug_value, debug_slot == 2)

Now we can express the actual property: First we filter all changes of the signal
stream for those where the value becomes DISTANT_SIGNAL_CAUTION. Then
we check if the allowed speed is below 85 km/h if it was computed more than 23 s
after we have seen the distant signal. We have to apply some unit conversions
as the speed is internally represented in m/s.

def caution := filter(changes(signal),
signal == DISTANT_SIGNAL_CAUTION)

def valid :=
if time(allowed_speed) - time(caution) > 23s
then allowed_speed * 36 <= 85 * 1000
else true



In the above specification we used the macro changes which returns only
those events which have a different value than the previous one. Such a macro
is defined in TeSSLa’s standard library as follows:

def changes[A](signal: Events[A]) :=
filter(signal, signal != last(signal, signal))

The above example of checking computation results is just one example where
data traces are useful. The data trace can also be useful to check array indices and
other indirect memory accesses. Further applications are additional instrumen-
tations to enrich the program flow trace with extra information, e.g. additional
timing data or clock values for synchronization purposes.

9 Practical Hardware Setup

Fig. 6. The hardware setup comprising from left to right a personal computer, a de-
velopment board and the monitoring hardware.

The typical hardware setup comprises three components: a development
board running the application under observation, the monitoring hardware and
a personal computer running both the monitoring tools and the development
tools for the application. Figure 6 depicts this setup. The development board
is connected to the desktop computer via a USB cable. This connection is used
to upload and start the application. The development board is connected to the
monitoring hardware via an Aurora cable transmitting the compressed processor
trace. The monitoring hardware is connected to the desktop computer via the



second USB cable. This connection is used to configure the monitoring hardware
and to receive the output events. The monitoring hardware has several LEDs
that indicate its status and can also be used to display some status information
of the monitor. Furthermore it has additional USB ports that are not used in
normal operation and are only required to install updates.

10 Conclusion

In this paper we demonstrated hardware-based runtime verification using the
embedded tracing units of processors. While we discussed the technique in this
paper using the example of the ARM CoreSight technology, other processor ven-
dors recently developed similar tracing units: Intel’s Processor Tracing IntelPT
[13] supports program flow and data traces and for PowerPC the NEXUS tracing
technology is already established. Combining the trace reconstruction discussed
in this paper with stream-based online monitoring allows for long term monitor-
ing of systems under observation without the need to store the processor traces.
This technology can be seen as a milestone in the non-intrusive online-tracing of
processors since all established solutions either need to modify the program and
hence the timing of the system quite drastically or they can only analyse rather
short executions, because they have to store the highly compressed processor
trace in order to reconstruct it offline.

Online monitoring of processor traces can reduce costs for certification and
development efforts as well as debugging costs. The ability to do long term anal-
yses of systems in the field without the need to modify the source code, allows
companies on the one hand to demonstrate the correct behaviour of their sys-
tems. On the other hand they can use this technology to identify root causes of
bugs that occurred in productive systems faster. Currently bugs detected in pro-
ductive systems often have to be reproduced in the lab to extract proper traces
from the system which are needed to perform the root cause analysis. Using
runtime verification of processor trace data can provide additional information
already during the normal execution of the productive system and hence provide
valuable information on errors faster and more accurate.
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