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Abstract

We describe a parallel model-checking algorithm for the fragment of the µ-calculus
that allows one alternation of minimal and maximal fixed-point operators. This
fragment is also known as L2

µ. Since LTL and CTL
∗ can be encoded in this fragment,

we obtain parallel model checking algorithms for practically important temporal
logics.

Our solution is based on a characterization of this problem in terms of two-
player games. We exhibit the structure of their game graphs and show that we can
iteratively work with game graphs that have the same special structure as the ones
obtained for L1

µ-formulae. Since good parallel algorithms for colouring game-graphs
for L1

µ-formulae exist, it is straightforward to implement this algorithm in parallel
and good run-time results can be expected.

1 Introduction

Model checking [6] is a key tool for verifying complex hardware and software
systems. However, the so-called state-space explosion still limits its appli-
cation. While partial-order reduction or symbolic model checking reduce the
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state space by orders of magnitude, typical verification tasks still take mod-
ern sequential computers to their memory limits. One direction to enhance
the applicability of today’s model checkers is to use the accumulated memory
(and computation power) of parallel computers. Thus, we are in need of new
parallel model checking algorithms.

A well-known logic for expressing specifications is Kozen’s µ-calculus [10],
a temporal logic offering Boolean combinations of formulae and, especially,
labelled next-state, minimal and maximal fixed-point quantifiers. The (de-
pendent) nesting of minimal- and maximal fixed-point operators forms the
alternation depth hierarchy of the µ-calculus. It is well known that it is strict
[4]. The complexity of model checking, on the other hand, grows exponentially
with the alternation depth for all known algorithms. It is then reasonable to
limit the alternation depth of a formula to a practical important level and to
develop efficient algorithms for this class of problems. In particular, we only
need alternation depth 2 to capture the expressive power of LTL and CTL

∗ [7].

In this paper we develop a parallel model checking algorithm for µ-calculus
formulae up-to alternation depth 2. This fragment is known as L2

µ. Our algo-
rithm uses a characterization of the model-checking problem for this fragment
in terms of two-player games [8,12]. Strictly speaking, we present a paral-
lel algorithm for colouring a game graph in order to answer the underlying
model-checking problem. We show that the game graph can be decomposed
into components that can (after some simple modifications) easily be coloured
using a colouring algorithm for games obtained by formulae of L1

µ. L1
µ is the

alternation-free fragment of the µ-calculus, and hence L1
µ ⊂ L2

µ.

In [3], a parallel colouring algorithm for game graphs based on L1
µ was

introduced. We show that this algorithm is helpful as a subroutine in colouring
graphs for L2

µ. Thus, our reduction allows a simple and promising approach
to check formulae of LTL, CTL∗, and L2

µ.

The area of parallel model checking has gained interest in recent years.
In [11], a parallel reachability analysis is carried out. The distribution of the
underlying structure is similar to the one presented here but their algorithm
is not suitable for model checking temporal-logic formulae. A notable step
is done in [9], in which a symbolic parallel algorithm for the full µ-calculus
is introduced. [5] presents a model-checking algorithm for LTL using a costly
parallel cycle detection. Another model-checking algorithm for LTL are intro-
duced in [1], based on a nested depth-first search. Our approach, however,
explicitly uses the structure of game graphs for L2

µ.

In Section 2, we fix some notions on graphs, recall the syntax and seman-
tics of the µ-calculus, the definition of model checking, and describe model-
checking games for the µ-calculus. We analyze fixed-point computations and
the structure of game graphs in Section 3. We elaborate on a sequential model
checking algorithm in this section as well. The corresponding parallel model-
checking procedure is shown in Section 4.
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2 Graphs, µ-Calculus, and Games

2.1 Graphs

A directed graph G is a pair G = (Q,→) where Q is a set of nodes and
→⊆ Q × Q is the set of (directed) edges. We use notions as path, cycle,
(strongly connected) components, (induced) subgraphs, spanning tree as usual.
Let G ′ = (Q′,→′) and G ′′ = (Q′′,→′′) be two components of G withQ′∩Q′′ = ∅.
Assume that → ∩ (Q′′ × Q′) = ∅. Then every edge from a node q′ ∈ Q′ to a
node q′′ ∈ Q′′ (q′ → q′′) is called a bridge.

In the next sections, we consider graphs that are labelled by formulae. We
say that a cycle contains a formula ϕ iff the cycle contains a node labelled by
ϕ.

2.2 The µ-Calculus

Let Var be a set of fixed-point variables and A a set of actions. Formulae of
the modal µ-calculus over Var and A in positive form as introduced by [10]
are defined as follows:

ϕ ::= false | true | X | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [K]ϕ | 〈K〉ϕ | νX.ϕ | µX.ϕ

where X ∈ Var and K ⊆ A. 4 For a formula ϕ of the µ-calculus, we introduce
the notion of subformulae (denoted by Sub(ϕ)), free and bound variables, and
sentences as usual.

A formula ϕ is normal iff every occurrence of a binder µX or νX in ϕ

binds a distinct variable. For example, (µX.X) ∨ (µX.X) is not normal but
(µX.X) ∨ (µY.Y ) is. By renaming, any Formula can easily be converted into
an equivalent normal formula. If a formula ϕ is normal, every (bound) variable
X of ϕ identifies a unique subformula ΦX such that σX.ΦX ∈ Sub(ϕ). We call
X a ν-variable iff it is bound by the ν binder and µ-variable otherwise. We call
ϕ a µ-formula iff ϕ = µX.ΦX for appropriate X. ν-formulae are introduced
analogously. For ϕ = ϕ1∧ϕ2, ϕ = ϕ1∨ϕ2, ϕ = [K]ϕ1, ϕ = 〈K〉ϕ1, ϕ = νX.ϕ1,
or ϕ = µX.ϕ1, we call ϕ1 and ϕ2 a direct subformula of ϕ. From now on, we
assume all formulae to be normal.

A µ-calculus formula is interpreted over a labelled transition system T =
(S, T,A, s0) where S is a finite set of states, A a set of actions, and T ⊆
S × A × S denotes the transitions. As usual, we write s

a
→ t instead of

(s, a, t) ∈ T and s
a

6→ if there exists no t ∈ S with s
a
→ t. Furthermore, let

s0 ∈ S be the initial state of the transition system.

Given a transition system T and a variable valuation V : Var → 2S the
semantics of a formula ϕ over Var is a set of states [[ϕ]]V ⊆ S defined as follows

• [[true]]V = S, [[false]]V = ∅, [[X]]V = V (X),

4 〈−〉ϕ is an abbreviation for 〈A〉ϕ.
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• [[ϕ1 ∧ ϕ2]]V = [[ϕ1]]V ∩ [[ϕ2]]V , [[ϕ1 ∨ ϕ2]]V = [[ϕ1]]V ∪ [[ϕ2]]V ,

• [[[K]ϕ]]V =
{

s
∣

∣ ∀
s

a
→s′

a ∈ K ⇒ s′ ∈ [[ϕ]]V
}

,

• [[〈K〉ϕ]]V =
{

s
∣

∣ ∃
s

a
→s′

a ∈ K ∧ s′ ∈ [[ϕ]]V
}

,

• [[µX.ΦX ]]V is the minimal fixed point of the monotonic function F V
X : 2S →

2S given by F V
X (A) = [[ΦX ]]V [X←A],

• [[νX.ΦX ]]V is the maximal fixed point of F V
X .

Note that if ϕ is a sentence then the set [[ϕ]]V does not depend on V and in that
case we can write [[ϕ]] to denote the semantics of ϕ. We write T , s |= ϕ and
say that sentence ϕ is satisfied in state s of a transition system T if s ∈ [[ϕ]].

The fixed points can be computed by the standard iteration method. The
domain of the function is the finite complete partial order (cpo) 2S where each
chain has length at most |S|. Hence, to find the fixed point we need at most
|S| iterations.

We say that variable X subsumes variable Y (notation Y v X) if σY.ΦY

is a subformula of ΦX . Note that if X subsumes Y then each computation of
[[ΦX ]]V potentially leads to a nested fixed-point computation of [[σY.ΦY ]]V [X←A].
If X does not occur in ΦY then the nested fixed point needs to be computed
only once since its value does not depend on the current value of X. Otherwise
the nested fixed point must be recalculated each time the current value of X
is updated. We say that variable Y depends on X (notation Y ≺ X) if Y v X

and X occurs free in ΦY .

Definition 2.1 [alternation depth] The alternation depth ad(ϕ) of a formula
ϕ is the length of the longest chain X1 ≺ X2 ≺ · · · ≺ Xd of variables occurring
in ϕ such that Xi and Xi+1 are of different type for each i.

Alternation depth can be also defined for a single variable. In that case
we look at chains of alternating variables which end up in the given one.
Formally, the alternation depth ad(X) of a variable X ∈ Var(ϕ) is the length
of the longest chain X1 ≺ X2 ≺ · · · ≺ Xd = X of variables of alternating
types. Clearly ad(ϕ) = max{ad(X) | X ∈ Var(ϕ)}.

We denote by Ln
µ the set of all µ-formulae up to alternation depth n and

by Lµ the set of all µ-calculus formulae.

2.3 Model-checking games for the µ-calculus

Let us recall Stirling’s definition of model checking games [12].

Consider the transition system T and the formula ϕ. The model checking
game of T and ϕ has as board the Cartesian product S × Sub(ϕ) of the set
of states and ϕ’s subformulae. The game is played by two players, namely
∀belard (the pessimist), who wants to show that T , s0 |= ϕ does not hold,
whereas ∃loise (the optimist) wants to show the opposite.

The model checking game G(s, ϕ) for a state s and a formula ϕ is given
by all its plays, i.e. (possibly infinite) sequences C0 ⇒P0

C1 ⇒P1
C2 ⇒P2

. . .
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of configurations, where for all i, Ci ∈ S × Sub(ϕ), C0 = (s, ϕ), and Pi is
either ∃loise or ∀belard. We write ⇒ instead of ⇒Pi

if we abstract from the
players. Each next turn is determined by the the second component of current
configuration, i.e. the subformula of ϕ. ∀belard makes universal ⇒∀-moves,
∃loise makes existential ⇒∃-moves. More precisely, whenever Ci is

(i) (s, false), then the play is finished.

(ii) (s, ψ1 ∧ψ2), then ∀belard chooses ψ′ = ψ1 or ψ′ = ψ2, and Ci+1 = (s, ψ′).

(iii) (s, [K]ψ), then ∀belard chooses s
a
→ t with a ∈ K and Ci+1 = (t, ψ).

(iv) (s, νX.ψ), then Ci+1 = (s, ψ).

(v) (s, true), then the play is finished.

(vi) (s, ψ1 ∨ ψ2), then ∃loise chooses ψ′ = ψ1 or ψ′ = ψ2, and Ci+1 = (s, ψ′).

(vii) (s, 〈K〉ψ), then ∃loise chooses s
a
→ t with a ∈ K and Ci+1 = (t, ψ).

(viii) (s, µX.ψ), then Ci+1 = (s, ψ).

(ix) (s,X), then Ci+1 = (s, σX .ΦX).

We will speak of ∀belard-moves in cases (i)–(iv) and (ix) if σ = µ, and
∃loise-moves in all other cases. Ci is called ∀-configuration or ∃-configuration,
respectively. A move according to (ix) is also called an unwinding of X.

A configuration is called terminal if no (further) move is possible. A play
G is called maximal iff it is infinite or ends in a terminal configuration. The
winner of a maximal play is defined in the following way: If the play is finite,
ending in a configuration (s, ψ), then ∀belard wins G iff ψ = false or ψ =
〈K〉ψ. 5 Dually, ∃loise wins G iff ψ = true or ψ = [K]ψ. 5 An infinite play
is won by ∀belard iff the outermost fixed point that is unwinded infinitely
often is a µ-fixed point. Otherwise, when the outermost fixed point that is
unwinded infinitely often is a ν-fixed point, then ∃loise wins the game.

A strategy is a set of rules for a player P telling her or him how to move in
the current configuration. It is called history free if the strategy only depends
on the current configuration without considering the previous moves. A win-
ning strategy guarantees that the play that P plays according to the rules will
be won by P . [12] shows that model checking for the µ-calculus is equivalent
to finding a history-free winning strategy for one of the players: Let T be a
transition system with state s and ϕ a µ-calculus formula. T , s |= ϕ implies
that ∃loise has a history-free winning strategy starting in (s, ϕ), and T , s 6|= ϕ

implies that ∀belard has a history-free winning strategy starting in (s, ϕ).

All possible plays for a transition system T and a formula ϕ are captured
in the game graph whose nodes are the elements of the game board (the pos-
sible configurations) and whose edges are the players’ possible moves. The
game graph can be understood as an and-/or-graph where the or-nodes are
∃-configurations and the and-nodes are ∀-configurations.

The existence of a history-free winning strategy implies that every node

5 Note that, due to maximality, we have @t : s
a

→ t for any a ∈ K.
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s0 s1
b, c

a, b

Fig. 1. A transition system.

of the game graph can be labelled with a colour identifying which player has
a winning strategy for every game starting from this node. We use red for
∀belard and green for ∃loise. Determining a winning strategy can therefore
be understood as a colouring problem.

3 Sequential Model Checking

In this section we explain how model checking for L2
µ-formulae can be carried

out by iteratively using a procedure for checking L1
µ-formulae. Firstly, we

describe how to reduce alternation depth in the usual fixed point computation.
In the next subsection we show how this observation has to be read when
dealing with game graphs. As a result, we get a game-based sequential model
checking algorithm for L2

µ-formulae, which employs a game-based algorithm
for L1

µ-formulae. In the next section, we describe in which way this algorithm
can be parallelized.

3.1 Reducing alternation depth.

The basic idea for reducing alternation depth is to resolve fixed point variables
of the maximal alternation depth using the iteration method. In the remaining
computations only formulae with lower alternation depth are involved.

As a running example, let us study the fixed point computation for the
transition system shown in Figure 1 and the formula µX.[c]X ∧ (νY.〈a〉Y ∨
〈b〉X). The formula contains two variables X and Y of alternation depth 2
and 1 respectively. We compute the value of X in an iteration starting from
X = ∅. The next approximation is given by

[[ΦX ]]V [X←∅] = {s | s
c

6→ } ∩ [[νY.〈a〉Y ∨ 〈b〉X]]V [X←∅]

The inner fixed point formula (with value of X fixed to ∅) is alternation free,
hence using our favorite L1

µ model checker we can find out that [[νY.〈a〉Y ∨
〈b〉X]]V [X←∅] = {s1}. This gives the next approximation of X = {s1}. In the
next iteration we compute

[[ΦX ]]V [X←{s1}] = {s0, s1} ∩ [[νY.〈a〉Y ∨ 〈b〉X]]V [X←{s1}]

and again use L1
µ model checker to find [[νY.〈a〉Y ∨ 〈b〉X]]V [X←{s1}] = {s0, s1}.

This ends the computation since next iteration cannot add any new states to
the value of X.
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In general, the situation may be more complex than in our example. Sev-
eral variables of maximal alternation depth may occur in a formula, possibly
with different types. Variables of the same type may depend on each other.
Also, if Y v X then we must know the value of Y before we start to com-
pute X. Hence evaluation of these variables must be performed in bottom-up
manner, using simultaneous fixed-point computations.

More precisely, let X ⊆ Var(ϕ) be the set of variables with maximal alter-
nation depth. Systematically we evaluate them using the iteration method.
We start with these variables in X which do not subsume any other vari-
ables from X . After finding their values we proceed to the variables X ∈ X
for which values of all Y v X, Y ∈ X are already known. Eventually all
variables in X will be evaluated.

In each stage of this process we find the values of all µ-variables and,
separately, the values of all ν-variables by simultaneous iteration. Specifically,
if X1, . . . , Xp are all µ-variables which we want to evaluate, then we start by
setting V (Xi) = ∅ for i = 1, . . . , p, where V is the current valuation (keeping
the already computed values). Then in each iteration values of X1, . . . , Xp are
updated using formula V ′(Xi) = [[Φi]]V . Here Φi is the formula ΦXi

with all
subformulae σY.ΦY , Y ∈ X replaced by Y . Note that if Y v Xi for Y ∈ X
then we have already computed the value of Y and it is stored in V . Observe
that the alternation depth of each Φi is strictly less than the alternation depth
of the original formula ϕ.

3.2 Alternation and Game Graphs

The previous idea of reducing alternation depth can be applied similarly for
game graphs. To see this, we study the structure of game graphs for L2

µ-
formulae. Let us first introduce the notion of a formula’s graph, which repre-
sents the subformula relation and unwindings of fixed points.

Definition 3.1 The graph of ϕ ∈ Lµ, denoted by G(ϕ), is (Sub(ϕ),→) where
→= {(ψ, ψ′) | ψ′ is a direct subformula of ψ or ψ = X and ψ′ = σX .ΦX}.

Figure 2 indicates the graphs of several formulae.

An arbitrary graph can be partitioned into maximal strongly connected
components and directed acyclic graphs (dags). Furthermore, these compo-
nents can be partially ordered by bridges (Figure 2(a)). For the graph of
an L2

µ-formula, we can easily see, that within its strongly connected compo-
nents either a µ-fixed point or ν-fixed point is unwinded (Figure 2(c)), or one
alternation of µ- and ν-formulae (Figure 2(b)). We conclude:

Theorem 3.2 Let ϕ ∈ L2
µ. Then there exists a partition of G(ϕ) such that

every subgraph either is a dag, contains only variables of alternation depth
one, or contains variables of alternation depth one and two that are dependent.
Furthermore, the subgraphs are partially ordered by bridges.

In Figure 2(a), we indicate the partition of the graph of the formula
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µX.νY.(ϕ(X, Y ) ∧ νY ′.µX ′.ψ(X ′, Y ′))

νY.(ϕ(X, Y ) ∧ νY ′.µX ′.ψ(X ′, Y ′))

ϕ(X, Y ) ∧ νY ′.µX ′.ψ(X ′, Y ′)

ϕ(X, Y )

νY ′.µX ′.ψ(X ′, Y ′)

µX ′.ψ(X ′, Y ′)

ψ(X ′, Y ′)

(a) Partition into components

νX.µY.(Y ∨X)

µY.(Y ∨X)

Y ∨X

Y X

(b) alternation

νX.(µY.Y ) ∨X

(µY.Y ) ∨X

µY.Y X

Y

(c) alternation-free

Fig. 2. Graphs of formulae

µX.νY.(ϕ(X, Y ) ∧ νY ′.µX ′.ψ(X ′, Y ′)). Here, ϕ(X, Y ) and ψ(X, Y ) are ar-
bitrary fixed-point-free formulae with free variables among X, Y and X ′, Y ′,
respectively. Note that X subsumes Y ′ but Y ′ is not dependent on X.

Since the game graph is a kind of unfolding of the formula graph using
the transition system, the partition of the formula graph induces a partition
of the game graph. We get:

Theorem 3.3 Let GG be the game graph for a transition system and an L2
µ-

formula. Then there exists a partition of GG such that every subgraph is either
a dag, contains only variables of alternation depth one, or variables of alter-
nation depth two and one that are dependent. Furthermore, the subgraphs are
partially ordered by bridges.

3.3 The algorithm

Let us now develop algorithm SBCL2 for finding a winning strategy, and
hence solving the model checking problem for L2

µ. The algorithm prepro-
cesses the given game graph component-wise (using the partition according
to Theorem 3.3). It employs the sequential algorithm SBCL1 presented in
[3] to colour each component, possibly repeatedly with further interspersed
processing steps.

The basic idea of the algorithm is to explicitly perform any fixed point cal-
culation with alternation depth 2 directly, then reusing the algorithm SBCL1
suitable for L1

µ to perform the remaining inner (ad(X) = 1) fixed point calcu-
lations. To illustrate our approach, we study the transition system shown in
Figure 1 and the formula µX.[c]X ∧ (νY.〈a〉Y ∨ 〈b〉X).

Preprocessing the game graph.

First, we decompose the given game graph according to Theorem 3.3 into
partially ordered components Qi, which are subsequently coloured, starting

8
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s0, µX.[c]X ∧ (νY.〈a〉Y ∨ 〈b〉X)

s0, [c]X ∧ (νY.〈a〉Y ∨ 〈b〉X)

s0, [c]X

s1, X

s1, µX[c]X ∧ (νY.〈a〉Y ∨ 〈b〉X)

s1, [c]X ∧ (νY.〈a〉Y ∨ 〈b〉X)

s1, [c]X s1, νY.〈a〉Y ∨ 〈b〉X

s1, 〈a〉Y ∨ 〈b〉X

s1, 〈a〉Y

s1, Y

s1, 〈b〉X

s0, νY.〈a〉Y ∨ 〈b〉X

s0, 〈a〉Y ∨ 〈b〉X

s0, 〈a〉Y s0, 〈b〉X

(a) preprocessing

s0, µX.[c]X ∧ (νY.〈a〉Y ∨ 〈b〉X)

s0, [c]X ∧ (νY.〈a〉Y ∨ 〈b〉X)

s0, [c]X

s1, X

s1, µX[c]X ∧ (νY.〈a〉Y ∨ 〈b〉X)

s1, [c]X ∧ (νY.〈a〉Y ∨ 〈b〉X)

s1, [c]X s1, νY.〈a〉Y ∨ 〈b〉X

s1, 〈a〉Y ∨ 〈b〉X

s1, 〈a〉Y

s1, Y

s1, 〈b〉X

s0, νY.〈a〉Y ∨ 〈b〉X

s0, 〈a〉Y ∨ 〈b〉X

s0, 〈a〉Y s0, 〈b〉X

(b) one iteration

Fig. 3. Colouring a game-graph component with alternation.

with the least ones.

Let Gi = (Qi, Ei) be the graph of a component. If Gi is a dag or contains
only variables of depth one, SBCL1 can be used immediately. Assume now
that Gi has a variable of alternation depth 2. To simplify the presentation,
we assume it is µ-variable X. The forthcoming explanation can be dualized
for ν-variables.

We determine the set PE i ⊆ Ei of edges (s,X) → (s, µX.ΦX) ∈ Ei (for
ad(X) = 2). The modified graph G0

i = (Qi, Ei − PE i) does not admit paths
containing infinitely many configurations of both types of fixed point formulae
any more. Figure 3(a) shows the game graph for our example. The dotted
edge is the one removed to obtain a game graph in which no variable of depth
2 is unwinded.

Colouring the game graph.

Next, we apply a pre-colouring of configurations q (which are now leaves
in the modified graph) of edges q → q′ ∈ PE i according to the type of their
corresponding fixed point formula—red for µ fixed points, green for ν. Then
we execute algorithm SBCL1 on the pre-coloured and modified G

j
i (initially

j = 0), which is afterwards completely coloured.

A new uncoloured graph G
j+1
i is created from G

j
i , and for each edge q →

q′ ∈ PE i, we copy the colour of q′ in G
j
i to configuration q in G

j+1
i . They

form the refined assumptions of the pre-colouring. SBCL1 is executed again
on G

j+1
i afterwards.

The above step is repeated until Gj+1
i = G

j
i and hence the fixed point is

reached. The number of iterations is bounded by j ≤ |proj 1(PE i)|.

In our example, the configuration (s1, X) is initialized with red . SBCL1
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will colour the the game graph as depicted in Figure 3(b), in which red con-
figurations are filled with and green ones with . Since the colour of
configuration (s1, µX[c]X ∧ (νY.〈a〉Y ∨ 〈b〉X))) is different from (s1, X), we
set the colour of configuration (s1, X) to green and start a new iteration.
Now, SBCL1 will colour all configurations green (except (s0, 〈a〉Y )). Since
the colour of (s1, µX[c]X ∧ (νY.〈a〉Y ∨ 〈b〉X)) has not been changed in this
iteration, we are done.

Proceeding with the remaining components is done in the same manner,
the propagation of colours between components is the same as described in [3].
The result of SBCL2 is a completely and correctly (wrt. the rules lined out in
Section 2.3) coloured game graph.

The pre-colouring preserves the property of algorithm SBCL1 that the
colouring is monotonic, i.e. no configuration changes its colour more than
once. Since SBCL1 terminates as well, SBCL2 is terminating. We sum up:

Theorem 3.4 Given a transition system and an L2
µ-formula, the algorithm

SBCL2 constructs the corresponding game graph and labells the configurations
either red or green, depending on whether ∀belard or respectively ∃loise has a
winning strategy.

Complexity

The run time of our colouring algorithm for L2
µ is quadratic in both the

number of states s of the underlying LTS, and in the length l of the given
L2

µ formula, thus s2 × l2. This is straight-forward to see, recalling that the
complexity of SBCL1 is bounded by s × l as stated in [3], and SBCL1 is
executed at most |

⋃

i proj 1(PE i)| ≤ s× l times.

The costs for generating the PE i are negligible here, since it needs to be
done only once (e.g. while producing the game graph), and is linear wrt. to
the number of edges in GG.

4 Parallel Model Checking

We describe a parallelized version of SBCL2, called PTCL2. We line out how
the game graph data structure can be built and distributed in parallel. The
key idea of the parallelized colouring process is again to reduce the alternation
depth by calculating the outermost fixed point explicitly, then executing a
parallel algorithm for L1

µ on the transformed game graph.

4.1 Distributing the game graph

The parallel construction and distribution of the game graph is a standard
approach, and basically the same as in [3], which we are going to revisit
shortly.

As a data structure, we employ adjacency lists. We also link to the pre-
decessor, as well as to the successor of a configuration for the labelling al-
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gorithm. A component is constructed in parallel by a typical breadth-first
strategy: given a configuration q, determine its successors q1, . . . , qn. To ob-
tain a deterministic distribution of the configurations over the workstation
cluster, one takes a function in the spirit of a hash function assigning to every
configuration an integer and subsequently its value modulo N , the number
of processors. This function f : (S × Sub(ϕ)) → {0, . . . , N − 1} determines
the location of every configuration within the network uniquely and without
global knowledge. Thus, we can send each q ∈ {q1, . . . , qn} to its processor
f(q). If q is already in the local store of f(q), then q is reached a second
time, hence the procedure stops. If predecessors of q were sent together with
q, the list of predecessors is augmented accordingly. If q is not in the local
memory of f(q), it is stored there together with the given predecessors as
well as all its successors. These are sent in the same manner to their owning
(wrt. f) processors, together with the information that q is a predecessor. The
corresponding processors update their local memory similarly.

Additionally, we also take care of the sets PE i during the construction of
the game graph. Just as in the sequential case, all edges in PE i are removed
from the game graph, and instead are stored separately on processor 0, which
we hereafter refer to as “master”. In practice, their number is sufficiently small
that this approach neither leads to space problems nor processing bottlenecks.

Furthermore, the distribution function f is modified in such a way that
each configuration q ∈ proj 2(

⋃

i PE i) (hereafter called “iteration configura-
tion”), is stored on the master, thus f(q) = 0. The reason is that the master
takes special actions on a colour change of such an iteration configuration,
which we will outline below.

We refer the reader to [2] for a thorough discussion of this and other
possible approaches storing distributed transition systems.

4.2 Labelling in parallel

Due to our game graph’s construction, it is devoid of any SCC s created due
to a L2

µ formula, and hence we can apply our standard parallel model checking
algorithm for L1

µ formulae (PTCL1, from [3, Section 4]) to colour it. Again,
the colouring is done component-wise and the propagation of colours between
components can be taken verbatim from PTCL1.

Similar to the sequential case, PTCL1 is called repeatedly on a component
Qi, as long as a run yields a colour change on any of the iteration configura-
tions. Since the master owns all iteration configurations, it can easily check
after each round of colouring for such a colour change of a configuration q ′.
The colouring process is then restarted as follows.

The master notifies all processors (including itself) to uncolour their parts
of the game graph, the corresponding predecessor q (wrt. PE i) of any q′ adjusts
its initial colouring to the colour of q′. Then all processors are notified by a
broadcast from the master to restart PTCL1.
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If no iteration configuration has changed its colour after applying PTCL1,
the colouring is stable (the fixed point has been reached), and the algorithm
terminates, returning as result the colour of the root configuration of GG, and
thus the solution to the model checking problem.

5 Conclusion

In this paper, we have presented a parallel game-based model-checking al-
gorithm for an important fragment of the µ-calculus. It immediately gives
parallel model checking algorithms for LTL and CTL

∗ as well. The idea of the
algorithm is to reduce alternation depth and to employ the parallel model
checking algorithm presented in [3].

It would be desirable to have an implementation of our algorithm to cer-
tify its practical benefits. Furthermore, it would be interesting to study its
performance in comparison with existing parallel model checking algorithm
for the µ-calculus and LTL.
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