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{decker, leucker, thoma}@isp.uni-luebeck.de

Abstract. We study monitoring of visibly context-free properties. These
properties reflect the common concept of nesting which arises naturally
in software systems. They can be expressed e.g. in the temporal logic
CaRet which extends LTL by means of matching calls and returns. The
future fragment of CaRet enables us to give a direct unfolding-based
automaton construction, similar to LTL. We provide a four-valued, im-
partial semantics on finite words which is particularly suitable for mon-
itoring. This allows us to synthesize monitors in terms of deterministic
push-down Mealy machines. To go beyond impartiality, we develop a con-
struction for anticipatory monitors from visibly push-down ω-automata
by utilizing a decision procedure for emptiness.

1 Introduction

In Runtime Verification (RV) an actual execution of a system is checked with
respect to a given correctness property [1]. Therefore, typically a so-called mon-
itor is synthesized from the high-level specification of the correctness property,
which yields an assessment or a verdict, denoting to which extent the property
is satisfied by the current execution.

RV is a verification technique that is becoming more and more popular in
recent years but is also a key ingredient in new programming paradigms such as
monitor-oriented programming [2] or software architectures for reliable systems
such as runtime reflection [1].

In runtime verification, one always faces a finite execution of a potentially
infinite run of a system. Such an execution may be completed, and for exam-
ple, completely stored in a log file and subsequently checked with respect to
some property, or it may be checked on-line while it is continuously evolving.
Depending on the application, different notions of correctness assessments are
appropriate and monitors evaluating an execution and a property accordingly
are needed.

As explained in [3] and [4], a two-valued assessment yielding yes/true or
no/false seems appropriate when faced with completed executions as either a
property is satisfied or not.

When checking an execution on-line, at least three different assessments
(true/false/inconclusive) are needed to adhere to the maxim of impartiality.



This states that a property should only be evaluated to true or false, if any con-
tinuation of the execution will yield the same verdict. This ensures that runtime
verification is not stopped prematurely with the (misleading) understanding that
a property is violated or fulfilled although subsequent observations may yield a
different verdict.

The inconclusive verdict can be refined further to a verdict of presumably
true and presumably false. Presumably true expresses the fact that no violation
has been seen but one might still occur in the future as the observation might
be extended. Presumably false describes that some obligation is not satisfied but
might still be fulfilled in the future. These verdicts are of particular interest when
a system terminates as they still allow for some assessment where an inconclusive
verdict would have provided no information at all.

The maxim of impartiality can trivially be fulfilled with a monitor always
yielding the verdict inconclusive. The maxim of anticipation on the other hand
states that a verdict of true or false should be evaluated as soon as this is possible,
meaning for example for a violated safety property that the violation should be
reported by a monitor for the shortest execution of a run (i.e. the shorted prefix
of the run) violating the property.

The methods for checking properties of executions can broadly be divided into
rewriting-based and automata-based approaches. As described in [4], the latter
can sometimes be seen as pre-computations of rewriting-based approaches, high-
lighting that rewriting can be understood as on-the-fly automata constructions.
Thus, typically, rewriting-based approaches are easier to implement, may have a
better memory performance but may have a worse runtime performance. More-
over, anticipatory approaches to runtime verification need a complex check in
each verification step which can be done more efficiently using pre-computations
with automata.

A prominent specification formalism for denoting properties to check is Linear-
time Temporal Logic (LTL) [5], which allows to specify star-free regular prop-
erties. A bunch of different approaches for checking LTL properties at runtime
have been proposed. These can be categorized into two-valued rewriting-based
approaches [6–8], impartial three and four-valued rewriting and automata-based
approaches [9, 4], or impartial and anticipatory automata-based approaches [10,
11]. The latter approach was then generalized to arbitrary linear-time temporal
logics which come with an automaton-based abstraction for a satisfiability check
in [12].

For practical applications, plain LTL specifications are typically not enough.
Besides enrichments like dealing with data or real-time aspects, one of the impor-
tant goals is to specify context-free properties, as, in software systems, nesting
structures arise naturally, in particular in the context of recursive programs
with calls and returns. State-full protocols impose nested structures on message
sequences. For example, a transaction protocol requires (recursively) any sub-
transactions of some transaction to finish before its completion. Similar prop-
erties arise in nested document formats such as XML or serialization of nested
data structures.
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This common concept of nesting is reflected in the class of visibly context-
free languages. Alur et al. proposed in [13] visibly pushdown automata as an
automaton characterization of visibly context-free languages. The nature of this
automaton model is that the stack action is determined by the input symbol.
This is analogous to calls and returns in recursive programs. In contrast, a push-
down property that is not visibly, is the language anban where a stack is needed
rather for counting than for recognizing a nesting structure.

In the context of temporal specifications, the logic CaRet is a natural exten-
sion of LTL with the ability to express nesting [14, 15]. The concept of a direct
temporal successor is extended to the concept of a so-called abstract successor.
That is, the successor on the same level between a call and its matching return.
CaRet, however does not cover the full class of visibly context-free properties.
Logics with full expressiveness regarding visibly context-free languages are, for
example VP-µTL [16] and MSOµ [13].

Monitor synthesis for CaRet was first considered in [17]. More specifically, a
monitoring approach for a version of CaRet is provided that allows for checking
globally a past-time property, i.e. safety properties [18]. According to our tax-
onomy, the approach is rewriting-based. Due to the additional stack that has to
be kept in this setting, a translation to an impartial automaton approach is not
straightforward. Note that for CaRet the general scheme developed in [12] is not
applicable.

In this paper, we study monitoring of visibly context-free properties. The
future fragment of CaRet allows, similar to LTL a direct unfolding-based au-
tomaton construction. We provide a four-valued, impartial semantics on finite
words in Section 3 which is particularly suitable for monitoring. It allows us to
synthesize monitors in terms of deterministic push-down Mealy machines.

Additionally, we study an anticipatory approach to monitoring of visibly
context-free properties in Section 4. We achieve to construct anticipatory mon-
itors from visibly push-down ω-automata by utilizing a decision procedure for
emptiness. Thus, this allows us to monitor properties expressed e.g. in full CaRet
or VP-µTL. As such, we provide a complete picture of monitoring context-free
properties in the taxonomy introduced in [4] and explained at the beginning of
this paper.

2 Preliminaries

Alphabets and Words. Let AP be a finite set of atomic propositions and Σ =
2AP a finite alphabet. We assume Σ to be the disjoint union of call symbols
Σc, return symbols Σr and internal symbols Σint. Furthermore, call, int and
ret denote propositional formulae characterizing exactly the call, internal and
return symbols, respectively. A word over Σ is a possibly infinite sequence w =
w0w1w2. . . s.t. wi ∈ Σ. We denote by w(i) = wiwi+1. . . the suffix starting at
position i and, if w ∈ Σn, by |w| = n its length. Let Σ∗ and Σω denote the sets
finite and infinite words overΣ, respectively, andΣ∞ = Σ∗∪Σω,Σ+ := Σ∗\{ε}.
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We denote B4 = {>,>p,⊥p,⊥} the four-valued De-Morgan lattice with linear
order, i.e. the lattice with > w >p w ⊥p w ⊥, > = ¬⊥ and >p = ¬⊥p. Note,
that we assume big operators to have lower precedence than small ones, thus⊔
a u b =

⊔
(a u b).

Visibly push-down automata. A (non-deterministic) push-down automaton is a
tuple F = (Q,Σ, Γ, δ,Q0, F ) where
– Σ,Γ are the finite input and stack alphabet, respectively, and Γ# := Γ ∪̇{#}

the stack alphabet enriched by a new bottom symbol # 6∈ Γ ,
– Q is a finite set of control states,
– Q0 ⊆ Q is the set of initial states,
– F ⊆ Q is the set of accepting states and

– δ : Q× Γ# ×Σ → 2Q×Γ
≤2
# is the non-deterministic, transition function.

A configuration of F is a tuple (q, s) ∈ Q× (Γ ∗{#}) comprising the current
control state and a stack assignment ending with #. A run of F on a finite
input word w = w0w1. . . wn ∈ Σ∗ is a sequence c0c1. . . cn+1 of configurations
ci ∈ Q× (Γ ∗{#}) s.t.
– c0 ∈ Q0 × {#} and
– if ci+1 = (q′, γ′γ′′s) then ci = (q, γs) with (q′, γ′γ′′) ∈ δ(q, γ, wi),

where q ∈ Q ,γ ∈ Γ#. A run (q0, s0)(q1, s1). . . (qn+1, sn+1) is accepting if qn+1 ∈
F .

We call a push-down automaton P reading infinite words a push-down ω-
automaton. A run of P on an infinite word u = u0u1. . . ∈ Σω is an infinite
sequence of configurations c0c1. . . defined as above. A run (q0, s0)(q1, s1). . . is
accepting if the sequence of states q0q1. . . satisfies a Büchi condition, i.e. there
is some q ∈ F that occurs infinitely often in the sequence.

A push-down (ω-)automaton accepts a word w ∈ Σ∞ if there is an accepting
run on w. By L(P) ⊆ Σω and L(F) ⊆ Σ∗ we denote the set of words accepted
by P and F , respectively.
F and P are called a visibly push-down automaton (Vpa) and a visibly push-

down ω-automaton (ω-Vpa), respectively, if the input alphabet Σ is the union
of three disjoint alphabets Σc, Σr, Σint and for (q′, u) ∈ δ(q, γ, a)
– u = ε iff a ∈ Σr and γ 6= #,
– u = # iff a ∈ Σr and γ = #,
– u = γ iff a ∈ Σint and
– u ∈ (Γ{γ}) iff a ∈ Σc.

Emptiness of Push-down automata. Let P = (Q,Σ, Γ, δP , Q0, F ) be a push-
down ω-automaton. Following [19], we can represent the set configurations of P,
from which all inputs are rejected (empty configurations), by means of a multi
automaton A = (S∪̇Q,Γ, δ,Q,A). S∪̇Q is the state space where S is a finite set
and disjoint from the states Q of P, which are the initial states of A. The stack
alphabet Γ of P is the input alphabet of A and A ⊆ S are the accepting states.
δ : S∪̇Q×Γ → 2S∪̇Q is the transition function. The multi-automaton A accepts
configurations (q, s#) of P by behaving like a finite automaton with initial state
q and reading the stack configuration s ∈ Γ ∗ as input.
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Note, that in [19] the state space of A and P are disjoint but each initial
state s of A corresponds (bijectively) to some q ∈ Q. We therefore identify
those. Further, we can assume A to have a deterministic transition function δ
since A is basically a compact representation of a set of finite automata.

3 Four-valued Semantics of CaRet+ on Finite Traces and
Impartial Monitoring

In this section, we consider the logic CaRet as a specification formalism for
nesting structures. For its future fragment CaRet+, we provide a four-valued,
impartial semantics on finite words. We show how to construct a push-down
Mealy machine as monitor that incrementally reads input symbols and outputs
the semantics of the observed trace. Our aim is to give an easily implementable
monitor construction for properties expressing nesting structures.

3.1 Four-valued CaRet+

The syntax of CaRet+ formulae is defined by the following grammar.

ϕ ::= p | ϕ ∧ ϕ | Xϕ | Xa ϕ | ϕUϕ | ϕUa ϕ |
¬p | ϕ ∨ ϕ | Xϕ | Xa ϕ | ϕRϕ | ϕRa ϕ

The idea of how CaRet extends the operators known form LTL is as follows:
Consider for example a program procedure. While the direct successor of a line
might be the first line in a called procedure, the abstract successor jumps directly
to the next line in the current procedure and omits to enter any called procedures.
Moreover, the last line in the procedure has a direct successor, namely the return
position in its caller, but no abstract successor. CaRet uses the abstract next
modality Xa to specify a property at the next abstract position. Further, in
general, it contains the abstract past modality Xa− for specifying a property at
the call position of the current procedure. Intuitively, consecutive application
of Xa− walks up the call stack. Also, CaRet provides abstract versions of the
common until and since operators. However, for sake of simplicity, we do not
support the past operators in this section. It shall be noted, that in contrast to
LTL, past modalities add expressiveness to the logic.

For a formula Φ, we denote sub(Φ) the set of sub-formulae including unfold-
ings, e.g. ψ ∨ ϕ ∧X(ϕUψ) for a sub-formula ϕUψ of Φ.

Semantics on finite traces. The semantics of CaRet is defined on infinite traces.
Since monitoring inherently deals with finite traces we provide the impartial
finitary semantics FCaRet4. It is intended to intuitively resemble the infinite
trace semantics, similar to finitary semantics for LTL formulae, e.g. FLTL and
FLTL4 [4].

As the latter, FCaRet4 uses the four truth values true (>), false (⊥), pre-
sumably true (>p) and presumably false (⊥p), allowing for impartiality.
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The distinguishing aspect between finitary and infinitary semantics is the
need for handling the end of a trace which is reflected by discriminating weak and
strong operators. A formula Xϕ describes what should happen at the next time
step. If the trace ends here, it needs to be specified if that is desired or not. The
temporal operators X, Xa, U and Ua are considered as strong operators having
an existential character. They require the next position to exist and evaluate to
⊥p if not. Consequently, their duals X, Xa, R and Ra have a weak, i.e. universal
character; they impose restrictions only on actually existing positions. If there
is no successive position, they evaluate to >p. Note that the next operators and
their (weak) duals therefore do not coincide on finite traces as they do on infinite
ones.

Abstract successors. For the semantics of the abstract temporal modalities, we
use the notion of abstract steps in terms of the abstract successor function succa

as in the infinitary CaRet semantics. We define the partial function succa :
Σ∞ ⇀ N0 mapping a word to the abstract successor of its first position. For
any w ∈ Σ∞, succa(w) = 1 if |w| ≥ 2, w0 6∈ Σc is not a call and w1 6∈ Σr is
not a return. If w starts with a call, then the abstract successor is its matching
return, if it exists: succa(w) = i if w0 ∈ Σc and i ∈ N0 is the smallest number
s.t. wi ∈ Σr and in w1. . . wi the number of positions j with wj ∈ Σr is greater
than the number of positions j′ with wj′ ∈ Σc. succ

a(w) is undefined in all other
cases. Further, we let succa∗(w) denote the set of positions {i1, i2, . . . } on a word
w ∈ Σ∞ s.t. i1 = 0 and ij+1 = succa(w(ij)). Additionally, we define a predicate
complete(w) that is true if succa∗(w) has a maximal element i < |w| − 1 and
wi+1 ∈ Σr is a return, otherwise complete(w) is false. That is, complete(w) is
true if a return in w is not matched and thus the abstract sequence formed by
the positions in succa∗(w) terminates because of the first unmatched return.

We define the semantics in conformance with FLTL4 as defined in [4]. The
semantics of a formula is given in terms of a function that maps words w ∈ Σ =
2AP to the B4-lattice. For propositions and boolean connectives, the two-valued
semantics can be directly lifted to the B4-lattice.

JpK4(w) =

{
> if p ∈ w0

⊥ if p 6∈ w0

Jϕ ∧ ψK4(w) = JϕK4(w) u JψK4(w)

J¬pK4(w) =

{
> if p 6∈ w0

⊥ if p ∈ w0

Jϕ ∨ ψK4(w) = JϕK4(w) t JψK4(w)

For the (direct) strong and weak next operators the semantics is defined as
discussed above.

JXϕK4(w) =

{
JϕK4(w(1)) if |w| > 1

⊥p otherwise
JXϕK4(w) =

{
JϕK4(w(1)) if |w| > 1

>p otherwise
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The standard semantics of the U and R operator is lifted to B4. The right parts
of the definitions deal with the end of words.

JϕUψK4(w) =

 ⊔
i<|w|

JψK4(w(i)) u
l

j<i

JϕK4(w(j))

 t
⊥p u

l

i<|w|

JϕK4(w(i))


JϕRψK4(w) =

 ⊔
i<|w|

JϕK4(w(i)) u
l

j≤i

JψK4(w(j))

 t
>p u

l

i<|w|

JψK4(w(i))



The abstract next operator can be defined in a similar manner as their direct
counter parts using the abstract successor succa instead of the direct successor.

While the the two-valued semantics FLTL considers observations as termi-
nated, the four-valued semantics FLTL4 reflects the intuition, that a finite obser-
vation might still be continued and therefore next operators X and X evaluate
to ⊥p and >p, respectively, at the end of a word. For the end of an abstract
sequence, i.e. when there is no abstract successor, both cases are possible. When
observing an (unmatched) return symbol as the direct successor, the current
“procedure” definitely returns and there is no continuation. The abstract next
operators shall then give a definite verdict, i.e. > or ⊥. On the other hand, if
the abstract sequence ends because the whole observation ends before the next
abstract successor, there might be a continuation and hence the evaluation is
preliminary, i.e. >p or ⊥p.

JXa ϕK4(w) =


JϕK4(w(n)) if succa(w) = n ∈ N
⊥ if succa(w) is undef. ∧ w1 ∈ Σr

⊥p otherwise

JXa ϕK4(w) =


JϕK4(w(n)) if succa(w) = n ∈ N
> if succa(w) is undef. ∧ w1 ∈ Σr

>p otherwise

Note that the semantics of Xa is slightly different from the one in [14] to fit
together with the Ua operator.
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Based on the same idea, the abstract until and release operators are defined
as follows.

JϕUa ψK4(w) =



( ⊔
i∈succa∗(w)

JψK4(w(i)) u
l

j∈succa∗(w)
j<i

JϕK4(w(j))

)
if complete(w)

( ⊔
i∈succa∗(w)

JψK4(w(i)) u
l

j∈succa∗(w)
j<i

JϕK4(w(j))

)

t

(
⊥p u

l

i∈succa∗(w)

JϕK4(w(i))

) otherwise

JϕRa ψK4(w) =



( ⊔
i∈succa∗(w)

JϕK4(w(i)) u
l

j∈succa∗(w)
j≤i

JψK4(w(j))

)
if complete(w)

( ⊔
i∈succa∗(w)

JϕK4(w(i)) u
l

j∈succa∗(w)
j≤i

JψK4(w(j))

)

t

(
>p u

l

i∈succa∗(w)

JψK4(w(i))

) otherwise

In contrast to the until and release operators two cases have to be distinguished
for their abstract counterparts. If the sequence of abstract successors for a word
is complete, i.e. if the sequence terminates because of an umatched return, the
operators cannot evaluate to ⊥p or >p, respectively.

3.2 Visibly Push-down Mealy Machines (VPMM)

A typical approach to monitoring temporal properties is based on formula rewrit-
ing. When observing a symbol, the formula is evaluated and additionally rewrit-
ten to maintain the gained information. This requires equations for transforming
any formula into a formula where each temporal operator is an X operator or is
guarded by some X. Then, every sub-formula can explicitly be evaluated when
reading only one new letter. For the U operator, the unfolding equation is stan-
dard and the abstract operator can be unfolded analogously:

ϕUψ ≡ ψ ∨ (ϕ ∧X(ϕUψ))

ϕUa ψ ≡ ψ ∨ (ϕ ∧Xa(ϕUa ψ))

What remains is an unfolding of the abstract next operator Xa. According
to the semantics, reading a return or an internal symbol it behaves like the
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classical X operator, accept that there must not follow a return symbol in the
next step. Evaluating a formula Xa ϕ for a call symbol, the evaluation of ϕ needs
to be postponed until the matching return symbol is read. If a return follows
immediately it is matching. Otherwise the matching return can be reached by
following the abstract sequence of positions until the first unmatched return.

Xa(ϕ) ≡ ( ¬call ∧X( ¬ret ∧ ϕ))
∨( call ∧X( ret ∧ ϕ))
∨( call ∧X( ¬ret ∧ trueUa(¬call ∧X(ret ∧ ϕ))))

Using this equality for substituting Xa operators, we can equivalently transform
any CaRet formula s.t. every temporal operator is guarded by X and hence do
a step-wise evaluation. When only the classical operators are considered, the
number of different formulae arising during evaluation is bounded (as long as
the formulae are kept in e.g. disjunctive normal form). This is no longer the
case for the abstract operators as during evaluation an unbounded number of
inequivalent formulae may occur. This is expected, as the formula describes a
pushdown-language and encodes a stack. In the following, we will use pushdown
machines to handle the stack explicitly. This simplifies implementation as well
as theoretical discussion.

The outline for the rest of this section is as follows. We introduce non-deter-
ministic push-down Mealy machines (Pmm) and show how they can be deter-
minized. Next, based on the FCaRet4 semantics defined above, we give a pro-
cedure to construct a Pmm from a CaRet+ formula, that reads symbols and
outputs the FCaRet4 semantics of the word read so far.

Mealy machines. A non-deterministic Mealy machine can, in general reach mul-
tiple configurations at a time. Each such current configuration yields an output.
To consistently define the overall output of the automaton, we need to be able
to summarize the single outputs in each step. The existential character of a
non-deterministic model is lifted to a supremum (join) operation on all possible
outputs in each step. A configuration may have multiple successors, which have
no order. We therefore need commutativity, associativity and idem-potency of
the join operation on the outputs, that is, we require the output domain to be
a semi-lattice.

Definition 1 (Push-down Mealy Machine). A (non-deterministic) push-
down Mealy machine (Pmm) is a tuple M = (Q,Σ, Γ, δ,Q0,L) where
– Σ,Γ are the finite input and stack alphabet, respectively, and Γ# := Γ∪{#}

the stack alphabet enriched by a new bottom symbol # 6∈ Γ ,
– L is the output alphabet with (L,t) forming a semi-lattice,
– Q is a finite set of control states,
– Q0 ⊆ Q is the set of initial states and

– δ : Q × Γ# × Σ → 2Q×Γ
≤2
# ×L is the non-deterministic, labeled transition

function.

A configuration of M is a tuple (q, s) ∈ Q × (Γ ∗{#}) comprising the cur-
rent control state and a stack assignment ending with #. The run of M on
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a non-empty input word w = w0w1. . . wn ∈ Σ+ is the alternating sequence

C0
`1−→ C1. . .

`n−→ Cn of sets of configurations Ci ⊆ Q × (Γ ∗{#}) and output
symbols `i ∈ L s.t.
– C0 = Q0 × {#},
– Li+1 ⊆ L and Ci+1 are the smallest sets such that, for γ ∈ Γ , (q, γs) ∈ Ci

and (q′, γ′γ′′, `) ∈ δ(q, γ, ai+1) implies (q′, γ′γ′′s) ∈ Ci+1 and ` ∈ Li+1, and
– `i =

⊔
Li+1.

The output of M on w is M(w) := `n.
M is called a visibly Pmm (Vpmm), if it satisfies the corresponding con-

straints defined above for Vpa.

3.3 Determinizing VPMM

In order to be able to actually implement a Vpmm as monitor to evaluate ob-
servations it must be deterministic. We can lift the determinization construc-
tion for Vpa [13] to determinize a Vpmm P = (Q,Σ, Γ, δ,Q0,L) by adding
treatment of output symols. We construct an equivalent deterministic Vpmm
P ′ = (Q′, Σ, Γ ′, δ′, q′0,L) as follows.

In the finite control Q′ = 2Q×Q × 2Q we store, as in the standard subset
construction for finite automata, a set of current states R ⊆ Q and additionally
an effect relation S ⊆ Q×Q.

Inbetween a call action ac and its corresponding return action ar, S sum-
marizes the transitions that were made on every state. That is, when P were in
some state q just after reading ac and from there possibly reached some state q′

before reading ar, S contains the tuple (q, q′).
The stack of P ′, stores triples (S′, R′, ac) from Γ ⊆ Q′ × Σc where R′, S′

are the current states and the effect relation at the time the last open call ac
occurred. In the initial state q′0 = {(IdQ, Q0)}, there is no recorded effect, i.e.
each q points to itself, and the current states are the initial states of P.

Internal. An internal action aint ∈ Σint simply updates the set of current states by
applying δ element-wise. The effect relation is updated analogously. If (q, q′) ∈ S
is a recorded effect on q and q′ is mapped to q′′ by δ on reading aint, then in the
next state of P ′ we record the tuple (q, q′′) as effect on q.

We let δ′((S,R), aint, γ) = (S′, R′, γ, `) such that

S′ = {(q, q′) | ∃q′′, γ′, `′ : (q, q′′) ∈ S, (q′, γ′, `′) ∈ δ(q′′, aint, γ′)}
R′ = {q′ | ∃q ∈ R, γ′, `′ : (q′, γ′, `′) ∈ δ(q, aint, γ′)}

` =
⊔
{`′ | ∃q ∈ R, γ′, q′ : (q′, γ′, `′) ∈ δ(q, aint, γ′)}

As opposed to the construction for Vpa, we have also to compute the current
output `. It is obtained from all possible transitions from the current states q ∈ R
via reading aint. Since δ is non-deterministic these are in general multiple values
that are considered in disjunction. We therefore take the join, i.e. the supremum,
of those.
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Call. Upon reading a call symbol ac ∈ Σc, the current states set R and the
current effect S is stored by pushing them, together with ac, onto the stack.
While the set of current states is maintained by applying ac via δ, the effect
relation is reset s.t. every state q maps to itself. The output is obtained in the
same way as by reading an internal action.

We let δ′((S,R), ac, γ) = (IdQ, R
′, (S,R, ac)γ, `) such that

R′ = {q′ | ∃q ∈ R, γ′, γ′′, `′ : (q′, γ′′, `′) ∈ δ(q, ac, γ′)}

` =
⊔
{`′ | ∃q ∈ R, γ′, γ′′, q′ : (q′, γ′′, `′) ∈ δ(q, ac, γ′)}

Return. Having all the information from the stack when reading a return symbol
ar ∈ Σr, P ′ can simulate the transition relation δ on all current states. This,
however is not done directly on R but on the current states at call-time R′

by consecutively applying ac, S and then ar to obtain the new set of current
states R′′ and the new effect relation S′′. We obtain the output from all possible
transitions via ar, after ac and S have been applied.

We let δ′((S,R), ar, (S
′, R′, ac)) = (S′′, R′′, ε, `) such that

U = {(q, q′, `′) | ∃q1, q2, γ′, γ′′, `′′ : (q1, γ
′′γ′, `′′) ∈ δ(q, ac, γ′),

(q1, q2) ∈ S, (q′, ε, `′) ∈ δ(q2, ar, γ′′)}
S′′ = {(q, q′) | ∃q3, `′ : (q, q3) ∈ S′, (q3, q′, `′) ∈ U}
R′′ = {q′ | ∃q ∈ R, `′ : (q, q′, `′) ∈ U}

` =
⊔
{`′ | ∃q ∈ R, q′ : (q, q′, `′) ∈ U}

Note that the stack might have been necessary for computing the effect S
but once it is known, the effect can be applied to a set of states without using
the stack.

Finally, we need to specially treat the case of a return action ar ∈ Σr when
reading the bottom symbol. Let δ′((S,R), ar,#) = (S′, R′,#, `) such that

S′ = {(q, q′) | ∃q′′, `′ : (q, q′′) ∈ S, (q′,#, `′) ∈ δ(q′′, ar,#)}
R′ = {q′ | ∃q ∈ R, `′ : (q′,#, `′) ∈ δ(q, ar,#)}

` =
⊔
{`′ | ∃q ∈ R, q′ : (q′,#, `′) ∈ δ(q, ar,#)}

3.4 Constructing a VPMM for CaRet+

The idea of the construction is that the Mealy machine maintains the formulae
that need to be proved. When reading an input symbol it verifies the proposi-
tional part and postpones the resulting future obligations. Standard LTL formu-
lae are encoded into the finite control and evaluated on the next input. Abstract
until and release operators are reduced to checking their unfolding.

When observing a call action, the abstract next modalities push their argu-
ment on the stack as future obligation. On return, this obligation is removed
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from the stack and evaluated together with the current obligation stored in the
finite control.

The transition function maintains a disjunctive clause form of stored obliga-
tions and thereby removes alternation on the fly. The output in every step is the
truth value from the evaluation of the current finite control state combined with
the current evaluation of the stack. The stack evaluation describes the truth
values of the suspended abstract operators from higher levels.

Given a CaRet+ formula Φ we construct a Vpmm M = (Q,Σ, Γ, δ,Q0,B4)
where the control states Q = 2sub(Φ) store a set of formulae to be evaluated upon
the next input symbol and the stack alphabet Γ = 2sub(Φ) × B4 × B4 stores the
future obligations, the current and the previous stack evaluation.

For better readability, the transition function δ : Q×Γ ×Σ → 2Q×B4×Γ≤2

, is
specified in two parts, one handling the evaluation of the finite control separately
and another part working on the stack. Let therefore be δc : Q×Σ → 2Q×B4 the
control transition function.

Finite control. The finite control evaluates propositional formulae directly ac-
cording to the input symbol, also, next formulae just consume the input and
delegate their argument to the next step. The semantics of a formula Xa ϕ eval-
uates to ⊥ if the next position is a return and the current position is not a call.
However, δc will never be evaluated on Xa when reading a call symbol, as can
be seen from the definition of the transition function δ below. Therefore we do
not make a distinction for that case here. Until and release formulae are simply
handled using their unfolding.

δc({p}, a) =

{
{(∅,>)} if p ∈ a
∅ if p 6∈ a

δc({¬p}, a) =

{
∅ if p ∈ a
{(∅,>)} if p 6∈ a

δc({ϕ ∧ ψ}, a) = δc({ϕ,ψ}, a)

δc({ϕ ∨ ψ}, a) = δc({ϕ}, a) ∪ δc({ψ}, a)

δc({Xϕ}, a) = {({ϕ},⊥p)}
δc({Xϕ}, a) = {({ϕ},>p)}
δc({Xa ϕ}, a) = {({ϕ,¬ret},⊥p)}
δc({Xa ϕ}, a) = {({ϕ,¬ret},>p)}
δc({ϕUψ}, a) = δc({ψ ∨ (ϕ ∧X(ϕUψ))}, a)

δc({ϕRψ}, a) = δc({ψ ∧ (ϕ ∨X(ϕRψ))}, a)

δc({ϕUa ψ}, a) = δc({ψ ∨ (ϕ ∧Xa(ϕUa ψ))}, a)

δc({ϕRa ψ}, a) = δc({ψ ∧ (ϕ ∨Xa(ϕRa ψ))}, a)

Sets of formulae (clauses) are interpreted as conjunctions. We can therefore
remove alternation by directly evaluating the single formulae on the input symbol
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and combining the respective results:

δc({ϕ1, . . . , ϕn}, a) = δc({ϕ1}, a) u· . . . u· δc({ϕn}, a)

The result of a single evaluation δc(ϕ, a) are sets of tuples (K, b) of clauses
and verdicts. In order to combine them the clauses need to be brought back
to the disjunctive clause form which is realized by an operation u· : Let Ki =
(Ki, bi),Hj = (Hj , cj) ∈ Q×B4 be tuples of states (i.e. conjunctive clauses) and
verdicts. Sets of such tuples are combined by means of a the meet-like operation
u· : 2Q×B4 × 2Q×B4 → 2Q×B4 as follows.

{K1, . . . ,Kn} u· {H1, . . . ,Hm} =
⋃

i∈[1,n]
j∈[1,m]

{Ki} u· {Hj} (1)

{(K, b)} u· {(H, c)} = {(K∪H, buc)} (2)

The operation maintains the disjunctive form of the clause structure (1). Single
clauses are conjunctive and thus their meet is simply the union of the clauses.
The truth values are combined in terms of the meet on B4 (2).

Stack control. The actual transition function of M makes direct use of the
finite control function δc on internal action aint ∈ Σint actions since they do not
involve a stack operation. Only the stack evaluation is used in the output:

δ({ϕ1, . . . , ϕn}, (K, b1, b2), aint) = (δc({ϕ1, . . . , ϕn}, aint) u· {(∅, b1)})×{(K, b1, b2)}

On return operations ar ∈ Σr, the top-most stack symbol is removed and
combined to the current control state. That is, the obligation suspended to the
stack earlier on the matching call is now evaluated. Note, that the preliminary
verdict at call time (b1) now is obsolete and the previous one (b2) is evaluated.

δ({ϕ1, . . . , ϕn}, (K, b1, b2), ar) = (δc({ϕ1, . . . , ϕn}, ar) u· {(K, b2)})× {ε}

For a call a ∈ Σc we have

δ({ϕ1, . . . , ϕn}, γ, a) = δ({ϕ1}, γ, a) ũ . . . ũ δ({ϕn}, γ, a)

δ({Xa ϕ}, (K, b1, b2), a) = {(∅, ⊥pub1, ({ϕ},⊥pub1, b1)(K, b1, b2))}
δ({Xa ϕ}, (K, b1, b2), a) = {(∅, >pub1, ({ϕ},>pub1, b1)(K, b1, b2))}

δ({ϕUa ψ}, γ, a) = δ({ψ ∨ (ψ ∧Xa(ϕUa ψ))}, γ, a)

δ({ϕRa ψ}, γ, a) = δ({ψ ∧ (ψ ∨Xa(ϕRa ψ))}, γ, a)

and for ϕ 6= Xa ϕ′, ϕ 6= ϕ′Ua ψ, ϕ 6= Xa ϕ′ and ϕ 6= ϕ′Ra ψ

δ({ϕ}, (K, b1, b2), a) = (δc({ϕ}, a) u· {(∅, b1)})× {(∅, b1, b1)(K, b1, b2)}

Let Ki = (Ki, bi, αiγ),Hj = (Hj , cj , βjγ) ∈ Q × B4 × Γ 2 be tuples of states
(i.e. conjunctive clauses), verdicts and the top-most stack symbols. Note, that
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when ever a call occurs, the topmost stack symbol is not touched but a new
symbol is pushed onto the stack. Therefore, the pushed symbols αi = (Ai, ui)
and βi = (Bi, vi) may differ whilst the symbol underneath is the same γ = (G, g)
for all tuples Ki and Hi.

Sets of such tuples are combined by means of a the meet-like operation

ũ : 2Q×B4×Γ 2

× 2Q×B4×Γ 2

→ 2Q×B4×Γ 2

as follows:

{K1, . . . ,Kn} ũ {H1, . . . ,Hm} =
⋃

i∈[1,n]
j∈[1,m]

{Ki} ũ {Hj}

{(K, b, (A, u, g1)(G, g1, g2))} ũ {(H, c, (B, v, g1)(G, g1, g2))}
= {(K∪H, buc, (A∪B, uuvug1, g1)(G, g1, g2))}

Theorem 1. Let Φ be a CaRet formula and w ∈ Σ∗. Then MΦ(w) = JΦK4(w).

Corollary 1. Given a CaRet formula ϕ, we can construct in 2-ExpTime a
push-down Mealy machine M implementing the four-valued FCaRet4 semantics
of ϕ.

4 Anticipatory Monitoring of Visibly Context-free
Properties

In this section we describe an anticipatory monitor construction for visibly
context-free ω-languages. By basing the construction on properties given by
ω-Vpa we provide support for complete CaRet including past operators and
more expressive logics like VP-µTL and MSOµ which are complete for the visi-
bly context-free ω-languages. Furthermore, integrating an emptiness check into
the monitor construction allows for the synthesis of anticipatory monitors, i.e.
monitors that yield a definite verdict as early as possible.

Given a property L ⊆ Σω we define a three-valued, anticipatory moni-
tor function M3 thereby lifting the concept of [10] from LTL to arbitrary ω-
languages. M3 : 2Σ

ω → (Σ∗ → B3) is given as

M3(L)(w) =


> if ∀u∈Σω : wu ∈ L
⊥ if ∀u∈Σω : wu 6∈ L
? otherwise.

The monitor function yields > for a good prefix w i.e. if any continuation of w
is in L, it yields ⊥ for a bad prefix w i.e. if any continuation of w is not in L
and it yields ? otherwise.
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4.1 Emptiness per configuration

Let P = (Q,Σ, Γ, δ,Q0, F ) be an ω-Vpa. In the following, we show how to
construct a deterministic Vpa that accepts exactly the good and inconclusive
prefixes of L(P), i.e. {w ∈ Σ∗ | ∃u∈Σω : wu ∈ L(P)}.

As Bouajjani et al. describe in [19], we can, in polynomial time, construct a
multi-automaton A = (S ∪ Q,Γ,Q, δA, A) accepting exactly the set of configu-
rations from which there is an accepting run of P. That is, P can still accept
at least one word in a configuration (q, w#) iff w ∈ Γ ∗ accepted by A when
starting in the state q ∈ Q.

We construct a Vpa F = (Q,Σ, Γ×SQ, δF , Q0, FF ) that behaves like P but
simultaneously simulates A. The initial configuration of F represents the initial
configurations of P and A. Reading inputs form Σ, F simulates the behavior of
P and when P pushes a symbol γ onto the stack, F additionally simulates A
reading γ and stores the new configuration of A on the stack. When P removes
the top-most symbol γ from the stack, F also removes the top-most symbol
including the current configuration of A and thereby restoring the configuration
of A before having read γ.

A configuration of A is a state s ∈ S∪Q for each initial state q ∈ Q, meaning
if A started in q it would currently be in state s. A configuration is therefore a
mapping from Q to S ∪Q. Let δ̂A : SQ × Γ → SQ be the transition function of
A lifted to mappings f ∈ SQ s.t. δ̂A(f, γ) : q 7→ δA(f(q), γ). That is δ̂A applies
a γ transition “state-wise” to f . Following this idea, we define the transition
function of F as follows. Note, ω-Vpa can, in general, not be determinized and
thus we construct a non-deterministic automaton F . However since F is a Vpa,
it can be determinized afterwards [13].

(q′, (γ, f)) ∈ δF (q, (γ, f), a)⇔ (q′, γ) ∈ δP(q, γ, a) (for a ∈ Σint)
(q′,#F ) ∈ δF (q,#F , a)⇔ (q′,#P) ∈ δP(q,#P , a) (for a ∈ Σr)

(q′, ε) ∈ δF (q, (γ, f), a)⇔ (q′, ε) ∈ δP(q, γ, a)

(
for a ∈ Σr
and γ 6= #P

)
(q′, (γ′, f ′)(γ, f)) ∈ δF (q, (γ, f), a)⇔ (q′, γ′γ) ∈ δP(q, γ, a)

and f ′ = δ̂A(f, γ′)
(for a ∈ Σc)

Here, #F and #P denote the bottom stack symbols of F and P, respectively.
To correctly treat the empty stack, we interpret the bottom symbol #F of F
as (#P , id) since for each state q of P, A is initially in the corresponding initial
state, which is q itself.

In every state q ∈ Q, P is in a non-empty configuration, iff the multi-
automaton A accepts the current stack for q. The current configuration f of
A is stored in the top-most stack symbol of F . So, when f(q) is an accepting
state of A and the current control state is q, P had a non-empty configuration
and we hence let F accept exactly in the configurations (q, (γ, f)s) s.t. f(q) ∈ FA.
This condition can be realized technically by storing the top-most stack symbol
in the finite control and define the set of accepting states of F accordingly.
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From that construction we conclude that F accepts exactly the non-bad
prefixes for the language accepted by P.

Theorem 2. For all w ∈ Σ∗, w ∈ L(F) if and only if M3(L(P))(w) 6= ⊥.

4.2 Anticipatory Monitors for Visibly Context-free Properties

Using the construction above we can now construct a Moore machine that com-
putes the three-valued monitoring semantics M3(P ) for any visibly context-free
property P ⊆ Σω, assuming that P is presented as ω-Vpa.

Definition 2 (Push-down Moore Machine). A (deterministic) push-down
Moore machine is a tuple M = (Q,Σ, Γ, δ, q0, Λ, λ) where
– Q is a finite set of states and q0 ∈ Q the initial state,
– Σ, Γ , Λ are the finite input-, stack- and output alphabets, respectively, and
Γ# := Γ ∪# the stack alphabet enriched by a new bottom symbol # 6∈ Γ ,

– δ : Q× Γ# ×Σ → Q× Γ≤2# the deterministic transition function and
– λ : Q→ Λ the output function.

A configuration ofM is a tuple (q, s) ∈ Q× (Γ ∗{#}) comprising the current
control state and a stack assignment ending with #. The run ofM on a word w =
a1. . . an ∈ Σ∗ is the sequence of configurations c0c1. . . cn+1 s.t. c0 = (q0,#) and
for γ ∈ Γ , ci = (q, γs) and δ(q, γ, ai+1) = (q′, γ′γ′′) we have ci+1 = (q′, γ′γ′′s).
The output of M on w is M(w) := λ(qlast) where (qlast, slast) = cn+1.

The Moore Machine for M3. In the fashion of [10] we construct FP and
also F¬P accepting all non-bad prefixes for the complement of P and combine
them to a Moore machine. We know that if some w ∈ Σ∗ is rejected by FP , then
M3(P )(w) = ⊥ and consequently if w is rejected by F¬P then M3(P )(w) = >.
These cases exclude each other and if both accept then M3(P )(w) = ?.

Note, while it is always possible to complement an ω-Vpa for some property P
and construct F¬P from it, it might be preferable to negate the property earlier.
In particular, when using a logic that allows direct negation, it is advised to
negate before constructing an automaton. Recall, we can assume FP and F¬P
determinized. We combine both and obtain a deterministic visibly push-down
Moore machine M, that outputs > for every good, ⊥ for every bad and ? for
every inconclusive prefix for P .

For FP = (QP , Σ, ΓP , δP , IP , FP ) and F¬P = (Q¬P , Σ, Γ¬P , δ¬P , I¬P , F¬P )
we let M = (QP ×Q¬P , Σ, ΓP × Γ¬P , δ, IP × I¬P ,B3, λ)
with δ((q1, q2), (γ1, γ2), a) := ((q′1, q

′
2), (γ′1, γ

′
2)(γ′′1 , γ

′′
2 ))

where (q′1, γ
′
1γ
′′
1 ) = δϕ(q1, γ1, a) and (q′2, γ

′
2γ
′′
2 ) = δ¬ϕ(q2, γ2, a).

The output of M is defined as

λ(q1, q2) =


> if q2 6∈ F¬ϕ
⊥ if q1 6∈ Fϕ
? otherwise.

Note, that λ is well defined since P and ¬P exclude each other.
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Theorem 3. Given an ω-Vpa P, we can construct a deterministic push-down
Moore MachineM implementing the three-valued monitoring function for L(P),
i.e. for all w ∈ Σ∗, M(w) = M3(L(P))(w).

Corollary 2. Given a CaRet formula ϕ, we can construct in 3-ExpTime a
push-down Moore machineM implementing the three-valued semantics function
for ϕ.

5 Conclusion

In this paper, we investigated the problem of monitoring visibly context-free
properties. In particular we proposed a four-valued semantics for the future
fragment of the temporal logic CaRet on finite words, together with a mon-
itor synthesis algorithm yielding deterministic push-down Mealy machines for
properties with calls and returns.

For the full CaRet logic, or more generally, for any visibly context-free lan-
guage, we provided a three-valued monitoring approach adhering both, to the
maxims of impartiality and anticipation. It comprises a three-valued anticipatory
semantics as well as corresponding synthesis algorithm yielding deterministic
push-down Moore machine.

Together with [17] this gives a complete picture of two-valued, impartial and
anticipatory semantics for runtime monitoring.
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