
Sliding between model checking and runtime
verification

Martin Leucker

Universtität zu Lübeck
Institut für Softwaretechnik und Programmiersprachen

Abstract. We present a unified semantics for linear temporal logic cap-
turing model checking and runtime verification. Moreover, we present
the main ingredients of a corresponding monitor synthesis procedure.

1 Introduction

One of the main research problems in runtime verification (RV) is the automatic
synthesis of monitors from high-level specifications. A typical high-level specifi-
cation language used in RV is linear temporal logic (LTL), for which different
semantical, RV-specific adaptions have been proposed in recent years. In this
paper we propose a further semantics for LTL, a predictive semantics, which
unifies ideas from model checking and runtime verification. Using abstraction,
it allows to either concentrate on a more model checking like analysis of the
underlying system, or a rather runtime verification oriented view on the system
under scrutiny.

The main object to study in RV is the current run of the underlying system.
Such a run may be finite or, at least from a theoretical point of view, infinite, for
example when the execution of the reactive system like a web server is considered.
However, when the underlying system runs, we can only observe a finite part of a
potentially infinite run. We call the finite, observed part of the run an execution.
Thus, in RV, we observe executions of an underlying system and want to assess
the correctness of a high-level specification with respect to the run of the system.
Now, one can come up with different semantics for LTL depending on how we
understand executions and runs in detail.

In the basic case an execution and run coincide. Here, we think of a system
that executed for a finite amount of time and the execution has terminated.
This is the case for example when analyzing log files or when dealing with clas-
sical input/output oriented computations. If we want to analyze a correctness
property for such an execution, an LTL semantics on finite words is most ap-
propriate. A bunch of different variations of LTL semantics on finite words have
been proposed in the literature, implicitly in Kamp’s work [1] and more directly
in Manna and Pnueli’s work [2] or more recently by Eisner et al. in the context
of LTL+ and LTL− [3] (see [4] for a comparison).

For reactive systems, however, the typical view on a computation is no longer
the input/output behavior but the interaction of the system with its environ-
ment. In an ideal case such a run is infinite. For example, in the setting of a

1

web server we are not interested in a kind of final result of the server but deal
with questions such as whether the web server follows the underlying protocol.
Here, we consider an execution to be a prefix of a potentially infinite run. An
appropriate semantics for such a setting with respect to RV was given in [5].

The idea is that a correctness property is evaluated on the current execution
u with respect to all possible further extensions of the current execution. The
rational is that it is fair to evaluate u with respect to all possible extensions
as we know that u will extend somehow, but we do not really know how. If
u together with all possible extensions satisfies the correctness property the
runtime verification semantics of u with respect to the property is true. When
all extensions of u violate the given correctness property the RV semantics of
u with respect to the correctness property yields false while in all other cases
the RV semantics yields ? meaning that no conclusive answer could be given.
In other words, we give a three-valued semantics to LTL properties based on all
possible extensions of the current execution.

In this paper we build on the previous idea, however, we extend the approach
towards a predictive semantics by the following observations. Why do we check
all possible extensions of the current execution u? Given a program P it seems
to be more interesting to consider only the possible executions of the program
P. If we follow this idea we get true and false for the underlying property in
more cases. In a sense, such a semantics would be more precise.

However, consider RV with such an idea right at the start for the empty word
ε. We then have to check whether all the extensions of the empty word following
the program P would satisfy our correctness property. Thus, we check whether
all runs of our program P satisfy our correctness property and hence answer
the model checking question. In consequence, we have to deal with the so-called
state-space explosion also in RV.

The situation changes when we look at an abstraction P̂ of the underlying
program P that has more runs than the original program P. Then we can look
at all extensions of an execution u with respect to the abstract system P̂. This
may yield a more precise assessment than the original three-valued semantics
but may be easier to check than model checking. Moreover depending on the
level of abstraction one can focus more on the runtime verification aspects or
more on the model checking ideas. In one of the extreme cases P̂ and P coincide
and we solve the model checking problem while in the other extreme case P̂
just contains all possible executions over a given alphabet and we are in the
traditional setting of three-valued LTL.

In this paper we show that P̂ can actually be combined with a previous
monitor synthesis procedure for three-valued LTL so that a monitor for the
resulting predictive semantics is obtained. More precisely, the resulting monitor
checks the semantics for a given execution u and a correctness property with
respect to an abstraction P̂ of the underlying program P.

In the remainder of this paper we make the previous ideas precise.

2

2 Preliminaries

For the remainder of this paper, let AP be a finite set of atomic propositions
and Σ = 2AP a finite alphabet. We write ai for any single element of Σ. Finite
traces over Σ are elements of Σ∗, and are usually denoted by u, u′, u1, u2, . . . ,
whereas infinite traces are elements of Σω, usually denoted by w,w′, w1, w2,

The set of LTL formulae is inductively defined by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | Xϕ (p ∈ AP)

Let i ∈ N be a position. The semantics of LTL formulae is defined inductively
over infinite sequences w = a0a1 . . . ∈ Σω as follows: w, i |= true, w, i |= ¬ϕ iff
w, i 6|= ϕ, w, i |= p iff p ∈ ai, w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2,
w, i |= ϕ1Uϕ2 iff there exists k ≥ i with w, k |= ϕ2 and for all l with i ≤ l < k,
w, l |= ϕ1, and w, i |= Xϕ iff w, i + 1 |= ϕ. Further, let w |= ϕ, iff w, 0 |= ϕ.
For every LTL formula ϕ, its set of models, denoted by L(ϕ), is a regular set of
infinite traces and can be described by a corresponding Büchi automaton.

A (nondeterministic) Büchi automaton (NBA) is a tupleA = (Σ,Q,Q0, δ, F),
where Σ is a finite alphabet, Q is a finite non-empty set of states, Q0 ⊆ Q is
a set of initial states, δ : Q × Σ → 2Q is the transition function, and F ⊆ Q is
a set of accepting states. We extend the transition function δ : Q×Σ → 2Q to
sets of states and (input) words as usual. A run of an automaton A on a word
w = a1 . . . ∈ Σω is a sequence of states and actions ρ = q0a1q1 . . . , where q0 is an
initial state of A and for all i ∈ N we have qi+1 ∈ δ(qi, ai). For a run ρ, let Inf(ρ)
denote the states visited infinitely often. ρ is called accepting iff Inf(ρ) ∩ F 6= ∅.

A nondeterministic finite automaton (NFA) A = (Σ,Q,Q0, δ, F), where Σ,
Q, Q0, δ, and F are defined as for a Büchi automaton, operates on finite words.
A run of A on a word u = a1 . . . an ∈ Σ∗ is a sequence of states and actions
ρ = q0a1q1 . . . qn, where q0 is an initial state of A and for all i ∈ N we have qi+1 ∈
δ(qi, ai). The run is called accepting if qn ∈ F . A NFA is called deterministic
and denoted DFA, iff for all q ∈ Q, a ∈ Σ, |δ(q, a)| = 1, and |Q0| = 1.

As usual, the language accepted by an automaton (NBA/NFA/DFA), de-
noted by L(A), is given by its set of accepted words.

Let us also recall the notion of a Moore machine (also finite-state machine,
FSM), which is a finite state automaton enriched with output, formally denoted
by a tuple (Σ,Q,Q0, δ,∆, λ), where Σ, Q, Q0 ⊆ Q, δ is as before and ∆ is
the output alphabet, λ : Q → ∆ the output function. The outputs of a Moore
machine, defined by the function λ, are thus determined by the current state
q ∈ Q alone. As before, δ extends to the domain of words as expected. Moreover,
we denote by λ also the function that applied to a word u yields the output in
the state reached by u rather than the sequence of outputs.

In this paper, a (finite-state) program is given as a non-deterministic Büchi
automaton for which all states are final. Runs of a program coincide with the
runs of the Büchi automaton. The product of a program P = (Σ,Q,Q0, δ, Q) and
an NBA A = (Σ,Q′, Q′0, δ

′, F ′) is the NBA B = (Σ,Q×Q′, Q0×Q′0, δ′′, Q×F ′)
where δ′′((q, q′), a) = δ(q, a) × δ′(q′, a), for all q ∈ Q, q′ ∈ Q′ and a ∈ Σ.
Model checking answers the question whether for a given program P and an
LTL property ϕ, L(P) ⊆ L(ϕ).

3

3 A predictive semantics for LTL

Let us recall our 3-valued semantics, denoted by LTL3, over the set of truth
values B3 = {⊥, ?,>} from [5]: Let u ∈ Σ∗ denote a finite trace. The truth value
of a LTL3 formula ϕ wrt. u, denoted by [u |= ϕ], is an element of B3 and defined
as follows:

[u |= ϕ] =

> if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? otherwise.

In the previous definition, one might ask why not only consider extensions
of u that altogether yield runs of an underlying program P. Thus, one might
be tempted to define a predictive semantics for a finite word u and a property
ϕ with respect to a program P, for example for the case >, by [u |= ϕ]P = >
iff ∀σ ∈ Σω with uσ ∈ P : uσ |= ϕ. However, for the empty word this means
[ε |= ϕ]P = > iff ∀σ ∈ Σω with εσ ∈ P : εσ |= ϕ iff L(P) |= ϕ. Thus, any
runtime verification approach following this idea implicitly answers the model
checking question even before monitoring. Then runtime verification is at least
as expensive as model checking.

In general, we can follow a similar idea by having control over the overall
complexity using abstractions of the underlying program. An over-abstraction
or and over-approximation of a program P is a program P̂ such that L(P) ⊆
L(P̂) ⊆ Σω.

Definition 1 (Predictive semantics of LTL). Let P be a program and let
P̂ be an over-approximation of P. Let u ∈ Σ∗ denote a finite trace. The truth
value of u and an LTL3 formula ϕ wrt. P̂, denoted by [u |=P̂ ϕ], is an element
of B3 and defined as follows:

[u |=P̂ ϕ] =

> if ∀σ ∈ Σω with uσ ∈ P̂ : uσ |= ϕ

⊥ if ∀σ ∈ Σω with uσ ∈ P̂ : uσ 6|= ϕ

? else

We write LTLP whenever we consider LTL formulas with a predictive se-
mantics.

Remark 1. Let P̂ be an over-approximation of a program P over Σ, u ∈ Σ∗,
and ϕ ∈ LTL.
– Model checking is more precise than RV with the predictive semantics:

P |= ϕ implies [u |=P̂ ϕ] ∈ {>, ?}

– RV has no false negatives: [u |=P̂ ϕ] = ⊥ implies P 6|= ϕ
– The predictive semantics of an LTL formula is more precise than LTL3:

[u |= ϕ] = > implies [u |=P̂ ϕ] = >
[u |= ϕ] = ⊥ implies [u |=P̂ ϕ] = ⊥

The reverse directions are in general not true. Thus, it is possible that a property
is violated in the model checking sense but not spotted by RV with predictive
semantics.

4

4 A monitor procedure for LTLP

Now, we develop an automata-based monitor procedure for LTLP . More specif-
ically, for a given over-approximation P̂ of a program P and formula ϕ ∈ LTL,
we construct a finite Moore machine, Bϕ

P̂
that reads finite traces u ∈ Σ∗ and

outputs [u |=P̂ ϕ] ∈ B3.

For an NBA A, we denote by A(q) the NBA that coincides with A except for
Q0, which is defined as Q0 = {q}. Fix ϕ ∈ LTL for the rest of this section and
let Aϕ denote the NBA, which accepts all models of ϕ, and let A¬ϕ denote the
NBA, which accepts all counter examples of ϕ. The corresponding construction
is standard [6].

Moreover, fix an over-approximation of a program P̂ for the remainder of
this section and let Bϕ and B¬ϕ be the product of the over-approximation
with Aϕ and A¬ϕ, respectively, i.e., Bϕ = P̂ × Aϕ and B¬ϕ = P̂ × A¬ϕ.
For these automata, we easily observe that for for u ∈ Σ∗ and δ(Qϕ

0 , u) =
{q1, . . . , ql}, we have [u |=P̂ ϕ] 6= ⊥ iff ∃q ∈ {q1, . . . , ql} such that L(Bϕ(q)) 6= ∅.
Likewise, we have for the NBA B¬ϕ = (Σ,Q¬ϕ, Q¬ϕ0 , δ¬ϕ, F¬ϕ) as defined
above, for u ∈ Σ∗, and δ(Q¬ϕ0 , u) = {q1, . . . , ql} that [u |=P̂ ϕ] 6= > iff ∃q ∈
{q1, . . . , ql} such that L(B¬ϕ(q)) 6= ∅.

Following [5], for Bϕ and B¬ϕ, we now define a function Fϕ : Qϕ → B
respectively F¬ϕ : Q¬ϕ → B (where B = {>,⊥}), assigning to each state q
whether the language of the respective automaton starting in state q is not
empty. Thus, if Fϕ(q) = > holds, then the automaton Bϕ starting at state q
accepts a non-empty language and each finite prefix u leading to state q can be
expanded by a run of the over-approximation to satisfy ϕ.

Using Fϕ and F¬ϕ, we define two NFAs B̂ϕ = (Σ,Qϕ, Qϕ
0 , δ

ϕ, F̂ϕ) and B̂¬ϕ =

(Σ,Q¬ϕ, Q¬ϕ0 , δ¬ϕ, F̂¬ϕ) where F̂ϕ = {q ∈ Qϕ | Fϕ(q) = >} and F̂¬ϕ = {q ∈
Q¬ϕ | F¬ϕ(q) = >}. Then, we have for all u ∈ Σ∗:

u ∈ L(B̂ϕ) iff [u |=P̂ ϕ] 6= ⊥ and u ∈ L(B̂¬ϕ) iff [u |=P̂ ϕ] 6= >

Therefore, we can evaluate [u |=P̂ ϕ] as follows: We have [u |=P̂ ϕ] = > if u 6∈
L(B̂¬ϕ), [u |=P̂ ϕ] = ⊥ if u 6∈ L(B̂ϕ), and [u |=P̂ ϕ] =? if u ∈ L(B̂ϕ) and u ∈
L(B̂¬ϕ).

As a final step, we now define a (deterministic) FSM Bϕ that outputs for
each finite string u and formula ϕ its associated predictive semantics wrt. the
over-approximation P̂. Let B̃ϕ and B̃¬ϕ be the deterministic versions of B̂ϕ and
B̂¬ϕ, which can be computed in the standard manner by power-set construction.
Now, we define the FSM in question as a product of B̃ϕ and B̃¬ϕ:

Definition 2 (Predictive Monitor Bϕ for LTL-formula ϕ). Let P̂ be an
over-approximation of a program P. Let B̃ϕ = (Σ,Qϕ, {qϕ0 }, δϕ, F̃ϕ) and B̃¬ϕ =

(Σ,Q¬ϕ, {q¬ϕ0 }, δ¬ϕ, F̃¬ϕ) be the DFAs which correspond to the two NFAs B̂ϕ
and B̂¬ϕ as defined before. Then we define the predictive monitor Bϕ = B̃ϕ×B̃¬ϕ
for ϕ with respect to P̂ as the minimized version of the FSM (Σ, Q̄, q̄0, δ̄, λ̄),

5

ϕ, P̂

ϕ Aϕ Bϕ Fϕ B̂ϕ B̃ϕ

¬ϕ A¬ϕ B¬ϕ F¬ϕ B̂¬ϕ B̃¬ϕ

Mϕ

Input Formula NBA P̂×NBA
Emptiness
per state

NFA DFA FSM

Fig. 1. The procedure for getting [u |=P̂ ϕ] for a given ϕ and over-approximation P̂

where Q̄ = Qϕ × Q¬ϕ, q̄0 = (qϕ0 , q
¬ϕ
0), δ̄((q, q′), a) = (δϕ(q, a), δ¬ϕ(q′, a)), and

λ̄ : Q̄→ B3 is defined by

λ̄((q, q′)) =

> if q′ 6∈ F̃¬ϕ
⊥ if q 6∈ F̃ϕ

? if q ∈ F̃ϕ and q′ ∈ F̃¬ϕ.

We sum up our entire construction in Fig. 1 and conclude with the following
correctness theorem.

Theorem 1. Let P̂ be an over-approximation of a program P, ϕ ∈ LTL, and
let Bϕ = (Σ, Q̄, q̄0, δ̄, λ̄) be the corresponding monitor. Then, for all u ∈ Σ∗:
[u |=P̂ ϕ] = λ̄(δ̄(q̄0, u)).

Complexity. Consider Fig. 1: Given ϕ, step 1 requires us to replicate ϕ and to
negate it, i.e., it is linear in the original size. Step 2, the construction of the NBAs,
causes an exponential blow-up in the worst-case. Step 3 multiplies the size of the
automaton with the size of the over-approximation P̂. Steps 4 and 5, leading to
B̂ϕ and B̂¬ϕ, do not change the size of the original automata. Then, computing
the deterministic automata of step 6, might again require an exponential blow-
up in size. In total the FSM of step 7 will have double exponential size with
respect to |ϕ| and single exponential size with respect to P̂. Note that steps 6
and 7 can easily be done on-the-fly.

References

1. Kamp, H.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University
of California, Los Angeles (1968)

2. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995)

3. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout, D.V.:
Reasoning with temporal logic on truncated paths. In: CAV03. Volume 2725 of
LNCS., Boulder, CO, USA, Springer (July 2003) 27–39

4. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. Journal of Logic and Computation 20(3) (2010) 651–674

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM TOSEM 20(4) (jul 2011)

6. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Symposium on Logic in Computer Science (LICS’86), Washington,
D.C., USA, IEEE Computer Society Press (June 1986) 332–345

6

