Parallel Model Checking and the FMICSETI Platform

Jifi Barnat Lubos Brimn
Masaryk University Masaryk University
Botanicka 68a, 602 00 Brno, Czech Republic Botanicka 68a, 602 00 Brno, Czech Republic
barnat@fi.muni.cz brim@fi.muni.cz

Martin Leucker
Technische Universitat Miinchen
Boltzmannstr. 3, D-85748 Garching, Germany
leucker@informatik.tu-muenchen.de

Abstract subsumes the branching time logic CTL (computation tree
logic).

In this paper we summarize parallel algorithms for enu-
merative model checking of properties formulated in linear
time temporal logic (LTL) as well as a fragment of the
calculus which naturally subsumes the branching time logic
CTL (computation tree logic). We also indicate how to pro-
vide parallel model checking applications as services for
integrated modelling, analysis, and verification using the
FMICS-JETI platform.

The model-checking problem can always be represented
as a problem on a directed graph. We suppose the graph is
given implicitly by the functionF;,,;; returning the initial
state and the functioi’,,.. returning the set of immedi-
ate successors of a given state. This representation allows
solving the problem in the “on-the-fly” manner, hence it is
often possible to get the answer to the verification problem
without actually explicitly generating the entire statasp
(graph). This is in particular useful in attacking largelsca

systems.

1 Introduction Model checking traditionally terms the task of verifying

,)) . an implementation, typically given in terms of a finite-stat
Conventional model checking techniques have high gysiem, with respect to its specification, typically given a
memory requirements and are very computationally inten- 5"temporal formula. However, model checking could and

sive; they are thus unsuitable for handling real-world sys- npaply should also be considered as a flexible analysis
tems that exhibit complex behaviors which cannot be cap-46]_as long as the object to analyze is representable as
tured by simple models having a small or regular state j finjte-state system and the analysis can be formulated in
space. Various authors have proposed ways of solving this, g jitable temporal logic. In consequence, model checkers

problem by either using powerful shared-memory multi- 5.¢ 5t the heart of many modelling and analysis tools and
processors (e.g. multi-core machines) or by distributieg t i pe in the future. It is therefore important to offer easy

memory requirements over several machines (€.9. on a clusyeans for integrating model checkers into other tools.
ter of workstations).

The work on parallel verification is quite extensive,
growing in recent years. There are attempts to consider
both the symbolic as well as the enumerative techniques,
theorem-provers as well as sat-solvers, etc. In this paper w

focus on enumerative model-checking of temporal proper- d€Sktop applications. Therefore, it is desirable to previd
ties. More specifically, we summarize model checking of parallel model checking applications as services for tlirec

properties formulated in linear time temporal logic (LTL) US€ @nd simple integration to customized modelling, analy-
as well as a fragment of the-calculus which naturally SIS, @nd verification tools.

On a different line, powerful parallel computers are
only available at dedicated locations. Nevertheless,lpara
lel model checking applications or the tools built on top
of model checkers should be easily usable as conventional

*This work has been partially supported by the Grant Agencyzaich . JETlisa framework that offers such Integration capapll-
Republic grant No. 201/06/1338 and the Academy of Sciencast ¢o. ities and we discuss how to offer parallel model checking

1ET408050503. applications with JETI in mind.

2 Parallel Reachability Analysis Algorithm 1 (Distributed State Space Generation)

. e . . - 1: if Partition(Initial,N)=ith

The basic verification technique is reachability. Reach- 5 ! a;,i IT({::]I&;I}) then
ability is also more amenable for parallelization than the 3: dse o
other verification problems and most of the pioneering work 4: §i =g
in parallel model-checking has been focused on algorithms 5: end if o
for verification of safety properties. At the heart of reach- 6: i ._gi
atb|It|ty analysis as vxéell as model-checking in general is the 7. while not received terminatiodo
Ste’e Space generaion. . -— 8 whiledse S, do

Parallel state space generation has been initially studied o Sio =g \[s)
in the context of Petri nets, stochastic Petri nets, diseret '_ new © - new
. X . . 10 for each u € Fyyees(s) do
time and continuous-time Markov chains [32.] 19] 38]. i :— Partition(u,N)
Later on, distributed state space exploration algorithms ijf 'Z._# then '
for SPIN [42], Muprhi [53], CADP [[3D], UPPAAL[[B], SzendStat@' w)
DIVINE [4], and other tools have been suggested as well. dse ’
Algorithms for distributed-memory architecture became | _ if u ¢ S then
dominant, primarily due to the easy access of networks of _ P

: 16: St e = Shew U {u}
workstations. ; i
: 17 St=S5"U{u}

All these approaches share a common idea: each ma- o end if

chine in the network explores a subset of the state space. .
. : ' " . 19: end if

The subset is defined using thartition function The func- _
. " ; - . 20: end for
tion Partition(s,N)returns the identifier of the machine to , :

. : .) 21 end while
which the state is assigned, an integer between 0 and N-1. i . i

. ' ; . e S’.. = ReceiveStatesy
Assuming we have N machines, this function partitions the i gy g
state space into N class§% one assigned to each machine. . i i T
1 H 1 1 " Snew T Snew U STGC

The AlgorithmA([18]) gives the overall idea of the dis- 5. end while

tributed state space generation. The algorithm is supposed2 '

to be run on the machineand the same algorithm is per-
formed on each other machine involved in the distributed
computation. The data structus,.,, maintains already breaks down to finding reachable accepting cycles in a di-
generated but not yet processed states. The meaning ofected graple with A as the subset of accepting vertices.
other functions and structures is obvious. o The optimal sequential algorithms for accepting cycle
The individual algorithms mentioned above differ in a getection use depth-first search strategies to detect accep
number of design principles and implementation choices g cycles. The individual algorithms differ in their space
such as: the use of internal structures for storing the state requirements, length of the counter example produced, and
(e.g. hash tables or B-trees), the way of partitioning thtest ~ jiyer aspects. For a recent survey we refei 1o [54]. The
space using either static hash functions or dynamic onés tha,e|1-known Nested DFSalgorithm is used in many model
allow dynamic load balancing, etc. Experimental evalua- checkers and is considered to be the best suitable algorithm
tions demonstrate good scalability and speedups obtaineqdy, enumerative sequential LTL model checking. The al-
are close to linear. Moreover, adaptation to shared—memorygorithm was proposed by Courcoubetis et &[] [22] and its
architectures does not bring any additional complications min jdea is to use two interleaved searches to detect reach-
and e.g. the SPIN model checker is already expected togp|e accepting cycles. The first search discovers accepting
provide support for model-checking of safety properties on giates while the second one, the nested one, checks for self-
multi-core machines from its version 4.3. reachability. Several modifications of the algorithm have
been suggested to remedy some of its disadvantagks [31].
3 Paralle LTL Mode Checking The time complexity of the algorithm is linear in the size of
the graph, i.eO(m + n), wherem is the number of edges
The automata-theoretic approach to model checkingandn is the number of vertices.
finite-state systems against linear-time temporal logid L The effectiveness of the algorithmlested DFSis
uses automata on infinite words to represent both the sysachieved due to the particular order in which the graph is ex-
tem and the property to be checked. Both automata are synplored and which guarantees that vertices are not re-glisite
chronized and the emptiness check for the resulting automaimore than twice. In fact, all the best-known algorithms rely
ton is performed. The emptiness check problem essentiallyon the same exploring principle, namely on gostorderas

computed by the DFS. It is a well-known fact that the pos- idea, would require expensive computation as well as space
torder problem is P-complete and, consequently, any paral+to store all proper accepting predecessors of all (acagptin

lel algorithm which would be directly based on DFS pos- vertices. To remedy this obstacle, the MAP algorithm stores
torder is unlikely to be efficiently parallelized. only a single representative of all proper accepting prede-

In [B4,[35] G. Holzmann and D. BoSnacki proposed an cessor for every vertex.
adaptation of the Nested DFS algorithm for dual-core ma- The representative is chosen as thaximal accepting
chines. The idea is to utilize the independence of the first predecessoaccordingly to a presupposed linear ordering
and the nested search in the Nested DFS algorithm. The al-< of vertices (given e.g. by their memory representation).
gorithm keeps its linear time complexity. On the downside, Clearly, if an accepting vertex is its own maximal accepting
the algorithm is unable to scale to more than two cores. Itis predecessor, it lies on an accepting cycle. Unfortunaiely,
still an open problem to do scalable verification of general can happen that all the maximal accepting predecessor lie
liveness properties on N-cores with linear time complexity outside of accepting cycles.

Efficient parallel solution of many problems often re- Sych vertexes can be safely deleted from the set of ac-
quires approaches radically different from those used tocepting vertexes (by applying ttaeleting transformation
solve the same problems sequentially. It seems, that itis ex de|acc(G) and the accepting Cyc|e still remains in the re-
tremely difficult to ground parallel LTL model checker on sulting graph. Whenever the deleting transformation is ap-
extending the Nested DFS algorithm or any other postorderpjied to the graph it shrinks the set of accepting vertices by
based algorithm. As we have seen in the previous sectionthose vertices that do not lie on any cycle.
the reachability analysis is a verification problem with-effi As the set of accepting vertices can change after the
cient parallel solutions. The reason is that the explomatio ge|eting transformation has been applied, maximal accept-
of the state space does not rely on any specific order, théng predecessors must be recomputed. It can happen that
vertices can be visited independently and in any order. Thegyen in the graphielacc(G) the maximal accepting pre-
exploration can thus be implemented e.g. using breadth-firs yecessor function is still not sufficient for cycle detentio
search. This gives hope to find good practical solutions for jyo\yever, after a finite number of applications of the delet-
LTL model checking that, though not theoretically optimal, jng transformation an accepting cycle is certified. For a
will scale well. graph without accepting cycles the repetitive applicatibn

In the following, we overview several other parallel al- he deleting transformation results in a graph with an empty
gorithms for enumerative LTL model checking that are all, set of accepting vertices.

more or less, based on performing repeated parallel reacha- Time complexity of the algorithm i©(a? - m)
bility to detect accepting cycles. These algorithms haee th is the number of accepting vertices. Here the faatorn

potential to scale well, there time complexity is however in comes from the computation of théap function and the
creased in the general case. The reader is kindly asked tG, 5., relates to the number of iterations

consult the original sources for the details of the presknte
algorithms.

, wherea

One of the key aspects influencing the overall perfor-
mance of the algorithm is the underlying ordering of ver-
tices used by the algorithm. In order to optimize the com-
plexity one aims to decrease the number of iterations by

Algorithm 2 (MAP)

1: while A # 0 do choosing an appropriate vertex ordering. Ordernig op-
2 computeMap / * max. accepting predecessdrk timal if the presence of an accepting cycle can be decided
in one iteration. It can be easily shown that for every (au-

3 if (Ju € A : map(u) = u) then tomaton) graph there is an optimal ordering. Moreover, an

4 return cycle optimal ordering can be computed in linear time.

5: ese An example of an optimal ordering is the depth-first

6: G := delacc(G) |* unmark acc. predeces- Search postorder. Unfortunately, ttimal ordering prob-
sors* / lem, which is to decide for a given graph and two accept-

7: end if ing verticesu, v whetheru precedesy in every optimal

8: end while ordering of graph vertices, is P-completel[11], hence un-

9: return no cycle likely to be computed effectively in a distributed environ-

ment. Therefore, several heuristics for computing a slétab
vertex ordering are used. The trivial one orders vertices
The driving idea of theM aximal Accepting Predeces- lexicographically according to their bit-vector repretsen
sor Algorithm (MAP) [11],[12] is based on the fact that ev- tions. The more sophisticated heuristics relate vertiads w
ery accepting vertex lying on an accepting cycle is its own respect to the order in which they were traversed. How-
predecessor. An algorithm that is directly derived fronsthi ever, experimental evaluation has shown that none of the

heuristics significantly outperforms the others. On avefag meaning that the were no accepting cycles in the original
the most reliable heuristic is the one based on breadth-firstgraph.
search order followed by the one based on (random) hash- The presented algorithm requires the entire automaton

ing. graph to be generated first. Moreover, the backward version
_ actually needs to store the edges to be able to perform back-
Algorithm 3 (OWCTY) ward reachability. This is however payed out by relaxing

the necessity to compute successors, which is in fact a very

1: while not finisheddo . S .
expensive operation in practice.

2: computeReachability /* remove vertices which . ; . .
P y . : Time complexity of the algorithm i©(h - m) whereh
are not reachable from accepting verti¢ds . . .
] Lo . . . is the height of the SCC quotient graph. Here the factor
3 computeElimination /* remove vertices which) . .
N . m comes from the computation &eachabilityand Elim-
are not contained in any cycle (have in-degreé& 0) . .
4 end while ination functions and the factak relates to the number of

external iterations. In practice, the number of exterrmeabit
tions is very small even for large graphs. This observagonii
The inspiration for the next parallel algorithm for detec- supported by experiments in_[29] with the symbolic imple-

tion of accepting cycles is taken from symbolic algorithms mentation and hardware circuits problems. Similar results
for cycle detection, namely from SCC hull algorithms. SCC are communicated in_[47] where heights of quotient graphs
hull algorithms compute the set of vertices containingalla were measured for several models. As reported, 70% of the
cepting components. The algorithms maintain the approx-models has height smaller than 50.
imation of the set and successively remove non-accepting A positive aspect of the algorithm is its effectiveness for
components until they reach a fixpoint. Different strategie weak automaton graph# graph is weak if each SCC com-
to remove non-accepting components lead to different algo-ponent ofGG is either fully contained i or is disjoint with
rithms. An overview, taxonomy, and comparison of sym- A. For weak graphs one iteration of the algorithm is suffi-
bolic algorithms can be found in independent reparts [29] cient to decide existence of accepting cycles. The studies o

and [49]. temporal propertie$ [24, 116] reveal that verification of ap t
The presented algorithin]lL5] is an adaptation ofGme 90% of LTL properties leads to weak automaton graphs.
Way Catch Them Young Algorithm (OWCTY) [29] to The algorithm can be effortlessly extended to automaton

the enumerative setting. The enumerative algorithm worksgraphs for other types of nondeterministic word automata
on individual vertices rather than on sets of vertices as islike generalized Bluichi automata and Streett automata.

the case in symbolic approach. A component is removed
by removing its vertices. The idea of the algorithm is to Algorithm 4 (BLEDGE)
repeatedly remove vertices from the graph that cannot lie on

any accepting cycle. The two removal rules are as follows: 1: for each level =0to ...do
2: L= all current BL edges
e if a vertex is not reachable from any accepting vertex 3. for (s,t) € L doin paralle
then the vertex does not belong to any accepting com- 4. testcycle(s,t} L |)
ponent and 5: end for
« if a vertex has in-degree zero then the vertex does not 6 €nd for
belong to any accepting component.
Note that an alternative set of rules can be formulated as = Pro¢ testeycle
_ _) 2: propagates
» if no accepting vertex is reachable from a vertex then 3. if 5 propagated to itsethen
the vertex does not belong to any accepting component 4. return cycle
and 5. elseif current BL passed-| L | then
o if a vertex has out-degree zero then the vertex does not & return cycle
belong to any accepting component. 7. end if
This second set of rules results in an algorithm which works
in abackwardmanner and we will not describe it explicitly An edge(u, v) is called aback-level edgé it does not
here. increase the distance of the target venteform the initial

The algorithm performs removal steps as far as there arevertex of the graph. The key observation connecting the cy-
vertices to be removed. Inthe end, either there are some verele detection problem with the back-level edge concept, as
tices left in the graph meaning that the original graph con- used in theBack-L evel Edges Algorithm (BLEDGE) [,
tains an accepting cycle, or all vertices have been removeds that every cycle contains at least one back-level edge.

Back-level edges are, therefore, used as triggers to start aent) maximumi(v) giving the maximal number of (so far

procedure that checks whether an edge is a part of an acdiscovered) accepting predecessors, parent vefiexand

cepting cycle. However, this is too expensive to be done statusS(v) € {unreached, labeled, scanned}. Initially,

completely for every back-level edge. Therefore, severald(v) = oo, p(v) = nil, andS(v) = unreached for every

improvements and heuristics have been suggested and intesertexv. The method starts by settings) = 0, p(s) = nil

grated within the algorithm to decrease the number of testedand.S(s) = labeled, wheres is the initial vertex. At every

edges and speed-up the cycle test. step alabeledvertex is selected and scanned. When scan-
The BFS procedure which detects back-level edges runsning a vertexu, all its outgoing edges amelaxed (imme-

in time O(m + n). In the worst case, each back-level edge diate successors are checked). Relaxation of an @dge

has to be checked to be a part of a cycle, which requiresmeans that ifi(v) is an accepting vertex thet{v) is set to

linear timeO(m+n) as well. Since there is at mastback- d(u) + 1 andp(v) is set tou. The status of: is changed
level edges, the overall time complexity of the algorithm is to scannedwhile the status of is changed tdabeled If
O(m.(m +n)). all vertices are eithescannedor unreachedthend gives

The algorithm performs well on graphs with small num- the maximal number of accepting predecessors. Moreover,
ber of back-level edges. In such cases the performance ofheparent graphG), is the graph of these “maximal” paths.
the algorithm approaches the performance of reachabilityMore precisely, the parent graph is a subgréghof G in-
analysis, although, the algorithm performs full LTL model duced by edge&(v), v) for all v such thap(v) # nil.
checking. On the other hand, a drawback shows up when Different strategies for selecting a labeled vertex to be
a graph contains many back-level edges. In such a casescanned lead to different algorithms. When using FIFO
frequent re-visiting of vertices in the second phase of the strategy to select vertices, the algorithm rungifm - n)
algorithm causes the time of the computation to be high. time in the worst case. For graphs with reachable accepting

The level-synchronized BFS approach also allows to cycles there is no “maximal” path to the vertices on an ac-
involve BFS-based Partial Order Reduction (POR) tech- cepting cycle and the scanning method must be modified to
nigue [20] in the computation. POR technique prevents recognize such cycles. The algorithm employswrak to
some vertices of the graph from being generated while pre-root strategy which traverses tiparent graph The walk to
serving result of the verification. Therefore, it allows bna root strategy is based on the fact (see é.d. [17]) that a cycle
ysis of even larger systems. The standard DFS-based PO the parent graply, corresponds to an accepting cycle in
technique strongly relies on DFS stack and as such it is in-the original graph and vice-versa.

applicable to cluster-based environment [14]. The walk to root method tests whethé, is acyclic.
Suppose the parent gragh, is acyclic and an edg@:, v)
Algorithm 5 (NEGC) is relaxed, i.e.d(v) is decreased. This operation creates a
. - cycle inG, if and only if v is an ancestor of in the current
L while not flnlshedjo G,. Before applying the operation, we follow the parent
2 ﬁcs%r::(\:/:;tslf)??/ertex is acceptitign pointers fr_omu until we reach e_ither; ors. If we stop at
A run walk to root (WTR) v a cycle is detected. Othng|se, the reIaxat|or_1 (_jpes not
: . L create a cycle. However, since the path to the initial ver-
> IfWTR r(_aaches initial vertethen tex can be long, the cost of edge relaxation becotgs)
6' o continue instead ofO(1). In order to optimize the overall compu-
; = return cycle tationgl complexity, amortization is_used to pay the cost of
° end if chef:klnng for cycles. More preC|_ser, the parent grgph
10- end if G, is tested only afte_r the underlymg_ scanning algorl_thm
' . performs$)(n) relaxations. The running time is thus in-
11: end while

creased only by a constant factor. The worst case time com-
plexity of the algorithm is thu®(n - m).

Considermaximal numberf accepting vertices on a
path from the vertex to a vertex, where the maximum is All the algorithms allow for an efficient implementation on
being taken over all such paths. For vertices on an accept-a parallel architecture. The implementation is based on par
ing cycle the maximum does not exist because extendingtitioning the graph (its vertices) into disjoint parts. tihile
a path along the cycle adds at least one accepting vertexpartitioning is important to benefit from parallelization.
This opens an idea to detect accepting cycles via maximal One particular technique, that is specific to automata
numbers of accepting predecessors. based LTL model checking, isycle locality preserving
For computing the maximal number of accepting prede- problem decompositior [3,-41]. The graph (product au-
cessors the algorithm maintains for every ventédss (cur- tomaton) originates from synchronous product of the prop-

erty and system automata. Hence, vertices of product au-combination of formulas and, especially, labeltetktstate,
tomaton graph are ordered pairs. An interesting observatio minimal, and maximal fixpoint quantifiers.

is that every cycle in the product automaton graph emerges For practical applications, it suffices to restrict the
from cycles in the system and the property graphs.A.€8 calculus in order to gain tractable model checking proce-
be Biichi automata and ® B their synchronous product. dures. The alternation-free fragment, denotedLléy re-

If C is a strongly connected component in the automatonstricts the nesting of minimal and maximal fixpoint opera-
graph ofA ® B, then A-projection ofC and B-projection tors. Still, it allows the formulation of manyafetyas well

of C are (not necessarily maximal) strongly connected com- aslivenessproperties. While this fragment is already im-
ponents in automaton graphs.éfand B, respectively. portant on its own, it subsumesr'L [27].

As the property automaton origins from the LTL for- Model checking this fragment is linear in the length of
mula to be verified, it is typically quite small and can be the formula as well as the size of the underlying transition
pre-analyzed. In particular, it is possible to identify all system, and several sequential model checking procedures
strongly connected components of the property automatonare given in the literaturé 21 I,140, 8]. At the same time,
graph. A partition function may then be devised, that re- the model checking problem was proven to be P-complete
spects strongly connected components of the property au{g5, [10], limiting our enthusiasm for finding a (theoreti-
tomaton and therefore preserves cycle locality. The parti-ca”y) good parallel model checking algorithm.
tioning strategy is to assign all vertices that project te th The algorithms can be classified ingobal and local
same strongly connected component of the property au-ygorithms. Global algorithms require that the underlying
tomaton graph to the same sub-problem. Since no cycle isyransition system is completely constructed while local al
split among different sub-problems it is possible to employ gorithms compute the necessary part of a transition system
localized Ne_sted_DFS algorithm to perform local accepting on-the-fly.In plain words, global algorithms typically com-
cycle detection simultaneously. pute the fixpoints in an inductive manner while the local

Yet another interesting information can be drawn from algorithms decide the problem by a depth-first-search.
the property automaton graph decomposition. Maximal Typical on-the-fly model checking algorithms for the
strongly connected components can be classified into threg.5 ey, us[[37] are based on a characterization of this proble

categories: in terms of two-player gameE [28.152]. Then, model check-
ing boils down to establishing the winner when playing on
so-called game graphs, which are and-or-graphs enriched
with so-called parities. For the alternation-freealculus,
these game graphs have a simple structure that allows to de-
Type P: (Partially Accepting There is at least one accept- termine the winner in parallel efficiently.
ing cycle and one non-accepting cycle within the com- A different characterization of the model checking prob-
ponent. lem can be given in terms of so-called 1-letter-simple-weak
alternating-Buichi automata[40]. However, these ardedla
Type N: (Non-Acceptiny There is no accepting cycle to games in a straightforward manngrl[43]. On the same
within the component. line, one can understand the the model checking problem as
solving a boolean equation systeml[45].
The first parallel model checking algorithm fﬁrf; was

Type F: (Fully Accepting Any cycle within the compo-
nent contains at least one accepting vertex. (There is
no non-accepting cycle within the component.)

Realizing that a vertex of the product graph is accept-

ing only if t_he corregpond_ing verFex in the properFy automa- presented in19,10] and formulated in terms of games. Sim-
ton graph is accepting it is possible to characterize tyfes o ilar algorithm-s appeared also in_J13] and, reformulated in
strongl_y connected components ofproduct automaton gralorlerms of solving alternating boolean equation systems, in
according to types of_(_:om_ponents in the property automa-[36]_ A slightly different approach for parallel CTL model
ton graph. This classification of components into types checking was presented if [7]

F, andP can be used to gain additional improvements that The game graph combines states of the transition sys-

may be incorporated into _the above_g|ven aIgorlthms. tem and subformulas of the property to check to so-called
All the presented algorithms are implemented in the par- , . :)
: configurations. Furthermore, plays, which are paths in the
allel enumerative LTL model-checkenDINE [4]. .
game graph, correspond to (tableau-kind) proofs or refuta-
))) tions for the property to check. Plays are either finite or
4 Parallel Branching-Time M odel-Checking represent an infinite unwinding of a fixpoint formula. Sim-
ilar as in tableaus, the winner of a finite play is immediate.
Famous logics for expressing branching time specifica- For example, when reaching a configuration with staad
tions are both Computation-Tree Logic (CTL.J27]) and formulatrue, the play is one by the protagonist. For infinite
Kozen's u-calculus [39]. Theu-calculus offers boolean plays, an infinite unwinding of minimal fixpoint refutes a

property while an infinite unwinding of a maximal fixpoint ~ Algorithm 7 colorizeComponent, (Q;)
proofs the property [52]. Colorize those configurations of component owned by pro-
The main observation in all parallel algorithms is that cessor.
the game graph (or the boolean equation system) has a so-,. * ih Nt ; i *
calledweakstructure: It can be partitioned into components ; for/ eaiaazto\;lv}tll?gﬂ (;(())nflguranons o,/
of a single fixpoint type (either maximal or minimal). These . processSuccessosz(conf, Q)
components can be partially ordered and edges of the game ;. anq for
graph stay either in the same component or leave the com-
ponent towards a larger one wrt. the partial order. Thus,
every play in this graph gets trapped in a unique compo-
nent.
The problem of determining whether a play is winning .
is then divided into two independent problems: One is 4

5. repeat

6: msg := get(Work;)

7: if msg = EXPAND(pred, conf) then
8 if conf & Conf, then

9 processSuccessors(conf, Q)
initializeConfiguration(conf)

whether the player wins when entering a component and then; A(conf) := color(conf)
second is whether the player can force the play to a specific ;. end if
component. 13: if X\i(conf) # WHITE then
Thus, one source of parallelism is to determine for each 4. put COLOR(pred, Ai(conf)), Workn(pred)
component in bottom-up fashion in parallel the winner for . end if
the respective component. This is indicated in Algorilim 6, 4. —; 1= —; U {(pred, conf)}
in which speak of coloring the game graph’s configurations 17. elseif msg = COLOR(conf, color) then
into either winning for the protagonist (typically indieat 4. decrementount (conf, color) | * update color
by greenor winning for the antagonist (indicated bgd) information®* /
and use the symbok to denote the order of the compo- 1. color’ := color(conf)
nents. 20: if color’ # \;(conf) then
i i i 21: Xi(conf) := color’

Algorithm 6 Main procedure, pgrallel bottom-up version 29- for each pred € pre;(conf) N Q; do

1: for each componen®; € Q in bottom-up order do 23: / * only work on current componehni

2: for each processoi; in parallel do 24: put COLOR(pred, A;(conf)), Worky(pred

3: colorizeComponent,; (@) 25: end for

4 recolorComponent, (Q;) 26: end if

5: Propagate colors from initial configurations 7. end if

[Q;]1t0{Q | Q@ < Q,} 28: until msg = COMPONENTCOMPLETED
6: end for
7: end for

In a practical algorithm, the processes of generating the

For the configurations of a single component, the winner game graph as well as determining the winner for each com-
can be determined as follows: In each terminal configura- ponent are interviewed. The heart of the algorithm is the
tion, the winner is immediate. Thus, a simple backwards processing of a single game-graph compor@ntas de-
propagation within the and-or graph in the expected man-picted in Algorithni¥. Given a component (number), it ex-
ner gives for most configurations a definite answer. The pands all configurations of the component and is called by
crucial observation made ii_[1L0] is that for all remaining the main function. As the color information of a terminal
configurations, one player can force to stay on a cycle, onnode is always immediate, a coloring process is initiated, i
which a fixpoint formula is unwinded. Due to weakness of a terminal configuration is reached. Colors are then propa-
the game graph, this implies that either a minimal or a max- gated backwards.
imal fixpoint is unwinded. Thus, all configurations either The algorithm is designed for a distributed setting. Each
satisfy the formula or violate the formula at hand. This al- processor runs an unmodified copy, and we can only assume
lows to classify the winner for each configuration in pafalle a local view of all data structures as explained in Sedflon 2.
without the need of any communication. Thus, the secondThus, we index the local part of a data structure with the
source of parallelism is given by distributing each compo- number of its “owning” processor (indéxor processof;).
nent over the cluster and to first propagate winning infor- For processors to communicate among each other, each
mation from terminal configuration backwards, in parallel, P, uses a queuéVork; where processors can deposit re-
and then to color all remaining configurations according the quests, for example via some message passing mechanism.
component’s type. The algorithm then continually processes requests from its

gueue until the handling of the current component is com-
pleted. The locally known configurations of a game graph
are stored in se€onf ;.

In lines 1-4, the component’s initial configuratioig, |
(the ones with incoming edges from smaller components)
are expanded consulting the functibi,.. (see Sectiofl1).
The idea of processSuccessors (line 3, not depicted here
is that if a configuratiortonf is not yet known, its succes-
sorspost(conf) are calculated and put on respective work
gueues. Then the algorithm enters a loop (lines 5-28),
where it retrieves the next requestg, and processes it.

In case of a requestX®AND(pred, conf) (lines 7-16)
to expand more of the game graph, we check whether th
to-be-expanded configuratiatenf has not yet been seen
(line 8). Itis then expanded (line 9) and initialized (lin&)1
A color label \(conf) is determined (line 11). It is then
possibly propagatedto predecessa#i (lines 13—15). This
request is put on the queue of the proced3gy,.q) who is
responsible for configuratigmed. A new game graph edge
(pred, conf) is then added (line 16). It is later needed to
propagate color changes to predecessor configurations.

We process a coloring requestoCoR(conf, color)
(lines 17-27) by recording that some successor of configu-
ration conf has just obtained colawlor (line 18). Then, it
is determined whether that color change has impacbafi

The parallel algorithm foLﬁ employs the algorithm for
L}L as a subroutine. Thus, it promises a simple and efficient
approach to check formulasb'L, CTL*, andeL, though
empirical evidence is still future work.

5

; Parallel Model Checking and JETI

While traditionally model checking is mainly used for
verification of hard- and software systems, it could and
probably should also be considered as a flexible analysis
tool: The object to analyze is given as a finite-state system
and the analysis can be formulated in a suitable temporal

eIogic. Program analysis as model checkihd [50] or the use

of model checking for analyzing biochemical procesBEs [5]
are just two examples.

In consequence, model checkers are the heart of many
modelling and analysis tools. Furthermore, when design-
ing new applications comprising an analysis that can be for-
mulated as a model checking problem, a cost effective ap-
proach will be to integrate a model checker rather than to
work out a customized analysis algorithm. It is therefore
important to offer the easy integration of model checkers
into other tools.

Powerful shared-memory multiprocessor systems and
especially powerful clusters of workstations are typigcall

and its color is updated accordingly (lines 19-21). Also, On ¢4,n4 only at dedicated locations, with skilled administra

color update, the new color is propagated backwards to each) o maintaining the systems

predecessasre; (conf) NQ; of conf in the current compo-
nent (lines 22-25).

However, for a user of a
model checker, regardless whether she is using the model
checker directly or whether she is using a tool built on top of

The processing continues until none of the processorsy model checker, it is convenient that the application looks

has any requests left to handle, in which the algorithm
finishes. This situation is detected by an termination
check algorithm (not depicted here) which then inserts a
message GMPONENTCOMPLETED into every processor’s
work queue.

When all processes terminate in line 28, the remaining
configurations can be colored in parallel independently by
every process (line 4 of the main routine).

While parts of the algorithm sketched above [[10]) are
similar to a (sequential) solution of the model checking
problem described in_]40], it avoids explicit detection of
cycles, which is believed hard in parallel. Nevertheless,
it meets the optimal linear time bounds of sequential algo-
rithms [10].

The algorithm has been implemented and has been ex-

amined by checking live-locks on large industrial examples
which could not be checked befofe[33].

The algorithm of [[ID] has been extended(inl[44] to the
richer fragment of the:-calculus allowing one alternation,
denoted byLz. This fragment is of practical importance
since it subsumeETL [48], as well asCTL* [25], which
follows by (unpublished) results from Wolper and]|[26], and
was shown in a direct manner [n]23].

and feels like a typical desktop application: She should not
be bothered by running a distributed application, updating
to new versions of distributed model checkers, or maintain-
ing a parallel computer. Thus, it is desirable to provide par
allel model checking applications as services for direet us
and, even more important, integration to customized mod-
elling, analysis, and verification tools.

JETI [B1] is a framework that offers such integration ca-
pabilities. With JETI, users are able to combine function-
alities of tools of different providers, and even from dif-
ferent application domains to solve complex problems that
a single tool typically is not able to handle. JETI follows a
service-oriented approach that combines heterogenenus se
vices provisioned in different technologies.

Instead of physically integrating tools or libraries in
other tools, JETI's integration philosophy is to publish a
service that is running remotely at the providers location.
Whenever the service is needed, the corresponding provider
is consulted. This is ideally for offering distributed mbde
checkers as maintenance of the software as well as of the
whole parallel machine is left to the provider of the model
checker. Yet, the user of a tool that uses the distributed
model checker via JETI may not be aware of using highly

sophisticated and highly maintained systems.

An example for integrating a (sequential) model checker

into the JETI framework is given ir [46]. Due to JETI's in-

tegration philosophy, the integration scheme stays th@sam
even when the model checker is distributed and running re-

motely on a parallel computer. Thus, using JETI it will be

possible to develop high-performance analysis tools based
on parallel model checkers, which will also open up a new

age for using distributed model checkers.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

H. R. Andersen. Model checking and Boolean grapftse-
oretical Computer Scienc&26(1):3-30, 11 Apr. 1994.

J. Barnat, L. Brim, and J. Chaloupka. Parallel BreaditstF
Search LTL Model-Checking. IfProc. 18th IEEE Inter-
national Conference on Automated Software Engineering
pages 106-115. IEEE Computer Society, 2003.

J. Barnat, L. Brim, and ICerna. Property Driven Distri-
bution of Nested DFS. Iffroceedinfs of the 3rd Interna-
tional Workshop on Verification and Computational Logic
(VCL'02 — held at the PLI 2002 Symposiyrppges 1-10.
University of Southampton, UK, Technical Report DSSE-
TR-2002-5 in DSSE, 2002.

J. Barnat, L. Brim, I.Cerna, P. Moravec, P. Rotkai, and
P. Simetek. DiVinE — A Tool for Distributed Verification
(Tool Paper). IComputer Aided Verificatigrvolume 4144

of LNCS pages 278-281. Springer, 2006.

G. Batt, D. Bergamini, H. de Jong, H. Garavel, and R. Ma-
teescu. Model checking genetic regulatory networks using
gna and cadp. In S. Graf and L. Mounier, editod8®IN
volume 2989 ofLecture Notes in Computer Sciengages
158-163. Springer, 2004.

G. Behrmann, T. S. Hune, and F. W. Vaandrager. Distrithute
timed model checking — how the search order matters. In
Proceedings of the 12th International Conference on Com-
puter Aided Verificationvolume 1855 ofLecture Notes in
Computer Scien¢gages 216—231. Springer-Verlag, 2000.
A. Bell and B. R. Haverkort. Sequential and distributed
model checking of petri net specifications. Pnoceedings

of the 1st Workshop on Parallel and Distributed Methods for
Verification volume 68 ofElectronic Notes in Theoretical
Computer Science2002.

G. Bhat and R. Cleaveland. Efficient model checking via th
equationalu-calculus. InProceedings, 11 Annual IEEE
Symposium on Logic in Computer Sciengages 304—-312,
New Brunswick, New Jersey, 27-30 July 1996. IEEE Com-
puter Society Press.

B. Bollig, M. Leucker, and M. Weber. Local parallel model
checking for the alternation free-calculus. Technical Re-
port AIB-04-2001, RWTH Aachen, Mar. 2001.

B. Bollig, M. Leucker, and M. Weber. Local parallel mdde
checking for the alternation-free mu-calculus. Rroceed-
ings of the 9th International SPIN Workshop on Model
checking of Software (SPIN '02yolume 2318 ofLecture
Notes in Computer Scienc8pringer-Verlag Inc., 2002.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

L. Brim, I. Cerna, P. Moravec, and Sim3a. Accepting Pre-
decessors are Better than Back Edges in Distributed LTL
Model-Checking. InFormal Methods in Computer-Aided
Design (FMCAD 2004)volume 3312 o£. NCS pages 352—
366. Springer, 2004, .

L. Brim, I. Cerna, P. Moravec, and SimSa. How to Order
Vertices for Distributed LTL Model-Checking Based on Ac-
cepting Predecessors.4th International Workshop on Par-
allel and Distributed Methods in verifiCation (PDMC’Q5)
July 2005.

L. Brim, J. Crhova, and K. Yorav. Using assumptions t&-di
tribute CTL model checkingElectr. Notes Theor. Comput.
Sci, 68(4), 2002.

L. Brim, I. Cerna, P. Moravec, and $imsa. How to or-
der vertices for distributed Itl model-checking based on ac
cepting predecessors. volume 135.Ztdctronic Notes in
Theoretical Computer Sciengeages 3—18. Elsevier, 2006.

I. Cerna and R. Pelanek. Distributed Explicit Fair cycle De-
tection (Set Based Approach). Model Checking Software.
10th International SPIN Workshopolume 2648 oLLNCS
pages 49-73. Springer, 2003.

I. Cerna and R. Pelanek. Relating Hierarchy of Temporal
Properties to Model Checking. FProc. Mathematical Foun-
dations of Computer Scienceolume 2747 oLNCS pages
318-327. Springer, 2003.

B. V. Cherkassky and A. V. Goldberg. Negative-Cycle De-
tection Algorithms. Mathematical Programming85:277—
311, 1999.

G. Ciardo, J. Gluckman, and D. Nicol. Distributed State
Space Generation Of Discrete-State Stochastic Models.
Technical Report TR-95-75, Institute for Computer Appli-
cations in Science and Engineering, 1995.

G. Ciardo, J. Gluckman, and D. Nicol. Distributed state
space generation of discrete-state stochastic modids.
FORMS J. Comp10(1):82—93, 1998.

E. M. Clarke, Jr., O. Grumberg, and D. A. PeleModel
Checking The MIT Press, Cambridge, Massachusetts,
1999.

R. Cleaveland and B. Steffen. A linear-time model-
checking algorithm for the alternation—free modal mu—
calculus. In K. G. Larsen and A. Skou, editoRroceed-
ings of Computer-Aided Verification (CAV'93plume 575

of Lecture Notes in Computer Sciengages 48-58, Berlin,
Germany, July 1992. Springer.

C. Courcoubetics, M. Vardi, P. Wolper, and M. Yannalaki
Memory efficient algorithms for the verification of tempo-
ral properties. In E. M. Clarke and R. P. Kurshan, editors,
Computer-Aided Verification: Proc. of the 2nd Internatibna
Conference CAV'9(pages 233-242. Springer, 1991.

M. Dam. CTL* and ECTL* as fragments of the moda
calculus.Theoretical Computer SciencE6(1):77-96, Apr.
1994.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property
Specification Patterns for Finite-State Verification.Plroc.
Workshop on Formal Methods in Software Practipages
7-15. ACM Press, 1998.

E. Emerson and J. Y. Halpern. ‘Sometimes’ and ‘Not Never
revisited: On branching versus linear time temporal logic.
Journal of the ACM33(1):151-178, 1985.

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

E. Emerson and C. Lei. Efficient model checking in frag-
ments of the propositiongl—calculus. InSymposion on
Logic in Computer Sciencepages 267-278, Washington,
D.C., USA, June 1986. IEEE Computer Society Press.

E. A. Emerson and E. M. Clarke. Using branching time tem-
poral logic to synthesize synchronization skeletd®sence

of Computer Programmin@(3):241-266, Dec. 1982.

E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-
checking for fragments of mu-calculus. Rroc. 5th Inter-
national Computer-Aided Verification Conferena®lume
697 of Lecture Notes in Computer Scienpages 385—-396.
Springer, 1993.

K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is
there a best symbolic cycle-detection algorithm? Phoc.
Tools and Algorithms for the Construction and Analysis of
Systemsvolume 2031 ofLNCS pages 420-434. Springer,
2001.

H. Garavel, R. Mateescu, and |. Smarandache. Parafed S
Space Construction for Model-Checking. Rnoceedings of
the 8th International SPIN Workshop on Model Checking of
Software (SPIN’01)volume 2057 oL NCS pages 200-216.
Springer, 2001.

J. Geldenhuys and A. Valmari. Tarjan’s algorithm makes
on-the-fly LTL verification more efficient. IITACAS'04
volume 2988 ofLecture Notes in Computer Sciengages
205-219. Springer, 2004.

B. R. Haverkort, A. Bell, and H. C. Bohnenkamp. On the
efficient sequential and distributed generation of vergedar
Markov chains from stochastic Petri nets.

F. Holmén, M. Leucker, and M. Lindstrom. UppDMC - a
distributed model checker for fragments of thecalculus.
volume 128/3 ofElectronic Notes in Computer Sciends-
sevier Science Publishers, 2004.

G. Holzmann. The Design of a Distributed Model Checking
Algorithm for SPIN. INFMCAD, Invited Talk 2006.

G. Holzmann and D. Bosnacki. Multi-core model checking
with Spin. InHIPS-TopModels 2007, short pap@007.

C. Joubert and R. Mateescu. Distributed local resofutf
boolean equation systems. RDP, pages 264-271. IEEE
Computer Society, 2005.

M. Jurdzinski. Small progress for solving parity games
In Proc. STACSvolume 1770 ofLNCS pages 290-301.
Springer-Verlag, 2000.

W. Knottenbelt, P. Harrison, M. Mestern, and P. Kritgém.

A probabilistic dynamic technique for the distributed gen-
eration of very large state spacd2erformance Evaluation
Journal 39(1-4):127-148, February 2000.

D. Kozen. Results on the propositional mu-calcullieeo-
retical Computer Scien¢®7:333-354, Dec. 1983.

O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-
theoretic approach to branching-time model checkiluir-

nal of the ACM 47(2):312-360, Mar. 2000.

A. L. Lafuente. Simplified distributed LTL model checkj

by localizing cycles. Technical Report 00176, Institut fii
Informatik, University Freiburg, Germany, July 2002.

F. Lerda and R. Sisto. Distributed-memory model chegki
with SPIN. InProceedings of the 6th International SPIN
Workshop on Model Checking of Software (SPIN;9&)-
ume 1680 oL NCS pages 22—-39. Springer, 1999.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

M. Leucker. Model checking games for the alternaticeefr
mu-calculus and alternating automata. In H. Ganzinger,
D. McAllester, and A. Voronkov, editor&roceedings of the
6th International Conference on Logic for Programming and
Automated Reasoning "(LPAR’99)Volume 1705 ofLec-
ture Notes in Artificial Intelligencepages 77-91. Springer,
1999.

M. Leucker, R. Somla, and M. Weber. Parallel model check
ing for LTL, CTL"* andLi. In L. Brim and O. Grumberg,
editors,Electronic Notes in Theoretical Computer Science
volume 89. Elsevier Science Publishers, 2003.

A. Mader. Verification of Modal Properties Using Boolean
Equation Systems PhD thesis, Technische Universitat
Miinchen, 1996.

T. Margaria, R. Nagel, and B. Steffen. Remote integrati
and coordination of verification tools in jeti. Froc. of the
12th IEEE Int. Conf. on the Engineering of Computer-Based
Systems (ECBS 200Fages 431-436. IEEE Computer So-
ciety, 2005.

R. Pelanek. Typical structural properties of statecgs. In
Proc. of SPIN Workshqgprolume 2989 ofLNCS pages 5—
22. Springer, 2004.

A. Pnueli. The temporal logic of programs. Rroceedings

of the 18th IEEE Symposium on the Foundations of Com-
puter Science (FOCS-7,jages 46-57, Providence, Rhode
Island, Oct. 31-Nov. 2 1977. IEEE Computer Society Press.
K. Ravi, R. Bloem, and F. Somenzi. A Comparative Study of
Symbolic Algorithms for the Computation of Fair Cycles. In
Proc. Formal Methods in Computer-Aided Desigolume
1954 of LNCS pages 143-160. Springer, 2000.

D. Schmidt and B. Steffen. Program analysis as model
checking of abstract interpretations. In G. Levi, editor,
Proc. 5th Static Analysis Symposiuwelume 1503 ofLec-
ture Notes in Computer Sciengeages 351-381. Springer,
1998.

B. Steffen, T. Margaria, and R. Nagel. jeti: A tool formete
tool integration. In N. Halbwachs and L. D. Zuck, editors,
Proc. of 11th Int. Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS'06)ume 3440

of LNCS Edinburgh, UK, April 2005. Springer Verlag.

C. Stirling. Games for bisimulation and model checking
July 1996. Notes for Mathfit Workshop on finite model the-
ory, University of Wales, Swansea,.

U.Stern and D. L. Dill. Parallelizing the mgrverifier. In

O. Grumberg, editoiProceedings of Computer Aided Veri-
fication (CAV '97) volume 1254 ofL.NCS pages 256—267.
Springer, 1997.

M. Vardi. Automata-Theoretic Model Checking Revisite

In Proceedings of the 8th International Conference on Veri-
fication, Model Checking, and Abstract Interpretation (VM-
CAI 2007) volume 4349 of NCS Springer, 2007.

S. Zhang, O. Sokolsky, and S. A. Smolka. On the parallel
complexity of model checking in the modal mu-calculus. In
Proceedings of the 9th Annual IEEE Symposium on Logic in
Computer Sciencgages 154-163, Paris, France, 4—7 July
1994. IEEE Computer Society Press.

	Introduction
	Parallel Reachability Analysis
	Parallel LTL Model Checking
	Parallel Branching-Time Model-Checking
	Parallel Model Checking and jETI

