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Abstract. We introduce a formalism to specify classes of MSCs over
an unbounded number of processes. The formalism can describe many
interesting behaviours of dynamically changing networks of processes.
Moreover, it strictly includes the formalism of Message Sequence Graphs
studied in the literature to describe MSCs over a fixed finite set of pro-
cesses. Our main result is that model-checking of MSCs described in this
formalism against a suitable monadic-second order logic is decidable.

1 Introduction

In the early stages of design of a communication system, an emerging practice
is to specify the system by describing the possible scenarios. A popular notation
to describe such scenarios is that of message sequence charts (MSCs). This ITU
standardized notation ([8]) describes a snap-shot of messages sent and received
by various components of a distributed system in graphical notation.

There is now a growing interest in analyzing MSCs and applying the formal
analysis techniques of model-checking to them. The motivation is that a designer
could specify the scenarios using a collection of MSCs and verify them against
certain requirements. Detection of errors at such an early stage in design can
have considerable pay-offs.

In [1], the authors studied model-checking of message-sequence graphs (MSGs)
against linear-time specifications. MSGs are a compact way of specifying an in-
finite collection of MSCs as a regular combination of atomic MSCs using con-
catenation, choice and repetition. Since an MSC describes a partially-ordered
behaviour, a natural question to ask is whether all the linearizations of all the
MSCs in the collection satisfy the linear specification. As shown in [1], this prob-
lem is undecidable unless the MSGs are heavily restricted.

In [5], the model-checking problem for MSCs was studied for structural spec-
ifications expressed in monadic second-order logic (MSO). MSO specifications
describe properties of the partial-order defined by the MSC rather than of their
linearizations. It was shown that the model-checking problem is decidable for
MSGs, without any restriction on them. The idea that structural specifications
can make model-checking effective has been extended for a larger class of MSC
languages than MSGs [6].
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All the classes of MSC languages considered have, however, a serious limi-
tation—they describe behaviours of only a fixed finite set of processes. While this
is sufficient for many protocols, there are a number of domains where the number
of processes cannot be considered fixed. Prime examples of such protocols are
those that arise in the areas of mobile computing and ad-hoc networks. For
example, a mobile phone may interact with an arbitrary number of transmitters
and the description of switching from one to the other is naturally modelled only
with a varying number of transmitters.

In this paper, we propose a formalism to describe MSC languages where
the underlying set of processes need not be bounded. The formalism is given
by a grammar which allows the user to concatenate MSCs (as in an MSG)
and also gives the ability to split processes into two teams. Both teams can then
independently interact with new processes that are spawned, and then join again,
upon which they can continue interacting with each other. In order to contain
ourselves in a decidable fragment, we constrain that at any point, the number
of interesting processes for which the user is specifying a behaviour is fixed. Our
main result is that monadic-second order specifications can be model-checked
effectively for such a set of dynamic MSCs specified in this grammar.

Our formalism is quite natural and can describe many interesting behaviours
involving unboundedly many processes. Like process calculus [7], it uses recursion
to describe scenarios over an arbitrary number of processes. Also, our formalism
is a proper extension of that of MSGs, which can be formulated in our grammar
easily.

The main technical arguments for the decidability of model-checking stem
from the rich theory of decidable classes of graphs against MSO formulas studied
by Courcelle and others (see [3, 2]). The classes of graphs we generate are similar
in spirit to that of series-parallel graphs, for which similar decidability results
are known. We see the main contribution of this paper as that of identifying a
meaningful and natural class of MSC languages that allow depiction of scenarios
of unboundedly many processes, and applying existing techniques in order to
verify them against powerful structural specifications.

2 Fork-and-join MSCs and Monadic Second-Order Logic

Let P , P ′, . . . denote finite sets of process names (or just processes in short). We
let p, q, p1, p

′, q′, p′1, . . . range over processes. A message alphabet is a finite set
ΓM . Its elements are usually denoted by a, a1, . . .. For notational convenience,
we fix ΓM for the rest of the paper. For a set of processes P , let Ac(P ) :=
{(p!q, a), (p?q, a) | p, q ∈ P, a ∈ ΓM} denote the set of actions over P . An
action (p!q, a) should be read as “p sends a message a to process q”, and (q?p, a)
represents the corresponding receive action, which is then executed by process
q. We denote by Acp(P ) the set of actions that p ∈ P participates in, defined as
Acp(P ) = {(p!q, a), (p?q, a) | q ∈ P, a ∈ ΓM}.

A message-sequence chart (MSC) is a partially ordered set of send and receive
events, with a matching function that identifies the send events with correspond-
ing receive events:
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Definition 1. Let P be a set of processes. A Message Sequence Chart (MSC)
over P is a tuple m = (P, E, {≤p}p∈P , λ, µ) where

– E is a finite set of events;
– λ : E → Ac(P ) is a labelling function that identifies for each event an

action. Let Ep = {e ∈ E | λ(e) ∈ Acp(P )} denote the set of events which p

participates in. Also, let ES = {e ∈ E | λ(e) = (p!q, a) for some p, q ∈ P, a ∈
ΓM} and ER = {e ∈ E | λ(e) = (p?q, a) for some p, q ∈ P, a ∈ ΓM} denote
the set of send and receive events of E, respectively;

– µ : ES → ER is a matching function that associates with each send event
its corresponding receive event. Therefore, we require µ to be a bijection and
for e, e′ ∈ E, if µ(e) = e′ then λ(e) = (p!q, a) and λ(e′) = (q?p, a) for some
p, q ∈ P, a ∈ ΓM ;

– ≤p is a total order on Ep for each p ∈ P . Let ≤̂= (
⋃

p∈P ≤p) ∪ {(e, e′) |

e, e′ ∈ E and µ(e) = e′}. Let ≤= (≤̂)∗ be the reflexive and transitive closure
of ≤̂. Then ≤ denotes the causal ordering of E in the MSC and we require
it to be a partial order on E.

Note that in the above definition, we do not require Ep to be nonempty, for
any p ∈ P .

An MSC m is considered equivalent to an MSC m′ if it differs from m′ only
on the process and event sets—i.e. if the process and event sets of m can be
relabelled (with appropriate relabelling of the actions) to yield m′.

We want to identify certain processes of MSCs when composing them. Let
Πk = {π1, . . . , πk} be a set of k process identifiers. To simplify the presentation,
we fix Πk, for some k, for the rest of the paper.

Definition 2. A named MSC over P is a tuple (m, β) where m is an MSC
over P and β : Πk → P is an injective mapping, which assigns to every process
identifier a process.

Note that P must comprise at least k processes. We usually denote a named
MSC by M or M ′. Figure 1 illustrates two named MSCs M1 and M2. We are
now ready to define the sequential composition for named MSCs.

When two named MSCs are concatenated, the processes corresponding to
the same process identifier get identified and their events get causally related;
the other processes are simply added as separate processes.

Definition 3. Let M = ((P, E, {≤p}p∈P , λ, µ), β) and M ′ = ((P ′, E′, {≤′
p}p∈P ′ ,

λ′, µ′), β′) be two named MSCs. Since processes and events can be renamed, we
may assume that for all p ∈ P, p′ ∈ P ′,

– p = β(π), p′ = β′(π) for some π ∈ Πk implies p = p′ (hence β = β′) and
– p 6∈ β(Πk), p′ 6∈ β′(Πk) implies p 6= p′.

Also, assume E ∩E′ = ∅. The concatenation M.M ′ of M and M ′ is the named
MSC ((P ′′, E′′, {≤′′

p}p∈P ′′ , λ′′, µ′′), β′′) where 3

3 For two functions h and l over disjoint domains, h ∪ l denotes the function over the
combined domain defined in the expected manner.
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– P ′′ = P ∪ P ′; E′′ = E ∪ E′

– ≤′′
p=





≤p for p ∈ P \ β(Πk)

≤′
p for p ∈ P ′ \ β′(Πk)

≤p ∪ ≤′
p ∪(Ep × E′

p) for p ∈ β(Πk)
– λ′′ = λ ∪ λ′; µ′′ = µ ∪ µ′; β′′ = β (= β′).

It is easy to see that whenever we substitute named MSCs with equivalent ones,
their compositions yield equivalent named MSCs.

The idea of the join composition is to take the union of the processes of two
named MSCs and to identify a new set of processes for the process identifiers.
Let 〈Λ, ∆〉 denote that Λ and ∆ form a partition of the set of process identifiers
Πk, i.e. Λ ∪ ∆ = Πk and Λ ∩ ∆ = ∅.

Definition 4. Let M = ((P, E, {≤p}p∈P , λ, µ), β) and M ′ = ((P ′, E′, {≤′
p}p∈P ′ ,

λ′, µ′), β′) be two named MSCs. Because of renaming, we may assume that P ∩
P ′ = ∅ and E ∩ E′ = ∅. Let 〈Λ, ∆〉 be a partition of Πk. The join of M and M ′

with respect to 〈Λ, ∆〉 is denoted by join〈Λ,∆〉(M, M ′) and is the named MSC
((P ′′, E′′, {≤′′

p}p∈P ′′ , λ′′, µ′′), β′′) defined by

– P ′′ = P ∪ P ′′; E′′ = E ∪ E′,
– {≤′′

p}p∈P ′′ is defined by ≤′′
p=≤p for p ∈ P and ≤′′

p=≤′
p for p ∈ P ′,

– λ′′ = λ ∪ λ′; µ′′ = µ ∪ µ′,
– β′′(π) yields β(π) for π ∈ Λ and β′(π) for π ∈ ∆.

Note that no event of M is causally related to any event of M ′ in join〈Λ,∆〉(M, M ′).
Also, it is obvious that the operation is robust for equivalent named MSCs.

Concatenation and join of named MSCs is illustrated in Figure 1 below.
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Fig. 1. Concatenation and join of MSCs

Let M be a finite set of named MSCs (named with process identifiers Πk).
Let Σ be an alphabet and ¯̄ : Σ → M a bijection between Σ and M. Let us fix
these for the rest of the paper.
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A term is an expression given by:

term ::= b | term .term | split〈Λ,∆〉(term, term)

where b ∈ Σ and 〈Λ, ∆〉 is a partition of Πk.
To any term t, we can now associate a named MSC [t] inductively as follows:

[b] = b̄, [t1.t2] = [t1].[t2] and [split〈Λ,∆〉(t1, t2)] = join〈Λ,∆〉([t1], [t2]).
For example, b.split〈Λ,∆〉(b1, b2).b

′ is a term (where b, b1, b2, b
′ ∈ Σ). In this

term, we start with the MSC b̄. Then the processes Λ and ∆ split. In the first
branch, the processes in Λ interact with a new set of processes (instantiated with
processes identifiers in ∆) and interact with them as specified in b̄1. Similarly,
in the other branch, new processes with identifiers in Λ are created and interact
with the processes labelled ∆ in b̄, according to b̄2. Then, the original processes
join and interact as specified in b̄′.

A set of terms hence represents a set of MSCs obtained using concatenation
and join operations of the MSCs in M. We specify sets of terms using a grammar:

Definition 5. Let N be a finite set of non-terminals and S0 ∈ N a start symbol.
A fork-and-join MSC grammar is a tuple (R, S0, Σ,M,¯̄ ) where R is a set of
(context-free grammar) rules of the form S → nterm where nterm is a term with
non-terminals, given by the grammar

nterm ::= b | S | nterm.nterm | split〈Λ,∆〉(nterm,nterm)

where b ∈ Σ, S ∈ N and 〈Λ, ∆〉 is a partition of Πk.

The set of terms that are derived using a fork-and-join MSC grammar G is
denoted T (G).

Definition 6. Let G = (R, S0, Σ,M,¯̄ ) be a fork-and-join MSC grammar. The
language of G is denoted by L(G) and is defined as

L(G) = {m | there is t ∈ T (G) and an assignment β with (m, β) ∈ [t]}

Example 1. Imagine a scenario in which a car C travels from a source to a desti-
nation on a route guided by a number of transmitters. The number of transmit-
ters is not fixed. A typical scenario for three transmitters is depicted in Figure 2.
Initially the car C sends an “a” (approach) signal to the first transmitter T1. On
receiving a connect signal “con” from T1, the car and the transmitter interact
using a protocol which is described by some MSC m. As the car moves away
from a transmitter Ti and approaches the next transmitter Ti+1, it sends the
approach signal to Ti+1. Ti+1, on receiving this, requests Ti to hand-over (“h”)
the control. When Ti+1 receives an acknowledgement, it sends a connect signal
“con” to C, upon which they start their protocol m. Once the car reaches its
destination, it informs its current transmitter and this message is relayed back
to the first transmitter. In the figure below, we describe the above scenarios in
terms of a fork-join grammar.
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Set k = 3, Π = {c, t1, t2}, and Σ = {i, m, m′, n, n′, b, b′, e,

e′, ε}. The names in Σ denote the following named MSCs:

– ε denotes the empty MSC (i.e. the one with no events)
– i is the named MSC where c sends “a” to t1 and t1,

on receiving this, sends back “con” to c,
– The MSC m is the protocol that the car establishes

with the transmitter t1,
– n describes this sequence of messages: c sends “a” to

t2, t2 sends “h” to t1, t1 sends ack to t2 and t2 sends
“con” to c,

– b describes t2 sending “r” to t1,
– e describes c sending “r” to t1,
– m′,n′, b′, e′ are the MSCs obtained from m, n, b and

e, respectively, by switching the roles of t1 and t2.

S → i · m · L0

L0 → n · m′ · split〈{t1},{c,t2}〉
(ε,L1) · b

L0 → e

L1 → n′ · m · split〈{t2},{c,t1}〉
(ε,L0) · b

′

L1 → e′

This generates, for example, the term
i·m·n·m′·split〈{t1},{c,t2}〉

(ε, n′·m·split〈{t2},{c,t1}〉
(ε, e)·b′)·b,

which depicts the figure on the left, with
β = {c 7→ C, t1 7→ T1, t2 7→ T2}.

Fig. 2. A typical scenario for three transmitters and the grammar generating them

Monadic Second-Order Logic

We assume a supply eVar = {x, y, . . .} of individual (first-order) variables, which
are interpreted over events of an MSC, and a supply EVar = {X, Y, . . .} of
(second-order) set variables, which are interpreted over sets of events. Since the
number of processes is unbounded, we extend our logic to quantification over
processes as well. Thus, let pVar = {u, v, . . .} be a supply of (first-order) process
variables and PVar = {U, . . .} be a set of (second-order) variables interpreted
over sets of processes.

The syntax of monadic second-order logic (MSO) over MSCs is given by

ϕ ::= (u, x)
a
→ (v, y) | x ≤u y | x ∈ X | u ∈ U |

¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ | ∃u ϕ | ∃U ϕ

where u, v ∈ pVar , U ∈ PVar , x, y ∈ eVar , X ∈ EVar , and a ∈ ΓM . The notions
of free and bound variables are introduced as usual.

The intuitive meaning of (u, x)
a
→ (v, y) is that x is a send-event of process

u and y is the corresponding receive event in process v and the message sent
is a. x ≤u y holds iff y follows x in the total order of the process given by u.
Let m = (P, E, {≤p}p∈P , λ, µ) be an MSC. Let I be an interpretation function
which assigns to every x, X, u and U , an event, a set of events, a process and
a set of processes, respectively. The satisfaction relation m |=I ϕ for a formula
ϕ ∈ MSO is inductively defined as follows:

6



– m |=I (u, x)
a
→ (v, y) iff λ(I(x)) = (I(u)!I(v), a), λ(I(y)) = (I(v)?I(u), a),

and µ(I(x)) = I(y),
– m |=I x ≤u y iff I(x) ≤I(u) I(y).

The remaining constructs are defined as usual. For a formula without free vari-
ables, we write m |= ϕ instead of m |=I ϕ. Note that the causal order relation
≤, though not explicitly present, can be expressed using our syntax (see [4]).
Also, the logic cannot distinguish between equivalent MSCs.

We can now state the main result of the paper:

Theorem 1. The problem of checking, given a fork-and-join MSC grammar G
and an MSO formula ϕ, whether all the MSCs corresponding to terms in T (G)
satisfy ϕ, is decidable.

3 Model checking

Trees and automata: A tree is a graph T = (N,Edg) where N is a finite
subset of {0, 1}∗ of nodes such that (i) N is prefix-closed and (ii) if x ∈ N , then
either both x.0 and x.1 are in N or neither is in N , and Edg = {(x, x.i) | x, x.i ∈
N, i ∈ {0, 1}}. Thus the trees we consider are finite binary trees where every
node has either zero or two children.

For a finite set of labels Γ , a Γ -labelled tree is a pair (T, λ) where T =
(N,Edg) is a tree and λ : N → Γ is a labelling function that assigns a label to
every node of the tree.

A tree-automaton over Γ -labelled trees is a tuple A = (Q, init , δ, Qf ) where
Q is a finite set of states, init : Γ → 2Q is a function that associates a set of initial
states with every label, Qf ⊆ Q is a set of final states and δ : Q × Q × Γ → 2Q

is a bottom-up transition function that associates a set of possible states to a
node depending on its label and the states associated with its children.

A run of such an automaton over a Γ -labelled tree (T, λ), with T = (N,Edg)
is a function ρ : N → Q such that for every leaf v in T , ρ(v) ∈ init(λ(v)), and
for every internal node v, ρ(v) ∈ δ(ρ(v.0), ρ(v.1), λ(v)). Such a run is said to be
accepting if ρ(ε) ∈ Qf , i.e. if the root is labelled by a final state. A labelled tree
is accepted by A if there is an accepting run of A over it. The language of trees
accepted by A, L(A), is the set of trees it accepts. A set of Γ -labelled trees is
said to be regular if there is an automaton whose language is this set.

Parse trees and i-trees: We work with trees that represent the parse-trees of
terms. Formally, for a given alphabet Σ, the set of parse trees over Σ is the set
of all Γ -labelled trees, where Γ = Ops ∪Σ with Ops = {.}∪

⋃
〈Λ,∆〉{split〈Λ,∆〉},

in which all the leaves are labelled with letters in Σ and all the internal nodes
are labelled with letters in Ops .

For a term t over Σ, we can clearly associate a unique parse tree over Σ. Also,
every parse tree over Σ corresponds to a term over Σ. It is also easy to see that
the set of parse trees over Σ is regular. We assume henceforth that the automata
we construct work only over parse trees—this is an acceptable assumption since
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we can construct an automaton that accepts the set of all parse trees and take
its intersection with the automata we construct.

In addition to having a tree represent a term, we work with trees that repre-
sent terms along with an interpretation of a set of variables. Let V be a finite set
of first-order and second-order process and event variables. Recall that every b ∈
Σ is associated with an MSC b̄. A partial interpretation of V over b is a function
I that maps some first-order (second-order) process variables in V to a process
(a set of processes) in b̄, and some first-order (second-order) event variables to an
event (a set of events) in b̄. In other words, it is an interpretation of some subset of
variables V ′ ⊆ V over b̄. An interpretation tree, or an i-tree over V is a Γ -labelled
tree where Γ = Ops ∪ {(b, I) | b ∈ Σ, I is a partial interpretation of V over b}.
We call the underlying term the tree represents as the term associated with
the i-tree, i.e. the term associated with the parse tree obtained when each leaf
labelled (b, I) is instead labelled b.

If an i-tree over V is associated with a term t, then the i-tree is supposed
to represent both t and an interpretation for the variables in V to the processes
and events in [t], the MSC associated with t. For an interpretation function I of
V over [t], it is clear how to associate an i-tree that represents it: For each leaf in
the parse tree of t labelled b, map a process variable p to a process in b̄, provided
the process is the same process interpreted by I in [t]. Similarly, process set
variables, event and event set variables can be interpreted locally at each leaf.
We refer to this i-tree as the one that corresponds to I. Note that in this i-tree, a
first-order event variable gets interpreted at only one leaf. However, a first-order
process variable could get interpreted at many leaves—this is because a process
in [t] is formed using events of many MSCs at the leaves of the i-tree.

It is clear from the above that not every i-tree over V which is associated
with a term t may correspond to an interpretation I over V —in particular, the
first-order process variables defined at various leaves may not correspond to a
single process in [t]. Also, we clearly require that a first-order event variable is
given an interpretation in only one of the leaves. We say an i-tree is legal if
there is an interpretation I over V that it corresponds to. Our main task now
is to identify the set of legal i-trees.

Let us add an additional layer of labelling to the nodes of an i-tree as follows.
The labelling set will be the set Ξ where each element of Ξ is of the form
(IP, IE, η, ζ) where:

– IP (“interpreted process variables”) and IE (“interpreted event variables”)
are subsets of first-order process and event variables of V , respectively,

– η ⊆ IP × {U | U is a second-order process variable in V },
– ζ : IP ⇀ Πk is a partial function that associates some first-order process

variables of IP to process identifiers.

When we label a node v of an i-tree with (IP, IE, η, ζ), the intuition is that
in the subterm represented by the sub-tree rooted at v, IP and IE are the set of
first-order process and event variables that have been given an interpretation in
the MSC associated with the sub-term. Also, (u, U) ∈ η iff in the interpretation
of u in the sub-term, the process u has been declared to be an element of U .
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The meaning of ζ is that ζ(u) = πi iff in the named MSC corresponding to the
subterm, the process identifier πi is assigned the same process as the one u is
interpreted with.

The labelling of leaves of an i-tree is straightforward—we label a leaf labelled
(b, I) with (IP, IE, η, ζ) where IP and IE are the set of all first-order process
variables and first-order event variables interpreted by I , respectively; η is the
set of all (u, U) where u ∈ IP and the process associated with u belongs to the
set of processes associated with U , and ζ(u) = πi iff u is interpreted as a process
with identifier πi.

We can now label the tree bottom-up, starting at the leaves. If v is a node of
the tree and its children v.i are labelled (IPi, IEi, ηi, ζi), where i ∈ {0, 1}, then
we can label v as follows. There are two cases, depending on whether the node
v is labelled ’.’ or ’split〈Λ,∆〉’.

If v is labelled ’.’, then we say that the labels of its children are consistent
if (i) for every u ∈ IP0 ∩ IP1 and U ∈ V , (u, U) ∈ η0 iff (u, U) ∈ η1 and (ii)
for every u ∈ IP0 \ IP1, ζ0 is undefined on u and for every u ∈ IP1 \ IP0, ζ1 is
undefined on u, (iii) for every u ∈ IP0 ∩ IP1, both ζ0 and ζ1 are defined on u and
ζ0(u) = ζ1(u) and (iv) IE0 ∩ IE1 = ∅.

Intuitively, (i) says that, since the MSCs associated with the children of v

are going to be concatenated, if a process variable is defined in both MSCs, then
the sets of process set variables they are declared to belong to must be the same.
Conditions (ii) and (iii) say that for every interpreted process variable u, either
u is interpreted only in one of the named MSCs and is not associated with any
process identifier, or u is interpreted in both named MSCs and are associated
with the same process identifier. The reason behind these conditions is immediate
when one observes that when two named MSCs are concatenated, processes
whose event-lines get concatenated are exactly those which are associated with
process identifiers. The last condition ensures that a first-order event variable is
not interpreted in both the subtrees.

If v’s children are consistent, it is clear that we can label v as (IP, IE, η, ζ)
where IP = IP0 ∪ IP1, IE = IE0 ∪ IE1, η = η0 ∪ η1 and ζ(u) = ζ0(u) if u ∈ IP0

and ζ1(u), otherwise.

Let us now turn to the case when v is labelled ’split〈∆0,∆1〉’. We say that the
labels of its children are consistent if IP0 ∩ IP1 = ∅ and IE0 ∩ IE1 = ∅. Hence, all
that we require is that the first-order process and event variables interpreted in
the component MSCs be disjoint. If the labels of v’s children are consistent, then
we can label v as (IP, IE, η, ζ), where IP = IP0 ∪ IP1, IE = IE0 ∪ IE1, η = η0 ∪η1

and ζ is given as follows: for every u ∈ IPi, if ζi(u) ∈ ∆i, ζ(u) = ζi(u), where
i ∈ {0, 1}. It is easy to see that this update maintains the semantics of the
labelling according to the join operation of the two MSCs.

We say a labelling of the nodes of an i-tree is consistent if it can be labelled
using the above rules (i.e. every leaf is labelled as described above and every
internal node’s children are labelled consistently and respects the above labelling
rule). It is now easy to observe the following:
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Proposition 1. An i-tree over V is legal iff it has a consistent labelling in which
the label of the root is (IP, IE, η, ζ) with IP∪IE spanning all the first-order process
and event variables of V .

The following is now immediate:

Lemma 1. The set of all legal i-trees is regular.

Proof. The labelling set Ξ above can be taken to be the set of the states of a
tree-automaton working over i-trees. It is easy to engineer such an automaton
that accepts an i-tree iff the i-tree admits a consistent labelling. �

In the sequel, we assume that a formula which uses a variable, has at most
one quantification involving it. In the style of the well-known automata theoretic
approach to decidability [9], we can now show:

Lemma 2. For any MSO formula ϕ with free-variables V , the set of all legal
i-trees t over V such that the MSC represented by t satisfies ϕ under the inter-
pretation of V defined by t, is regular.

Proof. The proof will be by induction on the structure of the formula ϕ:
For the atomic formula of the kind (u, x)

a
→ (v, y), when reading a legal i-tree,

the automaton can check the formula by checking if there is some leaf labelled
(b, I), where both x and y are interpreted by I , and u and v are interpreted as
the processes x and y belong to, respectively, and x and y are matching send and
receive events of a message labelled a in [b]. It is easy to construct an automaton
which accepts a tree iff it has such a leaf.

For the atomic formula x ≤u y, the automaton is more complex. Recall the
labelling used in defining the consistency of an i-tree. It is easy to verify that
x ≤u y iff x and y are both interpreted (at leaves) as events of a process that is
interpreted as u (in the leaves) and one of the following hold:

– there is a leaf (say labelled (b, I)) where both x and y are interpreted and
the event interpreted for x is causally before the event interpreted for y in
[b], or

– Let the bottom-most internal node of the tree which is labelled (IP, IE, η, ζ)
with x, y ∈ IE be v and let its children v.i be labelled (IPi, IEi, ηi, ζi). Then
v is labelled ’.’ and x ∈ IE0 and y ∈ IE1.

Intuitively, x ≤u y iff they belong to the process interpreted as u and if they
are both interpreted at a leaf and they are causally related in the MSC defined
at the leaf, or they get causally related by a concatenation operation. We can
design an automaton which finds the consistent labelling and accepts the tree iff
the above property is satisfied.

The atomic formula “x ∈ X” can be checked easily by checking them at the
leaf where x is interpreted (say labelled (b, I)) and checking if I(x) ∈ I(X). The
formula “u ∈ U” can be handled similarly.

For the formula ¬ϕ, we can take the automaton for ϕ, complement it and
take its intersection with the automaton accepting all legal i-trees. For formulas
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formed using disjunction, ϕ∨ϕ′, we can take the automata for ϕ and ϕ′, tinker
with them if necessary so that they now work on i-trees over the free variables
in ϕ∨ϕ′, and then construct an automaton that accepts the union of these two
tree languages.

The formulas formed with existential quantification of the form ∃Wϕ(W )
(where W is a first- or second-order, event or process variable) can be handled
by taking the automaton for ϕ(W ) (call this Aϕ) and then building an automaton
accepting i-trees over V ′ (where V ′ is the set of free variables of ϕ but with W

removed from it). This automaton first guesses an appropriate extension of the
interpretation at the leaves to include an interpretation of W and then proceeds
to simulate Aϕ on this extended labelled tree. It hence accepts a legal i-tree over
V ′ iff there is a legal i-tree over V ′ ∪ {W} that extends the labelling to include
an interpretation of W , and this tree is accepted by Aϕ. �

For a sentence ϕ (without free variables), the i-trees are over the empty set
and hence are isomorphic to parse-trees. Invoking the above lemma, we have:

Theorem 2. For any MSO sentence ϕ, the set of all parse-trees over Σ that
correspond to terms that satisfy ϕ is regular. Moreover, one can effectively con-
struct an automaton Aϕ that accepts these trees.

In the model-checking problem, we are given a fork-and-join MSC grammar
G = (R, S0, Σ,M,¯̄ ) and an MSO formula ϕ. The following is easy to observe:

Lemma 3. The set of all parse trees corresponding to terms in T (G) is regular.

Proof. One can first rewrite the rules in G (but preserving the language of terms)
such that each rule is of the form S → b, S → T , S → nterm.nterm or S →
split〈Λ,∆〉(nterm,nterm). (This may require more nonterminals.) Then one can
show that a parse tree of a term belongs to T (G) iff there is a labelling of the
internal nodes with nonterminals such that the root is labelled with S0 and if a
node is labelled S, then the label of its children along with the parse tree label
of the node is according to some rule in the grammar. It is easy to build such
an automaton which checks whether there is such a labelling. �

To solve the model-checking problem, we first construct, using Lemma 2, an
automaton A¬ϕ that accepts precisely the parse-trees over Σ which correspond
to MSCs that satisfy ¬ϕ. We also construct an automaton AG that accepts the
parse trees of terms in T (G) (using Lemma 3). The problem then boils down
to checking whether L(A¬ϕ) ∩ L(AG) is nonempty, which is decidable. This
establishes Theorem 1.

4 Discussion

We have presented a formalism to specify languages of MSCs over unboundedly
many processes, and shown that MSO-model checking is decidable for this class.
Note that there have been similar efforts to extend model-checking for systems
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with a fixed number of processes to unboundedly many processes in the area of
verification of parameterized systems. In that setting, however, it turns out that
the model-checking problem gets quickly undecidable and while there are many
efforts to find decidable fragments, there is no formalism such that all problems
expressed in the formalism admit an effective model-checking procedure. In this
light, the fact that there is a decidable formalism for specifying scenarios for
unboundedly many processes is interesting.

It is easy to see that MSGs can be modelled in our framework even without
the split operator. However, even discarding the split, our framework can be seen
to be more powerful than MSGs, as it allows a context-free grammar to describe
the concatenations of the atomic MSCs.

A number of extensions are worthy of study. First, there is an extension of
MSGs, called compositional MSGs, where in the specification of an MSC, a send-
event can be defined without a matching receive—the matching receive can be
defined after an arbitrary delay. Model-checking for MSGs equipped with this
feature (CMSGs) specifications is known to be decidable [6]. It turns out that
we can extend our results to the class where the atomic named MSCs M are
allowed to have such unmatched send-events. Also, MSO logic can be enriched
with modulo counting quantifiers, preserving decidability. See [4] for details.

A future direction is to define structural temporal logics for unboundedly
many processes and adapting our procedures to that fragment in order to yield
interesting yet efficient algorithms for model-checking. Extensions of the pre-
sented formalism to handle infinite MSCs, aimed at analyzing liveness properties,
would also be interesting.
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