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Abstract. We extend Angluin’s algorithm for on-line learning of regu-
lar languages to the setting of timed systems. We consider systems that
can be described by a class of deterministic event-recording automata.
We present two algorithms that learn a description by asking a sequence
of membership queries (does the system accept a given timed word?)
and equivalence queries (is a hypothesized description equivalent to the
correct one?). In the constructed description, states are identified by
sequences of symbols; timing constraints on transitions are learned by
adapting algorithms for learning hypercubes. The number of member-
ship queries is polynomially in the minimal zone graph and in the biggest
constant of the automaton to learn for the first algorithm. The second
algorithm learns a (usually) smaller representation of the underlying sys-
tem.

1 Introduction

Research during the last decades have developed powerful techniques for us-
ing models of reactive systems in specification, automated verification (e.g., [9]),
test case generation (e.g., [12, 24]), implementation (e.g., [16]), and validation
of reactive systems in telecommunication, embedded control, and related ap-
plication areas. Typically, such models are assumed to be developed a priori
during the specification and design phases of system development. In practice,
however, often no formal specification is available, or becomes outdated as the
system evolves over time. One must then construct a model that describes the
behavior of an existing system or implementation. In software verification, tech-
niques are being developed for generating abstract models of software modules
by static analysis of source code (e.g., [10, 19]). However, peripheral hardware
components, library modules, or third-party software systems do not allow static
analysis. In practice, such systems must be analyzed by observing their external
behavior. In fact, techniques for constructing models by analysis of externally
observable behavior (black-box techniques) can be used in many situations.

– To create models of hardware components, library modules, that are part of
a larger system which, e.g., is to be formally verified or analyzed.

– For regression testing, a model of an earlier version of an implemented system
can be used to create a good test suite and test oracle for testing subsequent
versions. This has been demonstrated, e.g., by Hungar et al. [15, 20]).
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– Black-box techniques, such as adaptive model checking [14], have been de-
veloped to check correctness properties, even when source code or formal
models are not available.

– Tools that analyze the source code statically depend heavily on the im-
plementation language used. Black-box techniques are easier to adapt to
modules written in different languages.

The construction of models from observations of system behavior can be seen
as a learning problem. For finite-state reactive systems, it means to construct a
(deterministic) finite automaton from the answers to a finite set of membership
queries, each of which asks whether a certain word is accepted by the automaton
or not. There are several techniques (e.g., [4, 13, 21, 23, 5]) which use essentially
the same basic principles; they differ in how membership queries may be cho-
sen and in exactly how an automaton is constructed from the answers. The
techniques guarantee that a correct automaton will be constructed if “enough”
information is obtained. In order to check this, Angluin and others also allow
equivalence queries that ask whether a hypothesized automaton accepts the cor-
rect language; such a query is answered either by yes or by a counterexample on
which the hypothesis and the correct language disagree. Techniques for learn-
ing finite automata have been successfully used for regression testing [15] and
model checking [14] of finite-state systems for which no model or source code is
available.

In this paper, we extend the learning algorithm of Angluin and others to
the setting of timed systems. One longer-term goal is to develop techniques for
creating abstract timed models of hardware components, device drivers, etc. for
analysis of timed reactive systems; there are many other analogous applications.
To the best of our knowledge, this is the first work on learning of timed systems;
it is not an easy challenge, and we will therefore in this first work make some
idealizing assumptions. We assume that a learning algorithm observes a system
by checking whether certain actions can be performed at certain moments in
time, and that the learner is able to control and record precisely the timing of
the occurrence of each action. We consider systems that can be described by a
timed automaton [2], i.e., a finite automaton equipped with clocks that constrain
the possible absolute times of occurrences of actions. Since timed automata can
not in general be determinized [2], we restrict consideration to a class of event-
recording automata [3]. These are timed automata that, for every action a, use a
clock that records the time of the last occurrence of a. Event-recording automata
can be determinized, and are sufficiently expressive to model many interesting
timed systems; for instance, they are as powerful as timed transition systems [17,
3], another popular model for timed systems.

In this work, we further restrict event-recording automata to be event-deter-
ministic in the sense that each state has at most one outgoing transition per
action (i.e., the automaton obtained by removing the clock constraints is de-
terministic). Under this restriction, timing constraints for the occurrence of an
action depend only on the past sequence of actions, and not on their relative



timing; learning such an automaton becomes significantly more tractable, and
allows us to adapt the learning algorithm of Angluin to the timed setting.

We present two algorithms, LSGDERA and LDERA, for learning determinis-
tic event-recording automata. LSGDERA learns a so-called sharply guarded de-
terministic event-recording automaton. We show that every deterministic event-
recording automaton can be transformed into a unique sharply guarded one with
at most double exponentially more locations. We then address the problem of
learning a smaller, not necessarily sharply guarded version of the system. The
algorithm LDERA achieves this goal by unifying the queried information when
it is “similar” which results in merging states in the automaton construction.

We show that the number of membership queries of LSGDERA is polynomial
in the size of the biggest constant appearing in guards and in the number n

of locations of the sharply guarded deterministic event-recording automaton.
Furthermore, we show that every deterministic event-recording automaton can
be transformed into a sharply guarded one with at most double exponentially
more locations. The number of equivalence queries is at most n. LDERA exceeds
these bounds in the worst case, however, in practice it can be expected that it
behaves better than LSGDERA.

We are not aware of any other work on learning of timed systems or timed
languages. However, several papers are concerned with finding a definition of
timed languages which is suitable as a basis for learning. There are several
works that define determinizable classes of timed automata (e.g., [3, 25]) and
right-congruences of timed languages (e.g., [22, 18, 26]), motivated by testing
and verification.

The paper is structured as follows. After preliminaries in the next section, we
define deterministic event-recording automata (DERA) in Section 3. In Section 4,
we present our techniques for learning DERAs and their timing constraints.
Section 5 gives a short example and shows the differences of both algorithms.

2 Preliminaries

We write R
≥0 for the set of nonnegative real numbers, and N for the set of natural

numbers. Let Σ be a finite alphabet of size |Σ|. A timed word over Σ is a finite
sequence wt = (a1, t1)(a2, t2) . . . (an, tn) of symbols ai ∈ Σ that are paired with
nonnegative real numbers ti such that the sequence t1t2 . . . tn of time-stamps is
nondecreasing. We use λ to denote the empty word. A timed language over Σ is
a set of timed words over Σ.

An event-recording automaton contains for every symbol a ∈ Σ a clock xa,
called the event-recording clock of a. Intuitively, xa records the time elapsed
since the last occurrence of the symbol a. We write CΣ for the set {xa|a ∈ Σ}
of event-recording clocks.

A clock valuation γ is a mapping from CΣ to R
≥0. A clock constraint is a

conjunction of atomic constraints of the form x ∼ n or x − y ∼ n for x, y ∈ CΣ ,
∼∈ {≤,≥}, and n ∈ N. We use γ |= ϕ to denote that the clock valuation γ

satisfies the clock constraint ϕ. A clock constraint is K-bounded if it contains no



constant larger than K. A clock constraint ϕ identifies a |Σ|-dimensional poly-
hedron [[ϕ]] ⊆ (R≥0)|Σ| viz. the vectors of real numbers satisfying the constraint.
A clock guard is a clock constraint whose conjuncts are only of the form x ∼ n

(for x ∈ CΣ , ∼∈ {≤,≥}), i.e., comparison between clocks is not permitted. The
set of clock guards is denoted by G. A clock guard g identifies a |Σ|-dimensional
hypercube [[g]] ⊆ (R≥0)|Σ|. Thus, for every guard g that is satisfiable, we can
talk of its smallest corner, denoted by sc(g), using the notions from the cube
identified by g. If furthermore K is the biggest constant appearing in g, we call
a valuation γ a biggest corner of g, if γ is maximal in the dimensions where [[g]]
is bounded and exceeds K in the others. The set of all biggest corners for a
guard g is denoted by bc(g). Sometimes, when convenient, we identify all values
greater than K and denote them by ∞. Furthermore, we use true (false) to
denote constraints that are always (never, respectively) satisfiable. Sometimes,
the context requires x = true to mean x ≥ 0 ∧ x ≤ ∞ and x = false to mean
x ≤ 0 ∧ x ≥ ∞.

Clock constraints can efficiently and uniquely be represented using difference
bound matrices (DBMs, [11]). Furthermore, DBMs allow efficient operations on
clock constraints like intersection, checking equality etc.

A clocked word wc is a sequence wc = (a1, γ1)(a2, γ2) . . . (an, γn) of sym-
bols ai ∈ Σ that are paired with event-clock valuations. Each timed word
wt = (a1, t1)(a2, t2) . . . (an, tn) can be naturally transformed into a clocked word
CW (wt) = (a1, γ1)(a2, γ2) . . . (an, γn) where for each i with 1 ≤ i ≤ n,

– γi(xa) = ti if aj 6= a for 1 ≤ j < i,
– γi(xa) = ti − tj if there is a j with 1 ≤ j < i and aj = a, such that ak 6= a

for j < k < i.

A guarded word wg is a sequence wg = (a1, g1)(a2, g2) . . . (an, gn) of symbols
ai ∈ Σ that are paired with clock guards. Note that we identify an empty
conjunction with true. For a clocked word wc = (a1, γ1)(a2, γ2) . . . (an, γn) we
use wc |= wg to denote that γi |= gi for 1 ≤ i ≤ n. For a timed word wt we use
wt |= wg to denote that CW (wt) |= wg.

A guarded word wg = (a1, g1)(a2, g2) . . . (an, gn) is called a guard refinement
of a1a2 . . . an, and a1a2 . . . an is called the word underlying wg. The word w

underlying a timed word wt is defined in a similar manner.
A deterministic finite automaton (DFA) A = 〈Γ,L, l0, δ〉 over the alphabet Γ

consists of states L, initial state l0, and a partial transition function δ : L×Γ →
L. A run of A over the word w = a1a2 . . . an is a finite sequence

l0
a1→ l1

a2→ · · ·
an−→ ln

of states li ∈ L such that l0 is the initial state and δ(li−1, ai) is defined for
1 ≤ i ≤ n, with δ(li−1, ai) = li. In this case, we write δ(l0, w) = ln, thereby
extending the definition of δ in the natural way. The language L(A) comprises
all words a1a2 . . . an over which a run exists.1

1 Usually, DFAs are equipped with accepting states. We are only interested in prefix-
closed languages. For these languages, DFAs with partial transition function and
every state assumed to be accepting suffice.



3 Deterministic Event-recording automata

Definition 1. A deterministic event-recording automaton (DERA)
D = 〈Σ,L, l0, δ, η〉 consists of a finite input alphabet Σ, a finite set L of loca-
tions, an initial location l0 ∈ L, a transition function δ : L × Σ → L, which is
a partial function that for each location and input symbol potentially prescribes
a target location, a guard function η : L × Σ → G, which is a partial function
that for each location and input symbol prescribes a clock guard, whenever δ is
defined for this pair.

In order to define the language accepted by a DERA, we first understand it as
a DFA.

Given a DERA D = 〈Σ,L, l0, δ, η〉, we define dfa(D) to be the DFA AD =
〈Γ,L, l0, δ

′〉 over the alphabet Γ = Σ × G where δ′ : L × Γ → L is defined by
δ′(l, (a, g)) = δ(l, a) if and only if δ(l, a) is defined and η(l, a) = g, otherwise
δ′(l, (a, g)) is undefined. Note that D and dfa(D) have the same number of
locations/states. Further, note that this mapping from DERAs over Σ to DFAs
over Σ×G is injective, meaning that for each DFA A over Σ×G, there is a unique
(up to isomorphism) DERA over Σ, denoted dera(A), such that dfa(dera(A))
is isomorphic to A.

The language L(D) accepted by a DERA D is defined to be the set of timed
words wt such that wt |= wg for some guarded word wg ∈ L(dfa(D)). We call two
DERAs D1 and D2 equivalent iff L(D1) = L(D2), and denote this by D1 ≡t D2,
or just D1 ≡ D2. A DERA is K-bounded if all its guards are K-bounded.

From the above definitions, we see that the language of a DERA D can be
characterized by a prefix-closed set of guarded words (a1, g1)(a2, g2) . . . (an, gn)
in L(dfa(D)) such that each a1a2 . . . an occurs in at most one such guarded word.
Thus, we can loosely say that D imposes on each untimed word a1a2 . . . an the
timing constraints represented by the conjunction of the guards g1g2 . . . gn.

Example 1. The event-recording automaton shown in Figure 1 uses three event-
recording clocks, xa, xb, and xc. Location 0 is the start location of the automaton.
Clock constraint xb ≥ 3 that is associated with the edge from location 1 to 4
ensures that the time difference between b and the subsequent a is greater or
equal to 3. ut
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Fig. 1. An event-recording automaton

A central idea in Angluin’s construction of finite automata is to let each state
be identified by the words that reach it from the initial state (such words are



called access strings in [5]). States are equivalent if, according to the queries
submitted so far, the same continuations of their access strings are accepted.
This idea is naturally based on the nice properties of Nerode’s right congruence
(given a language L, two words u, v ∈ Σ∗ are equivalent if for all w ∈ Σ∗ we
have uw ∈ L iff vw ∈ L) which implies that there is a unique minimal DFA
accepting L. In other words, for DFAs, every state can be characterized by the
set of words accepted by the DFA when considering this state as an initial state,
and, every string leads to a state in a unique way.

For timed languages, it is not obvious how to generalize Nerode’s right con-
gruence. In general there is no unique minimal DERA which is equivalent to a
given DERA. Consider Figure 1, assuming for a moment the c-transition from
location 7 to 5 is missing, then the language of the automaton does not change
when changing the transition from 1 to 4 to 1 to 5, although the language
accepted from 4 is different then the one from 5. Furthermore, we can reach
location 4 by two guarded words: (b, true)(c, xb ≥ 3) as well as (a, true)(b, true).
Although they lead to the same state, they admit different continuations of event-
clock words: action a can be performed with xb = 2 after (a, true)(b, true) but
not after (b, true)(c, xb ≥ 3). The complication is that each past guarded word
has a post-condition, which constrains the values of clocks that are possible at
the occurrence of future actions.

For a guarded word wg, we introduce the strongest postcondition of wg, de-
noted by sp(wg), as the constraint on clock values that are induced by wg on any
following occurrence of a symbol. Postcondition computation is central in tools
for symbolic verification of timed automata [8, 6], and can be done inductively
as follows:

– sp(λ) =
∧

a,b∈Σ xa = xb,
– sp(wg(a, g)) = ((sp(wg) ∧ g)[xa 7→ 0]) ↑,

where for clock constraint ϕ and clock x,

– ϕ[x 7→ 0] is the condition x = 0 ∧ ∃x.ϕ,
– ϕ ↑ is the condition ∃d.ϕ′, where d ranges over R

≥0 and where ϕ′ is obtained
from ϕ by replacing each clock y by y − d.

Both operations can be expressed as corresponding operations on clock con-
straints. We will also introduce the K-approximation Approx (ϕ)K of ϕ as the
clock constraint obtained by changing in constraints of the form x − y ≤ c the
constant c to −(K + 1) when c < −K and c to ∞ when c > K. For example,
x ≤ K + 2 is changed to x ≤ ∞ while x ≥ K + 2 is changed to x ≥ K + 1.

Let us now define a class of DERAs that admit a natural definition of right
congruences.

Definition 2. A DERA D is sharply guarded if for all guarded words wg(a, g) ∈
L(dfa(D)), we have that g is satisfiable and

g =
∧

{g′ ∈ G | sp(wg) ∧ g′ = sp(wg) ∧ g}



We remark that whether or not a DERA is sharply guarded depends only
on L(dfa(D)). In other words, a DERA is called sharply guarded if whenever a
run of L(dfa(D)) has reached a certain location l, then the outgoing transitions
from l have guards which cannot be strengthened without changing the timing
conditions under which the next symbol will be accepted. This does not mean
that these guards are “included” in the postcondition (see also Figure 2), but at
least their smallest and biggest corners:

Lemma 1. If wg(a, g) ∈ L(dfa(D)), where D is a sharply guarded DERA, then

1. there is a timed word wt(a, t) ∈ L(D) such that
CW (wt(a, t)) = (a1, γ1) . . . (an, γn)(a, γg) |= wg(a, g) and γg ∈ bc(g).

2. there is a timed word wt(a, t) ∈ L(D) such that
CW (wt(a, t)) = (a1, γ1) . . . (an, γn)(a, γg) |= wg(a, g) and γg = sc(g).

Proof. The claim follows easily from the definition of sharply guarded. ut

Every DERA can be transformed into an equivalent DERA that is sharply
guarded using the zone-graph construction [1].

Lemma 2. For every DERA there is an equivalent DERA that is sharply guarded.

Proof. Let the DERA D = 〈Σ,L, l0, δ, η〉 be K-bounded. We define an equiva-
lent sharply guarded DERA D′ = 〈Σ,L′, l′0, δ

′, η′〉 based on the so-called zone
automaton for D. We sketch the construction, details can be found in [1, 7].
The set of locations of D′ comprises pairs (l, ϕ) where l ∈ L and ϕ is a K-
bounded clock constraint. The intention is that ϕ is the postcondition of any
run from the initial location to (l, ϕ). For any symbol a such that δ(l, a) is
defined and ϕ ∧ η(l, a) is satisfiable, let δ′((l, ϕ), a) be defined as (δ(l, a), ϕ′′)
where ϕ′′ = Approx (((ϕ ∧ η(l, a))[xa 7→ 0]) ↑)K .We set η′((l, ϕ), a) = g′ with
g′ =

∧

{g′′ | ϕ ∧ g′′ = ϕ ∧ η(l, a)}. It is routine to show that the part of the
automaton reachable from the initial location (l0, true) is sharply guarded. ut

The important property of sharply guarded DERAs is that equivalence co-
incides with equivalence on the corresponding DFAs.

Definition 3. We call two sharply guarded DERAs D1 and D2 dfa-equivalent,
denoted by D1 ≡dfa D2, iff dfa(D1) and dfa(D2) accept the same language (in
the sense of DFAs).

Lemma 3. For two sharply guarded DERAs D1 and D2, we have

D1 ≡t D2 iff D1 ≡dfa D2

Proof. The direction from right to left follows immediately, since L(Di) is defined
in terms of L(dfa(Di)). To prove the other direction, assume that D1 6≡dfa D2.
Then there is a shortest wg such that wg ∈ L(dfa(D1)) but wg 6∈ L(dfa(D2)) (or
the other way around). By Lemma 1 this implies that there is a timed word wt

such that wt ∈ L(D1) but wt 6∈ L(D2), i.e., D1 6≡t D2. ut



We can now prove the central property of sharply guarded DERAs.

Theorem 1. For every DERA there is a unique equivalent minimal sharply
guarded DERA (up to isomorphism).

Proof. By Lemma 2, each DERA D can be translated into an equivalent DERA
D′ that is sharply guarded. Let Amin be the unique minimal DFA which is equiv-
alent to dfa(D′) (up to isomorphism). Since (as was remarked after Definition 2)
whether or not a DERA is sharply guarded depends only on L(dfa(D)), we have
that Dmin = dera(Amin) is sharply guarded. By Lemma 3, Dmin is the unique
minimal sharply guarded DERA (up to isomorphism) such that Dmin ≡ D′, i.e.,
such that Dmin ≡ D. ut

4 Learning DERAs

Let us now turn to the problem of learning a timed language L(D) accepted by
a DERA D. In this setting, we assume

– to know an upper bound K on the constants occurring in guards of D,
– to have a Teacher who is able to answer two kinds of queries:

• A membership query consists in asking whether a timed word wt over Σ

is in L(D).
• An equivalence query consists in asking whether a hypothesized DERA

H is correct, i.e., whether L(H) = L(D). The Teacher will answer yes if
H is correct, or else supply a counterexample u, either in L(D) \ L(H)
or in L(H) \ L(D).

Based on the observations in the previous section, our solution is to learn
L(dfa(D)), which is a regular language and can therefore be learned in principle
using Angluin’s learning algorithm. However, Angluin’s algorithm is designed to
query (untimed) words rather than timed words. Let us recall Angluin’s learning
algorithm, before we present our solution in more detail.

4.1 Learning a DFA

Angluin’s learning algorithm is designed for learning a regular (untimed) lan-
guage, L(A) ⊆ Γ ∗, accepted by a minimal deterministic finite automaton (DFA)
A (when adapted to the case that L(A) is prefix-closed). In this algorithm a so
called Learner , who initially knows nothing about A, is trying to learn L(A) by
asking queries to a Teacher , who knows A. There are two kinds of queries:

– A membership query consists in asking whether a string w ∈ Γ ∗ is in L(A).
– An equivalence query consists in asking whether a hypothesized DFA H is

correct, i.e., whether L(H) = L(A). The Teacher will answer yes if H is
correct, or else supply a counterexample w, either in L(A) \ L(H) or in
L(H) \ L(A).



The Learner maintains a prefix-closed set U ⊆ Γ ∗ of prefixes, which are candi-
dates for identifying states, and a suffix-closed set V ⊆ Γ ∗ of suffixes, which are
used to distinguish such states. The sets U and V are increased when needed
during the algorithm. The Learner makes membership queries for all words in
(U∪UΓ )V , and organizes the results into a table T which maps each u ∈ (U∪UΓ )
to a mapping T (u) : V 7→ {accepted, not accepted}. In [4], each function T (u)
is called a row. When T is closed (meaning that for each u ∈ U , a ∈ Γ there is
a u′ ∈ U such that T (ua) = T (u′)) and consistent (meaning that T (u) = T (u′)
implies T (ua) = T (u′a)), then the Learner constructs a hypothesized DFA
H = 〈Γ,L, l0, δ〉, where L = {T (u) | u ∈ U} is the set of distinct rows, l0 is the
row T (λ), and δ is defined by δ(T (u), a) = T (ua), and submits H in an equiva-
lence query. If the answer is yes, the learning procedure is completed, otherwise
the returned counterexample is used to extend U and V , and perform subsequent
membership queries until arriving at a new hypothesized DFA, etc.

4.2 Learning a sharply guarded DERA

Given a timed language that is accepted by a DERA D, we can assume without
loss of generality that D is the unique minimal and sharply guarded DERA
that exists due to Theorem 1. Then D is uniquely determined by its symbolic
language of A = dfa(D), which is a regular (word) language. Thus, we can learn
A using Angluin’s algorithm and return dera(A). However, L(A) is a language
over guarded words, but the Teacher in the timed setting is supposed to deal
with timed words rather than guarded words.

Let us therefore extend the Learner in Angluin’s algorithm by an Assistant ,
whose role is to answer a membership query for a guarded word, posed by the
Learner , by asking several membership queries for timed words to the (timed)
Teacher . Furthermore, it also has to answer equivalence queries, consulting the
timed Teacher .

Learning guarded words To answer a membership query for a guarded word wg,
the Assistant first extracts the word w underlying wg. It thereafter determines
the unique guard refinement w′

g of w that is accepted by A (if one exists) by pos-
ing several membership queries to the (timed) Teacher , in a way to be described
below. Note that each word w has at most one guard refinement accepted by A.
Finally, the Assistant answers the query by yes iff w′

g equals wg.
The guard refinement of w accepted by A will be determined inductively,

by learning the guard under which an action a is accepted, provided that a
sequence u of actions has occurred so far. Letting u range over successively
longer prefixes of w, the Assistant can then learn the guard refinement w′

g

of w. Let u = a1a2 . . . an, and assume that for i = 1, . . . , n, the Assistant
has previously learned the guard gi = η(a1 . . . ai−1, ai) under which ai is ac-
cepted, given that the sequence a1 . . . ai−1 has occurred so far. He can then
easily compute the strongest postcondition sp((a1, g1) . . . (an, gn)) =: sp(u). A
typical situation for two clocks is depicted in Figure 2. The Assistant must now
determine the strongest guard ga such that a is accepted after u precisely when
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Fig. 2. An example for sp(u),
ϕa, and ga.

ϕa ≡ sp(u) ∧ ga holds. In other words, he es-
tablishes the hypercube identified by guarding
the polyhedron identified by ϕa in which a is
accepted. As before, the constraint ϕa for a de-
pends only on the sequence of symbols in u, not
on the timing of their occurrence.

The guard ga is determined by inquiring
whether a set of clock valuations γa satisfies
ϕa. Without loss of generality, the Assistant
works only with integer valuations. For each γa

that satisfies the postcondition sp(u), he can
make a membership query by constructing a
timed word wt that satisfies the guarded word
(a1, g1)(a2, g2) . . . (an, gn)(a, g(γa)), where g(γa) ≡ ∧

b
(xb = γa(xb)) constrains

the clocks to have the values given by γa. Note that such a wt exists precisely
when γa |= sp(u). In other words, he can ask the (timed) Teacher for every point
in the zone sp(u) whether it is in ϕa (see Figure 2).

Let us now describe how clock valuations γa are chosen in membership queries
in order to learn the guard ga for a.

As mentioned before, we assume that the Assistant knows the maximal con-
stant K that can appear in any guard. This means that if a clock valuation γ

with γ(x) > K satisfies g, then clock x has no upper bound in g. Thus, a guard
g is uniquely determined by some biggest corner and its smallest corner.

Let us consider how to find a maximal clock valuation that satisfies ga.
Suppose first that the Assistant knows some clock valuation γa that satis-
fies ϕa. The Assistant will then repeatedly increase the clock values in γa

until γa becomes the maximal clock valuation satisfying ga. At any point in
time, let Max be the set of clocks for which Assistant knows that they have
reached a maximum, and let Max = CΣ \ Max be the clocks for which a
maximum value is still searched. Initially, Max is empty and Max = CΣ . At
each iteration, the Assistant increases the clocks in Max by the same amount
k ∈ {1, . . . ,K + 1} such that γa[Max ⊕ k] |= ϕa, but γa[Max ⊕ (k + 1)] 6|= ϕa,
and then sets γa := γa[Max ⊕ k]. Here, γ[C ⊕ k] is defined as γ(x) + k for x ∈ C

and γ(x) otherwise. This can be done by binary search using at most log K

queries. For all clocks x with γa(x) ≥ K + 1 he concludes that x has no upper
bound in ϕa. These clocks are moved over from Max to Max . If γa(x) ≤ K for
some clock x ∈ Max then among these a clock x must be found that cannot be
increased, and this will be moved over from Max to Max .

Let us examine how to find a clock x that cannot be increased, i.e., for all γ ′

with γ′(x) > γa(x) we have γ′ 6|= ϕa. The particularity to handle is that it might
be possible to increase x but only together with other clocks, since sp(u) must
be satisfied (e.g., γa as in Figure 2 requires both x and y to be incremented to
stay in sp(u)). We define d(x) =

⋂

{C | x ∈ C and γa[C ⊕ 1] |= sp(u)} as the
clocks dependent on x. In other words, if x is incremented in γa so should be the



clocks in d(x) since otherwise sp(u) is not satisfied. Note that x ∈ d(x). Now, he
queries for every clock x whether γa[d(x) ⊕ 1] |= ϕa. If not, he moves x to Max .

This can be optimized in the following way. The dependency graph of sp(u)
has nodes Max and edges x → y iff y ∈ d(x). We define its initial nodes as nodes
of strongly connected components that have no incoming edge. He can then use
a divide-and-conquer technique to find initial nodes that cannot be incremented
using log |CΣ | queries.

If such a clock x is found then the loop continues and another k is computed.
Otherwise, a maximal valuation is found.

Thus, all in all, determining the upper bound of a guard ga needs at most |CΣ |
binary searches, since in every loop at least one clock is moved to Max . Each uses
at most log K+log |CΣ | membership queries. He can use the same idea to find the
minimal clock valuation that satisfies ϕa. ga is given by the K-approximation
of the guard that has the minimal clock valuation as smallest corner and the
maximal clock valuation as biggest corner, which can easily be formulated given
these two points. Thus, the Assistant needs at most 2|CΣ |(log K + log |CΣ |)
membership queries to learn a guard ga, if initially it knows a valuation which
satisfies ϕa.

Suppose now that the Assistant does not know a clock valuation γa that
satisfies ϕa. In principle, ϕa and therefore ga could specify exactly one valuation,
meaning that the Assistant essentially might have to ask membership queries for
all
(

|Σ|+K

|Σ|

)

integer points that could be specified by ϕa. This is the number of

non-increasing sequences of |Σ| = |CΣ | elements, where each element has values
among 0 to K, since sp(u) defines at least an ordering on the clocks.

Thus, the Assistant can answer a query for a guarded word wg using at most

|w|
(

|Σ|+K

|Σ|

)

(timed) membership queries.

The final algorithm: To complete the learning algorithm, we have to explain
how the Assistant can answer equivalence queries to the Learner . Given a DFA
H, the Assistant can ask the (timed) Teacher , whether dera(H) = D. If so, the
Assistant replies yes to the Learner . If not, the Teacher presents a timed word
wt that is in L(D) but not in L(dera(H)) (or the other way round). For the
word w underlying wt, we can obtain its guard refinement wg as described in
the previous paragraph. Then wg is in L(dfa(D)) but not in L(H) (or the other
way round, respectively). Thus, the Assistant can answer the equivalence query
by wg in this case.

We call the algorithm outlined in the section LSGDERA.

Complexity For Angluin’s algorithm it is known that the number of membership
queries can be bounded by O(kn2m), where n is the number of states, k is the
size of the alphabet, and m is the length of the longest counterexample. The
rough idea is that for each entry in the table T a query is needed, and O(knm)
is the number of rows, n the number of columns.

In our setting, a single membership query for a guarded word wg might

give rise to |w|
(

|Σ|+K

|Σ|

)

membership queries to the (timed) Teacher . While the

alphabet of the DFA dfa(D) is Σ × G, a careful analysis shows that k can be



bounded by |Σ| in our setting as well. Thus, the query complexity of LSGDERA

for a sharply guarded DERA with n locations is

O

(

kn2ml

(

|Σ| + K

|Σ|

))

where l is the length of the longest guarded word queried. Since the longest word
queried and the longest counterexample can be bounded by O(n), we get at most
polynomially many membership queries, in the number of locations as well in
the size of the biggest constant K. The number of equivalence queries remains
at most n. Note that, in general a (non-sharply guarded) DERA D gives rise to
a sharply guarded DERA with double exponentially more locations, while the
constants do not change.

4.3 Learning non-sharply guarded DERAs

Learning a sharply guarded DERA allows to transfer Angluin’s setting to the
timed world. However, in practice, one might be interested in a smaller non-
sharply guarded DERA rather than its sharply guarded version. In this section,
we describe to learn a usually smaller, non-sharply guarded version. The idea
is to identify states whose futures are “similar”. While in the worst-case, the
same number of membership queries is needed, we can expect the algorithm to
converge faster in practice.

Let us now define a relationship on guarded words, which will be used to
merge states whose futures are “similar”, taking the postcondition into account.

Let PG = {〈ϕ1, (a1, g11) . . . (an, g1n)〉, . . . , 〈ϕk, (a1, gk1) . . . (an, gkn)〉} be a
set of k pairs of postconditions and guarded words with the same sequences of
actions. We say that the guarded word (a1, ĝ1) . . . (an, ĝn) unifies PG if for all
j ∈ {1, . . . , k} and i ∈ {1, . . . , n}

gji ∧ sp(ϕj , (a1, gj1) . . . (ai−1, gj(i−1))) ≡ ĝi ∧ sp(ϕj , (a1, ĝ1) . . . (ai−1, ĝi−1))

Then, the set PG is called unifiable and (a1, ĝ1) . . . (an, ĝn) is called a unifier.
Intuitively, the guarded words with associated postconditions can be unified
if there is a unifying, more liberal guarded word, which is equivalent to all
guarded words in the context of the respective postconditions. Then, given a
set of guarded words with postconditions among {ϕ1, . . . , ϕk}, these guarded
words can be considered to yield the same state, provided that the set of future
guarded actions together with the respective postcondition is unifiable.

It is easy to check, whether PG is unifiable, using the property that the
guards in the PG are tight in the sense of Definition 2. The basic idea in each
step is to take the weakest upper and lower bounds for each variable. Assume
the guard gji is given by its upper and lower bounds:

gji =
∧

a∈Σ

(xa ≤ c
≤
a,ji ∧ xa ≥ c

≥
a,ji)



For i = 1, . . . , n, define the candidate ĝi as

ĝi =
∧

a

(

xa ≤ max
j

{c≤a,ji}

)

∧
∧

a

(

xa ≥ min
j

{c≥a,ji}

)

and check whether the guarded word (a1, ĝ1) . . . (an, ĝn) obtained in this way is
indeed a unifier. It can be shown that if PG is unifiable, then this candidate is
the strongest possible unifier.

The learning algorithm using the idea of unified states works similar as the
one for DERAs. However, we employ a slightly different observation table. Let
Γ = Σ × G. Rows of the table are guarded words of a prefix-closed set U ⊆
Γ ∗. Column labels are untimed words from a suffix-closed set V ⊆ Σ∗. The
entries of the table are sequences of guards describing under which values the
column label extends the row label. Thus, we define a timed observation table
T : U ∪ UΓ → (V → G∗), where T (u)(v) = g1 . . . gn implies |v| = n. We require
the initial observation table to be defined over U = {λ} and V = Σ ∪ {λ}.

A merging of the timed observation table T consists of a partition Π of the
guarded words U ∪ UΓ , and an assignment of a clock guard CG(π, a) to each
block π ∈ Π and action a ∈ Σ, such that for each block π ∈ Π we have

– for each suffix v ∈ V , the set {〈sp(u), (a1, g1) . . . (an, gn)〉 | u ∈ U ′, T (u)(v) =
g1 . . . gn} is unifiable, and

– (a,CG(π, a)) is the unifier for {〈sp(u), (a, g′) | u ∈ π, u(a, g′) ∈ UΓ} for each
a ∈ Σ.

Intuitively, a merging defines a grouping of rows into blocks, each of which
can potentially be understood as a state in a DERA, together with a choice
of clock guard for each action and block, which can be understood as a guard
for the action in the DERA. For each table there are in general several possible
mergings, but the number of mergings is bounded, since the number of partitions
is bounded, and since the number of possible unifiers GC(π, a) is also bounded.

A merging Π is closed if for every π ∈ Π there exists u ∈ Π and u ∈ U ,
i.e., at least one representative of each block is in the upper part of the table. A
merging Π is consistent if for all blocks π, whenever u, u′ ∈ Π, then for all a ∈ Σ,
for which there there are clock guards g and g′ such that T (u(a, g)) 6= false and
T (u′(a, g′)) 6= false, i.e., there is an a-successor, there is a block π′ such that
u(a, g) ∈ π′ and u′(a, g ′) ∈ π′. A coarsest merging of the timed observation table
T is a merging with a minimal number of blocks.

Given a merging (Π,GC) of a closed and consistent timed observation table
T , one can construct the DERA H = 〈Σ,L, l0, δ, η〉 as

– L = Π comprises the blocks of Π as locations,

– l0 = π ∈ Π with λ ∈ π is the initial location,

– δ is defined by δ(π, a) = π′, where for u ∈ π, u ∈ U , u(a, g) ∈ π′ and we
require T (u, (a, g)) 6= false if such u and g exist.

– η is defined by η(π, a) = GC(π, a).



The algorithm LDERA for learning (non-sharply guarded) DERAS is as LS-
GDERA, except that the new notions of closed and consistent are used. This
implies that rows are unified such that the number of blocks is minimal. One
further modification is that the hypothesis is constructed as described in the pre-
vious paragraph, using the computed merging. The rest of the algorithm remains
unchanged.

Lemma 4. The algorithm LDERA terminates.

Proof. Assume that we have a machine to learn. We assume a model A of it that
is a sharply guarded DERA. Suppose the algorithm for learning non-sharply
guarded DERAs does not terminate. Then it will produce an infinite sequence
of closed and consistent observation tables T1, . . . ,, each Ti : Ui ∪ UiΓ → (Vi →
(G∗ ∪ {not accepted})). Every step of LDERA increases the number of states
of the automaton or creates a new automaton with the same number of states,
because a (equivalence) query either introduces new states or changes the ac-
cepted language. Since the number of different automata with the same number
of states is finite, the sequence T1, . . . defines a sequence of hypothesis of A with
an increasing number of states.

On the other hand, a table Ti can also be understood as a an observation
table suitable for the algorithm of learning sharply guarded DERAs: Let Vw be
the set of all possible guarded words over w ∈ Vi, and, let V ′

i = ∪w∈Vi
Vw. Such

an observation table is coincides all with A on all strings listed in the table. As
such, it can be used as an initial table for LSGDERA, which, would make it
closed and consistent as a first step, yielding T ′′

i .

The automaton corresponding to T ′′
i has at least as many states as the au-

tomaton that corresponds to the one by table Ti, since in the latter, states are
merged. When continuing LSGDERA on T ′′

i , it will terminate with table T ′
ri

as
the table that corresponds to A. Thus, the automaton corresponding to T ′′

i has
less states than A. Thus, all automata corresponding to Ti have less states than
A. Therefore, the sequence cannot exist. ut

Roughly, LDERA can be understood as LSGDERA plus merging. Therefore,
in the worst case, more steps and therefore queries are needed as in LSGDERA.
However, when a small non-sharply guarded DERA represents a large sharply
guarded DERA, LDERA will terminate using less queries. Therefore, a better
performance can be expected in practice.

5 Example

In this section, we illustrate the algorithms LDERA and LSGDERA on a small
example. Let the automaton A1 shown in Figure 3(a) be the DERA to learn.
We assume that initially clocks xa and xb are equal to 0. After a number of
queries of the algorithm LDERA, we obtain the observation table T shown in



0

a [xa = 1 ∧ xb ≤ 4]

(a) Automaton A1

T λ a

u1 true xa = 1 ∧ xb = 1
u2 true xa = 1 ∧ xb = 2
u3 true xa = 1 ∧ xb = 3
u4 true xa = 1 ∧ xb = 4
u5 true false

(b) Table T

Fig. 3. A DERA to learn and an observation table

Figure 3(b), where the guarded words u1 - u5 are defined by

u1 = (λ, xa = 0 ∧ xb = 0)
u2 = (a, xa = 1 ∧ xb = 1)
u3 = (a, xa = 1 ∧ xb = 1)(a, xa = 1 ∧ xb = 2)
u4 = (a, xa = 1 ∧ xb = 1)(a, xa = 1 ∧ xb = 2)(a, xa = 1 ∧ xb = 3)
u5 = (a, xa = 1 ∧ xb = 1)(a, xa = 1 ∧ xb = 2)(a, xa = 1 ∧ xb = 3)(a, xa = 1 ∧ xb = 4)

It turns out that all rows of T are unifiable. Define PG by

PG = { 〈sp(u1), (a, xa = 1 ∧ xb = 1)〉,
〈sp(u2), (a, xa = 1 ∧ xb = 2)〉,
〈sp(u3), (a, xa = 1 ∧ xb = 3)〉,
〈sp(u4), (a, xa = 1 ∧ xb = 4)〉,
〈sp(u5), (a, false)〉}

It can be checked that the guarded word (a, xa = 1 ∧ xb ≤ 4) unifies PG . We
will use the merging of the observation table T as the partition which consists of
exactly one block, and equipping the action a with the guard xa = 1∧xb ≤ 4. The
automaton obtained from this mergings is the automaton A1 which consists of
exactly one state. In contrast, the algorithm LSGDERA, which does not employ
unification, would construct the sharply guarded DERA A2 shown in Figure 4.
The automaton A2 has 5 states, since table T has 5 different rows.

0 1 2 3 4

a [xa = 1 ∧ xb = 1] a [xa = 1 ∧ xb = 2] a [xa = 1 ∧ xb = 3] a [xa = 1 ∧ xb = 4]

Fig. 4. Automaton A2

6 Conclusion

In this paper, we presented a technique for learning timed systems that can
be represented as event-recording automata. By considering the restricted class
of event-deterministic automata, we can uniquely represent the automaton by



a regular language of guarded words, and the learning algorithm can identify
states by access strings that are untimed sequences of actions. This allows us
to adapt existing algorithms for learning regular languages to the timed setting.
The main additional work is to learn the guards under which individual actions
will be accepted. Without the restriction of event-determinism, learning becomes
significantly less tractable, since we must also learn timing constraints of past
actions under which guards on current actions are relevant. This might be pos-
sible in principle, representing the language by a regular language of guarded
words, e.g., as in [22], but would lead to an explosion in the number of possible
access strings.

The complexity of our learning algorithm is polynomial in the size of the
minimal zone graph. In general, this can be doubly exponentially larger than
a minimal DERA automaton representing the same language, but for many
practical systems the zone graph construction does not lead to a severe explosion,
as exploited by tools for timed automata verification [8, 6]. Furthermore, we
discussed learning of not necessarily sharply guarded DERAs directly to quickly
obtain smaller representations of the system to learn. It would be interesting to
establish lower bounds of the learning problem for timed systems.
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