
Deciding LTL over Mazurkiewicz traces

Benedikt Bollig a, Martin Leucker b,*,1

a Lehrstuhl f€uur Informatik II, RWTH Aachen, 52074 Aachen, Germany
b Department of Computer and Information Science, University of Pennsylvania, Philadelphia PA 19104, USA

Received 10 December 2001; accepted 3 July 2002

Abstract

Linear temporal logic (LTL) has become a well established tool for specifying the dynamic behaviour of

reactive systems with an interleaving semantics, and the automata–theoretic approach has proven to be a

very useful mechanism for performing automatic verification in this setting. Especially alternating auto-

mata turned out to be a powerful tool in constructing efficient yet simple to understand decision procedures

and directly yield further on-the-fly model checking procedures. In this paper, we exhibit a decision pro-

cedure for LTL over Mazurkiewicz traces that generalises the classical automata–theoretic approach to a

LTL interpreted no longer over sequences but certain partial orders. Specifically, we construct a (linear)
alternating B€uuchi automaton (ABA) accepting the set of linearisations of traces satisfying the formula at

hand. The salient point of our technique is to apply a notion of independence-rewriting to formulas of the

logic. Furthermore, we show that the class of linear and trace-consistent ABA corresponds exactly to LTL

formulas over Mazurkiewicz traces, lifting a similar result from L€ooding and Thomas formulated in the

framework of LTL over words.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: LTL; Model checking; Mazurkiewicz traces; Alternating automata

www.elsevier.com/locate/datak

Data & Knowledge Engineering 44 (2003) 219–238

*Corresponding author.

E-mail addresses: bollig@informatik.rwth-aachen.de (B. Bollig), leucker@cis.upenn.edu (M. Leucker).
1 Part of this work was done during the second author’s stay at BRICS and RWTH Aachen. He is grateful for the

hospitality and the overall support.

0169-023X/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0169-023X(02)00136-2

mail to: bollig@informatik.rwth-aachen.de

1. Introduction

Linear time temporal logic (LTL) as proposed by Pnueli [17] has become a well established tool
for specifying the dynamic behaviour of distributed systems. The traditional approach towards
automatic program verification is model checking specifications in LTL. A basic feature of LTL
has been that its formulas are interpreted over sequences. Typically, such a sequence will model a
computation of a system: a sequence of states visited by the system or a sequence of actions
executed by the system during the course of the computation.
The automata–theoretic approach of Vardi and Wolper [22] for satisfiability checking has

proven to be very useful and efficient for performing the automatic program verification. In its
purest form, this amounts to the construction of a B€uuchi automaton accepting precisely the set of
sequences that satisfies the specification expressed as an assertion of LTL. In the last years, a shift
towards the employment of alternating automata for defining decision procedures took place.
Alternating automata provide simple, efficient, and easy to understand decision procedures. They
have proven to be useful for defining satisfiability algorithms for LTL over words [23], branching
time logics [2,12] over finite transition systems, and the l-calculus over (infinite) prefix-recogni-
sable graphs [11]. The idea is that the states of the automaton are constructed essentially from the
subformula closure of the specification formula, and the automaton operates in a tableau-like
fashion. The satisfiability problem is then solved by checking whether the constructed automaton
accepts any strings.
This approach forms the conceptual basis of many verification algorithms. Several tools (e.g.,

SPIN [8]) being employed in industry are built upon this translation from formulas to automata.
To improve performance, however, a number of substantial optimisations must be incorporated.
One observation is that the state space of the product automaton needs seldomly to be fully
constructed. Often the answer to the verification problem can be established by investigating only
a subset of states, and this subset might be considerably smaller than the entire state space. This is
the main idea underlying the so-called on-the-fly verification techniques. To support on-the-fly
checking, an automaton corresponding to a formula should be defined in a top–down manner.
This means that, given a formula u and one of its subformulas w, a part of the automaton Au

should be constructible without constructing Aw, where Ag denotes the automaton accepting the
models of g. In this way, the automaton for a given formula and an underlying transition system
may only be constructed partly viz if the model-checking or satisfiability question can already be
answered by considering this part.
In many applications, the computations of a distributed system will constitute interleav-

ings of the occurrences of causally independent actions. Consequently, the computations can
be naturally grouped together into equivalence classes where two computations are equated
in case they are two different interleavings of the same partially ordered stretch of behaviour. It
turns out that many of the properties expressed as LTL-formulas happen to have the so called
‘‘all-or-none’’ property. Either all members of an equivalence class of computations will have
the desired property or none will do (‘‘leads to deadlock’’ is one such property). For verify-
ing such properties, one has to check them for just one member of each equivalence class. This
is the insight underlying many of the partial-order based verification methods (e.g., [16,21]).
As may be guessed, the importance of these methods lies in the fact that via these methods

220 B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238

the computational resources required for the verification task can often be dramatically re-
duced.
Often, the equivalence classes of computations generated by a distributed system consti-

tute objects called Mazurkiewicz traces [4,15]. They can be canonically represented as restricted
labelled partial orders. This opens up an alternative way of exploiting the non-sequential
nature of the computations of a distributed system and the attendant partial-order based
methods. It consists of developing LTLs that can be interpreted directly over Mazurkiewicz
traces. In these logics, every specification is guaranteed to have the ‘‘all-or-none’’ property and
hence can be subjected to the partial-order based reduction methods during the verification
process.
A number of LTLs to be interpreted over Mazurkiewicz traces directly (e.g., [1,19,20]) has been

proposed starting with TrPTL [19]. There are several possible routes towards extending LTLs to
traces. TrPTL is based on locations, where one reasons explicitly about a distribution of com-
puting agents cooperating through some communication structure given as an alphabet distri-
bution. Another option [1] is to view events as the partial-order computation points in time, and
base the specifications upon the relationship between individual events. Together, these paradigms
constitute the local trace logics. In contrast, in the global view of computations, configurations are
seen as instantaneous snapshots of the system at hand. In this sense, a configuration is a global
view capturing a collection of simultaneous local views.
The ‘‘right’’ temporal logic for traces should be equal in expressive power to first-order logic for

traces (FO). It follows from [5] that such a logic would capture exactly those properties of LTL
that have the ‘‘all-or-none’’ property and hence are amenable to partial-order verification.
However, none of the local logics are known to be expressively equivalent to FO. This led Thia-
garajan and Walukiewicz to define the configuration based LTrL [20], which they indeed prove
equivalent to FO. LTrL was later refined [3] to a straightforward formulation of LTL for traces
essentially extending Kamp’s Theorem [10] to the setting of traces.
While both the event based and location based logics have elegant (exponential-time) decision

procedures smoothly extending the classical automata–theoretic approach to the setting of traces,
no such smooth extension exists for global logics such as LTL. The essence of this anomaly is the
complications that arise as a consequence of the fact that the satisfiability problem for LTL has a
non-elementary lower bound [24]. However, experience [9] has shown that decision procedures
can still be useful in practice despite discouraging lower bounds.
Gastin et al. [6,7] do give a direct decision procedure for LTL based on automata. However, the

construction of the automaton corresponding to a given LTL-specification u proceeds by in-
duction on u, thus in a bottom–up manner. Hence it is not an extension of the classical automata–
theoretic approach, and more important, it requires the construction of the full automaton, so
optimisations such as on-the-fly checking cannot be applied. A further drawback is its high
complexity. While an exponential blow-up is unavoidable for nested until-formulas, the procedure
has also an exponential blow-up for every negation. Since nested until-formulas are rare in
specifications but negations are typical for specifying unwanted behaviour, this limits the practical
applicability of this procedure.
In this paper, we propose a decision procedure for LTL for traces directly extending the classical

approach [23]. Our procedure is based upon an extended subformula closure and independence

B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238 221

rewriting of formulas of LTL. We employ this to construct a tableau-style alternating B€uuchi
automaton (ABA) accepting the set of linearisations of traces satisfying the specification at hand.
In this sense, our procedure fills the missing gap for global trace logics by extending the classical
approach to this last remaining case. Our procedure corresponds exactly to the version given in
[23] when restricted to an empty independence relation. Furthermore, our automata can be
constructed on-the-fly, which is crucial. Last but not least, for the fragment of LTL without until-
formulas, our procedure is exponential.
In [14], it was shown that word languages definable by LTL-formulas over words correspond to

the languages of linear ABA. We prove that our construction yields a linear B€uuchi automaton as
well. Furthermore, we show that our linear B€uuchi automata accept trace-consistent languages.
Conversely, we show that the class of trace-consistent languages definable by linear ABA coin-
cides with the class of languages that are definable by LTL-formulas over Mazurkiewicz traces for
a given dependency relation. In other words, LTL-definable trace languages correspond to lan-
guages definable by trace-consistent linear ABA.
The results of this paper will also appear in an extended version in [13].
In the next section, we recall Mazurkiewicz traces and some related notions that will play a

crucial rôole for our present purposes. In Section 3, we introduce the basic object of our study,
LTL, and interpret it directly over the domain of Mazurkiewicz traces. Following this, we give in
Section 4 a brief account of ABA underlying our decision procedure to be presented in Section 5.
There we supply a proof of correctness of our construction before giving a few concluding re-
marks in Section 6.

2. Mazurkiewicz traces

A (Mazurkiewicz) trace alphabet is a pair ðR; IÞ, where R, the alphabet, is a finite set and
I � R � R is an irreflexive and symmetric independence relation. Usually, R consists of the actions
performed by a distributed system while I captures a static notion of causal independence between
actions. We define D ¼ ðR � RÞ � I to be the dependency relation, which is then reflexive and
symmetric.
For the rest of the section, we fix a trace alphabet ðR; IÞ. We will use aIb to denote that the

actions a and b are independent, i.e., that ða; bÞ 2 I, and use similar notation for ða; bÞ 2 D. We
extend the notion to sets of actions X , Y � R, and let XIY denote the fact that each pair of actions
a 2 X and b 2 Y is independent. Moreover, XDY will denote that X is dependent on Y, i.e., that
there exists a pair of actions a 2 X and b 2 Y with a and b dependent. For convenience, we will
write fagIY as aIY etc.
For the purpose of interpreting LTL over traces, we will adopt the viewpoint that traces are

restricted labelled partial orders of events and hence have an explicit representation of causality
and concurrency.
Let T ¼ ðE; 6 ; kÞ be a R-labelled poset. In other words, ðE; 6 Þ is a poset and k : E ! R is a

labelling function. k can be extended to subsets of E in the straightforward manner. For e 2 E, we
define #e ¼ fx 2 Ejx6 eg and "e ¼ fx 2 Eje6 xg. We let U be the covering relation given by xUy
iff x < y and for all z 2 E, x6 z6 y implies x ¼ z or z ¼ y.

222 B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238

A (Mazurkiewicz) trace over ðR; IÞ is a R-labelled poset T ¼ ðE; 6 ; kÞ satisfying:

• #e is a finite set for each e 2 E.
• For every e, e0 2 E, eUe0 implies kðeÞDkðe0Þ.
• For every e, e0 2 E, kðeÞDkðe0Þ implies e6 e0 or e0 6 e.

We shall let TRðR; IÞ denote the class of traces over ðR; IÞ. As usual, a trace language L is a
subset of traces, i.e., L � TRðR; IÞ. Throughout the paper we will not distinguish between iso-
morphic elements in TRðR; IÞ. We will refer to members of E as events.
Let T ¼ ðE; 6 ; kÞ be a trace over ðR; IÞ. The finite prefixes of T, to be called configurations, will

play a crucial rôole in what follows. A configuration of T is a finite subset of events c � E with
#c ¼ c where # c ¼

S
e2c # e. The set of configurations of T will be denoted CT . Trivially, ; 2 CT

for any trace T. CT can be equipped with a natural transition relation !T � CT � R � CT given
by: c!a T c0 iff there exists an e 2 E such that kðeÞ ¼ a, e 62 c and c0 ¼ c [feg. Configurations of CT

are the trace-theoretic analogues of finite prefixes of strings. As will become apparent in Section 3,
the formulas of LTL are to be interpreted at configurations of traces.
In its original formulation [15], Mazurkiewicz introduced traces as certain equivalence classes of

strings, and this correspondence turns out to be essential to our developments here. To bring this
out, let R� be the set of finite strings over R and Rx be the set of (countably) infinite strings
generated by R with x ¼ f0; 1; 2; . . .g. We set R1 ¼ R� [Rx and denote the empty word by e. We
let w, w0 range over Rx and u, v with or without primes range over R�. Finally, we take prf(w) to be
the set of finite prefixes of w and let alphðwÞ denote the set of actions occurring in w.
Next, let T ¼ ðE; 6 ; kÞ 2 TRðR; IÞ. Then w 2 R1 is a linearisation of T iff there exists a map q:

prfðwÞ ! CT , such that the following conditions are met:

• qðeÞ ¼ ;.
• qðvÞ!a T qðvaÞ for each va 2 prfðwÞ.
• For every e 2 E, there exists some u 2 prfðwÞ such that e 2 qðuÞ.

The function q will be called a run map of the linearisation w. Note that the run map of a
linearisation is unique. In what follows, we shall take linðT Þ to be the set of linearisations of the
trace T.
A set p � R is called a D-clique iff p � p � D. The equivalence relation �� R1 � R1 induced by

I is given by: w � w0 iff w�p ¼ w0
�p for every D-clique p. Here and elsewhere, if X � R, w�X is the

sequence obtained by erasing from w all occurrences of letters in R � X . We take ½w�� to denote
the �-equivalence class of w 2 R1.
It is not hard to show that elements of TRðR; IÞ and �-equivalence classes are two represen-

tations of the same object: A labelled partial-order T 2 TRðR; IÞ is represented by linðT Þ and vice
versa (see [4] for a proof of this fact and a more thorough account of traces). We exploit this
duality of representation and let Tw denote the trace corresponding to ½w��. Moreover, for each
v 2 prfðwÞ we will use cv to denote the configuration of CTw given by qðvÞ.
To illustrate these concepts, consider the trace alphabet ðR; IÞ with R ¼ fa; b; dg and

I ¼ fða; bÞ; ðb; aÞg. An example trace T over ðR; IÞ is depicted in Fig. 1 with smaller elements (with
respect to 6) appearing below larger elements. Furthermore, it can easily be verified that

B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238 223

abdbabd 2 linðT Þ so T ¼ Tabdbabd , but adabbbd 62 linðT Þ. The configuration c 2 CT consists of the
first two a’s, first d, first two b’s and is also denoted by cabdab, which is identical to cbadab as
abdab � badab.
We transfer considering traces as equivalence classes to the level of languages and call a

word language L � Rx trace-consistent if for all words w, w0 2 Rx with w � w0, it holds w 2 L iff
w0 2 L.

3. LTL for Mazurkiewicz traces

In this section, we bring out the syntax and semantics of the linear time temporal logic LTL,
which will be our basic object of study. It was originally introduced for strings by Pnueli [17]. It
was later equipped with a trace semantics [20] and proved expressively equivalent to first-order
logic for traces by Diekert and Gastin [3], and this is the version we will consider here.
The formulas of LTL are parameterised by a trace alphabet ðR; IÞ and are defined inductively as

follows:

LTLðR; IÞ ::¼ ttj:uju _ wjhaiujuUw; a 2 R:

Formulas of LTLðR; IÞ are interpreted over configurations of traces over ðR; IÞ. More precisely,
given a trace T 2 TRðR; IÞ, a configuration c 2 CT , and a formula u 2 LTLðR; IÞ, the notion of T ,
c � u is defined inductively via:

• T ; c � tt.
• T ; c � :u iff T ; c2u.
• T ; c � u _ w iff T ; c � u or T ; c � w.
• T ; c � haiu iff there exists a c0 2 CT such that c!a T c0 and T ; c0 � u.
• T ; c � uUw iff there exists a c0 2 CT with c � c0 such that T ; c0 � w and all c00 2 CT with

c � c00 � c0 satisfy u.

We will freely use the standard abbreviations such as e.g., ff ¼ :tt, u ^ w ¼ :ð:u _ :wÞ.
Furthermore, we sometimes abbreviate T ,; � u by T � u. All models of a formula u 2 LTLðR; IÞ
constitute a subset of TRðR; IÞ, thus a language. It is denoted by LðuÞ and is called the language

Fig. 1. A trace over ðR; IÞ.

224 B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238

defined by u. Furthermore, every formula defines an x-language viz the set fw 2 linðT ÞjT � ug,
which is also indicated by LðuÞ.
A simple example of a formula of LTL is u ¼ haihbiw. Note that for the trace of Fig. 1 it holds

that T � u if and only if T ,cab � w. Moreover, u is equivalent to u0 ¼ hbihaiw over this particular
trace alphabet because aIb, i.e., the models of u and u0 and coincide. Such considerations will play
a prominent rôole when we define the decision procedure in Section 5.
For bringing out the decision procedure itself, it will be convenient to assume that the syntax of

LTL is augmented with an indexed until operator UUZw where Z � R and U ¼ fuY1
1 ; . . . ;u

Yn
n g is a

finite set of indexed formulas with Yi � R. Formally, it will have the following semantics:

• T ; c � UUZw iff there exists a c0 2 CT with c � c0 such that T ; c0 � w and kðc0 � cÞIZ, and, for
each 16 i6 n and every c00 with c � c00 � c0 and kðc00 � cÞIYi, it holds c00 � ui.

Hence, a trace satisfies the formula UUZw in the configuration c iff there is a future configu-
ration c0 satisfying w and all the actions from c to c0 are independent from the actions in Z.
Furthermore, the configurations between c and c0 which can be reached from c by performing
actions independent of Yi all satisfy ui.
Note that uUw can be identified with fu;gU;w and we will not always make this distinction

explicit. It is not hard to see that UUZw is expressible within FO, so this indexed modality is
derivable within LTL itself.
We remark that, in case of the empty independence relation, LTLðR; IÞ and LTL interpreted

over words (denoted by LTLðRÞ) coincide in the expected manner. Thus, we identify LTL over
words with LTLðRÞ, especially in the proof of Theorem 13, and save the work for introducing
LTL over words formally.

4. Alternating B€uuchi automata

Alternating automata extend non-deterministic automata by universal choices. The transition
function denotes no longer a set of possible next states but a (positive) Boolean combination. In
this section, we recall the notion of alternating automata along the lines of [23] where ABA are
used for model checking LTL over strings. However, we modified the definition of a run to reflect
the ideas presented in [14].
For a finite set X of variables, let BþðX Þ be the set of positive Boolean formulas over X, i.e., the

smallest set such that

• X � BþðX Þ
• tt, ff 2 BþðX Þ
• u, w 2 BþðX Þ) u ^ w 2 BþðX Þ, u _ w 2 BþðX Þ.

In the following, we assume for every positive Boolean formula that it is in disjunctive normal
form and that it is reduced with respect to idempotence and commutation. Hence, for a set X with
jX j elements, the size of BþðX Þ is bounded by 22

jX j
. This can easily be seen by considering the

formulas as sets of sets.

B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238 225

We say that a set Y � X satisfies (or is a model of) a formula u 2 BþðX Þ iff u evaluates to tt
when the variables in Y are assigned to tt and the members of X n Y are assigned to ff. A model is
called minimal if none of its proper subsets is a model. For example, fq1; q3g as well as fq2; q3g are
minimal models of the formula ðq1 _ q2Þ ^ q3.
Later in our construction, logical formulas will take over the rôole of states. Therefore, we

should formally distinguish between disjunctions of formulas and disjunctions of states. However,
to simplify our presentation, we identify these disjunctions when the context makes clear which
one is meant. In particular, given a formula u in disjunctive normal form, u ¼ _ ^ uij where no
uij is a (top level) disjunction or conjunction, we identify u with the positive Boolean combination
of states uij. To avoid confusion, we sometimes write stðuÞ to denote fuijj _ ^uijg.
An ABA over an alphabet R is a tuple A ¼ ðQ;R; d; q0; F Þ such that Q is a finite non-empty set

of states, q0 2 Q is an initial state, F � Q is a set of accepting states and d : Q� R ! BþðQÞ is a
transition function.
Because of universal quantification, a run over an infinite string is no longer a sequence but a

labelled directed acyclic graph. A node’s label reflects one of the current states of the automaton,
and the edges reflect transitions of the automaton with respect to the input string. Hence, this
graph should have a unique ‘‘root’’ labelled with q0. Furthermore, it has to be divisible into
‘‘levels’’ i 2 N corresponding to the ith input letter. Every node except the root must have a
‘‘predecessor’’. For a node v, the labels of nodes of level iþ 1 connected with v should further be a
model for the transition in state lðvÞ reading the ith letter. More precisely:
A run over an infinite string w ¼ a0a1 . . . 2 Rx is a Q-labelled directed acyclic graph ðV ;EÞ such

that there exist labellings l : V ! Q and h : V ! N which satisfy the following properties.

• h�1ð0Þ ¼ fvg with lðvÞ ¼ q0.
• E �

S
i2Nðh�1ðiÞ � h�1ðiþ 1ÞÞ.

• For every v0 2 V with hðv0ÞP 1, fv 2 V jðv; v0Þ 2 Eg 6¼ ;.
• For every v; v0 2 V , v 6¼ v0, lðvÞ ¼ lðv0Þ implies hðvÞ 6¼ hðv0Þ.
• For every v 2 V , flðv0Þjðv; v0Þ 2 Eg is a minimal model of dðlðvÞ; ahðvÞÞ.

A run ðV ;EÞ is accepting if every maximal finite path ends in a node v 2 V with dðlðvÞ; ahðvÞÞ ¼ tt
and every maximal infinite path, wrt the labelling l, visits at least one final state infinitely often.
The languageLðAÞ of an automatonA is determined by all strings for which an accepting run of
A exists.
Let us define a subclass of alternating automata corresponding to LTL formulas over words, as

shown in [14]. The transition graph of an ABA A ¼ ðQ;R; d; q0; F Þ is the graph ðQ;EÞ such that
ðq; q0Þ 2 E iff there is an action a such that for dðq; aÞ ¼ _ ^ qij, the state q0 is one of the qij.

2 The
automaton is called linear iff its transition graph has only trivial cycles.
Finally, we call an ABA A trace-consistent if its language LðAÞ is trace-consistent. We will

show that linear trace-consistent automata correspond to LTL formulas overMazurkiewicz traces.
Obviously, every B€uuchi automaton can be turned into an equivalent (wrt the accepted lan-

guage) ABA. Vice versa, for every ABA, an equivalent B€uuchi automaton can be constructed with

2 Silently considering tt and ff as states here.

226 B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238

an exponential blow-up. The construction is described for example in [23]. Hence, it is easy to see
that the emptiness problem for ABAs is exponential in its number of states.

5. A decision procedure for LTL

We have now set the scene to bring out our decision procedure for LTL. Our procedure
generalises the classical approach by constructing an ABA Au accepting the set of linearisations
of traces satisfying a given formula u. The states of this automaton are derived from an extended
subformula closure, which we first define. Following this, we define a notion of independence-
rewriting of such formulas, and this will eventually become the transition relation of Au. We pin
down the details of our construction and give a proof of correctness. Then we consider the
complexity of our decision procedure and point out the correspondence between linear trace-
consistent alternating automata and LTL over Mazurkiewicz traces.

5.1. The construction

In essence, we will construct an automaton Au that accepts a string w 2 Rx whenever the
corresponding trace Tw satisfies u. To appreciate the developments to come, we commence with a
small example. Consider the example formula u ¼ haihbiw of Section 3. Suppose that w is of the
form abv for some v 2 Rx. It is then not hard to see that Tw, ; � u if and only if Tw; ca � hbiw.
Consider now instead w0 ¼ bav. Since the underlying domain is traces, Tw0 might still satisfy u

even though the first action is a b and not an a, because aIb. In fact, Tw0 , ; � u exactly when
Tw0 ; cb � haiw. In this sense, the proof obligation at the empty configuration, ‘‘haihbiw’’, has been
transformed by b to the proof obligation ‘‘haiw’’ at cb; the a-action still has to be witnessed, but
the present b has been matched. (Note by the way that either both or none of w and w0 should be
accepted, because w � w0 and hence Tw ¼ Tw0 .)
In effect, our automaton proceeds in this way by ‘‘independence-rewriting’’ the proof obliga-

tions by the actions read. The state space thus consists of all subformulas together with formulas
obtained by transformations as described above. We will call this set the extended closure of u.

Definition 1. Let g be a formula of LTL. We take ecl(g) to be the least set that satisfies the fol-
lowing:

• g itself is contained in its closure.
• For u _ w 2 eclðgÞ, it also contains the closure of u and of w.
• For haiu 2 eclðgÞ, it also contains the closure of u as well as haiu0 for every u0 2 eclðuÞ.
• For u 2 eclðgÞ, it also contains :u 2 eclðgÞ. We identify ::u with u. Hence, eclðgÞ is closed
under negation.

• For uUw 2 eclðgÞ, the closure contains eclðuÞ as well as eclðwÞ. Furthermore, for all Z � R, all
w0 2 eclðwÞ, and all U � fu0Y ju0 2 eclðuÞ; Y � Rg the closure contains UUZw0.

• The closure is closed under positive Boolean combinations, i.e., BþðeclðgÞÞ � eclðgÞ.

Intuitively, the extended closure of a formula u contains all formulas which may be obtained by
substituting a subformula w of u by w0 where w0 is a positive Boolean combination of formulas

B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238 227

derived from w by applying this rule. This is because our automaton will be defined in the way
that before it is considering a formula u it may consider a subformula w of u, transforming this
into a positive Boolean combination of new formulas w0. This result is processed in the way that w
is substituted by w0 within u.
We assume that all positive Boolean formulas are in disjunctive normal form and moreover

that they are reduced wrt idempotence and commutation. With these assumptions we can prove
the following crucial result.

Proposition 2. eclðgÞ is a finite set for each formula g of LTL.

Proof. The proof proceeds by a standard induction. The claim is obvious for atomic formulas. For
g ¼ haiu, the extended closure of g contains the extended closure of u and for every element u0 of
eclðuÞ also haiu0. Thus, we get jeclðuÞj ! 2 elements. Since the extended closure contains for every
element also a negated one, we get another factor 2. Now, positive Boolean combination yields
a double exponential blow-up. Altogether, we have jeclðgÞj6 22

jeclðuÞj!2!2
. For g ¼ fuY1

1 ; . . . ;u
Yn
n gUZw,

it can be verified that jeclðgÞj is bounded by

22
22

Pn

i¼1
ðjeclðuiÞj!2jRjÞ

!2jRj !22
jeclðwÞj

� �
!2

:

The three factors are upper bounds for the derivatives of f! ! !g, UZ , and w, resp., and the powers
bound their positive Boolean combination. �

We will refer to formulas of this set as extended formulas. Furthermore, we will say that a
formula is a diamond-formula in case it is of the form haiu for some extended formula u and some
a 2 R. In a similar vein, we let the until-formulas consist of those of the form UUZw with U being a
finite set of extended formulas, w a single extended formula and Z � R.
For extended formulas, we will make use of the important notion of its dual, which is obtained

as usual by applying de Morgan’s laws to push negations inwards as far as possible.

Definition 3. The dual of an (extended) formula is given inductively as follows:

• tt ¼ ff, ff ¼ tt.
• :u ¼ u.
• u _ w ¼ u ^ w, u ^ w ¼ u _ w.
• haiu ¼ :haiu.
• uUw ¼ :ðuUwÞ.
• UUZw ¼ :ðUUZwÞ.

We are now set to introduce the operator k � k�, which will constitute the transition relation of
the alternating automaton. Essentially, kuka is to be thought of as the independence-rewriting of
u by the action a.
It follows from the intuition conveyed earlier that it should be the case that khaiuka is u. Then,

for the case where aIb, khbiuka ¼ hbiu0 where u0 ¼ kuka. Of course, whenever aDb and the actions

228 B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238

are not identical, then khbiuka must be ff because b cannot be a next action. Definition 4 formally
captures this intuition.

Definition 4. For each extended formula u and each action a, the operator kuka yields a formula
of BþðeclðuÞÞ and is defined inductively via:

kttka ¼ tt:

ku _ wka ¼ kuka _ kwka:

k:uka ¼ kuka:

khbiuka ¼
u if a ¼ b
hbikuka if aIb
ff if aDb; a 6¼ b:

8<
:

Note that since eclðgÞ is closed under positive Boolean combination, we have eclðgÞ ¼
BþðeclðgÞÞ.
We now only need to specify the case of kUUZwka. This turns out to be inherently more

complex, and before providing the precise definition, we carefully analyse the semantics of the
indexed until modality in Fig. 2. For this purpose, consider some trace T be given and suppose
c; c0 2 CT such that c � c0. Furthermore, let c00 be a configuration between c and c0 (Fig. 2(i)).
Suppose, we can augment c by an a-labelled event e to obtain a successor configuration c000 of c,

i.e., c!a c000. Then c000 � c00 � c0 or c000 6� c00 but c000 � c0 or c000 6� c0, as shown in Fig. 2(a)–(c) resp. In
case (b), it is obvious that kðc00 � cÞIa and for case (c), we have kðc0 � cÞIa (as well as kðc00 � cÞIa).
The situation shown in Fig. 2 can, in other words, be described in the following manner: The

action a is

(a) neither in the future of c00 nor of c0 (case (a)),
(b) in the future of c00 (case (b)), or
(c) in the future of c00 as well as of c0 (case (c)).

Consider a formula uUw, which is to be checked in the configuration c. In case (c), we have to
employ a for verifying w as well as u. Note that for case (c), we get two subcases depending upon
whether c0 ¼ c or c0 # c. While w is not relevant to the first case, u is required to hold in the

Fig. 2. Configuration and actions.

B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238 229

configurations between c and c0. Note that these configurations are reached by actions indepen-
dent of a.
For case (a), we have to employ a for verifying u in configuration c but not for c00. In case (b),

we have to prove u considering a in the configuration c00, which might be equal to c as well as
different from c. Note that in the latter case, every event of c00 � c is independent of a.
Consequently, we define the rewriting operator for a formula UUZw as follows.

Definition 5 (extends Definition 4). Let

W1 ¼ kwka W2 ¼ kukY[faga juY 2 U
n o

UZ[fagkwka:

Moreover, we set W0 ¼ W1 _ W2. Let

kUka ¼ kukY[faga juY 2 U [uY juY 2 U; aIY
n o

and

U1 ¼ ^uY2Ukuka U2 ¼ kUkaUZw

and U0 ¼ U1 ^ U2. Then we define

kUUZwka ¼
W0 if aDZ;
W0 _ U0 else aIZ:

Note that W0 captures case (c) in which an action a is employed for verifying w under the as-
sumption that c0 ¼ c ðW1Þ or not (W2). U0 covers the idea that a is not in the future of c0 but is
employed for verifying the obligations in U.
It is not hard to verify that k � k� is well-defined. However, to show the correctness of our

construction, the following proposition is essential. Suppose that we have given one linearisation
of a trace and one formula and we want to check the formula wrt the trace obtained from the
linearisation. According to the following proposition it is possible to consider the word action by
action and to modify the formula according to the rewriting operator.

Proposition 6. Let g be any formula of LTLðR; IÞ. Then for all w 2 Rx and for all v 2 R�, a 2 R,
w0 2 Rx with vaw0 � w

Tw; cv � g if and only if Tw; cva � kgka:

Proof. The proof proceeds by induction on the formula g. We only show the most important cases
as the other cases follow in a similar manner. The cases where g ¼ tt or g ¼ ff are trivial.
Suppose g ¼ u _ w. Then Tw; cv � u _ w means by definition that Tw; cv � u or Tw; cv � w. By

induction, this is equivalent to Tw; cva � kuka or Tw; cva � kwka, which is equivalent to Tw; cva �
ku _ wka by definition of the rewrite operator.
Suppose g ¼ :u. By definition, Tw; cv � :u iff not Tw; cv � u. Induction yields Tw; cva2kuka,

which means Tw; cva � :kuka. The dual of a formula is obviously logically equivalent to the ne-
gation of the formula so that the previous statement is equivalent to Tw; cva � kuka.

230 B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238

Suppose g ¼ hbiu. By definition, Tw; cv � hbiu if and only if there is a configuration c0 such that
cv!

b
c0 ¼ cvb and Tw; c0 � u. We consider three different cases:

• b ¼ a: then c0 ¼ cva. Hence Tw; cva � u.
• b 6¼ a, bDa: then cv!

b
c0 and cv!

a
cva. However, then w is not a linearisation of the trace, which

is a contradiction.
• bIa: Tw; cvb � u is by induction equivalent to Tw; cvba � kuka. Since aIb, this means Tw; cvab �

kuka, which is equivalent to Tw; cva � hbikuka.

Putting together all the cases we get that Tw; cv � hbiu if and only if Tw; cva � khbiuka.
The most involved case is g ¼ UUZw. Let U ¼ fuY1

1 ; . . . ;u
YN
N g. Recall that Tw; cv �

fuY1
1 ; . . . ;u

YN
N gUZw if and only if

9x 2 R�; y 2 Rx; aw0 � xy; xIZ; such that Tw; cvx � w; and
8i 2 f1; . . . ;Ng;8x1; x2 2 R� with x1x2 � x; x1IYi; x2 6¼ e; it holds
Tw; cvx1 � ui:

We consider here only the case where aIðYi [ZÞ. The other cases follow similarly. Let us first
discuss the implication from left to right: we consider the following cases for x:

• x ¼ e: then Tw; cvx � w means Tw; cv � w, which implies by induction Tw; cva � kwka. This shows
ðW1Þ.

• x 6¼ e, a 62 alphðxÞ: We consider the cases for w and ui simultaneously.

) aIx) aIx1
Tw; cvx � w Tw; cvx1 � ui

)
I:H :

Tw; cvxa � kwka)
I:H :

Tw; cvx1a � kuika
) Tw; cvax � kwka) Tw; cvax1 � kuika
) 9x 2 R�; xIðZ [fagÞ) 8x1; x2 2 R�; x1x2 � x; x1IðYi [fagÞ

Tw; cvax � kwka x2 6¼ e; Tw; cvax1 � kuika

Hence, Tw; cva � fkukY[faga juY 2 UgUZ[fagkwka, which shows (W2).
• x 6¼ e, a 2 alphðxÞ: We easily see that x � ax0 and a, x0IZ and Tw; cvax0 � w. We will show ðU1Þ
and ðU2Þ. Let us consider x1. If x1 ¼ e then Tw; cv � ui implies by induction Tw; cva � kuika. If
x1 6¼ e and a 62 alphðx1Þ, we see that aIx1 and x1IYi. Hence, x1IðYi [fagÞ. Now, Tw; cvx1 � ui

yields by induction Tw; cvx1a � kuika proving Tw; cvax1 � kuika since aIx1. For the case x1 6¼ e
but a 2 alphðx1Þ, we see that x1 � ax01 and Tw; cvax0

1
� ui. Summing up the cases for x1, we get

Tw; cva � kUkaUZw, which shows ðU2Þ, and Tw; cva � kuka for all uY 2 U, which shows ðU1Þ.

Altogether, we showed that W0 or U0 hold in the until case proving the ‘‘if’’-part. Now, let us
consider the implication from right to left: suppose Tw; cva � kUUZwka, i.e.,

Tw; cva � W1 _ W2 _ U0:

B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238 231

We discuss the disjunction by drawing the conclusions of each formula

• Tw; cva � kwka: this implies by induction that Tw; cv � w. Hence, Tw; cv � UUZw.
• Tw; cva � fkukY[faga juY 2 UgUZ[fagkwka: Then there exist x; y, xIðZ [fagÞ, w � vaxy such that

Tw; cvax � kwka. Since xIa also Tw; cvxa � kwka, which yields by induction Tw; cvx � w. We further
know that for every proper prefix (modulo �) x1 of x with x1IðY [fagÞ, we have Tw; cvax1 �
kuka. Then Tw; cvx1a � kuka and, by induction, Tw; cvx1 � u. Hence, Tw; cv � UUZw.

• Tw; cva � ^uY2Ukuka ^ kUkaUZw: We first obtain by induction that Tw; cv � u for every uY 2 U.

Let us consider

Tw; cva � ðfkukY[faga juY 2 Ug [fuY juY 2 U; aIY gÞUZw:

It implies that there is an x0, independent of Z, such that Tw; cvax0 � w. Since we are in the case of
aIZ, we conclude that there is an x, xIZ(x � ax0) such that Tw; cvx � w. Now, consider x1x2 � x,
x2 6¼ e. For every x1IðY [fagÞ, x1 a prefix of x0, we know Tw; cvax1 � kuka and, by induction,
Tw; cvx1 � u. For x0 ¼ e, we already know Tw; cv � u. For x1IY and x1Da, we obtain x1 � ax01, x

0
1IY ,

since cva is a valid configuration. By Tw; cvax0
1
� u we deduce Tw; cvx1 � u. Altogether, this shows

Tw; cv � UUZw.
This concludes the proof. �

We can now finally bring the definition of the ABA Au corresponding to a formula u 2
LTLðR; IÞ as follows.

Definition 7. Given a formula u 2 LTLðR; IÞ, the ABA Au is the tuple ðQ;R; d; q0; F Þ where

• Q ¼ eclðuÞ is the set of states.
• dðq; aÞ ¼ kqka is the transition function.
• q0 ¼ u is the initial state.
• F ¼ f:wj:w 2 eclðuÞg is the set of accepting states.

Note that we defined the set of final states to be all negated formulas. The intuitive idea is that
failing to prove a proposition infinitely often suffices to assume that its negation is true. In the
work of Vardi [23], one could likewise take all negated formulas as final states. Since in the case of
LTL over words, only until-formulas may occur infinitely often, the set of final states is there
restricted to negated until-formulas.
The correctness of the construction is summarised in the following theorem, which is the main

contribution of the paper.

Theorem 8. Let u be a formula of LTLðR; IÞ and let its ABA be given asAu ¼ ðQ;R; d; q0; F Þ. Then
w 2 LðAuÞ if and only if Tw; ; � u

for every w 2 Rx. In other words, LðAuÞ ¼ LðuÞ.

232 B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238

Proof. For w 2 Rx, we have to show thatAu has an accepting run on w iff Tw � u. Note that every
run has (at most) three types of paths:

• finite paths ending in tt,
• infinite paths on which from some point on every node is labelled by an until- or diamond-
formula, or

• infinite paths on which from some point on every node is labelled by a negated until- or dia-
mond- formula.

Let us give a sketch of the proof. For w 2 eclðuÞ and w ¼ aw0 2 Rx, let �ddðw;wÞ be the extension
of d defined by �ddðw; aw0Þ ¼ �ddðdðw; aÞ;w0Þ. By Proposition 6, �ddðu;wÞ ¼ �ddðdðu; aÞ;w0Þ ¼ �ddðkuka;w0Þ
and Tw; c� � u iff Tw; ca � kuka. Now, consider an accepting run of Au. Its finite paths end in tt,
thus all proof obligations are proved. Conversely, a run should be accepted only if the finite paths
end in tt, i.e., that all proof obligations are proved. Now, let us consider the infinite paths of a run.
These can only occur by unwinding a (negated) until-formula infinitely often or by reading actions
independent of the one given within a diamond-formula. This can be accepted iff the underlying
until-formula or diamond-formula is preceded by a negation. This is captured by the acceptance
condition for infinite paths given by the final states of the automaton. �

5.2. State space

To simplify the presentation, we have defined the state space of our automaton in a straight-
forward manner and presented a simple argument to show that it is finite. Thus, we indeed
obtained a decision procedure. Now, let us take a closer look to the states that are really needed
in our construction. In other words, let us consider the states that are reachable from the initial
state.
Given a formula u 2 LTLðR; IÞ, a state w of Au, and a set Y � R, let reachY ðwÞ denote

the set of states reachable from w in Au by words whose actions are independent of Y. More
precisely,

reachY ðwÞ ¼ fw0j9w 2 R�;wIY : w0 2 stð�ddðw;wÞÞg;
where �dd is the extension of d defined in the obvious manner.

Proposition 9. Given u 2 LTLðR; IÞ, we get upper bounds for the number of states reachable from a
state of Au wrt Y inductively as follows:

• jreachY ðttÞj ¼ 1
• jreachY ðffÞj ¼ 1
• jreachY ð:wÞj ¼ jreachY ðwÞj
• jreachY ðw1 _ w2Þj6 jreachY ðw1Þj þ jreachY ðw2Þj
• jreachY ðw1 ^ w2Þj6 jreachY ðw1Þj þ jreachY ðw2Þj

• jreachY ðhaiwÞj6
jreachY ðwÞj þ jreachY[fagðwÞj þ 1 if aIY
jreachY[fagðwÞj þ 1 if aDY

B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238 233

• jreachY ðfuY1
1 ; . . . ;u

Yn
n gUZwÞj6 22

Pn

i¼1
ðjreachY ðuiÞj!2jRjÞ ! 2jRj ! 22jreachY ðwÞj

:

Proof. The obvious cases are if the state formula is tt or ff.
Since negation is shifted inwards by the dual operator �, the states reachable from :w are the

same states as reachable from w, except that every state is preceded by :. Thus, the cardinality is
the same.
Given haiw, assume a to be independent of Y. Reading an action dependent on but different

from a (and independent of Y) yields the state ff and in our formula the 1. Reading a yields the
state w, thus, the states reachable from w are obviously reachable from haiw ðjreachY ðwÞjÞ. The
last possibility is reading an action b independent of a and Y. This yields formulas of the form
haiw0 where w0 is obtained by rewriting w by actions independent of Y and a. Since haiw0 dis-
tributes over disjunctions and conjunctions, we get the same number of states as obtained by
considering the states reachable from w by words independent of Y [fag (jreachY[fagðwÞj).
The bound for until-formulas follows by a simple combinatorial argument. Before and after the

U within an until-formula, only positive Boolean combinations of derivations of respectively U
and w may occur, and the U is indexed with subsets of R. �

Let us call the fragment of LTL defined without until-formulas Hennessy–Milner fragment.

Proposition 10. Given a formula w from the Hennessy–Milner fragment of LTLðR; IÞ, we obtain
reachY ðwÞ6 jwjjR�Y j

.

Proof. The proof follows a simple induction of which we pick out two cases:

• Applying Proposition 9, the induction hypothesis, and the binomial formula, 3

jreachY ðw1 _ w2Þj6 jreachY ðw1Þj þ jreachY ðw2Þj6 jw1j
jR�Y j þ jw2j

jR�Y j
6 ðjw1j þ jw2j þ 1ÞjR�Y j

:

• Assuming aIY ,

jreachY ðhaiwÞj6 jreachY ðwÞj þ jreachY[fagðwÞj þ 16 jwjjR�Y j þ jwjjR�Y j�1 þ 1

6 ðjwj þ 1ÞjR�Y j
: �

Due to the exponential blow-up the construction of an equivalent B€uuchi automaton for Au

causes, we conclude.

Theorem 11. Checking satisfiability of a formula from the Hennessy–Milner fragment of LTLðR; IÞ
can be done in exponential time.

5.3. LTL and linear automata

Now we characterise LTLðR; IÞ as equivalent to that subclass of ABA that we called trace-
consistent linear ABA, and we start observing the linearity of the above construction.

3 ðaþ bÞn ¼
Pn

i¼0
n
i

� �
an�ibi.

234 B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238

Proposition 12. Given u 2 LTLðR; IÞ, Au is linear.

Proof.We have to show that the transition function only admits trivial cycles. Therefore we define
a well-founded strict ordering relation 4 & on the states of our automaton and show that kwka
yields a Boolean combination of strictly smaller states or w.
For a formula g 2 LTLðR; IÞ, &� eclðgÞ � eclðgÞ is inductively defined by

• u & haiu,
• haiu & haiw if u & w,
• u & :w if u & w,
• wY1

1 & wY2
2 if w1 ' w2 and Y1 (Y2 and one of the orderings is strict, i.e., w1 & w2 or Y1)Y2,

• _ ^ uij & _ ^ wij if fuijg) fwijg where) is the (strict) (multi-)set ordering induced by &, i.e.,
M1) M2 iff there exist a set X and an element m 2 M2 with m0 & m for all m0 2 X such that
M1 ¼ ðM2 � fmgÞ [X . In other words, a set M1 is smaller than M2 if an element of M2 is re-
placed by a set of smaller elements resulting in M1.

• w0 & UUZw if w0 & w,
• _ ^ uij & UUZw if fuR

ijg) U,
• U1U

Z1w1 & U2U
Z2w2 if U1)U2 and Z1 (Z2 and w1 ' w2 and one of the orderings is strict, i.e.,

U1) U2 or Z1)Z2 or w1 & w2, where) is the reflexive closure of),

and contains its transitive closure. Here, ' is the reflexive closure of &.
We easily verify that, given formulas u, w 2 eclðgÞ, an action a 2 R, and a minimal model W of

kwka with u 2 W, it holds u ' w and furthermore that for arbitrary u;w 2 eclðgÞ, u &þ w implies
u 6¼ w. We conclude the linearity of our construction. �

Theorem 13. Let A ¼ ðQ;R; d; q0; F Þ be a trace-consistent linear ABA. There is a formula u 2
LTLðR; IÞ such that

Tw; ; � u if and only if w 2 LðAÞ
for every w 2 Rx. In other words, LðuÞ ¼ LðAÞ.

Before we are going to prove the previous theorem, let us mention two facts:

Proposition 14. LetA ¼ ðQ;R; d; q0; F Þ be a linear ABA. There is a formula u 2 LTLðRÞ such that
LðuÞ ¼ LðAÞ.

Proposition 15. Let L � Rx and I � R � R be an independence relation. Then the following state-
ments are equivalent.

1. L is trace-consistent wrt I and LTLðRÞ-definable.
2. fTwjw 2 Lg is FOðR; IÞ-definable.
3. fTwjw 2 Lg is LTLðR; IÞ-definable.

4 That is, a transitive and acyclic relation.

B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238 235

Proposition 14 was independently shown by [18] and [14]. As aforementioned in the intro-
duction, the equivalence of (1) and (2) traces back to [5], that one between (2) and (3) back to [3].
Now, we are ready to prove Theorem 13.

Proof. In accordance with Proposition 14, given a trace-consistent linear ABA A, there is a
formula w 2 LTLðRÞ satisfying LðwÞ ¼ LðAÞ where LðwÞ is likewise trace consistent. Em-
ploying the equivalences from Proposition 15, it immediately follows the existence of a formula
u 2 LTLðR; IÞ with Tw; ; � u if and only if w 2 LðAÞ for every w 2 Rx. �

Let us bring out two important consequences of the last theorem:

1. Given an LTL formula u over Mazurkiewicz traces, it is simple to construct a trace-consistent
LTL formula w over words defining the same set of x-words. Just constructAu, and forAu, a
corresponding formula w according to the proof given in [14].

2. Partial-order reduction techniques work for LTL over Mazurkiewicz traces. Given an LTL for-
mula u over Mazurkiewicz traces, consider its automaton Au. It is a linear trace-consistent
automaton over words. For this kind automata, several powerful partial-order reduction tech-
niques have been developed, which will have the same success here [16]. Hence, specifying with
LTL over Mazurkiewicz traces promises––despite the bad worst-case runtime of its decision
procedure––efficient verification tasks in practice.

Note that the first item even implies that the languages definable by LTL-formulas over
Mazurkiewicz traces are FO-definable over Mazurkiewicz traces. Thus, we obtained one direction
of the expressive completeness proof given in [3].

6. Conclusion

We have exhibited a decision procedure demonstrating that the classical automata–theoretic
approach can be generalised to configuration based temporal logics for traces such as LTL. In
particular, Theorem 8 asserts that it is possible to directly construct an ABA accepting the set of
linearisations of traces satisfying the formula at hand.
The main idea underlying this construction is to use a notion of independence-rewriting to an

extended subformula closure. It easily follows from [24] that this closure must be of non-
elementary size and, moreover, that this is unavoidable for any decision procedure directly gen-
eralising the classical automata–theoretic approach.
Our approach clearly yields an optimal (non-elementary) decision procedure and shares this

similarity with [7]. We are sure that an actual implementation of our approach would compare
favourably due to the fact that the automata need not necessarily be constructed in full and es-
pecially because it avoids an exponential blow-up for negation.
We showed that trace-consistent linear automata correspond to LTL over Mazurkiewicz traces

wrt language definability, transferring a similar result shown in [14] from the setting of words to
the setting of traces. As a consequence, it is quite natural to construct trace-consistent linear

236 B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238

automata as a tool to answer the satisfiability problem, and our approach exactly follows this
idea.
It is easy to adapt our decision procedure for the unary fragment of LTL, where the until-

modality is replaced by an eventually-modality with the obvious semantics. Unfortunately, it
remains an open question whether the decision procedure obtained in this way is optimal.

Acknowledgement

We would like to thank Jesper G. Henriksen for fruitful discussions and valuable comments on
this work.

References

[1] R. Alur, D. Peled, W. Penczek, Model checking of causality properties, in: Proceedings of the 10th Annual IEEE

Symposium on Logic in Computer Science (LICS’95), IEEE Computer Society Press, San Diego, California, 1995,

pp. 90–100.

[2] O. Bernholtz, M.Y. Vardi, P. Wolper, An automata–theoretic approach to branching-time model checking, in:

D.L. dill (Ed.), Proceedings of the 6th International Conference on Computer-Aided Verification (CAV’94), vol.

818 of Lecture Notes in Computer Science, Springer, 1994, pp. 142–155.

[3] V. Diekert, P. Gastin, LTL is expressively complete for Mazurkiewicz traces, in: Proceedings of International

Colloquim on Automata, Languages and Programming (ICALP’2000), vol. 1853 Lecture Notes in Computer

Science, Springer, 2000, pp. 211–222.

[4] V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, Singapore, 1995.

[5] W. Ebinger, A. Muscholl, Logical definability on infinite traces, Theor. Comput. Sci. 154 (1) (1996) 67–84.

[6] P. Gastin, R. Meyer, A. Petit, A (non-elementary) modular decision procedure for LTrL, in: MFCS: Symposium

on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, vol. 1450, 1998.

[7] P. Gastin, R. Meyer, A. Petit. A (non-elementary) modular decision procedure for LTrL. Technical report, LSV,

ENS de Cachan, 1998, extended version of MFCS’98.

[8] J.-C. Gr�eegoire, G.J. Holzmann, D.A. Peled, (Eds.), The Spin Verification System, vol. 32 of DIMACS series,

American Mathematical Society, 1997, ISBN 0-8218-0680-7, p. 203.

[9] J.G. Henriksen, J.L. Jensen, M.E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe, A. Sandholm, Mona: Monadic

second-order logic in practice, in: E. Brinksma, R. Cleaveland, K.G. Larsen, T. Margaria, B. Steffan (Eds.), Tools

and Algorithms for the Construction and Analysis of Systems, vol. 1019 of Lecture Notes in Computer Science,

Springer, 1995, pp. 89–110.

[10] H.W. Kamp. Tense Logic and the Theory of Linear Order, Ph.D. thesis, University of California, Los Angeles,

1968.

[11] O. Kupferman, M.Y. Vardi, An automata–theoretic approach to reasonings about infinite-state systems, in: E.A.

Emerson, A.P. Sistla (Eds.), Proceedings of the 12th International Conference on Computer-Aided Verification

(CAV’00), vol. 1855 of Lecture Notes in Computer Science, Springer, 2000.

[12] O. Kupferman, M.Y. Vardi, P. Wolfer, An automata–theoretic approach to branching-time model checking,

J. ACM 47 (2) (2000) 312–360.

[13] M. Leucker, Logics for Mazurkiewicz traces. Ph.D. thesis, Lehrstuhl f€uur Informatik II, RWTH Aachen, 2002. Also

appeared as Technical Report 2002-10, RWTH Aachen.

[14] C. L€ooding, W. Thomas, Altering automata and logics over infinte words, in: Proceedings of the IFIP International

Conference on Theoretical Computer Science, IFIP TCS2000, vol. 1872 of Lecture Notes in Computer Science,

Springer, 2000, pp. 521–535.

[15] A. Mazurkiewicz, Concurrent program schemes and their interpretations, DAIMI Rep. PB 78, Aarhus, 1977.

B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238 237

[16] D. Peled, Ten years of partial order reduction, in: Proceedings of 10th International Conference on Computer-

Aideds Verification (CAV’98), vol. 1427 of Lecture Notes in Computer Science, Springer, Vancouver, BC, Canada,

1998, pp. 17–28.

[17] A. Pneuli, The temporal logic of programs, in: Proceedings of the 18th IEEE Symposium on the Foundations of

Computer Science (FOCS-77), Providence, Rhode Island, October 31–November 2, 1977, IEEE Computer Society

Press.

[18] S. Rohde, Alternating automata and the temporal logic of ordinals, Ph.D. thesis, University of Illinois at Urbana-

Champaign, 1997.

[19] P.S. Thiagarajan, A trace based extension of linear time temporal logic, in: Proceedings of the Ninth Annual IEEE

Symposium on Logic in Computer Science, Paris, France, 4–7 July, IEEE Computer Society Press, 1994, pp. 438–

447.

[20] P.S. Thiagarajan, I. Walukiewicz, An expressively complete linear time temporal logic for Mazurkiewicz traces. in:

Proceedings, Twelth Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, 29 June–2 July,

IEEE Computer Society Press, 1997, pp. 183–194.

[21] A. Valmari, A stubborn attack on state explosion, in: E.M. Clarke, R.P. Kurshan (Eds.), Proceedings of

Computer-Aided Verification (CAV’90), vol. 531 of Lecture Notes in Computer Science, Springer, Berlin,

Germany, 1991, pp. 156–165.

[22] M.Y. Vardi, P. Wolper, An automata–theoretic approach to automatic program verification, in: Symposium on

Logic in Computer Science (LICS’86), IEEE Computer Society Press, Washington, DC , USA, 1986, pp. 332–345.

[23] M.Y. Vardi, in: An Automata–Theoretic Approach to Linear Temporal Logic, vol. 1043 of Lecture Notes in

Computer Science, Springer, New York, NY, USA, 1996, pp. 238–266.

[24] I. Walukiewicz, Difficult configurations––on the complexity of LTrL, in: K.G. Larsen, S. Skyum, G. Winskel

(Eds.), Proceedings of 25th International Colloquium on Automata, Languages and Programming (ICALP’98),

vol. 1443 of Lecture Notes in Computer Science, 1998, pp. 140–151.

Benedikt Bollig received his M.Sc. degree (Dipl.-Inform.) in Computer Science in 2000 from the University of
Technology Aachen (RWTH Aachen). He is currently doing his Ph.D. degree in Computer Science at Le-
hrstuhl f€uur Informatik II, RWTH Aachen. His research interests include model checking, Mazurkiewicz
traces, and message sequence charts.

Martin Leucker received his M.Sc. degree (Dipl.-Math.) in Mathematics in 1996 from the University of
Technology Aachen (RWTH Aachen). He got his Ph.D. degree (Dr. rer. nat.) at Lehrstuhl f€uur Informatik II,
RWTH Aachen. In his thesis, he studied several logics for Mazurkiewicz traces. Currently, he is a postdoc-
toral researcher at the University of Pennsylvania, USA.

238 B. Bollig, M. Leucker / Data & Knowledge Engineering 44 (2003) 219–238

	Deciding LTL over Mazurkiewicz traces
	Introduction
	Mazurkiewicz traces
	LTL for Mazurkiewicz traces
	Alternating Bu¨chi automata
	A decision procedure for LTL
	The construction
	State space
	LTL and linear automata

	Conclusion
	Acknowledgements
	References

