
Online Analysis of Debug Trace Data for
Embedded Systems

Normann Decker‡, Boris Dreyer∗, Philip Gottschling∗, Christian Hochberger∗, Alexander Lange†,
Martin Leucker‡, Torben Scheffel‡, Simon Wegener§ and Alexander Weiss†
∗Computer Systems Group, Technische Universität Darmstadt, Darmstadt, Germany

†Accemic Technologies GmbH, Kiefersfelden, Germany
‡ISP, Universität zu Lübeck, Lübeck, Germany

§AbsInt Angewandte Informatik GmbH, Saarbrücken, Germany

Abstract—Modern multi-core Systems-on-Chip (SoC) provide
very high computational power. On the downside, they are hard
to debug and it is often very difficult to understand what is going
on in these chips because of the limited observability inside the
SoC. Chip manufacturers try to compensate this difficulty by
providing highly compressed trace data from the individual cores.
In the past, the common way to deal with this data was storing
it for later offline analysis, which severely limits the time span
that can be observed. In this contribution, we present an FPGA-
based solution that is able to process the trace data in real-time,
enabling continuous observation of the state of a core. Moreover,
we discuss applications enabled by this technology.

I. INTRODUCTION

Software development on modern embedded multi-core
SoCs is much more difficult than on regular systems. Mainly,
this difficulty is caused by the limited observability of internal
behaviour of SoCs. Currently, two solutions exist to observe
multi-core SoCs: software instrumentation, and embedded
trace interfaces.

Software instrumentation is easy to use and well supported
by tools. Nevertheless, in realistic scenarios it is impractical.
It causes severe changes in the timing behaviour of the system
(even reversing order of thread execution) and it requires
substantial additional resources. For safety-critical applica-
tions, the instrumentation should persist in the final code, as
otherwise test results are not reliable [1] and untested effects
might remain.

A more sophisticated approach and key element in multi-
core observation is the “embedded trace unit” (ETU). A special
hardware unit observes SoC internal states, compresses them
and outputs the resulting information via a dedicated trace
port. Depending on the implementation, an ETU outputs the
following information in whole or in part:

• Addresses of instructions executed by the CPU cores
• Task switches and exceptions with their trigger causes
• Occurrences of operations that access registers, memory,

performance counters and peripherals
• HW-supported instrumentation (like debugprintf())
Typically, a specialized external device records the trace

data stream for later offline analysis on a PC. In contrast
to software instrumentation, this approach is more suitable
for multi-core SoCs since messages from multiple trace data

sources (i.e. multiple cores) can be collected concurrently.
Nevertheless, these ETUs come with serious limitations:

• Trace data bandwidth is limited (even at very high rates).
Thus, trace information has to be filtered and potentially
vital information might be dropped internally. Concurrent
observation of multiple hot spots might not be possible.
Especially, tracing data accesses requires high bandwidth
and thus, is often very limited.

• Trace trigger conditions are limited to the sparse func-
tionality implemented in the ETU.

• Storing trace data severely limits the observation time,
since the trace bandwidth can exceed 10 Gbit/s. Typical
devices can only collect trace data for several seconds.
This problem will be further aggravated in the future.

• There is a mismatch between trace data output and
offline processing bandwidth, which is usually several
orders of magnitude lower. This results in long trace data
processing times, which require a lot of patience by the
test/debug engineer and renders the debugging process
ineffective and inefficient.

In this paper, we give an overview on the work that started
in the CONIRAS project and continued in ARAMiS II and
COEMS. We describe a novel observation solution which
overcomes the limitations of the state-of-the-art. It provides
a new quality in observation, and therefore, in test and
debugging efficiency. The presented solution does not store the
received trace data for later offline processing but processes it
directly online in an FPGA. This approach enables an arbitrary
observation time and creates the best observability possible
from ETU implementations.

The remainder of this paper is structured as follows: Sec-
tion II describes our platform for continuous trace analysis.
Section III introduces the specification language TeSSLa and
describes an efficient way to synthesize suitable monitors to
check specifications at runtime. In Section IV, we present
several applications that are made possible by our platform.
Section V discusses related work. Finally, we give a conclusion
and an outlook.

II. CONTINUOUS ONLINE ANALYSIS PLATFORM

Our method works on the object code level and is split into
three phases: an offline pre-processing phase, the continuous



Fig. 1. Overview of our Continuous Online Analysis Platform (blue box). The platform is attached to the system under test via the trace port. Inside the
FPGA-based platform, the raw trace is first converted into a stream of watchpoint events (Instruction Reconstruction) and later processed in the individual
analysis applications (Online Event Processing).

online analysis phase and an offline post-processing phase.
Figure 1 shows the different elements of our approach in
relation to each other and the components of the multi-core
system under test (SuT).

The ETUs of the SuT (in our case the Cortex-A9 program
flow trace units as a part of the ARM CoreSight architecture
[3], [4]) produce various trace messages when a program is
executed on the SuT. For example, program flow messages
are emitted for each non-linear control flow, like interrupts
and hardware exceptions, but also for normal branches and
calls. Comparable ETUs are available for all major CPU
architectures, for instance Intel Program Trace [7] for the latest
generations of Intel processors or the Nexus [2] compliant
embedded trace units for NXP’s QorIQ processors [8]. Besides
the program flow trace, there are also units available providing
traces for data accesses and the activity of peripheral units.

The ETUs allow to filter the CPU-individual trace messages,
for example, to cover only a specific address range. This
observation focus can be changed at runtime, if necessary.
The resulting stream of trace messages is then emitted via a
trace port. Although the trace port bandwidth can reach several
Gbit/s, the SuT can generate more trace data than the trace port
can output at a given time. Therefore, the ETUs include FIFOs
to buffer trace messages. If a large volume of trace messages
is generated (e.g. narrow loops with high branch frequency),
these processor-internal trace buffers can overflow. A special
trace message indicating the overflow is emitted when this
happens.

Our FPGA-based continuous online analysis platform is
attached to the SuT via the trace port. Inside, instruction
reconstruction (IR) units convert the raw stream of trace data
into a stream of watchpoint events, which can be further
processed on the FPGA by various analyses (see Section IV).
A watchpoint event indicates that a specific instruction has
been executed or that a control-flow edge has been traversed.

A. Configuration (Offline Pre-Processing)

In the pre-processing phase, the fully linked binary of the
program being executed on the SuT is disassembled and the
control-flow graph (CFG) is reconstructed using the executable
reader [5] of aiT [6]. The user can specify the targets of
computed calls or branches if they cannot be resolved by
means of static analysis. From this CFG, the waypoint graph
(WPG) is computed. To do so, a pattern matcher checks for
each instruction whether it is a waypoint instruction. These
instructions are specified in the ARM CoreSight Program Flow
Trace manual [4]. Amongst others, all instructions that pos-
sibly modify the program counter are waypoint instructions.
Afterwards, the edges of the WPG are computed. For each
waypoint instruction found, the algorithm follows the edges in
the CFG to find reachable waypoints. This gives the direction
of an edge in the WPG and its target. A unique ID is assigned
to each such edge and stored in the lookup tables (LUTs) of
the IR units. These LUTs are used to map trace messages to
the WPG.

B. Instruction Reconstruction

For the Cortex-A9 program flow trace, the most relevant
messages are the cycle-accurate atom packets (Atom), the
branch address packets (Branch) and the instruction synchro-
nization packets (I-Sync). Atom indicates whether a branch
instruction passed or failed its condition code check and
outputs an explicit cycle count indicating the number of cycles
since the last cycle count output. Branch indicates a change
in the control flow when an exception or a processor security
state change occurs, or when the CPU executes an indirect
branch instruction that passes its condition code check. The
current instruction address and a cycle count are periodically
emitted via I-Sync.

Within our continuous online analysis platform, the trace
messages received from the system under test are distributed
into CPU-specific message streams. Each message stream is



processed in real-time by one IR unit [9]. After receiving the
first I-Sync message (which gives us the current instruction
address), the IR unit reconstructs the control flow of the CPU
by processing the consecutive Atom and Branch messages.
Branch messages transfer the branch offset directly and are
relatively easy to process. Much more difficult is the process-
ing of the Atom messages, which do not include the offset of
a direct branch, but only a flag if a branch is executed or not.
To evaluate the branch offset, a preprocessed LUT containing
the branch offset for each instruction address is used.

Additionally, this LUT also includes predefined event IDs,
indicating whether the branch is of interest for further process-
ing. In case of a non-zero ID, a watchpoint event is emitted
by the IR unit, identified by the ID that has been assigned
to it during preprocessing. Moreover, the watchpoint event
also includes the amount of CPU cycles that passed since the
previous watchpoint. These watchpoint events correspond to
the traversal of edges in the WPG. A special watchpoint event
is emitted when the IR units detect an overflow of the ETU-
internal trace buffers.

C. Online Event Processing

The watchpoint event stream emitted by the IR units is
further processed in two distinct modules implemented on
the FPGA. The first module is a reconfigurable runtime
verification engine, see Section III. Its resource consumption
depends on the number of necessary monitors. The second
module calculates execution time statistics for each edge in
the WPG. Its resource consumption increases linearly with
the amount of edges.

D. Offline Post-Processing

After the program executed on the SuT has finished (or the
test engineer has collected enough data), the post-processing
phase is started by downloading the collected information (e.g.
timing statistics, code coverage statistics, reports from the
runtime verification engine). This data is then presented to
the user and can be processed further.

E. Hardware Implementation

Supposing that every 5th instruction is a branch and the
CPU runs at 2 GHz, we have to handle 400 M branches
per second (multiplied by the count of observed CPUs).
The required processing performance can only be achieved
with high-end FPGAs and high-performance external memory,
optimized for high random-access bandwidth. The system
architecture combines a high degree of parallelization and
speculative operations.

Our current hardware implementation consists of a VPX
format [10] FPGA board, equipped with a Virtex-7 FPGA.
Connected to the FPGA are eight RLDRAM3 chips (each 16M
x 36). The trace signal input is provided by an FMC card [11].
For arbitrary scalability, additional FPGA cards can be linked
together via a VPX backplane.

III. SYNTHESIZING RECONFIGURABLE MONITORS

We developed the Temporal Stream-based Specification
Language (TeSSLa)1 to specify properties on the stream of
watchpoint events. Besides being able to specify state ma-
chines or timing properties, TeSSLa also allows for specifying
properties about data and data manipulations, like aggrega-
tions. TeSSLa does not allow recursive specifications, because
recursion is hard to synthesize on hardware. Instead there are
a lot of build-in functions for more complex operations like
sum or maximum.

After specifying a property, we map the specification to re-
configurable hardware and check the property during runtime,
for example in debugging sessions or while the software is
used in the field. Examples for possible TeSSLa specifications
are shown later in Section IV. More details can also be found
in [20].

When we want to implement the given TeSSLa specifi-
cations as runtime verification monitors on an FPGA, there
are two options. First, direct synthesis, where the monitor
descriptions are transformed into a hardware description lan-
guage (HDL), synthesized and programmed on the FPGA.
The drawback here is the high synthesis time of at least
minutes and up to hours, depending on the size and the
number of monitors. This is not feasible as turnaround time
for software verification which is usually an iterative and
interactive process. In [21], Reinbacher, Rozier and Schumann
show a more elegant way. They synthesize a combination of
static hardware and reconfigurable interconnects.

We implemented a similar approach in [22] where our
reconfigurable processing system has a turnaround time of less
than a second. Multiple control and data flow graphs (CDFGs)
that represent different input problems are used to construct the
reconfigurable platform. In contrast to [21] our implementation
supports the reconfiguration of data flow.

We translate the TeSSLa specifications into CDFGs which
mostly follow a similar structure of two stages. The first stage
contains arithmetical, logical and relational expressions. Some
of the relational expressions directly indicate an error while
others generate so-called propositions. These propositions are
boolean values that can be evaluated by a finite state machine
(FSM), the second stage. For example, the SALT formula
given in Listing 1 can be transformed into an FSM.

In the following, we describe the necessary steps to make
use of the rapid reconfiguration. At first, the user specifies a
set of (exemplary) TeSSLa formulas which are translated into
CDFGs. Those are combined into a single super CDFG that
forms a superset of all input CDFGs. The major goal in this
step is to identify operations that are shared between graphs.
As the resulting CDFG should be preferably small, we try to
maximize the number of shared resources.

The super CDFG is then translated into a Verilog description
of a reconfigurable monitor. Its functionality can be adjusted
by employing three different techniques:

1For more information on TeSSLa see http://www.isp.uni-luebeck.de/tessla.



• First, while combining the CDFGs multiplexers are in-
troduced that can route different operands to a shared
resource. Setting the control bits of those multiplexers
allows to construct a desired path through the first stage
of the monitor.

• Second, we use registers for constant values instead
of hardcoding them, because constants like addresses,
watchpoint IDs or boundaries may change.

• The last feature is the FSM which is implemented as
a microprogrammed state machine. Its behavior only
depends on the microprogram stored in memory and is
only limited by the inputs (propositions) and a maximum
number of states.

The desired number of monitors are then assembled into
a monitor system which is then synthesized. Depending on
the size of the target FPGA and the monitor complexity the
number of monitors in the system can vary from ten to up
to a few hundred. For example, in [22] we implemented
256 (merged) monitors on a Virtex 7 FPGA. These monitors
must be configured to realize specific TeSSLa formulas. The
configurations are calculated from the CDFGs of TeSSLa
formulas and the super CDFG of the reconfigurable monitor.
After uploading the configuration, which takes only a few
milliseconds, the user can watch the current state of the
monitor on the host PC.

IV. APPLICATIONS

We implemented six applications operating on the stream
of watchpoint events. These analyses are presented in the
following paragraphs.

A. Measuring Code Coverage

The quality of test suites is often assessed in terms of
coverage criteria, for example statement coverage, condition
coverage, or branch coverage. Non-intrusive online observa-
tion allows for observing a test run without modifying the
runtime environment or the program code. Based on the
watchpoints, the program flow can be identified and therefore
all mentioned coverage criteria can be computed on the FPGA.

B. Hybrid WCET Estimation

Precise estimation of the Worst-Case Execution Time
(WCET) of embedded software is a necessary precondition
in most safety-critical systems. Hybrid approaches for WCET
estimation combine static path analysis on the binary level
with measurements on the real hardware which capture the
timing behaviour of short code snippets. We presented one
such approach in [16]. Its main benefits are:

• The timing of short instruction sequences is measured.
This fine-grained approach allows to see where time is
spent.

• The use of ETUs makes the measurements non-intrusive.
The probe effect is avoided.

• Trace data is aggregated continuously, allowing arbitrarily
long periods of observation. This is particularly important

Listing 1
EXAMPLE FOR A TESSLA SPECIFICATION OF A STRUCTURAL PROPERTY.

define line32_exec := codeLine main.c:32
define line47_exec := codeLine main.c:47
define monitor_output := monitor(always
(line32_exec implies next
(not(line32_exec) until line47_exec)))

out monitor_output

for multi-core systems to catch both typical behaviour and
rare circumstances.

For the description of the workflow of our hybrid WCET
estimation approach, we refer to Figure 1. First, in the
preprocessing phase, we use the WPG to configure the
WCET measurement module. A watchpoint is set for each
waypoint edge. During the continuous analysis phase, the
WCET module computes for each edge the minimal and the
maximal associated execution time, how often an edge has
been traversed, and the sum of all observed execution times
for a particular edge. The last two data points allow us to
compute average execution times. Afterwards, in the post-
processing phase, these statistics are downloaded from the
FPGA’s memory. Subsequently, the WPG together with the
timing statistics are used to construct a maximisation problem
encoded as an integer linear program (ILP). Solving this ILP
gives a path with maximal execution time (and consequently,
an estimate of the worst-case execution time).

We also implemented an extension of this approach where
we computed timing histograms instead of simple min/max
statistics. We refer to [17] for the details.

C. Finding Functional Bugs

Functional bugs can occur in any type of system when
functions or code lines are executed in the wrong order. By ob-
serving the watchpoint stream emitted by the IR units, we get
information about the order in which functions were executed,
whether the if-branch or the else-branch of a conditional was
taken, or about the order in which code lines were executed.

Assume for example a C application where the code lines 32
and 47 in the file main.c always have to be executed in order.
Every time line 32 is executed, line 47 has to be executed
afterwards at least once before line 32 is executed again. This
specification has been encoded in the TeSSLa specification
shown in Listing 1. It uses a SALT [18] formula with LTL3

semantics [19] to describe a monitor in TeSSLa. It expresses
that every time line 32 is executed, line 32 is not allowed
to be executed again until line 47 has been executed at least
once. The out statement marks the monitor output stream as
a stream that is added to the information that is downloaded
in the offline post-processing phase.

D. Finding Timing Bugs

Besides bugs in the program logic, there might also occur
non-functional bugs, for example caused by the violation of
timing requirements of the system. Finding such bugs is really



Listing 2
EXAMPLE FOR A TESSLA SPECIFICATION OF A TIMING PROPERTY.

define firstCalls := function_call first
define triggerCalls := function_call trigger
define error := triggerCalls implies not inPast(

firstCalls, 2s)
out error

difficult without observing the trace of the execution of the
SuT. Since a timestamp is attached to each watchpoint, it is
possible to check properties over real-time constraints.

Assume a C application with two functions first and trigger.
It is important that each call to function trigger is preceded
by a call to function first that happened less than two seconds
in the past.

To check such a timing constraint in a system, we wrote
the TeSSLa specification shown in Listing 2. This specification
defines two streams for the function calls and then checks that,
if trigger is called, first has been called at most two seconds
ago.

E. Continuous Timing Validation

Often, the execution time depends on the data being pro-
cessed. If the data (e.g. the characteristic curve of a control
software) changes, the timing behaviour changes as well. In
case of a deadline miss, this effect is directly visible. This
may not be the case if the system has been designed with
some slack intended for future enhancements. Consequently,
the increased execution time of a task might not lead to any
visible effect, but the assumptions about the system’s state
might be entirely wrong.

Our solution to this problem is to describe the expected
timing behaviour in a TeSSLa specification. We use the
timing statistics recorded during hybrid WCET estimation to
automatically generate such a specification.

Consider for example the CFG shown in Figure 2. It
consists of a function f calling function g, which contains
some nested loops. Our hybrid WCET estimation computes for
function g a minimal execution time of 16µs and a maximal

f g

Exit

Entry

Call

Return

Entry

Exit

0x1004..0x1018

0x101c..0x1020

0x202c..0x2030

0x2034..0x2048

0x204c..0x204c

0x206c..0x2078

0x207c..0x2080

0x2050..0x2058

0x205c..0x2064

0x2068..0x2068

0x2000..0x2028

Fig. 2. A simple CFG with two functions f and g. Basic blocks are shown
with the address of their first and last instruction.

Listing 3
EXAMPLE FOR A TIMING VALIDATION TESSLA SPECIFICATION.

define block_start := onExecuting 0x2000
define block_end := onExecuting 0x101c
define timing_min_violation := on block_end if

inPast(block_start, 16us)
define timing_max_violation := on block_end if not

inPast(block_start, 23us)
out timing_min_violation
out timing_max_violation

Listing 4
EXAMPLE FOR A TESSLA SPECIFICATION CALCULATING A STATISTIC.

define algoStart := codeLine algo.c:10
define recCalls := function_call rec
define max_num_calls := maximum(eventCount(recCalls,

algoStart))
out max_num_calls

execution time of 23µs. We translate this result into the
TeSSLa specification shown in Listing 3, which is compiled
to a monitor configuration that validates the timing behaviour
in the field. Violations of the timing behaviour assumptions
can thus be detected in a fine-grained way.

F. User-Defined Metrics and Complex Triggers

Sometimes the statement that a property is fulfilled (or not)
is not enough, but instead one wants to get more detailed
information about the system’s behaviour. Examples contain
performance metrics (i.e. profiling), statistical measures over
function or code line executions, or accumulation of some key
parameters during program execution. This can help to observe
rare circumstances, by logging the system’s state every time a
given condition occurs. Obtaining such information in a non-
intrusive manner is essential for certification of safety-critical
systems. With the data delivered from the IR unit, we can
calculate such user-defined metrics using TeSSLa.

Assume a C application implements a recursive algorithm.
It contains a function which calls itself in a loop. We know
the highest number of calls to the recursive function for a
correct implementation of the algorithm. For each run of the
complete algorithm, we want to get the maximum number of
calls to that function. To collect this information, we wrote
the TeSSLa specification in Listing 4.

In this specification, an eventCount function is used to count
the number of events and reset this counter to zero when an
event happens on algoStart and start counting again when the
recursive function rec is called. Then we take the maximum of
these counted calls to always get the highest number of calls to
the recursive function that occurred in one call to the algorithm
until this point in time. The output stream max num calls
contains the maximal number of calls to function rec that
happened in one execution of the algorithm.



V. RELATED WORK

Guo, Bhakta and Harris [12] present a hardware-based
intrusion detection approach for software applications. In a
preprocessing step, they analyse the software under test stati-
cally to determine all direct branches. Afterwards, they try to
cover the destinations of all computed branches by executing
the software in a trusted zone. Finally, the software is executed
in the field and abnormal branch execution is detected. Our
approach is not limited to the detection of abnormal branch
execution.

Scherer and Horváth [13] present an online approach for
measuring the code and statement coverage of a program.
They use an FPGA to decompress the program flow trace
which mainly consists of bit-level operations to take the load
of the host PC. The major drawback is that they require a
high bandwidth (>100MB/s) connection to the host even for
microprocessors with only around 100MHz clock frequency.
Our solution can cope with microprocessors with clock fre-
quencies up to 2GHz as we only transfer already analyzed
and thus, strongly reduced information to the host.

Rapita Systems markets a trace logging solution called
RTBx [14]. They claim a capacity of several days’ worth of
trace data. The analysis is very flexible in terms of application
(runtime verification, code coverage, timing analysis) as it is
done offline after data acquisition. Their system is built to fit
into a 19” rack which makes it difficult to use in space-limited
environments. In contrast to them, we analyze the trace data
online.

Lee et al. [15] propose a hardware-based solution to detect
return-oriented programming (ROP) attacks. They use the
ARM CoreSight debug port and offline generated binary meta-
data to calculate a shadow call stack online. The authors
decided to store the meta-data and the program binary in the
same memory resulting in a 2.39% runtime overhead. We use
dedicated external memory for storing the meta-data which
makes our approach non-intrusive, i.e., it does not influence
the SuT in any way.

VI. CONCLUSION

In this contribution, we have presented a new way to use
trace data provided by modern multi-core SoCs. The presented
platform is capable of processing trace data in real-time. This
enables many applications that have previously been impossi-
ble. These applications—including hybrid WCET estimation,
code coverage, finding functional or timing bugs, continuous
timing validation, and gathering complex statistics—greatly
simplify debugging and validation of embedded SW.

In the future, we will develop more applications that are
possible in the context of online trace analysis. Also, this
approach has led to discussions with SoC manufacturers, how
trace interfaces should be built to optimally support the online
analysis.

ACKNOWLEDGMENT

This work was funded by the German Federal Ministry for
Education and Research within the projects CONIRAS (fund-

ing ID 01IS13029) and ARAMiS II (funding ID 01IS16025),
and by the European Union’s Horizon 2020 research and
innovation programme within the project COEMS (grant
agreement no. 732016). The responsibility for the content
remains with the authors.

REFERENCES

[1] S. Grünfelder, Software-Test für Embedded Systems: Ein Praxishand-
buch für Entwickler, Tester und technische Projektleiter. dpunkt.verlag
GmbH, 2017.

[2] IEEE-ISTO, “IEEE-ISTO 5001TM-2012, The Nexus 5001TM Forum
Standard for a Global Embedded Processor Debug Interface,” 2012.

[3] ARM Ltd., “CoreSightTM Architecture Specification v2.0,” 2013, ARM
IHI 0029B.

[4] ——, “CoreSightTM Program Flow TraceTM PFTv1.0 and PFTv1.1
Architecture Specification,” 2011, ARM IHI 0035B.

[5] H. Theiling, “Control flow graphs for real-time system analysis. recon-
struction from binary executables and usage in ilp-based path analysis,”
Ph.D. dissertation, Saarland University, 2003.

[6] C. Ferdinand and R. Heckmann, “aiT: Worst-case execution time predic-
tion by static programm analysis,” in Building the Information Society.
IFIP 18th World Computer Congress, Topical Sessions, 22–27 August
2004, Toulouse, France, R. Jacquart, Ed. Kluwer, 2004, pp. 377–384.

[7] Intel Corporation, “Intel R© 64 and IA-32 Architectures Software Devel-
oper’s Manual,” 2016.

[8] Freescale Semiconductor, Inc., “P4080 Advanced QorIQ Debug and
Performance Monitoring Reference Manual,” 2012, Rev. F.

[9] A. Weiss and A. Lange, “Trace-Data Processing and Profiling Device,”
2016, US Patent 9286186B2.

[10] ANSI/VITA, “ANSI/VITA 46.0-2013 VPX: Base Specification,” 2013.
[11] ——, “ANSI/VITA 57.1-2010 FMC: FPGA Mezzanine Cards Base

Standard,” 2010.
[12] Z. Guo, R. Bhakta, and I. G. Harris, “Control-flow checking for

intrusion detection via a real-time debug interface,” in 2014 International
Conference on Smart Computing Workshops, 2014, pp. 87–92.

[13] B. Scherer and G. Horváth, “Measurement based software execution
tracing in HIL (Hardware In the Loop) tests,” in 2014 IEEE/ASME 10th
International Conference on Mechatronic and Embedded Systems and
Applications (MESA), 2014, pp. 1–5.

[14] Continuous tracing with the RTBx data logger. [On-
line]. Available: https://www.rapitasystems.com/system/files/downloads/
mc-pb-301 rtbx product brief v4.pdf

[15] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, “Towards a Practical
Solution to Detect Code Reuse Attacks on ARM Mobile Devices,” in
Proceedings of the Fourth Workshop on Hardware and Architectural
Support for Security and Privacy (HASP’15), 2015, pp. 3:1–3:8.

[16] B. Dreyer, C. Hochberger, A. Lange, S. Wegener, and A. Weiss,
“Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint
Graphs,” in 16th International Workshop on Worst-Case Execution Time
Analysis (WCET 2016), 2016, pp. 4:1–4:11.

[17] T. Ballenthin, B. Dreyer, C. Hochberger, and S. Wegener, “Hardware
Support for Histogram-based Performance Analysis of Embedded Sys-
tems.” in 20th IEEE International Symposium On Real-time Computing
(ISORC 2017). IEEE, 2017.

[18] A. Bauer and M. Leucker, “The Theory and Practice of SALT,” in NASA
Formal Methods (NFM). Springer, 2011, pp. 13–40.

[19] A. Bauer, M. Leucker, and C. Schallhart, “Runtime Verification for LTL
and TLTL,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4, pp. 14:1–
14:64, 2011.

[20] N. Decker, P. Gottschling, C. Hochberger, M. Leucker, T. Scheffel,
M. Schmitz, and A. Weiss, “Rapidly Adjustable Non-Intrusive Online
Monitoring for Multi-core Systems,” in 20th Brazilian Symposium on
Formal Methods (SBMF 2017). Springer, 2017.

[21] T. Reinbacher, K. Y. Rozier, and J. Schumann, “Temporal-Logic Based
Runtime Observer Pairs for System Health Management of Real-
Time Systems,” in 20th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2014), ser. LNCS, vol.
8413. Springer, 2014, pp. 357–372.

[22] P. Gottschling and C. Hochberger, “ReEP: A Toolset for Generation
and Programming of Reconfigurable Datapaths for Event Processing,”
in 24th Reconfigurable Architectures Workshop (RAW 2017). IEEE,
2017, pp. 141–149.


