
Message-Passing Automata Are
Expressively Equivalent to EMSO Logic

Benedikt Bollig1� and Martin Leucker2��

1 Lehrstuhl für Informatik II, RWTH Aachen, Germany
bollig@informatik.rwth-aachen.de

2 IT department, Uppsala University, Sweden
leucker@it.uu.se

Abstract. We study the expressiveness of finite message-passing au-
tomata with a priori unbounded FIFO channels and show them to cap-
ture exactly the class of MSC languages that are definable in existential
monadic second-order logic interpreted over MSCs. Moreover, we prove
the monadic quantifier-alternation hierarchy over MSCs to be infinite and
conclude that the class of MSC languages accepted by message-passing
automata is not closed under complement. Furthermore, we show that
satisfiability for (existential) monadic seconder-order logic over MSCs is
undecidable.

1 Introduction

A common design practice when developing communicating systems is to start
with drawing scenarios showing the intended interaction of the system to be.
The standardized notion of message sequence charts (MSCs, [7]) is widely used
in industry to formalize such typical behaviors.

An MSC depicts a single partially-ordered execution sequence of a system.
It defines a set of processes interacting with one another by communication
actions. In the visual representation of an MSC, processes are drawn as vertical
lines that are interpreted as time axes. A labeled arrow from one line to a second
corresponds to the communication events of sending and receiving a message.
Collections of MSCs are used to capture the scenarios that a designer might
want the system to follow or to avoid. Several specification formalisms have
been considered, such as high-level MSCs or MSC graphs [2, 14].

The next step in the design process usually is to derive an implementation
of the system to develop [5], preferably automatically. In other words, we are
interested in generating a distributed automaton realizing the behavior given in

� Part of this work was done while the author was on leave at the School of Computer
Science, University of Birmingham, United Kingdom, and supported by the German
Academic Exchange Service (DAAD).

�� Supported by the European Research Training Network “Games”.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 146–160, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 147

form of scenarios. This problem asks for the study of automata models that are
suited for accepting the system behavior described by MSC specifications.

A common model that reflects the partially-ordered execution behavior of
MSCs in a natural manner are message-passing automata, MPAs for short. They
consist of several components that communicate using channels. Several variants
of MPAs have been studied in the literature: automata with a single or multiple
initial states, with finitely or infinitely many states, bounded or unbounded
channels, and systems with a global or local acceptance condition.

We focus on MPAs with a priori unbounded FIFO channels and global accep-
tance condition where each component employs a finite state space. Our model
subsumes the one studied in [5] where a local acceptance condition is used. It
coincides with the one used in [6, 9], although these papers characterize the frag-
ment of channel-bounded automata. It extends the setting of [1, 12] in so far as
we provide synchronization messages and a global acceptance condition to have
the possibility to coordinate rather autonomous processes. Thus, our version
covers most existing models of communicating automata for MSCs.

A fruitful way to study properties of automata is to establish logical char-
acterizations. For example, finite word automata are known to be expressively
equivalent to monadic second-order (MSO) logic over words. More precisely, the
set of words satisfying some MSO formula can be defined by a finite automa-
ton and vice versa. Since then, the study of automata models for generalized
structures such as graphs or, more specifically, labeled partial orders and their
relation to MSO logic has been a research area of great interest aiming at a
deeper understanding of their logical and algorithmic properties (see [16] for an
overview).

In this paper, we show that MPAs accept exactly those MSC languages that
are definable within the existential fragment of MSO (over MSCs), abbreviated
by EMSO. We recall that emptiness for MPAs is undecidable and conclude that
so is satisfiability for EMSO and universality for MSO logic.

Furthermore, we show that MSO is strictly more expressive than EMSO.
More specifically, the monadic quantifier-alternation hierarchy turns out to be
infinite. Thus, MPAs do not necessarily accept a set of MSCs defined by an
MSO formula. Furthermore, we use this result to conclude that the class of
MSC languages that corresponds to MPAs is not closed under complementation,
answering the question posed in [9].

MPAs with a priori unbounded channels have been rather used as a model
to implement a given (high-level) MSC specification [5]. Previous results lack
an algebraic or logical characterization of the corresponding class of languages.
They deal with MPAs and sets of MSCs that make use only of a bounded part
of the actually unbounded channel [6, 9]. More specifically, when restricting to
sets of so-called bounded MSCs, MSO captures exactly the class of those MSC
languages that correspond to some bounded MPAs.

Organization of the Paper. The next two sections introduce some basic notions
and recall the definition of message sequence charts and (existential) monadic
second-order logic. Section 4 deals with message-passing automata and their

148 B. Bollig and M. Leucker

expressive equivalence to existential monadic second-order logic, while Section
5 studies the gap between monadic second-order formulas and their existential
fragment.

Acknowledgment. We would like to thank Dietrich Kuske for valuable remarks
and pointing out some innaccuracies in a previous version of this paper. We also
thank the anonymous referees for their helpful suggestions and comments.

2 Message Sequence Charts

Forthcoming definitions are all made wrt. a fixed finite set P of at least two
processes. (Note that, in one proof, we assume the existence of at least three
processes.) We denote by Ch the set {(p, q) | p, q ∈ P, p �= q} of reliable FIFO
channels. Thus, a message exchange is allowed between distinct processes only.
Let Act ! denote the set {p!q | (p, q) ∈ Ch} of send actions while Act? denotes
the set {q?p | (p, q) ∈ Ch} of receive actions. Hereby, p!q and q?p are to be read
as p sends a message to q and q receives a message from p, respectively. They
are related in the sense that they will label communicating events of an MSC,
which are joint by a message arrow in its graphical representation. Accordingly,
let Com := {(p!q, q?p) | (p, q) ∈ Ch}. Observe that an action pθq (θ ∈ {!, ?}) is
performed by process p, which is indicated by P (pθq) = p. We let Act stand for
the union of Act ! and Act? and, for p ∈ P, set Actp to be the set {σ ∈ Act |
P (σ) = p}.

For a total order ≤ on a finite set E, � denotes the covering relation of ≤: for
e, e′ ∈ E, e� e′ if both e < e′ and, for any e′′ ∈ E, e < e′′ ≤ e′ implies e′′ = e′.

Definition 1 (Message Sequence Chart). A message sequence chart (MSC)
is a structure (E, {�p}p∈P , <c, λ) such that

– E is a nonempty finite set of events,
– λ : E → Act is a labeling function,
– �p is the covering relation of some total order ≤p on Ep := {e ∈ E | λ(e) ∈

Actp},
– <c ⊆ E × E such that, for any e, e′ ∈ E, e <c e

′ iff (λ(e), λ(e′)) ∈ Com
and |↓e ∩ λ−1(λ(e))| = |↓e′ ∩ λ−1(λ(e′))| (where, for e ∈ E, ↓e is the set of
events e′ ∈ EP (λ(e)) with e′ ≤P (λ(e)) e),

– (<c ∪ ⋃
p∈P �p)∗ is a partial order, and

– |λ−1(p!q)| = |λ−1(q?p)| for each (p, q) ∈ Ch.

Thus, events on one and the same process line are totally ordered, and events
on distinct process lines that communicate with each other in a FIFO manner
(wrt. <c) are labeled with actions related by Com.

Given an MSC (E, {�p}p∈P , <c, λ) and e ∈ E, P (e) will serve as a shorthand
for P (λ(e)). The set of MSCs is denoted by MSC and a subset of MSC is called
an MSC language.

Henceforth, we identify a structure of any kind with its isomorphism class.

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 149

3 (Existential) Monadic Second-Order Logic

Given supplies Var = {x, y, . . . , x1, x2, . . .} of individual variables and VAR =
{X,Y, . . . ,X1, X2, . . .} of set variables, formulas from MSO, the set of monadic
second-order formulas (over MSCs) are built up from the atomic formulas

λ(x) = σ (for σ ∈ Act) x ∈ X x �p y (for p ∈ P) x <c y x = y

(where x, y ∈ Var and X ∈ VAR) and furthermore allow the Boolean connectives
¬, ∨, ∧, → and the quantifiers ∃, ∀, which can be applied to either kind of
variable.

LetM = (E, {�p}p∈P , <c, λ) be an MSC. Given an interpretation function I,
which assigns to an individual variable x an event I(x) ∈ E and to a set variable
X a set of events I(X) ⊆ E, the satisfaction relation M |=I ϕ for a formula
ϕ is given by M |=I λ(x) = σ if λ(I(x)) = σ, M |=I x �p y if I(x) �p I(y),
and M |=I x <c y if I(x) <c I(y), while the remaining operators are defined as
usual.

For an MSO formula ϕ, the notation ϕ(x1, . . . , xm, X1, . . . , Xn) shall indicate
that at most the variables x1, . . . , xm, X1, . . . , Xn occur free in ϕ. An MSO for-
mula is called existential if it is of the form ∃X1 . . .∃Xnϕ(X1, . . . , Xn, Y) where
Y is a block of second-order variables and ϕ(X1, . . . , Xn, Y) is a first-order
formula. Let EMSO denote the class of existential MSO formulas. In general,
Σk shall contain MSO formulas of the form ∃X1∀X2 . . .∃/∀Xkϕ(X1, . . . ,Xk, Y)
with first-order kernel ϕ(X1, . . . ,Xk, Y) (again, Xi and Y are blocks of second-
order variables)1.

In the following sections, we usually consider MSO sentences, i.e., formulas
without free variables, and accordingly replace |=I with |=. For an MSO sentence
ϕ, the MSC language of ϕ, denoted by L(ϕ), is the set of MSCs M with M |= ϕ.
For a set of MSO formulas L, an MSC language L is called L-definable if L = L(ϕ)
for some sentence ϕ ∈ L. We will show in a subsequent section that the classes of
Σk-definable languages form an infinite hierarchy when formulas are interpreted
over MSCs, resuming a result by Matz and Thomas, who proved infinity of
the hierarchy for grids [11]. In other words, the more alternation depth second-
order quantification allows, the more expressive formulas become. However, it
will turn out that, to cover the feasible area of realizable MSC languages (in
terms of message-passing automata), we can restrict to EMSO-definable MSC
languages. The class of MSO-definable MSC languages is denoted by MSO, the
one of EMSO-definable languages by EMSO.

4 Message-Passing Automata and Their Expressiveness

In this section, we study distributed automata, called message-passing automata,
which, as we will see, generate MSC languages in a natural manner.

1 Note that Σ1 and EMSO coincide.

150 B. Bollig and M. Leucker

A message-passing automaton is a collection of finite-state machines that
share one global initial state and several global final states. The machines are
connected pairwise with a priori unbounded reliable FIFO buffers. The transi-
tions of each component are labeled with send or receive actions. A send action
p!q puts a message at the end of the channel from p to q. A receive action can
be taken provided the requested message is found in the channel. To extend the
expressive power, message-passing automata can send certain synchronization
messages. Let us be more precise:

Definition 2 (Message-Passing Automaton). A message-passing automa-
ton (MPA) is a structure A = ((Ap)p∈P ,D, sin , F) such that

– D is a nonempty finite set of synchronization messages (or data),
– for each p ∈ P, Ap is a pair (Sp, ∆p) where

• Sp is a nonempty finite set of (p-)local states and
• ∆p ⊆ Sp × Actp × D × Sp is the set of (p-)local transitions,

– sin ∈ ∏
p∈P Sp is the global initial state, and

– F ⊆ ∏
p∈P Sp is the set of global final states.

For a global state s = (sp)p∈P ∈ ∏
p∈P Sp of A, s[p] will henceforth refer to sp.

We now define the behavior of message-passing automata and, in doing so,
adhere to the style of [9]. In particular, an automaton will run on MSCs rather
than on linearizations of MSCs, allowing for its distributed behavior. Let A =
((Ap)p∈P ,D, sin , F), Ap = (Sp, ∆p), be an MPA and M = (E, {�p}p∈P , <c, λ)
be an MSC. For a function r : E → ⋃

p∈P Sp, we define r− : E → ⋃
p∈P Sp to

map an event e ∈ E onto sin [P (e)] if e is minimal wrt. ≤P (e) and, otherwise,
onto r(e′) where e′ ∈ EP (e) is the unique event with e′

�P (e) e. A run of A on M
is a pair (r,m) of mappings r : E → ⋃

p∈P Sp with r(e) ∈ SP (e) for each e ∈ E
and m : <c → D such that, for any e, e′ ∈ E, e <c e

′ implies

– (r−(e), λ(e),m((e, e′)), r(e)) ∈ ∆P (e) and
– (r−(e′), λ(e′),m((e, e′)), r(e′)) ∈ ∆P (e′).

For p ∈ P, let fp denote sin [p] if Ep is empty. Otherwise, let fp denote
r(e) where e ∈ Ep is the maximal event wrt. ≤p. We call (r,m) accepting if
(fp)p∈P ∈ F .

For an MPA A, we denote by L(A) := {M ∈ MSC | there is an accepting run
of A on M} the language of A. Let furthermore MPA := {L ⊆ MSC | L = L(A)
for some MPA A} denote the class of languages that are realizable as MPAs.

Remark 1. The emptiness problem for MPAs is undecidable.

Proof. Several decidability questions were studied for communicating finite-state
machines, a slightly different variant of MPAs. Among them, (a problem related
to) the emptiness problem for communicating finite-state machines turned out
to be undecidable [3]. The proof can be easily adapted towards MPAs. �

We now turn towards one of our main results and first mention that an MPA
can be effectively transformed into an equivalent EMSO sentence.

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 151

Lemma 1. MPA ⊆ EMSO
Proof. Several instances of this problem have been considered in the literature
and can be easily adapted to our setting. See [17], for example. �

Corollary 1. The following two problems are undecidable:

(a) Satisfiability for EMSO sentences over MSC

(b) Universality for MSO sentences over MSC

Proof. Using Remark 1 and Lemma 1, we obtain Corollary 1 (a). Corollary 1
(b) follows from an easy reduction from the satisfiability problem. �

In fact, any EMSO-definable MSC language is realizable as an MPA and, vice
versa, any MSC language of some MPA has an appropriate EMSO counterpart.

Theorem 1. MPA = EMSO
The proof will be based on the concept of graph acceptors [16], a generaliza-

tion of finite automata to labeled graphs, which are known to be expressively
equivalent to existential monadic second-order logic wrt. graphs of bounded de-
gree. We consider graph acceptors running on MSCs, thus, on structures of
bounded degree2, which makes them applicable to our setting. A graph accep-
tor works on a graph as follows: It first assigns to each node one of its control
states and then checks if the local neighborhood of each node (incorporating
the state assignment) corresponds to a pattern from a finite supply of so-called
spheres. In our setting, such a pattern is a labeled graph. For an alphabet Σ, we
assume in the following a Σ-labeled graph to be a nonempty and finite structure
(E, {�p}p∈P , <c, λ) of degree at most 3. In particular, λ is a mapping E → Σ,
while the edges can be considered to be (P {c})-labeled. Note that an MSC is
an Act-labeled graph, while the converse does not necessarily hold.

Let us become more concrete and let Σ and R be an alphabet and a natu-
ral, respectively. Given a Σ-labeled graph G = (E, {�p}p∈P , <c, λ) (let in the
following ≺ denote <c ∪ ⋃

p∈P �p) and elements e, e′ ∈ E, the distance dG(e′, e)
from e′ to e is ∞ if it holds (e, e′) �∈ (≺ ∪ ≺−1)∗ and, otherwise, the minimal
natural number k such that there is a sequence of elements e0, . . . , ek ∈ E with
e0 = e, ek = e′, and ei ≺ ei+1 or ei+1 ≺ ei for each i ∈ {0, . . . , k − 1}. Some-
times, if it is clear from the context, we omit the subscript G. An R-sphere over
Σ is a Σ-labeled graph H = (E, {�p}p∈P , <c, λ, γ) together with a designated
sphere center γ ∈ E such that, for any e ∈ E, dH(e, γ) ≤ R. Two 2-spheres are
shown in Figure 1 where the sphere centers are depicted as rectangles. For a Σ-
labeled graph G = (E, {�p}p∈P , <c, λ) and e ∈ E, let the R-sphere of G around
e be given by (E′, {�

′
p}p∈P , <′

c, λ
′, e) where E′ = {e′ ∈ E | dG(e′, e) ≤ R},

�
′
p = �p ∩ (E′ × E′) for each p ∈ P, <′

c = <c ∩ (E′ × E′), and λ′ is the
restriction of λ to E′.

2 Any node of the graph of an MSC has at most three direct neighbors.

152 B. Bollig and M. Leucker

A graph acceptor (over Act) is a structure GA = (Q,R,S,Occ) such that Q
is a nonempty finite set of (control) states, R ∈ IN, S is a finite set of R-spheres
over Act ×Q (as we identify isomorphic structures, we actually deal with a finite
set of isomorphism classes), and Occ is a Boolean combination of conditions of
the form “sphere H ∈ S occurs at least ≥ n times” where n ∈ IN. A run of GA
on an Act-labeled graph (E, {�p}p∈P , <c, λ) is a mapping ρ : E → Q such that,
for each e ∈ E, the R-sphere of (E, {�p}p∈P , <c, (λ, ρ)) around e is isomorphic
to some H ∈ S. We call ρ accepting if it satisfies the constraints imposed by Occ.
The language of GA wrt. a class K of Act-labeled graphs, denoted by LK(GA), is
the set of Act-labeled graphs G ∈ K on which there is an accepting run of GA.

c

a

e

b

d

f

g

(2!3, q2)

(1!2, q0)

(1!2, q1)

(2?1, q0)

(2?1, q2)

(3?2, q3)

(3?1, q3)

(a)

(2?1, q0)

(1!2, q1)

(1!2, q1)

(2?1, q2)

(2?1, q3)

(b)

Fig. 1. The sphere(s) of a graph acceptor

The rest of this section is dedicated to the proof of Theorem 1.

Proof. It remains to show inclusion from right to left. So let ϕ be an EMSO
sentence. We can assume the existence of a graph acceptor GA over Act that,
running on MSCs, recognizes the MSC language defined by ϕ. In turn, GA will
be translated into an MPA A that captures the application of GA to MSCs, i.e.,
L(A) = LMSC(GA). So let GA = (Q,R,S,Occ) be a graph acceptor over Act .

For our purpose, it suffices to consider only those R-spheres H ∈ S for which
there is an extended MSC M = (E, {�p}p∈P , <c, λ), which has an extended
labeling function λ : E → Act × Q, and an event e ∈ E such that H is the R-
sphere of M around e. Other spheres cannot contribute to an MSC. Because, to
become part of a run on some MSC M , an R-sphere has to admit an embedding
into M . In this sense, the 2-sphere illustrated in Figure 1 (a) may contribute to a
run on an MSC (it can be complemented by a 1!3-labeled event arranged in order
between the two other events of process 1), while the 2-sphere illustrated aside is
irrelevant and will be ignored in the following. This assumption is essential, as it
ensures that, for each H = (E, {�p}p∈P , <c, λ, γ) ∈ S and e ∈ E, dH(e, γ) < R
implies that E also contains a communication partner of e wrt. <c.

In the following, we use notions that we have introduced for MSCs also for
spheres (E, {�p}p∈P , <c, λ, γ) over Act × Q, such as P (e), Ep, and ≤p (to in-
dicate the process of e ∈ E and as abbreviations for λ−1(Actp × Q) and the

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 153

reflexive transitive closure of �p, respectively)3. For example, considering the
2-sphere from Figure 1 (a), P (a) = 1, E1 = {a, e}, and b ≤2 d, but not a ≤1 e.
Let maxE := max{|E| | (E, {�p}p∈P , <c, λ, γ) ∈ S} and let S+ be the set of
extended R-spheres, i.e., the set of structures ((E, {�p}p∈P , <c, λ, γ, e), i) where
(E, {�p}p∈P , <c, λ, γ) ∈ S, e ∈ E is the active node, and i ∈ {1, . . . , 4 ·maxE 2 +
1} is the current instance. For p ∈ P, we define Sp := {(E, {�p}p∈P , <c, λ, γ) ∈
S | P (γ) = p} and, furthermore, S+

p := {((E, {�p}p∈P , <c, λ, γ, e), i) ∈ S+ |
P (e) = p}. Finally, let max(Occ) denote the least threshold n such that Occ
does not distinguish occurrence numbers ≥ n.

For readability, we let in the following ≺ denote the collection of relations
({�p}p∈P , <c) and just write (E,≺, λ, γ) instead of (E, {�p}p∈P , <c, λ, γ).

The idea of the transformation is that, roughly speaking, A guesses a tiling of
the MSC to be read and then verifies that the tiling corresponds to an accepting
run of GA. Accordingly, a local state of A holds a set of active R-spheres, i.e., a set
of spheres that play a role in its immediate environment of distance at most R.
Each local state s (apart from the initial states, as we will see) carries exactly one
extended R-sphere ((E,≺, λ, γ, e), i) ∈ S+ with γ = e, which means that a run
of GA assigns (E,≺, λ, γ) to the event that corresponds to s. To establish isomor-
phism between (E,≺, λ, γ) and the R-sphere induced by s, s transfers/obtains
its obligations in form of an extended R-sphere ((E,≺, λ, γ, e′), i) to/from its
immediate neighbors, respectively. For example, provided e is labeled with a
send action and there is e′ ∈ E with e <c e

′, the message to be sent in state s
will contain ((E,≺, λ, γ, e′), i), which, in turn, the receiving process understands
as a requirement to be satisfied. As there may be an overlapping of isomorphic
R-spheres, a state can hold several instances of one and the same sphere, which
then refer to distinct states/events as corresponding sphere center. Those in-
stances will be distinguished by means of the natural i. The benefit of i will
become clear before long.

Let us turn to the construction of A = ((Ap)p∈P ,D, sin , F), Ap = (Sp, ∆p),
which is given as follows: For p ∈ P, a local state of Ap is a pair (S, ν) where

– ν is a mapping Sp → {0, . . . ,max(Occ)} (let in the following ν0
p denote the

function that maps each R-sphere H ∈ Sp to 0) and
– S is either the empty set or it is a subset of S+

p such that
• there is exactly one extended R-sphere ((E,≺, λ, γ, e), i) ∈ S with γ = e

(whose component (E,≺, λ, γ) we identify by ς(S) from now on) and
• for any two ((E,≺, λ, γ, e), i), ((E′,≺′, λ′, γ′, e′), i′) ∈ S,

(a) λ(e) = λ′(e′) ∈ Actp × Q (so that we can assign a well-defined
unique label λ(S) ∈ Actp × Q to S, namely the labeling λ(e) for
some ((E,≺, λ, γ, e), i) ∈ S) and

(b) if (E,≺, λ, γ) ∼= (E′,≺′, λ′, γ′) and i = i′, then e = e′.

The set D of synchronization messages is the cartesian product 2S+ × 2S+
.

Roughly speaking, the first component of a message contains obligations the re-

3 Note that, wrt. spheres, ≤p is not necessarily a total order.

154 B. Bollig and M. Leucker

ceiving state/event has to satisfy, while the second component imposes require-
ments that must not be satisfied by the receiving process to ensure isomorphism.
We now turn towards the definition of∆p and define ((S, ν), σ, (P,N), (S ′, ν′)) ∈
∆p if the following hold:

1. λ(S ′) = (σ, s) for some s ∈ Q.
2. For any ((E,≺, λ, γ, e), i) ∈ S and e′ ∈ Ep, if ((E,≺, λ, γ, e′), i) ∈ S ′, then
e �p e

′.
3. For any ((E,≺, λ, γ, e), i) ∈ S ′, if S �= ∅ and e is minimal in (Ep,≤p), then
d(e, γ) = R.

4. For any ((E,≺, λ, γ, e), i) ∈ S, if e is maximal in (Ep,≤p), then d(e, γ) = R.
5. For any ((E,≺, λ, γ, e), i) ∈ S ′, if e is not minimal in (Ep,≤p), then we have

((E,≺, λ, γ, e−), i) ∈ S where e− ∈ Ep is the unique event with e−
�p e.

6. For any ((E,≺, λ, γ, e), i) ∈ S, if e is not maximal in (Ep,≤p), then we
have ((E,≺, λ, γ, e+), i) ∈ S ′ where e+ ∈ Ep is the unique event such that
e �p e

+.
7. (i) In case that σ = p!q for some q ∈ P:

(a) for any ((E,≺, λ, γ, e), i) ∈ S ′ and any e′ ∈ E, if e <c e
′, then we

have ((E,≺, λ, γ, e′), i) ∈ P,
(b) for any ((E,≺, λ, γ, e), i) ∈ S ′ and any e′ ∈ E, if e �<c e

′, then we
have ((E,≺, λ, γ, e′), i) ∈ N , and

(c) for any ((E,≺, λ, γ, e), i) ∈ P, there is e′ ∈ E such that e′ <c e and
((E,≺, λ, γ, e′), i) ∈ S ′.

(ii) In case that σ = p?q for some q ∈ P:
(a) P ⊆ S ′,
(b) N ∩ S ′ = ∅, and
(c) for any ((E,≺, λ, γ, e′), i) ∈ S ′, if there is e ∈ E with e <c e

′, then
((E,≺, λ, γ, e′), i) ∈ P.

8. ν′ = ν[ς(S ′)/min{ν(ς(S ′)) + 1,max(Occ)}] (i.e., ν′ maps ς(S ′) to the mini-
mum of ν(ς(S ′)) + 1 and max(Occ) and, otherwise, coincides with ν).

Thus, Condition 1. guarantees that any state within a run has the same
labeling as the event it is assigned to. Condition 2. makes sure that, whenever
there is a �p-edge in the input MSC, then there is a corresponding edge in
the extended sphere that is passed from the source to the target state of the
corresponding transition. Conversely, if there is no �p-edge between two nodes
in the extended sphere, then it must not be passed directly to impose the same
behavior on the MSC, i.e., the corresponding events in the MSC must not touch
each other. Conditions 3. and, dually, 4. make sure that a sphere that does not
make use of the whole radius R is employed in the initial or final phase of a run
only. By Conditions 5. and 6., extended spheres must be passed along a process
line as far as possible, hereby starting in a minimal and ending in a maximal
active node. Condition 7. ensures the corresponding beyond process lines, i.e., for
messages. Finally, Condition 8. guarantees that the second component of each
state correctly keeps track the number of spheres used so far.

Furthermore, sin = ((∅, ν0
p))p∈P and, for (Sp, νp) ∈ Sp, ((Sp, νp))p∈P ∈ F if

the union of mappings νp satisfies the requirements imposed by Occ and, for all

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 155

p ∈ P and ((E,≺, λ, γ, e), i) ∈ Sp, e is maximal in (Ep,≤p). In fact, it holds
L(A) = LMSC(GA).

Let ρ : Ẽ → Q be an accepting run of GA onM = (Ẽ, {�̃p}p∈P , <̃c, λ̃) ∈ MSC

and let ρ̂ denote the mapping Ẽ → S that maps an event e ∈ Ẽ onto the R-
sphere of (Ẽ, {�̃p}p∈P , <̃c, (λ̃, ρ)) around e. In an accepting run (r,m) of A on
M , r basically assigns to an event e ∈ Ẽ—apart from the obvious mapping
ν—the set of those extended spheres ((E,≺, λ, γ, e0), i) ∈ S+ such that there
is an event e′ ∈ Ẽ with both dM (e′, e) ≤ R and (E,≺, λ, γ, e0) is isomorphic to
(ρ̂(e′), e). Hereby, maxE is sufficiently large to guarantee an instance labeling
that is consistent with the transition relation of A. If we suppose m : <̃c → D
to map a pair (es, er) ∈ <̃c onto (P,N) where (set (S, ν) to be r(es)) P =
{((E,≺, λ, γ, e′

0), i) ∈ S+ | there is e0 ∈ E with ((E,≺, λ, γ, e0), i) ∈ S and
e0 <c e′

0} and N = {((E,≺, λ, γ, e′
0), i) ∈ S+ | there is e0 ∈ E such that

((E,≺, λ, γ, e0), i) ∈ S and e0 �<c e
′
0}, (r,m) is an accepting run of A on M .

Conversely, let (r,m) be an accepting run of A on M = (E, {�p}p∈P , <c, λ) ∈
MSC. If we define ρ : E → Q to map an event e ∈ E to the control state that is
associated with the sphere center of ς(S) where r(e) = (S, ν) for some ν, then ρ
turns out to be an accepting run of GA on M . �

Example 1. In the following, let H denote the 2-sphere from Figure 1 (a). Figure
2, showing some MSC M with four processes, illustrates the transition behavior
of the MPA A from the above proof. It demonstrates how a run of A on M
transfers extensions of H from one event of M to a neighboring one to make
sure that the 2-sphere around event ec (which is indicated by solid edges) is
isomorphic to H. For example, the state that is taken on event ea may contain
the extended sphere (H, a). (For clarity, control states and the natural i to dis-
tinguish different instances of spheres are omitted.) As a <c b (wrt. the edge
relation of H), A passes (H,b) in form of a message to process 2. Receiving
(H,b), process 2 becomes aware it should bind eb to some state that contains
(H,b) (conditions 7. (i) (a) and 7. (ii) (a) from the definition of the transition
relation). As, in H, b is followed by c, so ec has to be associated with a state
containing (H, c) (condition 6.). In contrast, eh is not allowed to carry the ex-
tended sphere (H, e), unless it belongs to a different instance of H (condition
2.). Now consider ed, which holds the extended sphere (H,d). Due to condition
5., the preceding state, which is associated to ec, must contain (H, c), which
means that a run cannot simply enter H beginning with d. Moreover, as ed is
a receive event, A has to receive a message containing (H,d) (condition 7. (ii)
(c)). In turn, the corresponding send event ee has to be associated with a state
that holds (H, e) (condition 7. (i) (c)). Note that, as d(a, c) = d(e, c) = 2, the
(illustrated parts of the) states assigned to ea and ee satisfy conditions 3. and 4.

5 Beyond Realizability

In this section, we show that MSO logic over MSCs is strictly more expressive
than EMSO. Together with the results of the previous section, this will be used

156 B. Bollig and M. Leucker

1!2 2?1

1!3 2!3

1!2 2?1

3?2

3?1

1!44?1

1!44?1

ea eb

eh ec

ee ed

ef

eg

Fig. 2. Simulating a graph acceptor

to show that MPAs cannot be complemented in general. More specifically, we
show that quantifier alternation forms a hierarchy:

Theorem 2. The monadic quantifier-alternation hierarchy over MSC is infi-
nite.

Proof. Matz and Thomas proved infinity of the monadic quantifier-alternation
hierarchy over grids [11, 16]. Using an idea from [15], we show how grids can
be encoded into MSCs and then rewrite their result in terms of MSCs adapting
their proof to our setting.

For a positive natural n ∈ IN≥1, we use [n] as a shorthand for {1, . . . , n}.
Given n,m ∈ IN≥1, the (n,m)-grid (with n rows and m columns) is the struc-
ture g(n,m) := ([n] × [m], S1, S2) where S1, S2 ⊆ ([n] × [m])2 contain the pairs
((i, j), (i + 1, j)) ∈ ([n] × [m])2 and ((i, j), (i, j + 1)) ∈ ([n] × [m])2, respec-
tively. A relation R ⊆ IN≥1 × IN≥1 may be represented by the grid language
{g(n,m) | (n,m) ∈ R}. As a unary function f : IN≥1 → IN≥1 can be consid-
ered as a binary relation, we define the grid language G(f) of f to be the set
{g(n, f(n)) | n ∈ IN≥1}. A grid g(n,m) can be folded to an MSC M(n,m) as
exemplarily shown for g(3, 5) in Figure 3.

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 157

1!2

1!2

1!3

1?2

1!2

1?2

1!2

1?3

1!3

1?2

1!2

1?2

1!2

1?3

1!3

2?1

2!1

2?1

2!1

2?3

2!3

2?1

2!1

2?1

2!1

2?3

2!3

2?1

2?1

2?3

(1, 1)

(2, 1)

(3, 1)

(1, 3)

(2, 3)

(3, 3)

(1, 5)

(2, 5)

(3, 5)

(1, 2)

(2, 2)

(3, 2)

(1, 4)

(2, 4)

(3, 4)

3!1
3?2

3!1
3?2

3?1

3!2

3?1

3!2

3?1

3!2

Fig. 3. Folding the (3, 5)-grid

A similar encoding is used by Kuske to prove infinity of the monadic quantifier-
alternation hierarchy for certain pomsets over at least two processes [8]. However,
we introduce a third process to obtain distinguished labelings of events that mark
the end of a column in the grid to be encoded, which is signalized by sending a
message to process 3. By the type of an event, we furthermore recognize which
events really correspond to a node of the grid, namely those that are labeled
with a send action performed by process 1 or 2.

A grid language G defines the MSC language L(G) := {M(n,m) | g(n,m) ∈
G}. For a function f : IN≥1 → IN≥1, we furthermore write L(f) as a shorthand
for the MSC language L(G(f)). We now closely follow [16], which resumes the
result of [11]. So let, for k ∈ IN, the functions sk, fk : IN≥1 → IN≥1 be inductively
defined via s0(n) = n, sk+1(n) = 2sk(n), f0(n) = n, and fk+1(n) = fk(n) · 2fk(n).

Claim 1. For each k ∈ IN, the MSC language L(fk) is Σ2k+3-definable.

Proof of Claim 1. It is easy to prove that the set of possible grid foldings is
EMSO-definable (or, equivalently, the language of some MPA). As, furthermore,
a grid is interpretable in a grid folding by first-order formulas, we can show that,
for any k ≥ 1, if a grid language G is Σk-definable (over grids), then L(G) is Σk-

158 B. Bollig and M. Leucker

definable (over MSCs). The claim follows from the fact that any grid language
G(fk) is Σ2k+3-definable [16].

Claim 2. Let f : IN≥1 → IN≥1 be a function. If L(f) is Σk-definable (over MSCs)
for some k ≥ 1, then f(n) is in sk(O(n)).

Proof of Claim 2. Let k ≥ 1 and let in the following the events of an MSC
(E, {�p}p∈P , <c, λ) be labeled with elements from Act × {0, 1}i for some i ∈
IN≥1, i.e., λ : E → Act ×{0, 1}i. But note that the type of an event still depends
on the type of its communication action only. Let furthermore ϕ(Y1, . . . , Yi) be
a Σk-formula defining a set of MSCs over the new label alphabet that are fold-
ings of grids. For a fixed column length n ≥ 1, we will build a nondeterministic
finite word automaton An over (Act × {0, 1}i)n with sk−1(cn) states (for some
constant c) that reads grid-folding MSCs column by column and is equivalent
to ϕ(Y1, . . . , Yi) wrt. grid foldings with column length n. Column here means a
sequence of communication actions, each provided with an additional label, that
represents a column in the corresponding grid. For example, running on the MSC
M(3, 5) as shown in Figure 3, A3 first reads the letter [(1!2)2(1!3)(3?1)(3!2)] (re-
call that each action is still provided with an extra labeling, which we omit here
for the sake of clarity), then continues reading [((2?1)(2!1))2(2?3)(2!3)(3?2)(3!1)]
and so on. Then the shortest word accepted by An has length ≤ sk−1(cn)
so that, if ϕ(Y1, . . . , Yi) defines an MSC language L(f) for some f , we have
f(n) ∈ sk(O(n)). Let us now turn to the construction of An. The formula
ϕ(Y1, . . . , Yi) is of the form ∃Xk∀Xk−1 . . .∃/∀X1ψ(Y1, . . . , Yi, Xk, . . . ,X1) or,
equivalently, ∃Xk¬∃Xk−1 . . .¬∃X1ψ

′(Y1, . . . , Yi, Xk, . . . ,X1). We proceed by in-
duction on k. For k = 1, ϕ(Y1, . . . , Yi) is an EMSO formula. According to [16], its
MSC language (consisting of MSCs with extended labelings) coincides with the
MSC language of some graph acceptor. The transformation from graph accep-
tors to MPAs from the proof of Theorem 1 can be easily adapted to handle the
extended labeling. Thus, ϕ(Y1, . . . , Yi) defines a language that is realizable by an
MPA A = ((Ap)p∈P ,D, sin , F). The automaton An can now be obtained from A
using a part of its global transition relation =⇒A ⊆ (SA ×CA)× ((Act ×{0, 1}i)×
D) × (SA × CA) (as it is defined, for example, in [6]) where SA is the cartesian
product of the local state spaces of A and CA := {χ | χ : Ch → (D {⊥})n}
is the set of possible channel contents. Note that only a bounded number of
channel contents has to be considered, as the set of grid foldings with column
length n forms a max{1, n− 1}-bounded MSC language (cf. [6] for the definition
of boundedness). Due to |SA×CA| ≤ (|SA|·(|D|+1))|Ch|·n ≤ cn for some constant
c, cn = s0(cn) is an upper bound for the number of states of An, which only
depends on the automaton A and, thus, on ϕ(Y1, . . . , Yi). The induction steps
respectively involve both a complementation step (for negation) and a projec-
tion step (concerning existential quantification). While the former increases the
number of states exponentially, the latter leaves it constant so that, altogether,
the required number of states is obtained. This concludes the proof of Claim 2.

As fk+1(n) is not in sk(O(n)), it follows from Claims 1 and 2 that the hier-
archy of classes of Σk-definable MSC languages (k = 1, 2, . . .) is infinite. �

Message-Passing Automata Are Expressively Equivalent to EMSO Logic 159

Corollary 2. MPA � MSO

As MPA = EMSO, it follows that the complement L := {M ∈ MSC | M �∈
L} of an MSC language L ∈ MPA, is not necessarily contained in MPA, too
[15]. Thus, we get the answer to an open question, which has been raised by
Kuske [9].

Theorem 3. MPA is not closed under complement.

6 Discussion

Recall that we consider an MSC to be a graph, which corresponds to the view
taken in [10] but is different from the one in [6, 9], who model an MSC as a labeled
partial order (E,≤, λ). However, while the way to define an MSC immediately
affects the syntax and expressivity of (fragments of) the corresponding monadic
second-order logic, Theorem 3 holds independently of that modeling, for the
following reason: there is a one-to-one-correspondence between an MSC structure
(E, {�p}p∈P , <c, λ) and its counterpart (E,≤, λ) with ≤ = (<c ∪ ⋃

p∈P �p)∗.
This correspondence carries over to MSO logic in the signature proposed in this
paper. In other words, an MSO formula is satisfied by (E, {�p}p∈P , <c, λ) iff it
is satisfied by (E,≤, λ) (where a formula will be interpreted over labeled partial
orders (E,≤, λ) of MSCs in the obvious manner). As the definition of a message-
passing automaton is robust against the concrete modeling, too, Theorem 3 can
be applied to any common definition of what an MSC is. However, our logic can
only be considered to be the canonical (existential) monadic second-order logic
if MSCs are given by their graphs.

If, for some B ≥ 1, we restrict to B-bounded MSCs (see [6] for details),
EMSO[�p, <c], MSO[�p, <c], EMSO[≤], and MSO[≤] coincide wrt. expressive-
ness. Thus, our work subsumes the work by Henriksen et al. [6].

Note that, for clarity, an MSC does not carry any information about the
concrete messages to be sent. However, preceding results can be easily extended
towards MSCs that are equipped with message information, as they are provided
in [1, 2, 5], for example.

Let us recall the results of the previous sections: We have studied the class of
MSC languages that corresponds to EMSO logic and MPAs. By means of graph
acceptors, we have shown that MPAs are expressively equivalent to EMSO logic.
In particular, for every EMSO sentence, there exists an equivalent MPA. Our
proof is based on results by Thomas, which, in turn, refer to Hanf’s Theorem.
For practical applications, it would be desirable to have a simple effective trans-
formation from (fragments of) EMSO to MPAs of reasonable complexity.

Furthermore, we proved that the class of MSC languages definable in MSO
logic is strictly larger. Consequently, MPAs cannot be complemented in general.
This question was raised in [9].

It remains to discuss the relation between the nondeterministic automata
model with a deterministic one in the unbounded setting. In [13, 9], it was shown

160 B. Bollig and M. Leucker

that deterministic MPAs suffice to realize regular bounded MSC languages. This
question was also addressed in [4] regarding the related model of asynchronous
cellular automata for pomsets without autoconcurrency.

It would also be interesting to have logics that capture formalisms such as
locally- and globally-synchronized HMSCs and related automata models [5].

References

1. R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.
In 22nd International Conference on Software Engineering. ACM, 2000.

2. R. Alur and M. Yannakakis. Model checking of message sequence charts. In
CONCUR 1999, volume 1664 of LNCS. Springer, 1999.

3. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 30(2), 1983.

4. M. Droste, P. Gastin, and D. Kuske. Asynchronous cellular automata for pomsets.
Theoretical Computer Science, 247(1–2), 2000.

5. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs:
Model-checking and realizability. In ICALP 2002, volume 2380 of LNCS. Springer,
2002.

6. J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. Regular
collections of message sequence charts. In MFCS 2000, volume 1893 of LNCS.
Springer, 2000.

7. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99).
Technical report, ITU-TS, Geneva, 1999.

8. D. Kuske. Asynchronous cellular automata and asynchronous automata for pom-
sets. In CONCUR 1998, volume 1466 of LNCS, 1998.

9. D. Kuske. Regular sets of infinite message sequence charts. Information and
Computation, 187:80–109, 2003.

10. P. Madhusudan. Reasoning about sequential and branching behaviours of message
sequence graphs. In ICALP 2000, volume 2076 of LNCS. Springer, 2001.

11. O. Matz and W. Thomas. The monadic quantifier alternation hierarchy over graphs
is infinite. In LICS 1997. IEEE Computer Society Press, 1997.

12. R. Morin. Recognizable sets of message sequence charts. In STACS 2002, volume
2285 of LNCS. Springer, 2002.

13. M. Mukund, K. Narayan Kumar, and M. Sohoni. Synthesizing distributed finite-
state systems from MSCs. In CONCUR 2000, volume 1877 of LNCS. Springer,
2000.

14. A. Muscholl and D. Peled. Message sequence graphs and decision problems on
Mazurkiewicz traces. In MFCS 1999, volume 1672 of LNCS. Springer, 1999.

15. W. Thomas. Elements of an automata theory over partial orders. In POMIV 1996,
volume 29 of DIMACS. AMS, 1996.

16. W. Thomas. Automata theory on trees and partial orders. In TAPSOFT 1997,
volume 1214 of LNCS. Springer, 1997.

17. W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg,
editors, Handbook of Formal Languages, volume 3, Beyond Words. Springer, Berlin,
1997.

	Introduction
	Message Sequence Charts
	(Existential) Monadic Second-Order Logic
	Message-Passing Automata and Their Expressiveness
	Beyond Realizability
	Discussion

