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Abstract. This paper studies abstraction and refinement techniques in the setting
of multi-valued model checking for the μ-calculus. Two dimensions of abstrac-
tions are identified and studied: Abstraction by joining states of the underlying
multi-valued Kripke structure as well as abstraction of truth values, for each fol-
lowing both an optimistic and pessimistic account. It is shown that our notion
of abstraction is conservative in the following sense: The truth value in a con-
crete system is “between” the optimistic and pessimistic assessment. Moreover,
model checking of abstracted systems is shown to be again a multi-valued model
checking problem, allowing to reuse multi-valued model checking engines. Fi-
nally, whenever the optimistic and pessimistic model checking result differ, the
cause for such an assessment is identified, allowing the abstraction to be refined
to eventually yield a result for which both the optimistic and pessimistic assess-
ment coincide.

1 Introduction

In multi-valued logics, a formula evaluates no longer to just true or false but to one
of many truth values. This allows to express to which extent a property is considered
satisfied by a program, or, in the setting of trust models, how much a person can be
trusted [1]. The main motivation of this work is, however, inspired by our study of
software product lines (or software product families). Within software product lines
[2] a set of similar systems, called products, is modelled explicitly expressing their
commonalities and differences. We have shown in [3] that a software product family
can conveniently be modeled as one single multi-valued system, in which each value
corresponds to a subset of products. Thus, the question of which products of the product
line satisfy a certain property corresponds to the truth value of the formula encoding the
property with respect to the multi-valued system.

As explained in [4,5], a Kripke structure (KS) can be extended to the multi-valued
setting by assigning to each proposition in each state one of many (truth) values and
likewise to each transition also a value, resulting in the notion of a multi-valued Kripke
structure (mv-KS). A value of some proposition might then be interpreted as to which
extend a proposition holds, a person may be trusted initially, or in which products of
a product line a certain proposition holds. Similarly, the value of a transition might
identify to which amount a transition might influence the truth value, might modify
the trust value of some person when taking the transition, or, in which products the
transition is actually present.

In model checking, a temporal or modal logic is typically used to specify (intended)
properties of a given mv-KS. As such a logic typically ranges over atomic proposition,
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Boolean combinations, and temporal or modal operators, it is helpful to consider values
from a lattice, where meet (�) and join (�) naturally yield a semantics for conjunction
and disjunction, respectively. The meaning of temporal or modal operators is adjusted
appropriately. Then, the semantics of a formula with respect to a mv-KS is one element
of the lattice, denoting either the extent to which the formula holds, the trust value
of some person performing actions, or the set of all products satisfying the formula.
Model Checking multi-valued versions of the classical logics LTL, CTL, CTL∗, and
the μ-calculus has the been extensively studied already, for example in [6,4,5,7].

The state explosion problem in (two-valued) model checking—complicating its prac-
tical application—does, of course, not vanish in the multi-valued setting. Therefore, it
is important to study abstraction techniques also for multi-valued model checking. This
paper studies abstraction and refinement techniques in the setting of multi-valued model
checking for the μ-calculus as introduced in [5].

We identify and study two orthogonal forms of abstractions for mv-KS: Firstly, we
consider abstractions of mv-KS induced by joining states to form abstract states, as
it is typically considered also in the two-valued setting. In this setting, a meanwhile
popular form of abstraction is to consider structures that are simultaneously an over
as well as under-approximation of a system, as introduced in [8] in the setting of the
μ-calculus. To this end, Larsen’s and Thomsen’s Kripke modal transition systems are
used to describe abstract systems in which a transition can be may, denoting an over-
approximation, or must, denoting an under-approximation [9]. This, essentially leads
to three possible values for a transition: It is there for sure, it is not there for sure, or
it may be there. This explains that three-valued settings are themselves often used for
abstractions [10]. In this paper, however, we study abstraction of rather than abstraction
by mv-KS. Over-approximation can be intuitively explained as an optimistic account of
the system’s transitions, while we consider an under-approximation a pessimistic ac-
count. We then transfer this understanding to the multi-valued setting to obtain notions
of abstractions. A first, interesting result is that an abstract mv-KS can be again consid-
ered as a mv-KS, yet over a richer lattice, which we call the op-lattice. This allows to
reuse multi-valued model checking engines also for abstraction.

The second source of abstraction that we study is that by abstracting values. Espe-
cially in the setting of product lines, in which a family of N products gives rise to the
powerset lattice with 2N elements, it is essential to also abstract lattice elements, prac-
tically say by identifying different products, hereby reducing N . To follow both the
optimistic and pessimistic view, we need, however, two abstractions for the lattice ele-
ments, here given as usual in abstract interpretation by (two) Galois connections [11].
We introduce a simulation relation and show that in the presence of such a relation the
actual model checking values lies “between” the optimistic and pessimistic one that is
based on the abstract system. Note that in [12] the concept of a latticed simulation is in-
troduced, which, however, does not allow to combine a pessimistic and optimistic view
into one abstraction.

Finally, whenever the optimistic and pessimistic model checking result differ, the
cause for such an assessment is identified. We explain how to compute the cause based
on the structure of the formula to be checked. Knowing causes allows to refine the
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abstraction to eventually yield a result for which both the optimistic and pessimistic
assessment coincide.

2 Preliminaries

Lattices. An algebraic structure (L,�,�) consisting of a set L, a binary operation
� : L × L → L called meet and a binary operation � : L × L → L called join is a
lattice if it satisfies the following equations for all elements x, y, z ∈ L: (i) x�y = y�x
and x � y = y � x, (ii) x � (y � z) = (x � y) � z and x � (y � z) = (x � y) � z,
(iii) x�(y�x) = x and x�(y�x) = x, and (iv) x�x = x and x�x = x. Equivalently
to the definition as an algebraic structure, a lattice can be defined as a partially ordered
set (L,�) where for each x, y ∈ L, there exists (i) a unique greatest lower bound (glb),
which is called the meet of x and y, denoted by x � y, (ii) and a unique least upper
bound (lub), which is called the join of x and y, denoted by x � y. Depending on the
application, in the following we use one or the other form for dealing with lattices.

The definitions of glb and lub extend to finite sets of elements A ⊆ L as expected,
which are then denoted by

�
A and

⊔
A, respectively. A lattice is called finite iff L

is finite. Every finite lattice has a least element, called bottom, denoted by ⊥, and a
greatest element, called top, denoted by 	. A lattice is distributive, iff x � (y � z) =
(x� y) � (x� z), and, dually, x� (y � z) = (x � y) � (x � z). In a de Morgan lattice,
every element x has a unique dual element ¬x, such that ¬¬x = x and x � y implies
¬y � ¬x. Typically, we denote a de Morgan lattice as a quadruple (L,�,�,¬).

A complete distributive lattice is called Boolean iff for all elements x ∈ L we have
x � ¬x = 	 and x � ¬x = ⊥. A typical Boolean lattice is the one induced by the
power of some non-empty finite set {1, . . . , N}, for N ∈ �: (2N ,⊆) where meet, join,
and dual of elements, are given by set intersection, set union, and complement of sets,
respectively. For example, Figure 4(a) shows the powerset lattice for N = 3.

Multi-valued Kripke Structures. Let P be a set of propositional constants. A multi-
valued Kripke structure (mv-KS) is a tuple K = (S,L,R, L) where S is a set of states,
L is a de Morgan lattice, R : S×S → L is a transition function associating an element
of the lattice to each pair of states, and L : S → (P → L) is yields for a proposition in
each state an element of the lattice. With MK we denote the set of all mv-KS.

A Kripke structure in the usual sense can be seen as a mv-KS with values over the
two element lattice consisting of a bottom ⊥ and a top 	 element, ordered as shown in
Figure 3(a). Value 	 then means that the property holds in the considered state while ⊥
means that it does not hold. Similarly, R(s, s′) = 	 reads as there is a corresponding
transition while R(s, s′) = ⊥ means there is no transition between the states s and s′.

Multi-valued modal μ-calculus. In the following we introduce a multi-valued modal
version of the μ-calculus along the lines of [7]. Let V be a set of propositional variables.
Formulae of the multi-valued modal μ-calculus are given by

ϕ ::= true | false | q | ¬ϕ | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | μZ.ϕ | νZ.ϕ

where q ∈ P , and Z ∈ V . Let mv -Lμ denote the set of closed formulae generated
by the above grammar, where the fixpoint quantifiers μ and ν are variable binders. The
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[[true ]]ρ := λs.�
[[false]]ρ := λs.⊥

[[q]]ρ := λs.L(s)(q)

[[¬ϕ]]ρ := λs.¬[[ϕ]]ρ(s)

[[Z]]ρ := ρ(Z)

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ � [[ψ]]ρ
[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ � [[ψ]]ρ

[[♦ϕ]]ρ := λs.
⊔{R(s, s′) � [[ϕ]]ρ(s

′)}
[[�ϕ]]ρ := λs.

�{¬R(s, s′) � [[ϕ]]ρ(s
′)}

[[μZ.ϕ]]ρ :=
� {f | [[ϕ]]ρ[Z �→f ] � f}

[[νZ.ϕ]]ρ :=
⊔ {f | f � [[ϕ]]ρ[Z �→f ]}

Fig. 1. Semantics of mv -Lμ formulae

semantics of a mv -Lμ formula is an element of LS , i.e., a function from S to L yielding
for the formula at hand and a given state its satisfaction value measured in terms of the
lattice. In the setting of software product lines, for example, this is the set of all products
for which the formula holds in the given state. More precisely, the semantics [[ϕ]]Kρ of a
mv -Lμ formula ϕ with respect to a mv-KS K and an environment ρ : V → LS , which
explains the meaning of free variables in ϕ, is defined as shown in Figure 1, where
ρ[Z �→ f ] denotes the environment that maps Z to f and agrees with ρ on all other
arguments. When clear from the context, we drop indices K and ρ.

Regarding motivation, consider the ♦-operator as an example: ♦ϕ is classically sup-
posed to hold in states that have a successor satisfying ϕ. In a multi-valued version,
we first take the value of a transition and reduce it (meet it) with the value of ϕ in that
successor. As there might be transitions to different successors, we take the best value.

The functionals λf.[[ϕ]]ρ[Z �→f ] : LS → LS are monotone wrt. � for any Z, ϕ and
S. By [13], least and greatest fixpoints of these functionals exist. Approximants of mv -
Lμ formulae are defined as usual: if fp(Z) = μZ.ϕ then Z0 := λs.⊥, Zn+1 :=
[[ϕ]]ρ[Z �→Zn] for any ordinal n and any environment ρ, and Zλ :=

�
n<λ Zn for a limit

ordinal λ. Dually, if fp(Z) = νZ.ϕ then Z0 := λs.	, Zn+1 := [[ϕ]]ρ[Z �→Zn], and

Zλ :=
⊔

n<λ Zn.

3 Conservative Abstractions for MV-Kripke Structures

In this section we introduce two different kinds of abstractions for multi-valued Kripke
structures, both motivated by practical applications, and made explicit by respective
abstraction operators. As we show, the combined application of both abstraction op-
erations (i) yields again a mv-KS, which means that we can technically deal with the
abstracted system in the same way as with the concrete system, i. e. in particular, we
can apply the same model checking techniques, and (ii) that it is conservative in the
sense that the result of evaluating any mv -Lμ formulae on the abstract system is always
a conservative abstraction of the evaluation on the concrete system.

Abstraction by joining states. Consider the part of a mv-KS shown in Figure 2(a). A
standard idea of abstraction, which we follow as our first approach, is to join states in
a concrete system to form combined abstract states in the abstract system. For example,
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s10

s11

s2

s3

s4

{1}

{1, 2}
{3}
{3, 4}

(a) Concrete system.

s′1

s′2

s′3

s′4

({1, 2}, {1})

({3/4},∅)

({3/4}, {3/4})

(b) Abstract system (mv-KS).

Fig. 2. An Example of a combined abstraction. The abstraction joined states as indicated by the
dashed lines, e. g. s10 and s11, and does additionally abstract the original lattice elements 3 and
4 with one abstract element denoted by 3/4.

the concrete states s10 and s11 in Figure 2(a) are joined (indicated by the dashed line)
to form the abstract state s′1 in Figure 2(b).1

Regarding transitions, we label the abstract transitions with values representing over-
and under-approximation of the corresponding concrete (original) transitions. More
specifically, the two transitions from the concrete states s10 and s11 to s4, respectively,
are over-approximated by the label {1, 2} and under-approximated with {1}, in the ab-
straction. We combine this approximation information to label the corresponding transi-
tion in the abstract system with a tuple consisting of the over- and under-approximation.
This results again in a lattice Lop of tuples based on the lattice L used to label transitions
in the concrete system as follows:

Definition 1 (op-lattice). Let L be a de Morgan lattice. The lattice

Lop = ({(m1, m2) ∈ L × L | m1  m2},�op,�op,¬op)

with the operations �op, �op, ¬op given by

(m1, m2) �op (m′
1, m

′
2) := (m1 � m′

1, m2 � m′
2)

(m1, m2) �op (m′
1, m

′
2) := (m1 � m′

1, m2 � m′
2)

¬op(m1, m2) := (¬m2,¬m1)

is called the optimistic-pessimistic lattice (op-lattice) for L.

We called Lop an optimistic-pessimistic lattice as its elements embody these two kinds
of views—regardless whether we interpret its elements as degrees of truth or configura-
tions of a software product line: The first entry of the tuple represents the best case, e. g.
the “highest” truth value or the largest set of configurations of a software product family,
while the second entry represents the (worst) case which is achieved at the least, e. g.

1 Please ignore the transitions from s′2 and s′3 to s′4 for the moment.
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�

⊥
(a)

(�,�)

(�,⊥)

(⊥,⊥)
(b)

{1, 2}

{1}

{∅}

{2}

(c)

({1, 2}, {1, 2})

({1, 2}, {1})

({1}, {1})

({1}, {∅})

({1, 2}, {∅})

({∅}, {∅})

({1, 2}, {2})

({2}, {2})

({2}, {∅})

(d)

Fig. 3. In (b) true, false and don’t know lattice for the two-element lattice (a), in (c) lattice for two
product lines and corresponding op-lattice in (d)

the “lowest” guaranteed truth value or the (smallest) set of configurations which still
guarantees a certain property. The op-lattice of the two valued and four valued Boolean
lattices shown in Figures 3(a) and 3(c) are given in Figures 3(b) and 3(d), respectively.
Observe that Figure 3(b) shows the three-valued lattices commonly used for abstraction
in the setting of the μ-calculus [14].

Let us formalize the abstraction process motivated before. To this end, we define
what it means to combine concrete states and abstract them to an abstract state in an
abstract system. Let the function γ : SA → P(SC) be a mapping which identifies
(i) which concrete states in SC are combined, (ii) and to which abstract state in SA

they are abstracted. We require γ to be abstraction complete , i.e., for all sC ∈ SC

there is sA ∈ SA with sC ∈ γ(sA). Thus each concrete state is accounted by at least
one abstract state. Now, we are prepared to define an abstraction operator absS which
represents the act of abstracting by joining states.

Definition 2 (State Abstraction Operator). We call the function absS yielding the ab-
stract mv-KS absS ((SC ,LC ,RC , LC), γ) = (SA,LA,RA, LA) of the concrete mv-
KS (SC ,LC ,RC , LC) by joining states according to the abstraction complete function
γ the state abstraction operator, where the set SA of abstract states is implicitly given
by γ, the lattice LA is the op-lattice of LC and

RA(sA, s′A) =

⎛
⎝ ⊔

sC∈γ(sA)

⊔
s′

C∈γ(s′
A)

RC(sC , s′C) ,
�

sC∈γ(sA)

⊔
s′

C∈γ(s′
A)

RC(sC , s′C)

⎞
⎠

LA(sA, p) =

⎛
⎝ ⊔

sC∈γ(sA)

LC(sC , p) ,
�

sC∈γ(sA)

L(sC , p)

⎞
⎠

The function absS maps a mv-KS representing a concrete system to a mv-KS which
representing its abstraction by combining states via function γ. For the pessimistic view,
it takes the worst of the (best) combinations of states. For example, the lattice shown in
Figure 3(d) is the op-lattice which defines the transition labels for an abstract mv-KS
which is constructed by abstracting from a concrete mv-KS where the transitions were
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labeled with elements of the lattice shown in Figure 3(c). Also note, that following our
construction we exactly get the usual three-valued lattice (cf. Figure 3(b)) if we abstract
a (two-valued) Kripke structure, where the existence and missing of transitions is equal
to labeling the transitions with the two-valued Boolean lattice as shown in Figure 3(a)
[14].

Abstraction of lattices elements. The abstraction of states as performed by our first
abstraction operation absS reduces the state space by joining states. Thus, the abstract
system usually also has significantly fewer transitions. To further reduce the abstract
system, we may want to identify some elements of the lattice. Therefore, we also con-
sider abstractions of the original lattice. In the following we introduce such a kind of
abstraction and provide a definition of a second abstraction operator, correspondingly.
Note, that the first abstraction operator yields a mv-KS labeled with an op-lattice, on
which we can apply the second abstraction operator subsequently.

Consider again Figure 2(b): Assume that we no longer want to differ between the two
lattice elements 3 and 4. Thus, we abstract these elements to a single element—denoted
by 3/4—in the abstract lattice. Being the only abstraction of lattice elements we make,
the resulting abstract lattice consists of the three elements {1, 2, 3/4}, which may now
be used to label transitions in the abstract system. The effect of this abstraction is shown
in Figure 2(b): Since we abstract 3 and 4 together, whenever 3 and 4 occur apart from
each other in the concrete system, this asks for an optimistic and a pessimistic view in

the abstract system, represented by the transition s′2
(3/4,∅)−−−−→ s′4: There is no transition

in the pessimistic case (entry ∅ of the tuple), yet a transition for the element 3/4 in the
optimistic view.

In order to formalize such an abstraction from lattices we use the concept of Galois
connections which is well know in the area of abstract interpretation.

Definition 3 (Galois Connection [11]). Let L1 and L2 be lattices. A pair (↑, ↓) of
monotone functions ↑ : L1 → L2 and ↓ : L2 → L1 is a Galois connection from L1 to
L2, if ∀l ∈ L1 : l � ↓(↑(l)) and ∀a ∈ L2 : ↑(↓(a)) � a.

For the soundness proof of our approach we depend on some of the common proper-
ties of Galois connections. In particular, any Galois connection (↑, ↓) from L1 to L2

fulfills (i) ↑(l) � m ⇔ l � ↓(m), (ii) ↑(
⊔

L) =
⊔

l∈L ↑(l), and (iii) ↓(
�

M) =�
m∈M ↓(m). Figure 4 shows an example of a Galois connection between two lattices

which illustrates these properties. The abstraction combines the (concrete) elements 1
and 2 of the lattice L1 (cf. Figure 4(a)) to the single element 1/2 in the lattice L2. The
solid line shows an example of how the Galois connection (↑, ↓) works: We abstract (↑)
element {2} to {1/2} and concretize (↓) then back to the {1, 2}. This is an optimistic
approximation as {2} � {1, 2}. In particular, properties (i)-(iii) are fulfilled.

Usually Galois connections are applied for abstractions by using ↑ as the abstrac-
tion function and ↓ as the concretization function. Since by definition l � ↓(↑(l))
holds, this abstraction yields an over-approximation, or an optimistic approximation
in our terminology. For our approach we additionally need a pessimistic approxima-
tion (under-approximation). We define the pessimistic approximation using a second
Galois connection and swapping the interpretation of the mapping functions: For the
pessimistic case we use ↓ as an abstraction function and ↑ as a concretization function.
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{1, 2, 3}

{1, 2}

{1}

{2, 3}

{2}

∅

{1, 3}

{3}

(a) L1

{1/2, 3}

{1/2}

∅

{3}

↑

↓

(b) L2

Fig. 4. A galois connection allows to interpret the lattice L2 as an abstraction of L1, where the
(concrete) lattice elements 1 and 2 are abstracted to a single element in L2, denoted by 1/2.
Dashed and solid lines illustrate a part of the galois connection (↑, ↓).

We now define the lattice to label our abstract systems. We call it the abstract op-
lattice. It is based on the original lattice from which we abstract elements and two
Galois connections which define our optimistic and pessimistic view. Since we now
use different lattices for the optimistic and pessimistic approximation, it is no longer
possible to define negation for the elements of the abstract lattice directly. Therefore
we additionally require two negation functions, that map between the optimistic and
pessimistic view appropriately.

Definition 4 (aop-lattice). Let LC be a de Morgan lattice and Lo and Lp be lattices.
Let (↑o, ↓o) with ↑o : LC → Lo and ↓o : Lo → LC and (↑p, ↓p) with ↑p : Lp → LC

and ↓p : LC → Lp be Galois connections. Furthermore, let Lo and Lp be connected
by two anti-monotone negation functions ¬o : Lo → Lp and ¬p : Lp → Lo with
¬o↑o(x) � ↓p(¬x) and ↑o(¬x) � ¬p↓p(x). We call the lattice

Laop =
({(mo, mp) ∈ Lo × Lp | ↓o(mo)  ↑p(mp)}, �aop, �aop, ¬aop

)
with the operations given by

(mo, mp) �aop (m′
o, m

′
p) := (mo � m′

o , mp � m′
p)

(mo, mp) �aop (m′
o, m

′
p) := (mo � m′

o , mp � m′
p)

¬aop(mo, mp) := (¬pmp , ¬omo)

the abstract optimistic-pessimistic lattice (aop-lattice) for the lattice LC .

Using the properties of Galois connections and the definition of the negation functions,
we easily see:

Proposition 1 (aop-lattice is well-defined). For all lattice values x ∈ LC it holds that
(↑o(x), ↓p(x)) ∈ Laop and that �aop, �aop, ¬aop are well-defined and in the sense that
they preserve the condition ↓o(mo)  ↑p(mp).

Negation on an aop-lattice always yields an over- and under-approximation of a cor-
responding concrete element. But it also allows for the loss of information, since the
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{1, 2, 3}

{1, 2}

{1}

{2, 3}

{2}

∅

{1, 3}

{3}

(a) LC

{1/2, 3}

{1/2}

∅

{3}

↑o

↓p

¬o

↑o

↓p

¬p

(b) Lo = Lp

Fig. 5. Illustration of the negation function(s) in a aop-lattice

result of negation in the concrete might not be representable “exactly” in the abstract.
Figure 5 illustrates such a situation. It shows the lattice LC that we consider for the con-
crete system, whereas for the abstraction, the same lattices Lo = Lp for the optimistic
and pessimistic case are used. Consider the concrete element x = {2} and its negation
¬x = {1, 3} (in the concrete system). Following the arrows shows ¬o↑o(x) = {3} �
{3} = ↓p(¬x) and ↑o(¬x) = ∅ � {1/2, 3} = ¬p↓p(x). This means that the negation
of the optimistic-pessimistic tuple encloses the actually correct negation result.

An aop-lattice is obviously distributive, but the preceding discussion shows that it is
not a de Morgan lattice. However, our whole theory and model checking machinery can
be extended to non-de Morgan lattices. In particular, Theorem 1 also holds for non de
Morgan lattices. Nevertheless, using the same lattice for the over and underapproxima-
tion (cf. Theorem 2) yields an aop-lattice which is a de Morgan lattice. Thus, to simplify
presentation, we silently assume that an aop-lattice is indeed a de Morgan lattice. Note,
that if using the state abstraction operator only, we get an op-lattice which also is a de
Morgan lattice.

Now we make precise the idea of abstraction by abstracting the lattice and provide a
suitable abstraction operator absL.

Definition 5 (Lattice Abstraction Operator). Let (SA,LA,RA, LA) be a mv-KS, and
↑o, ↓p be two Galois connections with corresponding negation functions ¬o,¬p. Then,
the lattice abstraction operator absL yields an abstracted mv-KS

absL
(
(SA,LA,RA, LA), ↑o, ↓p,¬o,¬p

)
= (S′

A,L′
A,R′

A, L′
A)

labeled with an aop-lattice L′
A, where S′

A = SA and

R′
A(s, s′) =

(↑o ((RA(s, s′))1) , ↓p ((RA(s, s′))2)
)

L′
A(s, p) =

(↑o ((LA(s, p))1) , ↓p ((LA(s, p))2)
)

This completes our idea of abstraction: For any concrete mv-KS, the subsequent appli-
cation of both abstraction operators—absL after absS —yields a mv-KS labeled with an
aop-lattice representing the combination of both kinds of abstractions.

While we have provided two abstraction operators to exemplify our ideas of abstrac-
tion, we show that model checking the abstract system yields conservative results for
the concrete system by means of a conservative abstraction.



298 A. Campetelli et al.

Definition 6 (Conservative Abstraction). Let LC be a de Morgan lattice and LA an
aop-lattice with the Galois connections (↑o, ↓o) from LC to Lo and (↑p, ↓p) from Lp to
LC with the negation functions ¬o and ¬p. Let KC = (SC ,LC ,RC , LC) be the con-
crete and KA = (SA,LA,RA, LA) the abstract multi-valued Kripke-structure. Fur-
thermore, let γ be an abstraction complete function which specifies how to abstract
concrete states. Then, we call KA a conservative abstraction of KC , if the following
conditions hold:

↑p((LA(sA, p))2) �
�

sC∈γ(sA)

L(sC , p) (ca-lab (i))

↓o((LA(sA, p))1) 
⊔

sC∈γ(sA)

L(sC , p) (ca-lab (ii))

↑p((RA(sA, s′A))2) �
�

sC∈γ(sA)

⊔
s′

C∈γ(s′
A)

RC(sC , s′C) (ca-trans (i))

↓o((RA(sA, s′A))1) 
⊔

sC∈γ(sA)

⊔
s′

C∈γ(s′
A)
RC(sC , s′C) (ca-trans (ii))

Note that both abstraction operators as well as their concatenation induce conservative
abstractions. A conservative abstraction is exactly that kind of abstract mv-KS which
we require such that the evaluation of a formula ϕ ∈ mv -Lμ (cf. Section 2) yields useful
results. More precisely, evaluating a mv -Lμ formula on a conservative abstraction of a
concrete system KC always yields a tuple representing the optimistic and pessimistic
approximation of the result that would be produced when evaluating the formula on KC

directly. Theorem 1 states this correctness result in a formal manner.

Theorem 1 (Correctness of abstraction). Let KC = (SC ,LC ,RC , LC) be the con-
crete multi-valued Kripke-structure and KA = (SA,LA,RA, LA) be a conservative
abstraction of KA. Let the corresponding Galois connections (↑o, ↓o), (↑p, ↓p), and the
abstraction function γ be defined as in Definition 6. Then for all sA ∈ SA, for all
sC ∈ γ(sA) and for all formulae ϕ ∈ mv -Lμ it holds that:

↑p (mp) � �ϕ�KC
∅

(sC) � ↓o (mo)

where (mo, mp) = �ϕ�KA
∅

(sA) is the result of the evaluation of ϕ on KA.

Proof. The proof is carried out by induction over the structure of a μ-calculus formula. To
demonstrate the central ideas, we explain the induction step for the ♦-operator. We con-
fine ourselves to the correctness of the under-approximation as the over-approximation
can be proved in an similar, slightly simpler way.

Let ( )2 denote the second, pessimistic entry of an aop-lattice tuple. We want to
prove, that ↑p ((�♦ϕ�(sA))2) yields an under-approximation for each concrete state
sC ∈ γ(sA) of the evaluation of the same formula on the concrete system. By semantics
of the ♦-operator we obtain ↑p(

⊔
s′

A
{(R(sA, s′A))2 � (�ϕ�(s′A))2}). By induction we

know that (�ϕ�(s′A))2 � ↓p(
�

ŝ′
C∈γ(s′

A)�ϕ�(ŝ′C)). This yields an upper bound for our
under-approximation:
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↑p(
⊔
s′

A

{↓p(
�

s̃C∈γ(sA)

⊔
s̃′

C∈γ(s′
A)

R(s̃C , s̃′C)) � ↓p(
�

ŝ′
C∈γ(s′

A)

�ϕ�(ŝ′C))})

Now we can apply Galois connection properties and choose s̃C = sC and thus obtain a
weaker upper bound

⊔
s′

A
{⊔s̃′

C∈γ(s′
A) R(sC , s̃′C)��

ŝ′
C∈γ(s′

A)�ϕ�(ŝ′C )}. By exploiting
distributivity of � and � this can be simplified to:⊔

s′
A

⊔
s̃′

C∈γ(s′
A)

�
ŝ′

C∈γ(s′
A)

{R(sC , s̃′C) � �ϕ�(ŝ′C)}

We can now choose ŝ′C = s̃′C and obtain once again a weaker upper bound:⊔
s′

C

{R(sC , s′C) � �ϕ�(s′C)} = �♦ϕ�(sC)

This least upper bound is identical to the definition of the ♦-operator semantics and thus
completes the proof. �

So far, we have presented the most general setting, in which we used different lattices
for the optimistic and pessimistic approximation, respectively. However, it may usually
be more convenient to use the same (de Morgan) lattice for both kinds of approximation.
Doing so allows to define one of the two required Galois connections in terms of the
other one and to use the negation defined on the lattice instead of the two negation
functions mapping between separated lattices:

Theorem 2 (Simplification). Let LC be a lattice and Lop be a de Morgan lattice.
Let (↑o, ↓o) be a Galois connection from LC to Lop. This Galois connection induces
two other functions ↑p : x �→ ¬↓o(¬x) and ↓p : x �→ ¬↑o(¬x) which also define
a Galois connection (↑p, ↓p) from Lop to LC . Together with the negation functions
¬o(x) = ¬p(x) = ¬x we obtain an aop-lattice for LC .

We can prove this theorem by showing that (↑p, ↓p) fulfills the Galois connection prop-
erties and that the conditions for the negation functions stated in Definition 4 hold. If
not stated differently we will work with such a simple form of abstraction.

4 Causes for Indefinite Results and Refinement

Whenever the optimistic and pessimistic assessment of a formula evaluated on the ab-
stract system differ, we might be interested in refining (one of) the abstractions, to even-
tually obtain a result that coincides with that for the concrete system. While we leave
precise ideas of refinement for future work, we elaborate a function causes that returns
the causes of why the semantics of a formula interpreted over a mv-Kripke structure
using the aop-lattice is a tuple in which the left and right components differ. To deter-
mine the causes, we analyze the results of the required steps to compute the semantics
of a formula by means of a standard fixpoint computation. Revisit Figure 1, in which
the semantics of a mv -Lμ formula is given. Since the semantics of μ-calculus fixpoint
operators can be computed in an iterative manner [13], they do not have to be treated
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explicitly. The semantics of the �- and ♦-operators is given by means of transitions and
meet and join operators. Thus, a relevant computation step for determining causes is
basically one of (i) the evaluation of the labeling function L for some atomic proposi-
tion p and state s (ii) the evaluation of the transition relation function R for two states
s and s′, (iii) the computation of negation, or (iv) the computation of meet and join. In
the latter case, the meet and join operators may be indexed by state variables iterating
over the states of the Kripke structure needed to compute the semantics of the �- and
♦-operator. Therefore, to describe a computation, we define a formula language LΦwith
state variables si by the following grammar:

Φ := ¬Φ | Φ � Φ | Φ � Φ |
�
si

Φ |
⊔
si

Φ | L(si, p) | R(si, sj)

Before we give a precise definition of causes, we present the intuition behind this no-
tion. At first, let us discuss in which way the abstraction from lattices (the shift from op-
lattice to aop-lattice) gives rise to imprecision. Consider the optimistic and pessimistic
abstraction of the powerset lattice over the elements 1, . . . , 5 shown in Figures 6(a)
and 6(b), respectively, in which abstract elements are named according to their con-
crete counter parts. Now, consider a meet of the elements {1, 2, 3, 4} and {2, 3, 4, 5}
within the pessimistic lattice. As there is no element {2, 3, 4}, the result is ∅. Thus,
the computation of a pessimistic value might be more pessimistic just because of the
lattice abstraction. To identify the situations that pessimistic as well as optimistic val-
ues are diluted by such meet and join operations, we consider causes as elements in the
concrete rather than the abstract lattice.

The other source for different optimistic and pessimistic assessment is due to abstrac-
tion by joining states. More precisely, propositions and transitions may be assessed with
differing optimistic and pessimistic values. However, combining such imprecise ver-
dicts by meet and join may actually eliminate certain imprecision: Take for example the
three-valued lattice in which (	,⊥) � (⊥,⊥) yields the precise verdict (⊥,⊥), thus
eliminating any cause for refinement.

Hence, we should study in which way meet, join, and negation operators actually
modify causes for why the respective subformulae have a differing verdict, both due to
the fact that imprecision determined for subformulae may be eliminated by meet and
join but also introduced due to the lattice abstraction.

We are now set to introduce our ideas formally. Let Lo be the lattice for the optimistic
and Lp for the pessimistic view as introduced in Definition 4. The function causes
that returns the set of causes for one computation step from a causes domain � made
precise below uses the result of the present computation step, the results of the directly
preceding computation steps, and the causes computed for the preceding steps (its sub-
formulae). Thus, the function causes has the type:

causes : (LΦ × Lo × Lp) × ((LΦ → Lo) × (LΦ → Lp)) × (LΦ → �) → �

Let us now elaborate on the causes domain: We consider a cause to be a pair (mo, mp)
of elements of the concrete lattice LC , which limit the possible range of values for
the semantics, together with a context, describing the qualitative origin of the different
assessment. More specifically, a context could denote one of (i) a proposition in some
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{1, 2, 3, 4, 5}

{1, 2, 3, 5}

∅

(a)

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2} {1, 4} {1, 3}

{3}

∅

{2, 3, 4, 5}

{3, 5} {2, 5} {4, 5}

(b)

Fig. 6. An optimistic lattice Lo and a pessimistic lattice Lp, where {3} is added during refinement

state, (ii) some transition, (iii) or o/p identifying the lattices Lp orLo. The latter symbols
are used to indicate the situation that the results are diluted due to abstraction of lattices.
Consequently, we define the domain of causes as � := LC ×� and the set of contexts as
� := (S ×P )∪ (S ×S)∪ {o, p}, where (i) S ×P refers to a label of a state, (ii) S ×S
to a transition, and (iii) {o, p} to the optimistic or pessimistic lattice Lo or Lp.

In the following we will use as names for the function parameters mo for the op-
timistic and mp for the pessimistic result, ξo (ξp) for the function mapping preceding
computations to their optimistic (pessimistic, resp.) results and ζ ⊆ � to their causes.
We give the definition of causes in an inductive fashion.

Atomic propositions. For an atomic proposition p a cause is just the pair of concrete
lattice elements, for which the proposition is undetermined for some state s:

causes(p(s), mo, mp, ξo, ξp, ζ) = {(s, p, (↓o(mo), ↑p(mp)))}
For example, if an atomic proposition p evaluates to {1, 2, 3, 4, 5} in the optimistic and
to {2, 3, 4, 5} in the pessimistic account, the cause is (s, p, ({1, 2, 3, 4, 5}, {2, 3, 4, 5})).
Transitions. Causes for transitions are similarly defined as for atomic propositions:

causes(R(s, s′), mo, mp, ξo, ξp, ζ) = {(s, s′, (↓o(mo), ↑p(mp)))}
Let us illustrate the causes for transitions, which may be raised by two different rea-
sons: Several states could have been joined and therefore differently labeled transitions
(or propositions respectively) could have been merged as shown in Figure 7(a) or infor-
mation could have been lost due to the abstraction from the concrete lattice as shown in
Figure 7(b). A combination of both cases is likewise possible as shown in Figure 7(c),
where the example is driven over the powerset lattice of three elements.

Negation. When using different lattices for the optimistic and pessimistic view, nega-
tion results in a loss of precision if the complement of an element of one lattice is not
exactly representable in the other lattice. A cause in this case expresses, that in one
of the abstract lattices a given element is missing. Since negation never increases pre-
cision, causes for preceding computations can just be passed on. Figure 8 shows how
information can be lost due to negation.
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{1, 2, 3, 5}

∅

({1, 2, 3, 5},∅)

(a)

{2, 3}

({1, 2, 3, 5},∅)

(b)

{1, 2, 3}

{2, 3, 4}

({1, 2, 3, 4, 5},∅)

(c)

Fig. 7. Imprecision due to joining states 7(a), to lattice abstraction 7(b), and to both 7(c)

{1, 2, 3} {4, 5, 6}

({1, 2, 3, 4}, {1, 2}) ({2, 3, 4, 5, 6}, {5})

¬

¬

Fig. 8. Information loss due to negation. Negating
{1, 2, 3} results in {4, 5, 6}. Negating the abstraction
{1, 2, 3, 4}, {1, 2} could yield ({3, 4, 5, 6}, {5, 6}) but
the result in this example is even less precise.

To define the cause for nega-
tion formally, let us consider
one case: Recall that mp =
¬ξo(ϕ(s)). If this computation
would have been carried out in
the concrete lattice, we would
have obtained ↓o(ξo(ϕ(s))). If
the negation of the latter value
is different from ↑p(mp), we
have a further imprecision due
to the lattice abstraction. Other-
wise, the only imprecision is due to the so far accounted ones denoted by ζ. Thus, we
define causes as follows:

causes((¬ϕ)(s),mo, mp, ξo, ξp, ζ) =

ζ(ϕ(s)) ∪
{
{(¬↓o(ξo(ϕ(s))), ↑p(mp))} if components differ

{(↑p(ξp(ϕ(s))),¬↓o(mo))} if components differ

Meet and join. Let us consider the case of a meet operation. The treatment of the join
operator is dual and omitted here. Let (mo, mp) be obtained by ((ξ1

o � ξ2
o ), (ξ1

p � ξ2
p)),

where ξj
σ = ξσ(ϕj(s)), for j ∈ {1, 2}, σ ∈ {o, p}.

As with negation calculating the meet can, on one hand, result in further imprecision
(because of the lattice abstraction). However, due to the properties of Galois connec-
tions both operations are exact on either the optimistic or the pessimistic view. There-
fore we can only lose informations because of missing elements in one of the abstract
lattices. So, as seen below, we add, similarly as in the case of negation, causes.

On the other hand, a meet may result in a gain of information due to the meet in
the pessimistic view. The additional information can be used to remove or reduce the
imprecision listed in causes of preceding computation steps. To illustrate the idea, con-
sider the meet of ξ1 = ({2, 3}, {2, 3}) and ξ2 = ({1, 2, 3}, {3}), which results into
(mo, mp) = ({2, 3}, {3}). Note that ξ2, in the product line interpretation, denotes that
no precise information about products 1 and 2 is available, while ξ1 represents a precise
result. Now, considering the result ({2, 3}, {3}), we observe that the imprecision about
product 1 is no longer a concern, while that for product 2 is still of interest. Practically,
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the result may be expressed by taking the cause based on ξ2 = (ξ2
o , ξ2

p) and adjusting
its components by the result mo and mp as follows: (ξ2

o �mo, (ξ2
p �mp) � (ξ2

o �mo)),
where the meet in the second component with the first component is only to make sure
that the second component is smaller than the first component. This modification is ex-
pressed by the following operator fil , that takes an optimistic result mo, a pessimistic
result mp and a cause:

fil(mo, mp, (k, (lo, lp))) = (k, lo � ↓o(mo), (lp � ↑p(mp)) � (lo � ↓o(mo)))

Then we are ready to define the function causes for a meet operation as:

causes((ϕ1 � ϕ2)(s), mo, mp, ξo, ξp, ζ) =
{(↓o(ξo(ϕ1(s))) � ↓o(ξo(ϕ2(s))), ↑p(mp))} if components differ

∪
⋃

c∈ζ(ϕ1(s))∪ζ(ϕ(s))

fil(mo, mp, c)

Example 1. For a better understanding of the propagation of causes we consider as
example the meet of ({1, 2, 3, 4, 5}, {1, 2, 3, 4}) and ({1, 2, 3, 4, 5}, {2, 3, 4, 5}). Using
the lattices in Figures 6(a) and 6(b) for the optimistic respectively pessimistic view,
this results in ({1, 2, 3, 4, 5}, ∅). Calculating the meet in an exact manner would have
resulted in ({1, 2, 3, 4, 5}, {2, 3, 4}). We therefore obtain the cause (p, ({2, 3, 4}, ∅)).

Now, let us assume that the fixpoint computation (expressed by a formula of the
grammar introduced above) requires to join the previous result ({1, 2, 3, 4, 5}, ∅) with
the pair ({1, 2, 3, 4, 5}, {1, 2}) which results in ({1, 2, 3, 4, 5}, {1, 2}). Since we now
have information about 2, we can modify the cause to (p, ({2, 3, 4}�{1, 2, 3, 4, 5}, (∅�
{1, 2}) � {2, 3, 4})), resulting in (p, ({2, 3, 4}, {2}).

As next step we take the meet of ({1, 2, 3, 4, 5}, {1, 2}) and ({1, 2, 3, 5}, {1, 2})
which results in ({1, 2, 3, 5}, {1, 2}). Since we obtained information about 4, the cause
is further simplified to (p, ({2, 3}, {2}). We can now modify the lattice for the pes-
simistic view Lo by adding an element for 3 as shown in Figure 6(b). Repeating the
computation results in ({1, 2, 3, 5}, {1, 2, 3}) and thus yield the same imprecision as
we started the computation with.

Note that the treatment of causes as pairs (mo, mp) can be simplified in Boolean lattices
to a single value mo � ¬mp actually representing set difference.

The computation of causes can be interweaved with the computation of the seman-
tics. In case of a don’t know result, meaning that the optimistic and pessimistic assess-
ment differ, a cause can be picked according to a meaningful heuristics, whose discus-
sion is beyond the scope of this paper, and a suitable refinement may be accomplished.
Reassessment of the semantics eventually yields a precise model checking result.

5 Conclusion

In this paper we have introduced abstraction techniques for multi-valued Kripke struc-
tures. More precisely, we have given two different kinds of abstraction: The first kind
abstracts by joining states, in the usual way. The second kind of abstraction combines
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lattice elements realizing the idea of not differing between certain concrete products
(of a software product line) or truth values in the abstract anymore. The combination
of both abstractions yields again a multi-valued Kripke structure which represents the
abstract system. Here, the transitions are labeled with a tuple representing the optimistic
and pessimistic assessment of this transition.

On such an abstract multi-valued Kripke structure we can evaluate properties using
the existing multi-valued model checking machinery. More importantly, we have shown
that the result of evaluating a mv -Lμ formula on the abstract system always yields the
optimistic and pessimistic limits, in which the concrete value is located for sure.

To eventually obtain a model checking result for which the optimistic and pessimistic
assessment coincide, refinement of abstractions in needed. Therefore, we have intro-
duced the notion of causes: Whenever the optimistic and pessimistic assessment differ,
a cause guides us during the process of concretization and gives us those states in the
abstract, which we have to concretize first.
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