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Abstract. This paper studies the problem of learning data automata
(DA), a recently introduced model for defining languages of data words
which are finite sequences of pairs of letters from a finite and, respec-
tively, infinite alphabet. The model of DA is closely related to general
Petri nets, for which no active learning algorithms have been introduced
so far. This paper defines transparent data automata (tDA) as a strict
subclass of deterministic DA. Yet, it is shown that every language ac-
cepted by DA can be obtained as the projection of the language of
some tDA. The model of class memory automata (CMA) is known to
be equally expressive as DA. However deterministic DA are shown to be
strictly less expressive than deterministic CMA. For the latter, and hence
for tDA, equivalence is shown to be decidable. On these grounds, in the
spirit of Angluin’s L∗ algorithm we develop an active learning algorithm
for tDA. They are incomparable to register automata and variants, for
which learning algorithms were given recently.

1 Introduction

Learning of formal languages is a fundamental problem in computer science.
In the setting of active learning, where a learner can ask membership queries
(i.e. is a given word in the language to be learned) and equivalence queries (i.e.
is a learning hypothesis equivalent to the language to be learned) to an oracle
(teacher), it has been shown [1] that regular languages over a finite alphabet
can be learned using the L∗ algorithm. However, in several application areas
like program verification and database management it is important to be able
to reason about data coming from an infinite domain. For that purpose data
words, i.e. sequences of pairs (a, d) of letters a from a finite alphabet and data
values d from an infinite alphabet, are used. The data values can contain for
example process identifiers from an infinite domain allowing to model naturally
parameterized systems with an unbounded number of components. For data
languages, i.e. sets of data words, data automata have been introduced recently
[2] as a computational model. A data automaton is a tuple (A,B) composed of
a transducer A, the base automaton, and a finite state automaton B, the class
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automaton. A data word w is handled in two phases. First the transducer A
reads w without data values and possibly modifies the individual (finite-domain)
letters. This results in a data word w′ where the data values have not changed.
Then, the so called class strings of w′ are individually checked by the class
automaton B. The class strings of a data word are the sub-strings of finite-domain
letters carrying the same data value. Roughly, the base automaton enforces a
global property whereas the class automaton enforces a local property. In [2] it
is shown that emptiness of data automata and reachability in general Petri nets
are polynomially equivalent.

An example of a data automaton, taken with minor changes from [3], is given
in Figure 1. It will be used throughout this paper and corresponds to a system
where a printer is shared by processes. Data values correspond here to process
identifiers and each process can request (r), start (s) and terminate (t). The
global property is that each started job must be terminated before the next one
can be started and the local property is that each process can invoke one job
(ε+ rst). An accepted data word is for example

(
rrstst
121122

)
. Notice that the global

property can be characterized by a transducer not modifying the letters but just
copying them.
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(b) Class automaton B

Fig. 1: Transparent data automaton D = (A,B)

The example illustrates two characteristics of many systems, namely the fact
that (1) the local behaviour is not constrained by the global one. This means
that a process can run on its own. Furthermore, (2) the global behaviour is just
a filter, i.e. the transducer is not changing any letters.

Turning to the problem of learning of data automata which we tackle in this
paper, we notice that learning the full class of data automata is difficult, as they
are closely related to general unbounded Petri nets, a powerful model of compu-
tation. Furthermore in active learning it is desirable to have at least theoretically
the possibility of answering equivalence queries. However, the equivalence prob-
lem for data automata is undecidable. Therefore, we have to look for a simpler
but still expressive sub-class of data automata.

In this paper we introduce transparent data automata (tDA), which corre-
spond to data automata with the conditions (1) and (2), i.e. A and B are finite



state automata over the same input alphabet and L(B) ⊆ L(A). We show that
tDA have a decidable equivalence problem in Section 2.

More precisely, we obtain decidability even for deterministic class memory
automata (dCMA), a closely related automaton model for data words introduced
in [3]. While general class memory automata (CMA) are expressively equivalent
to DA, we show dCMA are strictly more expressive than deterministic DA that
in turn are strictly more expressive than tDA. However, tDA are still quite
powerful as we show that each DA can be encoded into a tDA that accepts the
same language up to projection. This in turn induces the fact that a variant of
the emptiness problem is still as hard as Petri net reachability. Furthermore, the
class of complements of tDA exceeds the class of dCMA.

For tDA, we introduce several learning algorithms in Section 3. We first con-
sider the case where the global behaviour A is known and the local behaviour B
is to be learned. We handle that case by adapting Angluin’s L∗ algorithm. The
case where B is known and A is to be learned is more difficult since membership
queries cannot always be answered conclusively. We therefore adopt the approach
of learning from inexperienced teachers [4,5] that may additionally answer mem-
bership queries with don’t know. Finally, we combine the two algorithms in the
case where neither A nor B are directly accessible.

Another well studied automaton model for data words are register automata
(RA) [6]. They have a finite control and can additionally store data values in
a finite set of registers. Transitions can depend on equality checks between the
current data value and values from the registers. DA are strictly more expressive
than RA which are strictly more expressive than their deterministic variant.
RA and deterministic RA are both incomparable to tDA: The printer example
(Figure 1) cannot be accepted by any register automaton and, on the other hand,
dCMA are neither more nor equally expressive then deterministic RA [3]. This
transfers to tDA as we show that dCMA subsume them.

There are a number of works on learning register automata and its variants
[7–9] based all on extensions or adaptations of L∗. For Workflow Petri Nets a
learning algorithm has been given in [10]. However unlike our models these Petri
Nets are bounded and for unbounded Petri Nets we are not aware of any active
learning algorithm.

2 Transparent Data Automata

In this section we consider deterministic automata on data words. In particular,
we introduce and study transparent data automata that we build on in the
subsequent Section 3.

Data words and data languages. Let Σ be a finite alphabet and ∆ an infinite
set of data values. A data word is a finite sequence w = w1wn ∈ (Σ×∆)∗ of pairs
wi = (ai, di) of letters and data values. We call str(w) = a1an ∈ Σ∗ the string
projection of w. The class string of w for a data value d ∈ ∆ is the maximal
projected subsequence w�d := ai1aim ∈ Σ∗ of w with data value d, i. e., for all



1 ≤ j ≤ m we have 1 ≤ ij ≤ n, dij = d, ij < ij+1 (for j < m) and for each
1 ≤ k ≤ n with dk = d there is some ij = k.

We refer to the set of all (non-empty) class strings of w as w�. We use the
data values 1, 2, 3, as representatives for arbitrary data values. A data word
where the sequence of data values is d1dn and with string projection u is written
as
(

u
d1dn

)
. If all data values are 1 we may abbreviate that by

(
u
1

)
.

For any automaton A, L(A) denotes the set of all accepted (data) words but
we may also write w ∈ A and L ⊆ A for w ∈ L(A) and L ⊆ L(A), respectively.
We use L to denote the complement of a language L. A (deterministic) letter-to-
letter transducer T is a (deterministic) finite state automaton over a finite input
alphabet Σ that additionally outputs a letter from some finite output alphabet
Γ for every letter it reads. For u ∈ Σ∗ we denote T (u) the set of possible outputs
of T when reading u.

Data automata. A data automaton [2] (DA) is a tuple D = (A,B). The base
automaton A is a letter-to-letter transducer with input alphabet Σ and output
alphabet Γ . The class automaton B is a finite state automaton with input alpha-
bet Γ . A data word w =

(
u

d1dn

)
is accepted by D if its string projection u ∈ A

and there is an output u′ ∈ A(u) of A s.t. every class string of
(
u′

d1dn

)
is accepted

by B. We call a data automaton deterministic (dDA), if the base automaton A
is deterministic.

Class Memory Automata. A class memory automaton [3] (CMA) over Σ is
a tuple C = (Q,Σ, δ, q0, Fl, Fg) where Q is a finite set of states, δ : Q × (Q ∪
{⊥}) × Σ → 2Q is the transition function, q0 ∈ Q is the initial state and Fl ⊆
Q and Fg ⊆ Q are the locally and globally accepting states, respectively. A
configuration of C is a pair (q, f) where q ∈ Q is a state and f : D → Q×{⊥} is
a memory function storing the state in which some data value has last been read.
If d has not been read before f(d) = ⊥. The initial configuration is (q0, f0) with
∀x∈Df0(x) = ⊥. When reading a pair (a, d), the automaton can change from
a configuration (q, f) to a configuration (q′, f ′) if q′ ∈ δ(q, f(d), a), f ′(d) = q′

and ∀x∈D\{d}f ′(x) = f(x). A configuration (q, f) is accepting, if q ∈ Fg and
∀d∈Df(d) ∈ (Fl ∪ {⊥}). For a configuration (q, f) we call q the global state and
all states referred to by f the local states. C(w) denotes the set of configurations
that C can reach reading a data word w and w is accepted by C if there is
an accepting configuration in C(w). We call a CMA deterministic (dCMA) if
|δ(qg, ql, a)| ≤ 1 for all qg ∈ Q, ql ∈ Q ∪ {⊥} and a ∈ Σ.

Expressiveness. As is shown in [3], DA and CMA are expressively equivalent.
Also, the classes are effectively closed under intersection and union [2, 3]. The
emptiness problem for the automata models is shown to be equivalent to reach-
ability in Petri nets and therefore decidable. However the classes are not closed
under complementation. For the deterministic case, the classes are not equivalent
anymore. Intuitively, DA can globally recognize data values only by means of
non-deterministic guessing while CMA do not always rely on that as the present
data value affects the transition function.

Lemma 1. dDA ( dCMA



Proof. The inclusion follows from the construction in [3] which translates DA
into CMA and preserves determinism. The automaton classes are separated by
the language L ⊆ (Σ×∆)∗ containing the data words over Σ = {a} with at least
two different data values. L is accepted by the dCMA in Figure 2, whereas there
is no dDA accepting L: As contradiction, assume some dDA D = (A,B) accepts
L and consider the words w1 =

(
aa
12

)
, w2 =

(
aaa
112

)
∈ L. From w1 we see that A

accepts aa and from w2 it follows that B accepts the corresponding projection
A(aa). Then, however, D also accepts

(
aa
11

)
6∈ L as A is deterministic. ut

q0 q1 q2
⊥/a ⊥/a

q0, q1/a ⊥, q0, q1, q2/a

Fig. 2: A dCMA accepting data words with at least two data values. All states
are accepting locally and q2 is also accepting globally.

We now define transparent data automata. They form a sub-class of data
automata that reflect the intuition that local behaviour is not constrained by
the global one, i.e. any process can run on its own. Technically, we require, that
the global language contains the local language as a subset. The condition will
later in Section 3 allow us to use global observations for deducing information
on the local automaton.

Definition 1 (Transparent Data Automaton). A transparent data automa-
ton (tDA) is a tuple D = (A,B) where A and B are finite state automata over
the same input alphabet Σ and L(B) ⊆ L(A).

Note that, in fact, a tDA is a DA in the sense that the global automaton A
can be interpreted as letter-to-letter transducer with Γ = Σ that just outputs
accepted input words unchanged.

2.1 Expressiveness of tDA

The transparency condition is a restriction designed to allow for active learning
as will be discussed in Section 3. However, we remark in this section that tDA
are nevertheless complex. But first, by extending Lemma 1, we obtain a strict
hierarchy between tDA, dDA and dCMA.

Theorem 1. tDA ( dDA ( dCMA

Proof. Note that for every tDA there is an equivalent dDA as the base au-
tomaton is a finite automaton which can be determinized. To verify that tDA



are strictly less expressive than dDA, consider the language of data words over
Σ = {a} where every second position carries a new data value. A dDA with
internal alphabet Γ = {a, â} can accept that language by marking every other
position using the base automaton whereas the class automaton checks that the
first letter is marked. On the contrary the language is not accepted by any tDA
since the base automaton is neither aware of the data values itself nor can it
transmit any positioning information to the class automaton. ut

Checking tDA for emptiness boils down to checking the class automaton and
is thus in NLogSpace. However, the slight modification of checking if there is
an accepted word with at least two data values is still as hard as emptiness of
DA. This follows from the possibility to encode any DA D into a tDA D′ in such
a way that D′ accepts the same language as D up to some projection Π. We
outline this connection more precisely in the following.

For the DA D = (A,B), let Σ,Γ be the input and internal alphabet of the
base automaton A, respectively. D′ employs an extended alphabet Σ′ that is
built from the product of Σ and Γ , an additional flag and a new symbol $.
Formally, we let Σ′ := (Σ×Γ ×{0, 1})∪{$}. Recall, that the input and internal
alphabets are required to be equal for tDA.

The projection Π : 2Σ
′×∆ → 2Σ×∆ basically removes all additional in-

formation stored in Σ′. For a data language L ⊆ Σ′ ×∆ we let Π(L) :={(
π(w)
d2dn

)∣∣∣( $$w
d0d1d2dn

)
∈ L

}
where π : Σ′

∗ → Σ∗ is the letter-wise projection to

the first component, i.e. π(a, g, x) = a for (a, g, x) ∈ Σ′ and π(a0a1an) =
π(a0)π(a1)π(an) for ai ∈ Σ′.

Theorem 2. For all DA D there exists (constructively) a tDA D′ such that
L(D) = Π(L(D′)).

Proof. First we note that we can deafen the base automaton A by simply
considering the output of A as additional input, i.e. we interpret A over the
input alphabet Σ × Γ . This yields a finite automaton Â over Σ × Γ accepting
exactly the correct input/output combinations (w,A(w)) ∈ Σ×Γ of A. Now, we
can define from the class automaton B a class automaton B̂ over the alphabet
Σ × Γ which does the same on Γ as B while ignoring Σ. Then, (Â, B̂) is a
transparent data automaton in the sense of Definition 1.

From that we can construct D′ = (A′,B′) as follows. Let $ 6∈ (Σ × Γ )
be a new symbol. For A′ we take the deafened base automaton Â but extend
the input alphabet by a new flag, 0 or 1, and the special symbol $, i.e. Σ′ :=
(Σ×Γ ×{0, 1})∪{$}. A′ checks that the input starts with $$ and then behaves
as Â on the rest of the input ignoring the flag.

The class automaton B′ behaves just like B̂ but checks that the first input
symbol carries flag 1 and all following symbols carry flag 0. Additionally, it
accepts a single $ as input word.

In combination, this ensures that D′ accepts only data words where exactly
the first occurrence of every data value is marked by flag 1 (when considering
the symbol $ as carrying flag 1). If the original automaton D accepts some



word w then the modified automaton D′ accepts some word with at least two
data values, namely

(
$$
d0d1

)
w where the data values d0, d1 do not occur in w and

the first occurrences of data values in w are marked by flag 1. On the other
hand, if the modified automaton D′ accepts some word w′ then w′ has the form(

$$
d0d1

)(
w

d2dn

)
and the original automaton D accepts

(
π(w)
d2dn

)
.

It remains to ensure the transparency condition L(B′) ⊆ L(A′). This is done
by letting the base automaton A′ accept any word accepted by the new class
automaton B′. This potentially adds new data words to the represented language,
however, they all do not start with $$. Thus these are excluded by the projection
Π defined above. ut

Despite Theorem 2 does not directly yield a hardness result, it provides
evidence that the transparency restriction does not make the model trivial. The
construction used in the proof yields a tDA that is only polynomial in the size
of the DA. Using this technique we can proof the following corollary.

Corollary 1. Given a tDA, deciding whether there is an accepted word contain-
ing at least two different data values is at least as hard as Petri net reachability.

2.2 Complementation and Equivalence of tDA

As said earlier, DA and CMA are not closed under complementation. This is
also the case for the deterministic versions. Moreover, even complements of the
smallest class tDA may exceed the largest deterministic class dCMA.

Theorem 3. dCMA do not capture the complements of tDA.

Proof (Theorem 3). Let L be the language of data words over Σ = {a} for
which every class string is of even length. L is accepted by a tDA where the base
automaton is universal and the class automaton just counts modulo two. For
accepting the complement L of L, however, an automaton has to check for an
input word, that there is a data value for which the class string is of odd length.

Assume there is a dCMA C that accepts L. Since C has finitely many states,
there are positions m < n s.t. C is in the same state q after reading u =

(
aa
1m

)
and after reading uv =

(
a a
1mn

)
. Because u ∈ L, all local states as well as the

global state in the configuration of C after reading u must be accepting. On the
contrary, uu 6∈ L and so continuing by reading u again, C must change to some
non-accepting state, either globally or locally. As the automaton is deterministic,
appending u to uv must effect the same change as the data values in v are not
present in u and the local states w.r.t. v do thus not influence the transitions
taken by C when reading u. Therefore, after reading uvu, the configuration of C
must contain some non-accepting local or global state which contradicts uvu ∈ L.

ut

Even though neither the deterministic nor the non-deterministic class of data
automata are closed under complementation, the complements of the determinis-
tic classes can still be constructed in terms of CMA and thus allow for algorithmic
analysis, in particular for emptiness checking.



Theorem 4. For a deterministic CMA C we can construct a CMA accepting
exactly the complement L(C).

Note that this result does not follow from [3]. There, a complementable vari-
ant called Presburger CMA is introduced and claimed to subsume dCMA but
in fact it does not. Presburger CMA replace the acceptance condition of CMA
by a limited Presburger formula, allowing essentially modulo constraints over
the local states of a configuration. While this allows for complementation by
complementing the Presburger formula, the original acceptance condition can
no longer be encoded. Adding the original condition to Presburger CMA breaks
closure under complementation.

Proof. Let C = (Q,Σ, δ,Q0, Fl, Fg) be a dCMA accepting the data language
L = L(C). For the complement L of L, we observe that for some data word
w ∈ (Σ ×∆)∗ and the configuration C(w) of C after reading w we have w ∈ L
iff (1) all local states in C(w) are accepting and the global state is rejecting or
(2) there is some local state in C(w) that is rejecting.

Hence, we construct two CMA C̃ and Ĉ that accept all words obeying condi-
tions (1) and (2), respectively. Then, the automaton C := C̃ ∪ Ĉ accepts exactly
L and is a CMA since this class is effectively closed under union.

To recognize data words satisfying the first condition, we simply complement
the set of global accepting states: C̃ := (Q,Σ, δ, q0, Fl, F g).

To recognize the second condition let Ĉ = (Q̂,Σ, δ̂, {(q0, 0, 0)}, F̂l, F̂g) where

the state space Q̂ := Q × B × B is that of C enriched by two boolean flags
from B = {0, 1}. The idea is that, whenever observing a new data value, the
automaton guesses whether this is the data value for which the corresponding
class causes the rejection in the original automaton C. The automaton then
sets both flags to 1. The first flag is propagated globally, thereby keeping track
of the fact that a data value has been guessed. The second flag is propagated
locally, thereby marking the chosen data value. Except for the described guessing
step and propagation of both flags, Ĉ just simulates C. The automaton accepts
globally, once a data value has been chosen and thus the first flag is 1, i.e. for
F̂g = Q×{1}×B. The automaton accepts locally if the local state for the chosen
data value would have been locally rejecting, i.e. if the second flag is 1 and the
original state is in F l. Formally, if F̂l = (Q×B × {0}) ∪ (Fl ×B × {1}).

The transition function δ̂ : Q̂ × (Q̂ ∪ {⊥}) × Σ → 2Q̂ is defined as follows.
We use as placeholder for an arbitrary, irrelevant value.

δ̂((q, 0, ), (q′, , ), a) := {(δ(q, q′, a), 0, 0)} (1)

δ̂((q, 0, ),⊥, a) := {(δ(q,⊥, a), 0, 0), (δ(q,⊥, a), 1, 1)} (2)

δ̂((q, 1, ), (q′, , x), a) := {(δ(q, q′, a), 1, x)} (3)

δ̂((q, 1, ),⊥, a) := {(δ(q,⊥, a), 1, 0)} (4)

Equations 1 and 2 capture the case, that no data value has been guessed so far.
In case of Equation 1 the present data value is not new. In case of Equation 2



the present data value is new. Thus, the automaton can progress just as for
Equation 1 or choose to guess the present data value. Equations 3 and 4 capture
that a data value has already been guessed. In case of Equation 3 the present
data value is not new and the first flag in the global and the second flag in the
local state have to be propagated. Thereby the information, that a value has
been guessed is propagated globally, and the information, which value has been
guessed is propagated locally. In case of Equation 4 the present data value is
new and the first flag in the global state has to be propagated. As the value is
new, it can not be the chosen value and thus the second flag is set to 0. ut

With the emptiness check for CMA, their closure under union and inter-
section [2, 3] and the complement construction above, we can decide language
inclusion and equivalence of dCMA and its subclasses.

Corollary 2. Language inclusion and equivalence of dCMA, dDA and tDA is
decidable.

3 Learning transparent data automata

In this section we develop learning algorithms for tDA. We first recall the clas-
sical active learning procedure, and a variation with inconclusive answers to
membership queries along the lines of [5]. Based on these we show how the class
automaton of some tDA can be learned assuming the base automaton is known.
Then, we provide an algorithm for learning the base automaton assuming the
class automaton is known. Finally, we combine the two developed approaches to
obtain a learning procedure for a completely unknown tDA.

3.1 Learning of finite automata

The learning algorithm L∗. Angluin’s learning algorithm, called L∗ [1], is de-
signed for learning a regular language, L ⊆ Σ∗, by constructing a minimal DFA
A accepting precisely L. In this algorithm a learner, who initially knows nothing
about L, is trying to learn L by asking an oracle (also called the teacher), that
knows L, two kinds of queries: A membership query for a word u ∈ Σ∗ is the
question whether u is in L. Given a DFA Ã as a hypothesis, an equivalence query
is the question whether Ã is correct, i.e. L(Ã) = L. The oracle answers yes if Ã
is correct, or else provides a positive or negative counter-example u from L\L(Ã)
or L(Ã) \ L, respectively.

The learner maintains a prefix-closed set U ⊆ Σ∗ of prefixes, which are
candidates for identifying states, and a suffix-closed set V ⊆ Σ∗ of suffixes,
which are used to distinguish such states. The sets U and V are extended when
needed during the algorithm. The learner poses membership queries for all words
in (U ∪UΣ)V , and organizes the results into a table T : (U ∪UΣ)×V → {3,7}
where (U ∪ UΣ) are the row and V the column labels, respectively, and 3
represents accepted and 7 not accepted. Where convenient, we write T (u) for the
complete row in T indexed by u ∈ U ∪ UΣ.



When T is closed, i.e. for each u ∈ U , a ∈ Σ there is a u′ ∈ U such that
T (ua) = T (u′), and consistent, i.e. T (u) = T (u′) implies T (ua) = T (u′a), the
learner constructs a hypothesis Ã = (Q, q0, δ, F ), where Q = {T (u) | u ∈ U} is
the set of distinct rows, q0 is the row T (ε), δ is defined by δ(T (u), a) = T (ua),
and F = {T (u) | u ∈ U, T (u)(ε) = 3}. The hypothesis is posed as an equivalence
query to the oracle. If the answer is yes, the learning procedure is completed,
otherwise the returned counter-example c ∈ Σ∗ is used to extend U by adding
all prefixes of c to U , and subsequent membership queries are performed in order
to make the new table closed and consistent producing a new hypothesis.

Concerning complexity, it can easily be seen that the number of membership
queries can be bounded by O(kn2m), where n is the number of states of the
automaton to learn, k is the size of the alphabet, and m is the length of the
longest counter-example.

Learning from inexperienced teacher. In the setting of an inexperienced teacher,
membership queries are no longer answered only by yes or no, but also by don’t
know, denoted ?. Angluin’s algorithm can easily be adapted to work with an
inexperienced teacher and we list the necessary changes [5]. The table can now
also contain ?, i.e., T : (U ∪UΣ)× V → {3,7, ?}. For u, u′ ∈ (U ∪UΣ), we say
that rows T (u) and T (v) look similar, denoted by T (u) ≡ T (u′), iff, for all v ∈ V ,
T (u)(v) 6= ? and T (u′)(v) 6= ? implies T (u)(v) = T (u′)(v). Otherwise, we say
that T (u) and T (v) are obviously different. We call T weakly closed if for each
u ∈ U , a ∈ Σ there is a u′ ∈ U such that T (ua) ≡ T (u′), and weakly consistent if
T (u) ≡ T (u′) implies T (ua) ≡ T (u′a). Angluin’s algorithm works as before, but
using the weak notions of closed and consistent. While extracting a DFA from
a weakly closed and weakly consistent table is no longer straightforward, it is
possible using techniques developed by Biermann and Feldman [11] that infer an
automaton from a sample set S = (S3, S7) consisting of positive and negative
examples S3 and S7, respectively. As there is no longer a unique automaton for
a weakly closed and weakly consistent table, the overall complexity of identifying
a given automaton is no longer polynomial in the number of equivalence queries
but may be exponential (see [5] for details).

3.2 Learning the class automaton

Let the base automaton A of some tDA D = (A,B) over an alphabet Σ be
known. For learning the class automaton B we can employ the classical L∗ algo-
rithm as presented above. The algorithm, however, assumes direct access to an
oracle for B that answers membership and equivalence queries. Given such an
oracle for D, we can answer queries for B using queries for D as follows.

Membership. To answer a membership query u
?
∈ B for u ∈ Σ∗, we can directly

reuse the answer of the oracle for the query
(
u
1

) ?
∈ D.

(
u
1

)
∈ D implies u ∈ B since

u is a class string of
(
u
1

)
. Further, if

(
u
1

)
6∈ D then u 6∈ B due to the transparency

property B ⊆ A meaning that A cannot reject u while B accepts it.



Algorithm 1 Learning the class automaton

1: function learnB(Automaton A)
2: function isMemberB(Word u)
3: return isMemberD(

(
u
11

)
)

4: function isEquivalentB(Automaton B̃)
5: result := isEquivalentD((A, B̃))
6: if isPositiveCE(result) then
7: for all c ∈ classStrings(result) do
8: if c 6∈ B̃ then return asPositiveCE(c)

9: else if isNegativeCE(result) then
10: for all c ∈ classStrings(result) do
11: if ¬isMemberB(c) then return asNegativeCE(c)

12: else return true
13: return angluin(isMemberB, isEquivalentB)

Equivalence. To obtain the answer to an equivalence query B̃ ?≡ B for some

hypothesis B̃ we can pose the query (A, B̃)
?≡ (A,B) to the oracle for D. A

positive answer confirms that B̃ is correct. A negative counter-example c ∈ (A, B̃)
is accepted by the hypothesis but should be rejected. Thus, at least one of its class
strings must be wrongly accepted by B̃ since A is correct. To find it, we consider
all class strings u ∈ c� ∩ B̃ accepted by the hypothesis and use membership

queries u
?
∈ B for identifying one that must be rejected. This is returned as

counter-example B̃.
If c 6∈ (A, B̃) is a positive counter-example there must be some class string of

c rejected by B̃ whereas all should be accepted. Hence, we check all class strings
u ∈ c� for one being rejected by B̃ to find the counter-example that is returned.

Algorithm 1 takes a base automaton as input and calls Angluin’s L∗, pro-
viding the functions for membership and equivalence queries. We assume the
functions isMemberD and isEquivalentD to be globally defined and repre-
sent the query to the oracle for D. We suppose that isEquivalentD returns
yes or either a positive or negative counter-example which can be checked by
the functions isPositiveCE and isNegativeCE. The function classStrings
takes a data word and returns all class strings of it.

Example. As an example, consider the transparent data automata D = (A,B)
for the printer example from Section 1 and assume B is unknown. L∗ first asks
queries B for the empty word ε which is translated to the empty data word ε.
Since D accepts, the answer is positive. For closing the table, we need to answer
queries for all words in {ε}·Σ. Since

(
r
1

)
,
(
s
1

)
,
(
t
1

)
6∈ D the answer is negative for all

of them and we obtain a new state for which we choose e.g. r as representative.
To close the table, L∗ asks for the words in r ·Σ and we answer them by posing

queries
(
rr
1

)
,
(
rs
1

)
,
(
rt
1

) ?
∈ D to the oracle which are all negative. The resulting

table consists of U = {ε, r} and V = {ε} with T (ε) = 3 and T (r) = 7. It is
closed and consistent and yields the hypothesis B̃1 shown in Figure 3a.



For the equivalence query, we ask (A, B̃1)
?≡ D and obtain a counter-example,

say c =
(
rrstst
122211

)
∈ D. From the class strings c� = {rst} we obtain rst as a positive

counter-example as it is rejected by B̃1 and return that to the L∗ instance. The
prefixes rst, rs are added to U and the table is filled using queries for rst, rs
as well as all words from {rst, rs} · Σ. Apart from rst we answer all of them
negatively using the oracle for D as before. We have now T (rs) = T (r) but
T (rs · t) 6= T (r · t) and resolve this inconsistency by adding t to V and fill the
table using membership queries. The table is now closed and consistent, the
hypothesis B̃2 is shown in Figure 3b.

Asking (A, B̃2)
?≡ D we obtain, e. g., the positive counter-example

(
rrrsstt
1211212

)
∈

D. Membership queries for all class strings {rrst, rst} yield that rrst is not
in B but in B̃2 and we can provide rrst as negative counter-example for B̃2.
Consequently, rrst and its prefixes are added to U , the table is filled and
we observe first the inconsistency T (r) = T (rr)/T (r · st) 6= T (rr · st). Af-
ter adding st to V and filling the table we handle the second inconsistency
T (ε) = T (rst)/T (ε · rst) 6= T (rst · rst) similarly adding rst to V . We finally
have U = {ε, r, rst, rs, rrst, rrs, rr} and V = {ε, t, st, rst} leading to the correct
hypothesis (Figure 1b). Note that rr, rrs and rrst have equal rows in T and are
thus represented by the same state. The final table is presented as Table 1.

ε r
r, s, t

r, s, t

(a) Hypothesis B̃1.

ε r rs
r, s, t

r, t

s

r, s

t

(b) Hypothesis B̃2.

Fig. 3: Hypotheses while learning the class automaton B of the printer example

3.3 Learning the base automaton

In the previous section we assumed the base automaton A to be given and we
now show how A can be learned when the class automaton B is known. The
major difference is that we can not always answer membership queries for A
conclusively. If some word is rejected due to the class automaton B, the oracle
for D will answer negatively but we do not gain any information on whether
A also rejects. The approach (Algorithm 2) is therefore based on the learning
procedure allowing for the additional answer don’t know (?) [4, 5].



Membership. To answer a membership query u
?
∈ A for a word u ∈ Σ∗ of length

n, we consider the set dw(u) of all data words
(

u
d1dn

)
up to isomorphism on the

data domain ∆. If there exists a data word w ∈ dw(u) where all class strings are
accepted by B, i.e. w� ⊆ B, we can directly use the answer of the oracle for D
to the query w

?
∈ D since acceptance of w, and therefore u, only depends on A.

If there is no such data word, we have to answer inconclusively (?).

Note that an inconclusive answer does not imply that the value is arbitrary.
The answer of the base automaton does not matter for acceptance of a data
word when the class automaton would always reject. However, choosing arbitrary
answers, e.g., always no, can make the language that is factually learned non-
regular. Hence, there would be no guarantee anymore that the learning procedure
for the base automaton terminates as there might not exist an automaton with
a finite state space.

Equivalence. To check a hypothesis Ã for equivalence we pose the query (Ã,B)
?≡

D to the oracle. A positive answer confirms that Ã is correct. A positive or neg-
ative counter-example w =

(
u

d1dn

)
directly yields the respective counter-example

u for Ã. If w is rejected by (Ã,B) but should be accepted, B has to accept all
class strings and this is the case as B is correct. Thus Ã wrongly rejects u. Oth-
erwise, if w is accepted by the hypothesis but should be rejected, all class strings
of w are accepted by B. Hence, it must be A that causes the rejection of w by
rejecting its string projection u. The function stringProjection takes a data
word and returns the string projection of it.

Note that we stop learning the base automaton as soon as the hypothesis Ã
is equivalent to A in the context of B. That is, (Ã, B) is a DA equivalent to D
even though Ã and A are not necessarily language-equivalent.

L∗ with guided search. The setting of learning an automaton with potentially
inconclusive membership queries does, in principle, work independently of the
amount of conclusive answers. However, if many membership queries are an-
swered inconclusively , i.e., the table is mostly filled by ?, the algorithm essen-
tially learns from counter-examples.

In our setting, we can improve the procedure using B. L∗ explores the state
space of the unknown automaton by following single edges: Inconsistencies in
the table are generated by appending single letters to the access strings in U ,
i.e. asking additional membership queries for UΣ. A conclusive answer to these
queries, however, is only possible if there is (by chance) an assignment of data
values to the generated prefix s.t. all class strings are accepted by B.

Hence it is reasonable to extend the prefixes u ∈ U not only by the single
letters from Σ but also by possibly longer suffixes that guarantee that there is
indeed an assignment of data values s.t. all class strings are accepted by B. For
u ∈ Σ∗ we therefore let extB(u) be the set of shortest suffixes v ∈ Σ∗ that can
be appended to u s.t. there is a data word

(
uv
d1dn

)
that is not rejected locally, i.e.(

wv
d1dn

)
� ⊆ B. By short we mean that the extensions of the single class strings are

as short as possible to be accepted by B. Formally, for c ∈ Σ∗, let shortB(c) =



Algorithm 2 Learning the base automaton

1: function learnA(Automaton B)
2: function isMemberA(Word u)
3: for all w ∈ dw(u) do
4: if w� ⊆ B then return isMemberD(w)

5: return ?
6: function isEquivalentA(Automaton Ã)
7: result := isEquivalentD((Ã,B))
8: if isPositiveCE(result) then
9: return asPositiveCE(stringProjection(result))

10: else if isNegativeCE(result) then
11: return asNegativeCE(stringProjection(result))
12: else return true
13: return angluinInexp(isMemberA, isEquivalentA)

{v ∈ Σ∗ | cv ∈ B and ∀v′∈Σ∗,|v′|<|v| : cv′ 6∈ B} be the shortest extensions of c
accepted by B and

⊔⊔
i Li be the shuffle of (finitely many) languages Li ⊆ Σ∗.

Then extB(u) :=
⋃
w∈dw(u)

⊔⊔
c∈w� shortB(c) and additionally to filling the table

for U ·Σ, as standard L∗ does, we also consider U · extB(u) for all u ∈ UΣ.

Example. We consider again the printer example (Section 1) and apply Algo-
rithm 2 for learning the base automaton A. The first query for the empty word
ε gives a positive answer. The table is closed with {ε}Σ. We must answer the
respective queries with ? since the only data words are

(
r
1

)
,
(
s
1

)
,
(
t
1

)
for which the

class strings are rejected by B.

In the guided search step we do not find shortest extensions of s, t yielding
definite results. For r we find st since

(
rst
111

)
� = {rst} ⊆ B which is added to V .

For filling the table queries st, sst, tst, rst
?
∈ A have to be answered. We answer

with ? for st, sst, tst since no data values can be found to produce a query for

D but posing
(
rst
111

) ?
∈ D yields that rst ∈ A.

The table is now weakly closed and weakly consistent giving S1 = ({ε, rst}, {})
as sample set and thereby the trivial hypothesis Ã1 accepting Σ∗. For the equiv-

alence check, we pose (Ã1,B)
?≡ D to the oracle that returns a negative counter-

example, e.g.
(
rrsstt
111111

)
6∈ D. Adding the counter-example to U and proceeding

until the table is again weakly closed and weakly consistent yields Table 2 and
the sample set S2 = (S3

2 , S
7
2) with

S3
2 = {ε, rst, rrstst, rrsrtstst, rrrststst},
S7
2 = {rrsstt, rrssttrst, rrsstrtst, rrsstrstt, rrssrttst,

rrssrtstt, rrssrsttt, rrsrsttst, rrsrssttt, rrsrststt,
rrsrtsstt, rrrssttst, rrrstsstt, rrrsssttt}.

The hypothesis Ã2 must now have at least three states and could thus already
be correct.



3.4 Complete learning of tDA

We have seen so far how both components, the base and the class automaton can
be learned using the respective other. Now the approaches can be interleaved to
obtain a complete learning procedure for transparent data automata as follows.

The two learning procedures for the base and the class automaton are started
independently. Both processes synchronize only on equivalence queries. After
providing a hypothesis, the process has to wait for the other process to come

up with a hypothesis as well. These two form the query (Ã, B̃) = D̃ ?≡ D which
is posed to the oracle for D. From a counter-example for D̃ we can always
generate a counter-example for at least one of the processes. This ensures that
the hypothesis D̃ improves in every step. If a counter-example is derived for only
one of the processes, the respective other has to wait until a new hypothesis is
provided.

Algorithm 3 presents the handling of membership and equivalence queries.
The coordination is done by the function angluinParallel that takes the
functions for handling both types of membership queries and the equivalence
query for the complete hypothesis D̃. For better readability, Algorithm 3 is
simplified in the sense that it generates a counter-example for exactly one of
the learning tasks, even though it may be possible to obtain one for each. Such
parallelization and also the synchronization part that is omitted here can be
implemented in a straight forward manner using, e. g., threads and message
channels or an actor model.

Membership. Membership queries for the class automaton B can be handled as
before since the base automaton A is not involved. For answering membership
queries for A Algorithm 2 looked up a set of words in B which is now simulated
using membership queries for B instead of a direct lookup.

Equivalence. The individual equivalence queries are handled together forming
a hypothesis D̃ = (Ã, B̃) for D. A positive answer confirms that the single
hypotheses are correct. When the oracle provides a counter-example w ∈ (Σ ×
∆)∗ we consider the following two cases.

If w ∈ D̃ is a negative counter-example we check each class string c ∈ w� of
w that is rejected by the hypothesis B̃ for membership in B. That way we either
find a counter-example for B̃ and can proceed with learning B or B̃ behaves
correctly on w and its string projection str(w) must then be a counter-example
for Ã that is used to continue learning A.

A positive counter-example w 6∈ D̃ is wrongly rejected by the hypothesis and
we check if some class string c ∈ w� of w is rejected by B̃. If there is such c, it
is supposed to be accepted and returned as counter-example for B̃. Otherwise B̃
correctly accepts all class strings of w and thus Ã must have wrongly rejected
the string projection str(w) which we return as counter-example for Ã. Note
that with every equivalence query to the oracle we gain a counter-example for at
least one of the sub-processes and as soon as one of the sub-processes learned the
correct automaton, it does not change anymore until the other process finishes
as well.



Algorithm 3 Learning transparent data automata

1: function learnAB( )
2: function isMemberA(Word u)
3: for all w ∈ dataWords(u) do
4: if ∀c∈w� : isMemberB(c) then return isMemberD(w)

5: return ?
6: function isMemberB(Word u)
7: return isMemberD(

(
u
11

)
)

8: function isEquivalentAB(Automaton Ã, Automaton B̃)
9: result := isEquivalentD((Ã, B̃))

10: if isPositiveCE(result) then
11: for all u ∈ result� do
12: if u 6∈ B̃ then return asPositiveCEForB(u)

13: return asPositiveCEForA(stringProjection(result))
14: else if isNegativeCE(result) then
15: for all u ∈classStrings(result) do
16: if ¬isMemberB(u) then return asNegativeCEForB(u)

17: return asNegativeCEForA(stringProjection(result))
18: else return true
19: return angluinParallel(isMemberA, isMemberB, isEquivalentAB)

Example. We illustrate the complete learning procedure using again the printer
example as above. The process for learning B is started and proceeds as described
in Section 3.2 until the first hypothesis B̃1 is constructed. Next, the learning
procedure forA starts as described in Section 3.3 except that for checking r, s, t ∈
B, membership queries for B are used.

For the guided search, we use B̃1 to find suffixes for r, s, t. While knowing
B led to the suffix st for r, we now obtain no suitable suffix at all as B̃1 does
not accept any continuation. We still have U = V = {ε} and T (u) = ? for all
u ∈ UΣ. The sample sets are now S1 = ({ε}, ∅) but that generates the same
hypothesis Ã1 accepting Σ∗.

As B̃1 rejects any class string, the equivalence query (Ã1, B̃1)
?≡ D returns a

positive counter-example, e.g.
(
rst
111

)
∈ D. The string projection rst is a positive

counter-example for B̃1 and the process proceeds as before finally coming up
with hypothesis B̃2.

As rst is already accepted by Ã1, it is no counter-example for learning A.

The next equivalence query is (Ã1, B̃2)
?≡ D yielding a negative counter-example,

e.g.
(
rrsstt
121212

)
6∈ D. The only class string is rst which is accepted by B and so we

do not obtain a counter-example for B̃2 but keep the hypothesis.

For Ã, rrsstt ∈ Ã1 must be a negative counter-example because B̃2 behaved
correctly on all class strings. The process for learning A therefore adds rrsstt
and all prefixes to the table (U). In our case, the additional suffixes found by
using B̃2 for the guided search are the same as we got using B in Section 3.3.



The obtained table is thus also the same and we obtain a hypothesis with at
least three states for which we assume to choose the correct one Ã2 ≡ A

The following equivalence query (Ã2, B̃2)
?≡ D yields a negative counter-

example, e.g.
(
rrrstst
1212211

)
6∈ D. The class strings are rrst and rst and querying

them for membership in B yields rrst 6∈ B as negative counter-example for B̃2.
As before, this leads to the correct hypothesis B̃3 = B.

Theorem 5 (Termination). The learning procedures (Algorithms 1, 2 and 3)
terminate.

The algorithms employ Angluin’s learning algorithm L∗ which terminates
for regular languages [1], also in the setting of possibly inconclusive answers by
the oracle [5, 11]. These results apply in our setting as the base and the class
automata are finite automata and the algorithms simulate an oracle for the
respective regular languages.

4 Conclusion

In this paper, we have presented an active learning algorithm for a subclass of
deterministic data automata, which we called transparent data automata. To
put this class into a general picture, we have shown that despite data automata
being equally expressive to class memory automata, deterministic data automata
are a strict subclass of deterministic class memory automata. For the latter, we
have shown that their complement is within the class of (non-deterministic) data
automata, which comes with a decidable emptiness problem. Thus, equivalence
of deterministic class memory automata and thus transparent data automata is
decidable, which guarantees that the oracle used within the active learning al-
gorithm is in principle realizable. The transparency condition for data automata
intuitively states that local behavior may not be restricted globally, following the
idea that a single process should be able to operate especially when no further
process is around.

Note that one could consider the case in which global behaviour is part of the
local behaviour. Then, one would obtain a similar learning procedure without
don’t knows for the base automaton as for the local automaton in the transparent
case. As we do not see any valuable practical setting in which this is satisfied,
we do not list the results here.
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ε t st rst
ε 3 7 7 3

r 7 7 3 7

rst 3 7 7 7

rs 7 3 7 7

rrst 7 7 7 7

rrs 7 7 7 7

rr 7 7 7 7

ε r 7 7 3 7

s 7 7 7 7

t 7 7 7 7

r r 7 7 7 7

s 7 3 7 7

t 7 7 7 7

rst r 7 7 7 7

s 7 7 7 7

t 7 7 7 7

rs r 7 7 7 7

s 7 7 7 7

t 3 7 7 7

rrst r 7 7 7 7

s 7 7 7 7

t 7 7 7 7

rrs r 7 7 7 7

s 7 7 7 7

t 7 7 7 7

rr r 7 7 7 7

s 7 7 7 7

t 7 7 7 7

Table 1: The final table produced while learning the class automaton B of the
printer example.
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