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Abstract. In this paper and its accompanying tutorial, we discuss the
topic of teaching runtime verification. The aim of the tutorial is twofold.
On the one hand, a condensed version of a course currently given by the
author will be given within the available tutorial time, giving an idea
about the topics of the course. On the other hand, the experience gained
by giving the course should also be presented and discussed with the
audience. The overall goal is to simplify the work of colleagues developing
standard and well accepted courses in the field of runtime verification.

1 Introduction

Runtime Verification (RV) has become a mature field within the last decades.
It aims at checking correctness properties based on the actual execution of a
software or hardware system.

Research on runtime verification is traditionally presented at formal meth-
ods conferences like CAV (computer aided verification) or TACAS (tools and
algorithms for the analysis of systems), or, software engineering conferences like
ICSE or ASE. Starting in 2001, the RV community has formed its own scien-
tific event, the runtime verification workshop, which has in the meantime been
upgraded to the runtime verification conference. There is a community forming
webpage that is available under the address www.runtime-verification.org

and first definitions and explanations entered their way into the online dictio-
nary wikipedia. Last but not least, several courses on runtime verification are
given to PhD, master, or even bachelor students at several universities.

So far, however, no dedicated text book on the topic of runtime verification
is available and actual courses on runtime verification are still to be considered
preliminary as the field of runtime verification is still undergoing rapid changes
and no kernel material of the field has been identified, or, at least has not been
fixed by the community.

In this paper and its accompanying tutorial, we discuss the topic of teaching
runtime verification. It is based on the author’s course given at the University
of Lübeck. The course took place once a week, each time 1.5 hours, and in total
about 14 times. The aim of this paper and its accompanying tutorial is twofold.
On the one hand, a condensed version of the course should be shown, giving an
idea about the outline and topics of the course. On the other hand, the experience
gained by giving the course are also presented and discussed with the audience.
The overall goal of the tutorial is to simplify the work of colleagues developing
standard and well accepted courses in the field of runtime verification.
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Content of the RV course

1. The tutorial/course starts with a short discussion on typical areas that are
preferably addressed at runtime. It is motivated why static verification tech-
niques must often be encompassed by runtime verification techniques.

2. Runtime verification is defined and a taxonomy for runtime verification is
developed. The taxonomy will be the basis for getting a systematic picture on
the field of runtime verification and may also be used to organize the different
contributions by the runtime verification community. Runtime verification is
identified as a research discipline aiming at synthesizing monitors from high
level specifications, integrating them into existing execution frameworks, and
using the results of monitors for steering or guiding a program. It may work
on finite, finite but continuously expanding, or on prefixes of infinite traces.

3. In the subsequent part of the tutorial/course synthesis techniques for Linear
Temporal Logic (LTL) will be presented. Both, approaches based on rewrit-
ing the formula to check and approaches based on translating the formula at
hand into an automaton will be briefly described. Moreover the conceptual
difference between these two fundamental approaches will be explained.

4. The second part of the tutorial deals with integrating monitors into running
systems and with techniques for steering the executing system based on the
results of monitors.

5. In the third part we will list existing runtime verification frame works, which
will eventually be classified with respect to the initially developed taxonomy.

Intended Audience. The tutorial is especially intended for current or future
lecturers in the field of runtime verification. At the same time, as the main ideas
of the underlying course are taught, it is of interest to advanced master students
and PhD students for getting an introduction to the field of runtime verification.
Finally, researchers active in formal methods who want to get comprehensive
picture on the field of runtime verification may benefit from the tutorial as well.

2 The Virtue of Runtime Verification

The course starts with a short discussion on typical areas that are preferably ad-
dressed at runtime. It is motivated why static verification must often be encom-
passed by runtime verification techniques. We do so by listing certain application
domains, highlighting the distinguishing features of runtime verification:

– The verification verdict, as obtained by model checking or theorem proving,
is often referring to a model of the real system under analysis, since applying
these techniques directly to the real implementation would be intractable.
The model typically reflects most important aspects of the corresponding im-
plementation, and checking the model for correctness gives useful insights to
the implementation. Nevertheless, the implementation might behave slightly
different than predicted by the model. Runtime verification may then be
used to easily check the actual execution of the system, to make sure that
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the implementation really meets its correctness properties. Thus, runtime
verification may act as a partner to theorem proving and model checking.

– Often, some information is available only at runtime or is conveniently
checked at runtime. For example, whenever library code with no accompany-
ing source code is part of the system to build, only a vague description of the
behavior of the code might be available. In such cases, runtime verification
is an alternative to theorem proving and model checking.

– The behavior of an application may depend heavily on the environment of
the target system, but a precise description of this environment might not
exist. Then it is not possible to only test the system in an adequate manner.
Moreover, formal correctness proofs by model checking or theorem prov-
ing may only be achievable by taking certain assumptions on the behavior of
the environment—which should be checked at runtime. In this scenario, run-
time verification outperforms classical testing and adds on formal correctness
proofs by model checking and theorem proving.

– In the case of systems where security is important or in the case of safety-
critical systems, it is useful also to monitor behavior or properties that have
been statically proved or tested, mainly to have a double check that ev-
erything goes well: Here, runtime verification acts as a partner of theorem
proving, model checking, and testing.

3 Runtime Verification—Definition and Taxonomy

3.1 Towards a Definition

A software failure is the deviation between the observed behavior and the
required behavior of the software system. A fault is defined as the deviation
between the current behavior and the expected behavior, which is typically iden-
tified by a deviation of the current and the expected state of the system. A fault
might lead to a failure, but not necessarily. An error, on the other hand, is a
mistake made by a human that results in a fault and possibly in a failure [1].

According to IEEE [2], verification comprises all techniques suitable for show-
ing that a system satisfies its specification. Traditional verification techniques
comprise theorem proving [3], model checking [4], and testing [5,6]. A relatively
new direction of verification is runtime verification,1 which manifested itself
within the previous years as a lightweight verification technique:

Definition 1 (Runtime Verification). Runtime verification is the discipline
of computer science that deals with the study, development, and application of
those verification techniques that allow checking whether a run of a system under
scrutiny (SUS) satisfies or violates a given correctness property. Its distinguish-
ing research effort lies in synthesizing monitors from high level specifications.

1 http://www.runtime-verification.org

http://www.runtime-verification.org
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Monitors. A run of a system is understood as a possibly infinite sequence of
the system’s states, which are formed by current variable assignments, or as the
sequence of (input/output) actions a system is emitting or performing. Formally,
a run may be considered as a possibly infinite word or trace. An execution of
a system is a finite prefix of a run and, formally, it is a finite trace. When
running a program, we can only observe executions, which, however, restrict
the corresponding evolving run as being their prefix. While, in verification, we
are interested in the question whether a run, and more generally, all runs of a
system adhere to given correctness properties, executions are the primary object
analyzed in the setting of RV.

Checking whether an execution meets a correctness property is typically per-
formed using a monitor . In its simplest form, a monitor decides whether the
current execution satisfies a given correctness property by outputting either
yes/true or no/false. Formally, when [[ϕ]] denotes the set of valid executions
given by property ϕ, runtime verification boils down to checking whether the
execution w is an element of [[ϕ]]. Thus, in its mathematical essence, runtime
verification answers the word problem, i. e. the problem whether a given word is
included in some language. However, to cover richer approaches to RV, we define
the notion of monitors in a slightly more general form:

Definition 2 (Monitor). A monitor is a device that reads a finite trace and
yields a certain verdict.

Here, a verdict is typically a truth value from some truth domain. A truth domain
is a lattice with a unique top element true and a unique bottom element false .
This definition covers the standard two-valued truth domain B = {true, false}
but also fits for monitors yielding a probability in [0, 1] with which a given cor-
rectness property is satisfied (see Section 4.1 for a precise definition). Sometimes,
one might be even more liberal and consider also verdicts that are not elements
of a truth domain.

3.2 Taxonomy

A taxonomy may be used to get a systematic account to the field of runtime
verification and to organize the different contributions by the RV community
into a global picture. Figure 1 shows a taxonomy that is briefly described in the
following.

First, runtime verification may work on (i) finite (terminated), (ii) finite but
continuously expanding, or (iii) on prefixes of infinite traces. For the two latter
cases, a monitor should adhere to the two maxims impartiality and anticipation.
Impartiality requires that a finite trace is not evaluated to true or, respectively
false, if there still exists an (infinite) continuation leading to another verdict. An-
ticipation requires that once every (infinite) continuation of a finite trace leads to
the same verdict, then the finite trace evaluates to this very same verdict. Intu-
itively, the first maxim postulates that a monitor only decides for false—meaning
that a misbehavior has been observed—or true—meaning that the current be-
havior fulfills the correctness property, regardless of how it continues—only if this
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Fig. 1. Taxonomy of runtime verification

is indeed the case. Clearly, this maxim requires to have at least three different
truth values: true, false , and inconclusive, but of course more than three truth
values might give a more precise assessment of correctness. The second maxim
requires a monitor to indeed report true or false , if the correctness property is
indeed violated or satisfied. In simple words, impartiality and anticipation, guar-
antee that the semantics is neither premature nor overcautious in its evaluations.

RV approaches may differ in what part of a run is actually monitored. For
example, a system may be analyzed with respect to its input/output behavior ,
one of its state sequences , or wrt. a sequence of events related to the system’s
execution.

A monitor may on one hand be used to check the current execution of a
system. In this setting, which is termed online monitoring, the monitor should
be designed to consider executions in an incremental fashion. On the other hand,
a monitor may work on a (finite set of) recorded execution(s), in which case we
speak of offline monitoring.

Synthesized monitoring code may be interweaved with the program to check,
i.e. it may be inlined , or, it may be used to externally synthesize a monitoring
device, i.e., it may be outlined. Clearly, inlined monitors act online.
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The monitor typically interferes with the system to observe, as it runs, for
example, on the same CPU as the SUS. However, using additional computation
resources, monitoring might not change the behavior of the SUS. We distinguish
these two cases using the terms invasive and non-invasive monitoring.

While, to our understanding, runtime verification is mainly concerned with the
synthesis of efficiently operating monitors, RV frameworks may be distinguished
by whether the resulting monitor is just observing the program’s execution and
reporting failures, i.e., it is passive, or, whether the monitor’s verdict may be
used to actually steer or heal the system’s execution, i.e., it is active.

Runtime verification may be used for different applications. Most often, it
is used to check safety conditions . Similarly, it may be used to ensure security
conditions . However, it is equally suited to simply collect information of the
system’s execution, or, for performance evaluation purposes.

4 Runtime Verification for LTL

As considered the heart of runtime verification, the main focus of an RV course
lies on synthesis procedures yielding monitors from high-level specifications. We
outline several monitor synthesis procedures for Linear-time Temporal Logic
(LTL, [7]). In general, two main approaches can be found for synthesizing mon-
itoring code: Monitors may either be given in terms of an automaton, which is
precomputed from a given correctness specification. Alternatively, the correct-
ness specification may be taken directly and rewritten in a tableau-like fashion
when monitoring the SUS. We give examples for both approaches.

4.1 Truth Domains

We consider the traditional two-valued semantics with truth values true, denoted
with �, and false, denoted with ⊥, next to truth values giving more informa-
tion to which degree a formula is satisfied or not. Since truth values should be
combinable in terms of Boolean operations expressed by the connectives of the
underlying logic, these truth values should form a certain lattice.

A lattice is a partially ordered set (L,�) where for each x, y ∈ L, there exists
(i) a unique greatest lower bound (glb), which is called the meet of x and y,
and is denoted with x � y, and (ii) a unique least upper bound (lub), which is
called the join of x and y, and is denoted with x � y. A lattice is called finite
iff L is finite. Every finite lattice has a well-defined unique least element, called
bottom, denoted with ⊥, and analogously a greatest element, called top, denoted
with �. A lattice is distributive, iff x � (y � z) = (x � y) � (x � z), and, dually,
x � (y � z) = (x � y) � (x � z). In a de Morgan lattice, every element x has a
unique dual element x, such that x = x and x � y implies y � x. As the common
denominator of the semantics for the subsequently defined logics is a finite de
Morgan lattice, we define:

Definition 3 (Truth domain). We call L a truth domain, if it is a finite de
Morgan lattice.
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4.2 LTL—Syntax and Common Semantics

As a starting point for all subsequently defined logics, we first recall linear tem-
poral logic (LTL).

For the remainder of this paper, let AP be a finite and non-empty set of
atomic propositions and Σ = 2AP a finite alphabet . We write ai for any single
element of Σ, i.e., ai is a possibly empty subset of propositions taken from AP.

Finite traces (which we call interchangeably words) over Σ are elements of
Σ∗, usually denoted with u, u′, u1, u2, . . . The empty trace is denoted with ε.
Infinite traces are elements of Σω, usually denoted with w,w′, w1, w2, . . . For
some infinite trace w = a0a1 . . . , we denote with wi the suffix aiai+1 . . . In
case of a finite trace u = a0a1 . . . an−1, u

i denotes the suffix aiai+1 . . . an−1 for
0 ≤ i < n and the empty string ε for n ≤ i.

The set of LTL formulae is defined using true, the atomic propositions p ∈ AP,
disjunction, next X , and until U , as positive operators, together with negation
¬. We moreover add dual operators, namely false, ¬p, weak next X̄ , and release
R, respectively:

Definition 4 (Syntax of LTL formulae). Let p be an atomic proposition
from a finite set of atomic propositions AP. The set of LTL formulae, denoted
with LTL, is inductively defined by the following grammar:

ϕ ::= true | p | ϕ ∨ ϕ | ϕ U ϕ | Xϕ
ϕ ::= false | ¬p | ϕ ∧ ϕ | ϕ R ϕ | X̄ϕ
ϕ ::= ¬ϕ

In a corresponding course, typically further operators are introduced as abbre-
viations like finally F and globally G etc.

In the sequel, we introduce several semantic functions, both classical versions
for finite and infinite traces and versions adapted to suit the needs in runtime
verification. To this end, we consider linear temporal logics L with a syntax as in
Definition 4, together with a semantic function [ |= ]L : Σω/∗×LTL → BL that
yields an element of the truth domain BL, given an infinite or finite trace and an
LTL formula. The logics considered in the following have a common part, but
differ in certain aspects. The common part of the semantics is shown in Figure 2.

For two formulae ϕ, ψ ∈ LTL, we say that ϕ is equivalent to ψ, denoted with
ϕ ≡L ψ, iff for all w ∈ Σω/∗, we have [w |= ϕ]L = [w |= ψ]L.

4.3 LTL on Finite Traces

Let us first turn our attention to linear temporal logics over finite traces. We
start by recalling a finite version of LTL on finite traces described by Manna
and Pnueli [8], here called FLTL.

When interpreting LTL formulae over finite traces, the question arises, how
to understand Xϕ when a word consists of a single letter, since then, no next
position exists on which one is supposed to consider ϕ. The classical way to deal
with this situation, as apparent for example in Kamp’s work [9] is to understand
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Boolean constants

[w |= true]L = �
[w |= false]L = ⊥

Boolean combinations

[w |= ¬ϕ]L = [w |= ϕ]L
[w |= ϕ ∨ ψ]L = [w |= ϕ]L � [w |= ψ]L
[w |= ϕ ∧ ψ]L = [w |= ϕ]L � [w |= ψ]L

atomic propositions

[w |= p]ω =

{
� if p ∈ a0

⊥ if p /∈ a0
[w |= ¬p]ω =

{
� if p /∈ a0

⊥ if p ∈ a0

until/release

[w |= ϕ U ψ]L =

⎧⎪⎨
⎪⎩
� there is a k, 0 ≤ k < |w| : [wk |= ψ]L = � and

for all l with 0 ≤ l < k : [wl |= ϕ] = �
⊥ else

[w |= ϕ R ψ]L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
� for all k, 0 ≤ k < |w| : [wk |= ψ]L = � or

there is a k, 0 ≤ k < |w| : [wk |= ϕ]L = � and

for all l with 0 ≤ l ≤ k : [wl |= ψ] = �
⊥ else

Fig. 2. Semantics of LTL formulae over a finite or infinite trace w = a0a1 . . . ∈ Σ∗/ω

X as a strong next operator, which is false if no further position exists. Manna
and Pnueli suggest in [8] to enrich the standard framework by adding a dual
operator, the weak next X̄ , which allows to smoothly translate formulae into
negation normal form. In other words, the strong X operator is used to express
with Xϕ that a next state must exist and that this next state has to satisfy
property ϕ. In contrast, the weak X̄ operator in X̄ϕ says that if there is a next
state, then this next state has to satisfy the property ϕ. We call the resulting
logic FLTL defined over the set of LTL formulae (Definition 4) FLTL.

Definition 5 (Semantics of FLTL [8]). Let u = a0 . . . an−1 ∈ Σ∗ denote
a finite trace of length n, with u = ε. The truth value of an FLTL formula ϕ
wrt. u, denoted with [u |= ϕ]F , is an element of B2 and is inductively defined as
follows: Boolean constants, Boolean combinations, and atomic propositions are
defined as for LTL (see Figure 2, taking u instead of w). (Weak) next are defined
as shown in Figure 3.

Let us first record that the semantics of FLTL is not given for the empty
word. Moreover, note that a single letter does satisfy true but does not satisfy
Xtrue.Also, [u |= ¬Xϕ]F = [u |= X̄¬ϕ]F follows from LTL whenever |u| > 1
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(weak) next

[u |= Xϕ]F =

{
[u1 |= ϕ]F if u1 
= ε

⊥ otherwise
[u |= X̄ϕ]F =

{
[u1 |= ϕ]F if u1 
= ε

� otherwise

Fig. 3. Semantics of FLTL formulae over a trace u = a0 . . . an−1 ∈ Σ∗

and from inspecting the semantics in Figure 3 when |u| = 1. Thus, every FLTL
formula can be transformed into an equivalent formula in negation normal form.

Monitors for LTL on finite traces The simple answer here is to say that for
a finite word, the semantics of an LTL formula can immediately be computed
from the semantics definition. However, a slightly more clever way is presented
in the next subsection.

4.4 LTL on Finite But Expanding Traces

Let us now consider an LTL semantics adapted towards monitoring finite but ex-
panding traces. Especially when monitoring online, a run of SUS may be given
letter-by-letter, say, state-by-state, event-by-event etc. A corresponding moni-
toring procedure should ideally be able to process such an input string letter-
by-letter and should be impartial wrt. the forthcoming letters to receive.

The idea, which is already used in [10], is to use a four-valued semantics, con-
sisting of the truth values true (�), false (⊥), possibly true (�p), and possibly false
(⊥p). The latter two values are used to signal the truth value of the input word
wrt. the two valued semantics provided the word will terminate now. More specif-
ically, the four-valued semantics differs from the two-valued semantics shown in
the previous subsection only be yielding possibly false rather than false at the end
of a word for the strong next operator and possibly true rather than true for the
weak next operator. We sometimes call the resulting logic FLTL4.

Definition 6 (Semantics of FLTL4). Let u = a0 . . . an−1 ∈ Σ∗ denote a
finite trace of length n, with u = ε. The truth value of an FLTL4 formula ϕ
wrt. u, denoted with [u |= ϕ]4, is an element of B4 and is inductively defined as
follows: Boolean constants, Boolean combinations, and atomic propositions are
defined as for LTL (see Figure 2, taking u instead of w). (Weak) next are defined
as shown in Figure 4.

Monitoring expanding traces. While for a given finite trace, the semantics of
an LTL formula could be computed according to the semantics definition, it is
important for practical applications, especially in online verification, to compute
the semantics in an incremental, more precisely, in a left-to-right fashion for the
given trace.
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(weak) next

[u |= Xϕ]4 =

{
[u1 |= ϕ]4 if u1 
= ε

⊥p otherwise
[u |= X̄ϕ]4 =

{
[u1 |= ϕ]4 if u1 
= ε

�p otherwise

Fig. 4. Semantics of FLTL4 formulae over a trace u = a0 . . . an−1 ∈ Σ∗

To do so, we provide a rewriting based approach (see also [11]). Thanks to
the equivalences ϕ U ψ ≡ ψ ∨ (ϕ∧X (ϕ U ψ)) and ϕ R ψ ≡ ψ∧ (ϕ∨ X̄ (ϕ R ψ))
for until and release, we may always assume that the given formula is a boolean
combination of atomic propositions and next-state formulas. Now, given a single,
presumably final letter of a trace, the atomic propositions may be evaluated as
to whether the letter satisfies the proposition. Each (strong) next-formula, i.e., a
formula starting with a strong next, evaluates to possibly false, while each weak-
next formula evaluates to possibly true. The truth value of the formula is then
the boolean combination of the respective truth values, reading ∧ as �, ∨ as �,
and ¬ as .̄ Likewise, the formula to check may be rewritten towards a formula to
be checked when the next letter is available. An atomic proposition is evaluated
as before yielding the formulas true or false. A formula of the form Xϕ or X̄ϕ is
rewritten to ϕ. In Algorithm 1, a corresponding function is described in pseudo
code, yielding for the formula to check and a single letter a tuple consisting of
the current truth value in the first component and the formula to check with the
next letter in the second component.

The same algorithm may also be used for evaluating the (two-valued) seman-
tics of an FLTL formula in a left-to-right fashion, by mapping possibly true to
true and possibly false to false, when reaching the end of the word.

4.5 LTL on Infinitive Traces

LTL formulae over infinite traces are interpreted as usual over the two valued
truth domain B2.

Definition 7 (Semantics of LTL [7]). The semantics of LTL formulae over
infinite traces w = a0a1 . . . ∈ Σω is given by the function [ |= ]ω : Σω×LTL →
B2, which is defined inductively as shown in Figures 2,5.

Inspecting the semantics, we observe that there is no difference of X and X̄ in
LTL over infinite traces. Recall that X̄ acts differently when finite words are
considered.

We call w ∈ Σω a model of ϕ iff [w |= ϕ] = �. For every LTL formula ϕ,
its set of models, denoted with L(ϕ), is a regular set of infinite traces which is
accepted by a corresponding Büchi automaton [12,13].
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Algorithm 1. Evaluating FLTL4 for each subsequent letter

evalFLTL4 true a = (�,�)

evalFLTL4 false a = (⊥,⊥)

evalFLTL4 p a = ((p in a),(p in a))

evalFLTL4 ¬ϕ a = let (valPhi ,phiRew) = evalFLTL4 ϕ a

in (valPhi,¬phiRew)
evalFLTL4 ϕ ∨ ψ a = let

(valPhi ,phiRew) = evalFLTL4 ϕ a

(valPsi ,psiRew) = evalFLTL4 ψ a

in (valPhi � valPsi ,phiRew ∨ psiRew)

evalFLTL4 ϕ ∧ ψ a = let

(valPhi ,phiRew) = evalFLTL4 ϕ a

(valPsi ,psiRew) = evalFLTL4 ψ a

in (valPhi � valPsi ,phiRew ∧ psiRew)

evalFLTL4 ϕ U ψ a = evalFLTL4 ψ ∨ (ϕ ∧X (ϕ U ψ)) a

evalFLTL4 ϕ R ψ a = evalFLTL4 ψ ∧ (ϕ ∨ X̄ (ϕ R ψ)) a

evalFLTL4 Xϕ a = (⊥p,ϕ)
evalFLTL4 X̄ϕ a = (�p,ϕ)

(weak) next

[w |= Xϕ]ω = [w1 |= ϕ]ω
[w |= X̄ϕ]ω = [w1 |= ϕ]ω

Fig. 5. Semantics of LTL formulae over an infinite traces w = a0a1 . . . ∈ Σω

LTL3 In[14], we proposed LTL3 as an LTL logic with a semantics for finite
traces, which follows the idea that a finite trace is a prefix of a so-far unknown
infinite trace. More specifically, LTL3 uses the standard syntax of LTL as defined
in Definition 4 but employs a semantics function [u |= ϕ]3 which evaluates each
formula ϕ and each finite trace u of length n to one of the truth values in B3 =
{�,⊥, ?}. B3 = {�,⊥, ?} is defined as a de Morgan lattice with ⊥ � ? � �, and
with ⊥ and � being complementary to each other while ? being complementary
to itself.

The idea of the semantics for LTL3 is as follows: If every infinite trace with
prefix u evaluates to the same truth value � or ⊥, then [u |= ϕ]3 also evaluates
to this truth value. Otherwise [u |= ϕ]3 evaluates to ?, i. e., we have [u |= ϕ]3 =?
if different continuations of u yield different truth values. This leads to the
following definition:

Definition 8 (Semantics of LTL3). Let u = a0 . . . an−1 ∈ Σ∗ denote a finite
trace of length n. The truth value of a LTL3 formula ϕ wrt. u, denoted with
[u |= ϕ]3, is an element of B3 and defined as follows:
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Mϕ

Input Formula NBA
Emptiness
per state

NFA DFA FSM

Fig. 6. The procedure for getting [u |= ϕ] for a given ϕ

[u |= ϕ]3 =

⎧
⎪⎨

⎪⎩

� if ∀w ∈ Σω : [uw |= ϕ]ω = �
⊥ if ∀w ∈ Σω : [uw |= ϕ]ω = ⊥
? otherwise.

Monitoring of LTL3. We briefly sketch the monitor synthesis procedure devel-
oped in [15]. The synthesis procedure follows the automata-based approach in
synthesizing a Moore machine as a monitor for a given correctness property.
While, in general, also a Moore machine could have been generated for FLTL
as well, we refrained to do so for two reasons: First, the presented procedure for
FLTL works on-the-fly and thus might be more efficient in practice. Second, both
a rewriting approach and an automaton-based approach should be presented in
the underlying course.

For LTL3, an automaton approach is more adequate due to the fact that
LTL3 is anticipatory. Anticipation typically requires rewrite steps followed by a
further analysis easily done using automata theory. See [16] for a more elaborate
discussion of these issues in the context of linear temporal logic.

The synthesis procedure for LTL3 first translates a given formula into the
Büchi automaton accepting all its models. Reading a finite prefix of a run, us-
ing the corresponding automaton, false can be derived for the given formula,
whenever there is no accepting continuation in the respective Büchi automa-
ton. Likewise, true can be derived, when, for a given finite word, the automaton
accepting all counter examples reaches only states the have no accepting con-
tinuation anymore. Using this idea, the corresponding Büchi automata can be
translated into NFA, then DFA, and, finally into a (minimal) FSM (Moore ma-
chine) as the (unique) monitor for a given LTL3 formula (see Figure 6).

While the sketched procedure should be improved in practical implementa-
tions, the chosen approach manifests itself beneficial for teaching, as a simple,
clear, roadmap is followed.

4.6 Extensions

The studied versions of LTL were chosen to show certain aspects of monitor-
ing executions. For practical applications, several extensions such as real-time
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aspects or monitoring computations, which requires a meaningful treatment of
data values, is essential. Due to time constraints, these topics have not been
adressed in the underlying course, though research results and corresponding
RV frameworks are available (see also Section 6).

5 Monitors and the Behavior to Check

This part of the tutorial deals with the problem of integrating monitors into
SUS and with techniques to steer the executing system by means of the results
of monitors. This aspect of runtime verification was discussed only briefly in the
corresponding runtime verification course. The main goal was to give a general
overview of approaches for connecting monitors to existing systems.

Monitoring systems. Generally, we distinguish using instrumentation, using log-
ging APIs , using trace tools , or dedicated tracing hardware. Popular in runtime
verification is the use of code instrumentation, for which either the source code,
the (virtual) byte code, or the binary code of an application is enriched by the
synthesized monitoring code. Code instrumentation allows a tight integration
with the running system and is especially useful when monitoring online. How-
ever, code instrumentation affects the runtime of the original system. It is thus
not recommend whenever the underlying systems has been verified to meet cer-
tain safety critical timing behavior. Using standard logging frameworks, like
log4j, allows to decompose the issue of logging information of the running sys-
tem from the issue of analyzing the logged information with respect to failures.
In principal, the logged information may be stored and analyzed later, or, using
additional computing ressources online, thus not affecting system’s execution.
Logging APIs, however, require the source code of the SUS. Tracing tools like
Unix’ strace run the system under scrutiny in a dedicated fashion an provide
logging information. Again, the timing behavior of the system may be influ-
enced. The advantage of such tracing tools lies in their general applicability, the
disadvantage in their restricted logging information. Finally, dedicated tracing
hardware may be used to monitor a system non-invasively [17].

Steering systems. Whenever a monitor reports a failure, one might be interested
in responding to the failure, perhaps even healing the failure. Clearly, this goal is
only meaningful in an online monitoring approach. We distinguish the following
forms of responding to failures: informing, where only further information is
presented to a tester or user of a system, throwing exceptions for systems that
can deal with exceptions, or executing code, which may be user provided or
synthesized automatically. The latter approach is well supported by frameworks
using code instrumentation as healing code may easily be provided together with
the monitoring property.

Runtime verification frameworks may differ in their understanding of failures.
Most frameworks identify failure and fault. Then, whenever a monitor reports
a failure and thus a fault, healing code may be executed to deal with the fault.
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When distinguishing between failures and faults, it may be beneficial to start a
diagnosis identifying a fault, whenever a monitor reports a failure (see [18]).

6 Existing Frameworks

In the third part we will visit existing runtime verification frame works and map
the approaches to the initially developed taxonomy. Due to the limited space
of the proceedings, we only list the considered frameworks in an alphabetical
order: (i) Eagle [19] (ii) J-LO [20] (iii) Larva [21] (iv) LogScope [22] (v) LoLa
[23] (vi) MAC [24] (vii) MOP [25] (viii) RulerR [26] (ix) Temporal Rover [10]
(x) TraceContract [27] (xi) Tracesmatches [28] .

Acknowledgement. We thank Klaus Havelund for many fruitful discussions
on the topic of this paper.
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