
Aachen
Department of Computer Science

Technical Report

Logics for Mazurkiewicz Traces

Martin Leucker

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2002-10

RWTH Aachen · Department of Computer Science · April 2002

The publications of the Department of Computer Science of RWTH Aachen (Aachen

University of Technology) are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Logics for Mazurkiewicz Traces

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der Rheinisch-Westfälischen

Technischen Hochschule Aachen zur Erlangung des

akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Mathematiker

Martin Leucker

aus

Kamp-Lintfort

Berichter: Prof. Dr. K. Indermark

Prof. Dr. W. Thomas

Tag der mündlichen Prüfung: 08.02.2002

Abstract

Linear temporal logic (LTL) has become a well established tool for specifying the dy-

namic behavior of reactive systems with an interleaving semantics and the automata-

theoretic approach has proven to be a very useful mechanism for performing auto-

matic verification in this setting. Especially alternating automata turned out to be a

powerful tool in constructing efficient yet simple to understand decision procedures

and directly yield on-the-fly model checking procedures.

While this technique extends elegantly to richer domains where the underlying com-

putations are modeled as (Mazurkiewicz) traces, it does so only for event- and

location-based temporal logics. In this thesis, we exhibit a decision procedure for

LTL over Mazurkiewicz traces which generalizes the classical automata-theoretic ap-

proach to a linear temporal logic interpreted no longer over sequences but restricted

labeled partial orders. Specifically, we construct a (linear) alternating Büchi au-

tomaton accepting the set of linearizations of those traces satisfying the formula

at hand. The salient point of our technique is to apply a notion of independence-

rewriting to formulas of the logic. Furthermore, we show that the class of linear

and trace-consistent alternating Büchi automata corresponds exactly to LTL for-

mulas over Mazurkiewicz traces, lifting a similar result from Löding and Thomas

formulated in the framework of LTL over words.

Additionally, a linear temporal logic with a different flavor is introduced as Foata

linear temporal logic (LTLf). It is designed for specifying properties of synchro-

nized systems that comprise clocked hardware circuits or Petri nets supplied with a

maximal step semantics.

Distributed synchronous transition systems (DSTSs) are introduced as formal models

of these systems and are equipped with a Foata configuration graph-based semantics,

which provides a link between these systems and the framework of Mazurkiewicz

traces. To simplify the task of defining DSTSs, we introduce a simple calculus in

the spirit of CCS.

We give optimal decision procedures for satisfiability of LTLf formulas as well as for

model checking, both based on alternating Büchi automata. The model checking

procedure further employs an optimization which is similar to a technique known as

partial order reduction.

Acknowledgments

First and foremost I would like to thank my supervisor Prof. Dr. K.

Indermark. I am grateful for his guidance, support, and willingness to

let me pursue my research interests, while skillfully keeping me on a

steady course.

I am very grateful to Prof. Dr. W. Thomas for interesting discussions and

valuable comments to this dissertation and for volunteering to review this

thesis and to become a member of my dissertation committee.

I would also like to thank Prof. M. Nielson for letting me spend one month

at BRICS in Aarhus, Denmark. I have benefited greatly from working

with Jesper Henriksen with whom I had many instructive discussions

about traces and who also has become a friend.

Moreover, I would like to thank Prof. K. Lodaya for inviting me to the

Institute of Mathematical Science at Chennai, India. Besides having

the opportunity to discuss my ideas with the strong group hosted there,

the visit to India has been a truly enjoyable and immensely rewarding

experience.

I am very grateful to everybody at Chair of Computer Science II for

contributing to an outstanding and pleasant research environment that

makes everyday life so enjoyable. I thank my friend Martin Lange for

many interesting discussions on games, traces, and life. My special

thanks go to my colleagues and friends Benedikt Bollig and Thomas

Noll for many enlightening discussions about both academic and non-

academic topics. I have been extremely fortunate in having the oppor-

tunity to work with them.

Finally, I would like to express my gratitude to Anja for sustaining the

enormous alteration of my mood that was often correlated with finding

proofs and errors within them.

Martin Leucker

Aachen, Frebruary 2002

Contents

1 Introduction 1

2 Motivation 11

3 Mazurkiewicz Traces 15

3.1 Alphabets . 15

3.2 Traces . 18

3.3 Configurations and Configuration Graphs 25

3.4 Traces and Words . 28

3.5 Trace Languages . 37

4 Automata for Trace Languages 39

4.1 Büchi Automata . 40

4.2 Alternating Büchi Automata . 44

4.2.1 The Concept . 44

4.2.2 Emptiness of Alternating Büchi Automata 53

4.2.3 Weak Alternating Büchi Automata 56

4.2.4 Linear Alternating Büchi Automata 59

4.2.5 Trace-consistent Alternating Büchi Automata 60

5 First-Order Logic 63

5.1 FO over Words . 63

5.2 FO over Mazurkiewicz Traces . 64

6 LTL over words 69

6.1 Syntax and Semantics . 70

6.2 Deciding Satisfiability of LTLw . 71

6.3 Linear Alternating Automata and LTL over Words 75

6.4 Trace-consistent LTLw . 79

6.5 Model Checking . 79

ii Contents

6.6 FO versus LTL . 81

7 LTL over Mazurkiewicz Traces 83

7.1 Syntax and Semantics . 84

7.2 Deciding Satisfiability of LTLt . 89

7.2.1 Deciding Hennessy-Milner logic 90

7.2.2 Supporting Until-formulas . 99

7.3 Linearity of our Construction . 108

7.4 LTL−
t . 110

8 LTL over Foata Configuration Graphs 119

8.1 Motivation . 120

8.2 Foata Configurations . 123

8.3 Distributed Synchronous Transition Systems 127

8.4 A Calculus for DSTS . 131

8.5 Foata Linear Temporal Logic (LTLf) 134

8.6 Satisfiability of LTLf . 137

8.7 Model Checking for DSTS and LTLf 141

8.8 A Two Bit Counter . 142

9 Conclusion 149

A Basic Notations, Notions, and Problems 153

A.1 Basic Notations . 153

A.2 Graph-theoretic Notions and Notations 153

A.3 Graph-theoretic Problems . 154

A.4 Notions for Relations . 155

A.5 Turing Machine Problems . 155

List of Figures

1.1 The idea of model checking . 2

2.1 A concurrent system . 11

2.2 An airplane . 13

3.1 A dependence alphabet . 16

3.2 Labeled partial orders . 19

3.3 A complex dependence alphabet . 22

3.4 Five agents . 23

3.5 The state space of the concurrent system 24

3.6 A Petri net . 24

3.7 Trace representation of state space shown in Figure 3.5 25

3.8 A trace and one of its configurations 26

3.9 The configuration graph of the trace of Figure 3.8 (a) 28

3.10 A trace and one of its linearizations 30

3.11 A trace and one of its extensions into a linear order 31

3.12 tr(acbdacb) . 32

3.13 Definition of v . 34

3.14 A trace and one of its run maps . 36

4.1 A (graphical representation of a) Büchi automaton 40

4.2 A transition graph of an alternating Büchi automaton 47

4.3 A graph representation of a Boolean formula 48

4.4 A graphical representation of an alternating Büchi automaton . . . 48

4.5 An exemplifying run . 50

4.6 Encoding a Turing machine by an alternating Büchi automaton . . . 54

4.7 The transition graph of a weak alternating Büchi automaton and its

partitions . 58

4.8 A linear run of an alternating Büchi automaton 60

4.9 A non-linear alternating Büchi automaton 61

iv List of Figures

5.1 Identifying configurations and variables 66

7.1 The semantics of 〈 〉 . 85

7.2 The meaning of until . 87

7.3 The graphical representation of Aϕ 97

7.4 Configuration and actions. 103

7.5 Configuration and actions for a ♦-formula 112

7.6 Reachable states for a ♦-formula . 116

8.1 Synchronized digital circuits . 121

8.2 A Petri net . 123

8.3 A trace and one of its partition into steps 124

8.4 The configuration graph of the trace of Figure 8.3 (a) 125

8.5 A distributed transition system . 128

8.6 Synchronous vs. asynchronous execution 129

8.7 Asynchronous executions and synchronous executions differ 131

8.8 A Büchi automaton for the DSTS shown in Figure 8.5 142

8.9 A D-flip-flop . 143

8.10 A two bit counter . 144

8.11 A DSTS for the D-flip-flop . 146

8.12 A DSTS for the two bit counter . 147

9.1 Regular languages . 150

Chapter 1

Introduction

Electronic devices are nowadays ubiquitous in our society. We are in touch with

hardware and software systems when using the telephone, the Internet, or the cash

dispenser (automated teller machine, ATM). But also typical mechanical devices

like the washing machine or the car are meanwhile full of small electronic systems

that optimize the washing program or the control of the anti-skid system.

Reliability is one of the crucial issues going along with the development of these

electronic devices. Faults can result in enormous loss of money, when, for example,

a spacecraft like the Mars Pathfinder is lost because of a communication problem,

or a bug in a digital circuit like the Intel r© PentiumTM is encountered when already

hundred thousands of processors are on the market. But also grave problems can

arise when a telephone system for a whole region or an air traffic control system

fails.

System validation, i.e., the process of determining the correctness of specifications,

designs, and products, is thus an increasingly important activity [Kat99]. Current

practice in conventional software engineering is to check a system to a large extent

by humans (so-called “peer reviewing”) and by dynamic testing. A further technique

to achieve reliable systems is the application of appropriate design methodologies

[GHJV00]. Even when coping with many rules of good design and even when testing

is applied, the designed system may contain errors. One reason is that programmers

are tempted to find errors they are already aware of. It is thus crucial to use

automatic procedures and tools that attempt to remove man-made mistakes from

system realizations. This is the goal of formal methods.

Formal methods The term formal methods denotes the application of mathemat-

ical methods for modeling, specifying, and verifying complex hardware and software

systems. Especially distributed systems, which are much more difficult to under-

stand due to their ability to execute actions concurrently, are developed using formal

2 Chapter 1. Introduction

Implementation language

• CCS

• ACP

• Lotos

• . . .

Semantic domain

•transition system

•Büchi automaton

•Petri net

• . . .

•words

•trees

•traces

• . . .

Specification language

• LTL

• CTL

• µ-calculus

• . . .

Model Checking

|=
�

(〈.〉)tt∧�
(〈in〉tt → � 〈out〉tt)

B1 = in.out.B1

B2 = (B1[out/i] ‖ B1[in/i])\i

in

out
τ

in

out

Figure 1.1: The idea of model checking

methods. Confer [BH99] for examples showing the benefits of formal methods in

practice.

The process of developing a system usually starts with formulating its specifica-

tion. This step consists of collecting a list of requirements the system-to-be should

meet. The requirements are often written down in some logical formalism like

monadic second-order logic [HJJ+95, ABP97], linear temporal logic (LTL, [Pnu77]),

computation-tree logic (CTL, [CE81]), or the µ-calculus [Koz83]. This part is de-

picted in right lower corner of the picture shown in Figure 1.1.

A complementary step is to define a formal model or implementation of the system,

which helps to understand the system under development. Furthermore, a common

and formal basis for discussing about the system is given. Last but not least, it is the

basis of the realization of the system.1 Usually, a kind of process-algebra formalism

1We speak of implementation although we actually might deal with an abstraction of a real

3

like CCS [Mil89], ACP [BV94], LOTOS [BB89], or another (semi-)formal design

notion like B(PN)2 [BH93], VHDL [Per91], or UML [SP99] is employed. This step

is shown in the lower left corner of Figure 1.1.

The verification of the implemented system is a further step. Its aim is to guarantee

the correctness of the functionality. In practice, verification is often more important

for debugging the design instead of showing that the design is correct. This implies

that verification usually proceeds in a cycle of finding errors and correcting the

implementation until no further errors can be detected.

However, to be able to say that a given implementation expressed in some formal

language satisfies its specification expressed in some probably different formal lan-

guage, there has to be some common semantic domain to compare both sides (cf.

Figure 1.1 on the preceding page). Usually, the implementation is transformed into

some finite state model. Within the linear temporal framework, a formula expresses

a property of a sequence of actions of the underlying system, so that we can take all

sequences of executions of the finite state model to decide whether the formulated

requirement holds. In the setting of branching time, a formula expresses a prop-

erty of the computation tree of the underlying system. Here we can “unwind” the

transition system to get an answer.

Especially for concurrent systems, the question of the “right” semantic domain is

difficult to answer. Several proposals have been given and were analyzed in the past.

Transition systems, Petri nets, Mazurkiewicz traces, and event structures head the

list. In [SNW96], several models are compared on a formal basis.

The common idea of all models is that each is based on atomic units that are indivis-

ible and constitute the steps from which computations are built. They differ in the

level of abstraction from the underlying system. For example, so-called interleaving

models reduce concurrency to non-determinism. It is postulated that the concurrent

execution of two actions a and b is equivalent to the choice of executing a and then

b or b and then a, abstracting from true concurrency in this way.

Within the true-concurrency approach, the execution of a concurrent system is de-

scribed by means of partial order retaining the notion of concurrent or independent

actions. In other words, the computations of a distributed system will be consti-

tuted by interleavings of the occurrences of causally independent actions that can

be naturally grouped together into equivalence classes where two computations are

equated in case they are two different interleavings of the same partially ordered

stretch of behavior.

This observation led to the notion of Mazurkiewicz traces [DM97, DR95]. Traces

can be understood as partially commutative words that model the behavior of a

concurrent system. While the study of partially-commutative monoids traces back to

implementation. For example, we also call a protocol definition in some formal language an imple-

mentation rather than only its implementation in some low level programming language.

4 Chapter 1. Introduction

Cartier and Foata [CF69], it was Mazurkiewicz [Maz77] who applied these structures

for modeling concurrent systems. The exciting point on Mazurkiewicz traces is that

only a single representative for each equivalence class might be employed for verifying

a desired property. This is the insight underlying many of the partial-order based

verification methods (e.g. [Pel98, Val91]). As may be guessed, the importance of

these methods lies in the fact that the computational resources required for the

verification task can often be dramatically reduced.

In general, two approaches for the verification of systems can be distinguished: model

checking and theorem proving [RV01]. Several case studies have shown that especially

model checking admits to find errors during the design process (cf. [CW96] for an

overview). In this thesis we focus on model checking.

Model checking The crucial virtue of model checking is that it proceeds auto-

matically. The implementation as well as the specification is given to a computer

tool which clarifies on its own whether the implementation satisfies its specification.

No user interaction is needed for this purpose. Additionally, if an error is recognized,

the tool provides a counter example showing under which circumstances the error

can be generated. Model checking originates from the independent work of Emer-

son and Clarke [EC82] and Quielle and Sifakis [QS82]. Several prototypes of model

checking tools like the Edinburgh Concurrency Workbench [Mol92], SPIN [GHP97],

the symbolic model checker SMV [McM92], and Truth [LN01] have been developed

and are used to demonstrate the benefits of this approach.

Model checking is especially suited when the implementation is given by (or can be

translated into) a finite state model M and the specification is given in form of a

temporal-logic formula ϕ; the automata theoretic approach has turned out to be

fruitful here. The implementation is transformed into a corresponding automaton

AM accepting all behaviors of the system. The specification is negated and an

automaton A¬ϕ is constructed accepting all models of ¬ϕ. Next, the intersection

automaton A = AM ∩A¬ϕ of AM and A¬ϕ is built. The language accepted by A

consists of all counter examples of M violating ϕ, so that A can first be checked

for emptiness to answer whether the implementation satisfies its specification and

second be consulted to present a counter example. Note that Aϕ can be tested

for emptiness whether ϕ is satisfiable. Thus, this approach incorporates a decision

procedure for satisfiability of the specification, answering the question whether the

specification is contradictory.

The automata-theoretic approach for satisfiability checking was introduced in the

pioneering work of Büchi [Büc60] for monadic second-order logic over words. It

was transferred to the domain of temporal logics by Vardi and Wolper [VW86]. It

has proven to be very useful and efficient for performing the automatic program

verification.

5

In the last years, the general interest shifted towards alternating automata. They

provide means for simple, efficient, and easy to understand decision procedures.

Satisfiability algorithms for LTL over words [Var96], branching time logics [BVW94,

KVW00] over finite transition systems, and Kozen’s µ-calculus [Koz83] over (infi-

nite) pushdown and prefix-recognizable graphs [KV00]2 have been defined using this

variant. The idea is that the states of the automaton are constructed essentially from

the subformula closure of the specification formula, and the automaton operates in

a tableau-like fashion. The satisfiability problem is then solved by checking whether

the constructed automaton accepts any words.

The automata-theoretic approach forms the conceptual basis of many verification

algorithms. Several tools (e.g. SPIN [GHP97]) being employed in industry are

built upon this translation from formulas to automata. To improve performance,

however, a number of substantial optimizations must be incorporated. One obser-

vation is that the state space of the product automaton needs seldomly to be fully

constructed. Often the answer to the verification problem can be established by

investigating only a subset of states, and this subset might be considerably smaller

than the entire state space. This is the main idea underlying the so-called on-the-fly

verification techniques. To support on-the-fly checking, an automaton correspond-

ing to a formula should be defined in a top-down manner, hereby allowing a part

of the automaton to be analyzed while a different part is yet not constructed. This

offers the possibility that the automaton for a given formula as well as a finite state

system is only partly constructed viz when an initial segment already clarifies that

the specification is fulfilled, or, more often in practice, contains already a counter

example.

Temporal logics for traces Linear temporal logic (LTL) as proposed by Pnueli

[Pnu77] has become a well established tool for specifying the dynamic behavior of

distributed systems. The traditional approach towards automatic program verifica-

tion is model checking specifications in LTL. A basic feature of LTL has been that

its formulas are interpreted over sequences. Typically, such a sequence will model a

computation of a system: a sequence of states visited by the system or a sequence

of actions executed by the system during the course of the computation.

Indeed, it is often the case that the computations generated by a distributed system

constitute Mazurkiewicz traces. It likewise turns out that many of the properties

expressed as LTL formulas happen to have the so-called “all-or-none” property.

Either all members of an equivalence class of computations will have the desired

property or none will do (“leads to deadlock” is one such property). For verifying

such properties one has to check them for just one member of each equivalence class.

2Overviews of prefix-recognizable graphs and their monadic-second order theory can be found

in [Cau96] and [Leu02]

6 Chapter 1. Introduction

However, it is a simple matter to specify properties within LTL for words that are

not so-called trace consistent. From a practical point of view, it is not convenient to

allow a prospective user of a verification tool to formulate such requirements. The

user should be guided to specify only requirements respecting the inherent structure

of an underlying system.

This problem can be tackled by developing linear temporal logics that can be in-

terpreted directly over Mazurkiewicz traces. In these logics, every specification is

guaranteed to have the “all-or-none” property and hence can be subjected to the

partial-order based reduction methods during the verification process.

A number of linear temporal logics to be interpreted directly over Mazurkiewicz

traces (e.g. [APP95, Thi94, TW97]) has been proposed starting with TrPTL [Thi94]

that was introduced by Thiagarajan (see [MT96, TH98] for overviews). There are

several possible routes towards extending linear temporal logics to traces. TrPTL

is based on locations, where one reasons explicitly about a distribution of comput-

ing agents cooperating through some communication structure given as an alphabet

distribution. Another option [APP95] is to view events as the partial order com-

putation points in time and base the specifications upon the relationship between

individual events. Together, these paradigms constitute the local trace logics. In

contrast, in the global view of computations, configurations are seen as instanta-

neous snapshots of the system at hand. In this sense, a configuration is a global

view capturing a collection of simultaneous local views.

The “right” temporal logic for traces should be equal in expressive power to first-

order logic for traces (FO). It follows from [EM96] that such a logic would capture

exactly those properties of LTL which have the “all-or-none” property and hence are

amenable to partial-order verification. However, none of the local logics is known to

be expressively equivalent to FO. Recently, it was indeed shown that linear temporal

logic (without past tense modalities) is expressively equivalent to FO iff the indepen-

dence adheres to a certain structure [DG01]. This lead Thiagarajan and Walukiewicz

to define the configuration based LTrL [TW97], that they indeed prove equivalent

to FO. LTrL was later refined by Diekert and Gastin [DG00] to a straightforward

formulation of LTL for traces essentially extending Kamp’s Theorem [Kam68] to the

setting of traces.

While both the event based and location based logics all have elegant (exponen-

tial-time) decision procedures smoothly extending the classical automata-theoretic

approach to the setting of traces, no such smooth extension exists for global logics

such as LTL. The essence of this anomaly is the complications which arise as a conse-

quence of the fact that the satisfiability problem for LTL has a non-elementary lower

bound [Wal98]. However, experience [HJJ+95] has shown that decision procedures

can still be useful in practice despite discouraging lower bounds.

Gastin, Meyer, and Petit [GMP98a, GMP98b] do give a direct decision procedure for

7

LTL based on automata. However, the construction of the automaton corresponding

to a given LTL specification ϕ proceeds by induction on ϕ, thus in a bottom-up man-

ner. Hence, it is not an extension of the classical automata-theoretic approach, and,

more importantly, it requires the construction of the full automaton, so optimiza-

tions such as on-the-fly checking cannot be applied. A further drawback is its high

complexity. While an exponential blow-up is unavoidable for nested until-formulas,

the procedure has also an exponential blow-up for every negation. Since nested until-

formulas are rare in specifications but negations are typical for specifying unwanted

behavior, this limits the practical applicability of this procedure.

In this thesis, we propose a decision procedure for LTL for traces directly extending

the classical approach [Var96]. Our procedure is based on an extended subformula

closure and independence rewriting of formulas of LTL. We employ this to construct

a tableau-style alternating Büchi automaton accepting the set of linearizations of

traces satisfying the specification at hand. In this sense, our procedure fills the

missing gap for global trace logics by extending the classical approach to this re-

maining case. Our procedure corresponds exactly to the version introduced by Vardi

[Var96] when restricted to the word case. Thus, we provide a conservative extension

of the traditional approach, simplifying the theoretical understanding while offering

a single yet efficient implementation for words as well as for traces. Furthermore,

our automata can be constructed on-the-fly, which speeds up the average time and

space used for checking specifications.

We furthermore present a simplified decision procedure for the case that the un-

til -operator is substituted by an eventually-operator. We show that our decision

procedure meets the known lower bound for a restricted kind of alphabets, so that

it is optimal in these cases. Last but not least, for the fragment of LTL without

until-operator and eventually-operator, our procedure is shown to be exponential.

While our approach is primarily used in this thesis to show how to cope with LTL

for Mazurkiewicz traces, it should be noted that it might be a general technique

applicable for temporal logics when partial commutation is present. For example,

our method was used in [BL01b] to present a decision procedure for satisfiability of

a linear temporal logic for message sequence charts.

Löding and Thomas [LT00] have shown that word languages definable by LTL for-

mulas over words correspond to the languages of linear alternating Büchi automata.

We prove that our construction yields a linear Büchi automaton as well. Further-

more, we show that our linear Büchi automata accept trace-consistent languages.

Conversely, we show that the class of trace-consistent languages definable by linear

alternating Büchi automata coincides with the class of languages which are defin-

able by LTL formulas over Mazurkiewicz traces for a given dependency relation. In

other words, LTL-definable trace languages correspond to languages definable by

trace-consistent linear alternating Büchi automata.

8 Chapter 1. Introduction

Some aspects of the obtained results have been presented in [BL01a].

A linear temporal logic with a different flavor is introduced as Foata linear tempo-

ral logic (LTLf). It is designed for specifying properties of synchronized systems.

Important examples among these systems are hardware circuits that are built up

by separate entities working together in parallel but which are synchronized by a

global clock. Another model are Petri nets supplied with a maximal step semantics

[Muk92]. The approach was partly introduced in [Leu00].

The idea underlying this model is somehow a reinforcement of the true concurrency

approach. If two actions a and b are supposed to occur concurrently, we consider a

concurrent system only in the configuration where no action has occurred as well as

in the configuration where both actions have occurred. We refrain from considering

configurations in which only one of the actions has been noticed since these might

be used to differ the interleavings ab and ba.

We exhibit the notion of distributed synchronous transition systems (DSTSs) as a

model for these hardware designs. DSTSs can be equipped naturally with a Foata

configuration graph-based semantics which provides a link between these systems

and the framework of Mazurkiewicz traces.

We give a decision procedure for satisfiability of LTLf formulas as well as a model

checking procedure, both based on alternating Büchi automata. It turns out that

these procedures are as efficient as for LTL (for words) viz they are exponential in

the length of the formula and linear in the size of the system and are essentially

optimal. The model checking procedure employs an optimization which is similar

to partial order reduction [Pel98].

To simplify the task of defining DSTSs, we introduce a simple calculus, which we call

synchronous process systems (SPS) and which is inspired by Milner’s CCS [Mil89]

and SCCS [Mil83] but is adapted to the special nature of our underlying systems.

Outline of this thesis In the next chapter, we describe a typical scenario of a

distributed system. Here we will spot the characteristics of such a system. This will

guide us to define the formal notion of Mazurkiewicz traces.

In Chapter 3, we introduce Mazurkiewicz traces. We start with defining alphabets

together with an independence relation. Subsequently, we will derive the notion of

a trace and configurations of a trace, which serve as models for the temporal logics

studied. Furthermore, we provide a link with the theory of words. This allows us to

employ the rich theory developed in this domain (especially automata theory) for

partial orders.

Chapter 4 recalls the notions of (alternating) Büchi automata. We identify especially

linear and trace-consistent alternating Büchi automata.

To be able to formulate key results for linear temporal logics, we recall first-order

logic for words as well as for traces in Chapter 5.

9

Chapter 7 exhibits one of the main contributions of this dissertation. We present

herein the linear temporal logic LTL, which is interpreted over Mazurkiewicz traces,

and give a decision procedure for checking satisfiability of LTL formulas. To sim-

plify the overall presentation, we recall a decision procedure for LTL over words in

Chapter 6, which gives the outline also in the setting of traces. We first present our

procedure for the Hennessy-Milner fragment of LTL in Chapter 7.2.1 and extend

this procedure to full LTL in Chapter 7.2.2.

As already mentioned, deciding satisfiability of LTL for traces is non-elementary.

LTL− is introduced as a fragment of LTL whose formulas can be checked for satis-

fiability in exponential space. We adapt our decision procedure for this fragment in

Chapter 7.4.

So-called clocked hardware systems are studied in Chapter 8, and this chapter is

another main ingredient of this thesis. We describe how to model these hardware

systems as distributed transition systems, that, on their part, constitute traces as

their executions. We introduce a simple calculus simplifying the definition of these

systems. Furthermore, we define a linear temporal logic, called Foata LTL, that

is well-suited to formulate specifications of these systems. Optimal procedures for

checking satisfiability as well as for model checking are presented. To round off this

framework, we end this chapter with a larger example explaining this model.

We sum up our main results in Chapter 9.

Chapter 2

Motivation

Concurrent systems play an important rôle in computer science but also in many dif-

ferent engineering disciplines. However, the last statement induces the fundamental

question:

“What is a concurrent system?”

We do not intend to give a formal definition. Instead we will come up with ex-

amples describing our notion of concurrent systems. Hereby, we will derive a set

of parameters characterizing concurrent systems. These will guide us to develop

the framework of Mazurkiewicz traces, which then captures formally the kind of

concurrent systems that we will be able to handle in this thesis.

Let us consider the setting consisting of a bank, an ATM, and a customer (cf.

Figure 2.1) and the well-known task of withdrawing money. When a customer

tries to withdraw money from his bank account using the ATM, the machine checks

whether the requested amount of money is available on the customer’s account. If so,

the ATM will offer the money to the customer and the withdrawal is acknowledged

to the bank. Otherwise, a rejection of the customer’s request is displayed to him.

What kind of ingredients can be identified in this example? We have three entities:

the bank, the ATM, and the customer. The entities operate autonomously and we

call them processes. Every process issues some actions. For example, the ATM

Figure 2.1: A concurrent system

12 Chapter 2. Motivation

generates print actions which can be read by the customer. The customer, on the

other hand, communicates with the ATM. He or she enters, for example, the bank

card, which is then collected by the machine. Thus, we can observe a communication

action viz that one representing the collection of the card. A further action that

may be observed is the lookup of the customer’s bank account. Of course, a lookup

action can only be observed if the bank card has been taken by the ATM. Both

actions are therefore dependent.

Taking a closer look to the bank, the acknowledgement of the withdrawal of the

money might result in an internal action involving a database located inside the

bank. Of course, the database action is not causally dependent on the customer’s

further activities. He or she might take back his or her bank card while the database

action takes place. Both actions are independent.

The described scenario might be modeled formally by three state transition systems

for the bank, the cash dispenser, and the customer, respectively. The transitions of

each system are labeled using a finite set of actions representing the internal and

communication actions each process is capable of executing. Some of the actions

are naturally dependent while others are independent. Observing a single execution

of such a system, the adequate structure is a partial order instead of a linear order

because there is no reason to distinguish the cases where the database action happens

before or after taking back the bank card. It makes a difference though whether the

requested money is granted or not. Each transition system may therefore be non-

deterministic, if several alternatives are abstracted by non-determinism. Altogether,

the overall system may be described by the set of all executions, which is then a set

of partial orders.

Often, it is reasonable to abstract from internal actions and to concentrate on com-

munication actions. Analyzing distributed systems, it is especially the communi-

cation that involves difficulties. Internal actions of each process are carried out

sequentially so that conventional debugging techniques can be employed. Milner’s

CCS [Mil89] incorporates this view. Note however, that this view is not always

adequate, as we will see in Chapter 8.

In the previous example, all communication actions are dependent. The ATM en-

sures that the communication actions of the bank and the ATM on one hand as well

as the ones of the ATM and the customer on the other are dependent.

If we take a more complicated setting, we also obtain independent actions even when

restricting to communication actions. Take for example the schematic view of the

airplane, as shown in Figure 2.2 on the facing page. The airplane has several fuel

tanks. Within each tank, several fuel probes are installed for measuring the fuel

level. Each tank is equipped with a separate (distributed) flight data acquisition

unit, which checks the fuel probes and communicates with other units. Thus, we

have for each tank a system consisting of fuel probes and data acquisition unit, and

13

Figure 2.2: An airplane

these systems communicate independently inside.

We have now set out the scene of the systems we want to model and to study. We

will meet this goal in the following chapters.

Chapter 3

Mazurkiewicz Traces

In this chapter, we define and study the semantic domain which may be employed

for describing concurrent systems. We start with considering alphabets, which con-

tain the atomic entities for describing atomic actions of our systems. Mazurkiewicz

traces, for the sake of brevity usually just called traces, correspond to sequences of

such atomic actions and are employed to model executions of our systems. Con-

current systems then may be described by sets of executions, called languages in

this framework. Partial executions give rise to the notion of configurations, and

executions may be analyzed with respect to their configurations.

3.1 Alphabets

We directly start with the elementary and simple notion of an alphabet.

Definition 3.1.1

An alphabet is a non-empty finite set. The elements of Σ are called actions.

We usually denote alphabets by Σ or Σ′ and actions by a, b, c, . . . and a′, b′, c′, . . .,

respectively. The elements of an alphabet, actions, are the atomic entities which

may be executed by our concurrent system. As pointed out in the previous chapter,

these actions can be equipped with a natural notion of dependence and dually also

independence.

Definition 3.1.2

A symmetric and irreflexive relation I ⊆ Σ × Σ is called an independence relation

over Σ, and D := Σ2\I is called its dependence relation. The pair (Σ, I) is called

an independence alphabet, and, similarly, (Σ, D) is called a dependence alphabet,

respectively.

16 Chapter 3. Mazurkiewicz Traces

a b

c d

Figure 3.1: A dependence alphabet

Sometimes, we will refer to I = (Σ, I) by the name concurrent alphabet ([Maz88]).

Let Σ be an alphabet. Then (Σ, ∅) is an independence alphabet whose actions are

all pairwise dependent. We call this alphabet also the fully-dependent alphabet.

On the other hand, (Σ, (Σ × Σ) \ ∆(Σ)) is an independence alphabet in which all

actions are independent (except each action on itself).1 This alphabet is also called

the fully-independent alphabet. A transitive dependence alphabet is a dependence

alphabet (Σ, D) such that D is a transitive relation.

An independence alphabet (Σ, I) can be visualized as a graph2 where the nodes

correspond to the actions in Σ and two nodes a and b are connected iff (a, b) 6∈ I and

a 6= b. Thus, whenever two distinct actions are dependent they are connected by

an edge. For simplicity we omit loops. In the same manner, a dependence alphabet

(Σ, D) will be represented graphically by the graphical representation of the inde-

pendence alphabet (Σ, I) where I = Σ2 \D. Let us fix the previous considerations

in the following definition.

Definition 3.1.3

Let (Σ, D) be a dependence alphabet. The dependence graph of (Σ, D), denoted by

G(Σ, D), is the graph (V,E) where V = Σ and

E = {(a, b) ∈ Σ | (a, b) ∈ D and a 6= b}

The dependence graph G(Σ, I) of an independence alphabet is defined as described

before.

Example 3.1.4 Let us consider the independence alphabet (Σ, I) with a set of

actions Σ = {a, b, c, d} and the independence relation I = {(a, d), (d, a), (b, c), (c, b)}.

The dependence graph G(Σ, I) is isomorphic to the one shown in Figure 3.1.

1∆(R) is defined by {(q, q) | q ∈ R}.
2We use notions and notations from graph theory as usual. If necessary, please consult Ap-

pendix A.2 on page 153 for details.

3.1. Alphabets 17

Observe that the dependence graph of a fully-independent alphabet has no edges and

that the one of a fully-dependent alphabet is a complete graph.3 Given a transitive

dependence alphabet, its dependence graph consists of connected components which

are complete.

In our interpretation of dependence/independence alphabets, fully-dependent al-

phabets will be employed for describing sequential systems while fully-independent

alphabets represent concurrent systems which behave autonomously, i.e. without

communication or interaction. Transitive alphabets may be employed for describing

a set of sequential systems which do not communicate or interact.

Observing a (complex) system from an external viewpoint, one might see that the

system is capable of executing actions. Furthermore, one might recognize depen-

dencies of these actions. Thus, considering a single set of actions (together with

an independence relation) is adequate for an external view onto a system whose

internal structure is not known. However, if the internal structure of a system is

given, a somehow different view might be more appropriate. We can understand the

system as a set of n processes where each process i is capable of executing actions

only among Σi. These actions are used for communication among the processes or

correspond to internal actions of a process (cf. Chapter 2). This leads us to the

notion of a distributed alphabet, a notion due to Zielonka:

Definition 3.1.5 ([Zie87])

A distributed alphabet Σ̃ (over n processes) is an n-tuple (Σ1, . . . ,Σn) of (not nec-

essarily disjoint) alphabets. For Σ̃, we let Proc(Σ̃) denote the set {1, . . . , n}.

When the distributed alphabet is clear from the context, we simplify our notation

and write Proc instead of Proc(Σ̃). In our interpretation, an action a in Σi ∩ Σj

for two different i, j ∈ Proc may be employed for a communication of the different

processes i and j.

To show a natural correspondence of distributed and independence alphabets, we

introduce the operators alphabet and pr . Let us fix the distributed alphabet Σ̃ =

(Σ1, . . . ,Σn). Then we let alphabet Σ̃ denote the set Σ = Σ1∪ · · · ∪Σn. Furthermore,

let the domain of pr Σ̃ range over alphabet Σ̃ and let pr Σ̃(a) yield the set {i ∈ Proc(Σ̃) |

a ∈ Σi}. We now define an independence relation I(Σ̃) by I(Σ̃) = {(a, b) ∈ Σ × Σ |

pr(a) ∩ pr (b) = ∅}. It is easy to see that I(Σ̃) is well defined, i.e., it is indeed an

independence relation. Hence, (Σ, I(Σ̃)) is an independence alphabet.

On the other hand, for an independence alphabet (Σ, I), we get a unique (up to

the order of the alphabets) distributed alphabet Σ̃ such that (Σ, I) = (Σ, I(Σ̃)) by

considering maximal (totally) dependent subsets of Σ, i.e., the subsets Σi ⊆ Σ such

that (a, b) 6∈ I for all a, b ∈ Σi.

3A graph (V,E) is complete iff E = (V × V) \ ∆(V).

18 Chapter 3. Mazurkiewicz Traces

Example 3.1.6 The independence alphabet of Example 3.1.4 corresponds to the

distributed alphabet ({a, b}, {a, c}, {b, d}, {c, d}) and vice versa.

Note that the maximal dependent subsets of an independence alphabet correspond

to the maximal D-cliques in its dependence graph representation. Recall that a set

p ⊆ Σ is called a D-clique iff p× p ⊆ D.

Let us now extend the notion of independence and dependence to pairs of sets of

actions. Given an independence alphabet (Σ, I) and two subsetsX,Y ⊆ Σ of actions,

we say that X and Y are independent iff X ×Y ⊆ I. This is denoted by XIY . This

means that any pair of actions from X and Y is independent with respect to (Σ, I).

In a similar manner, we say that X and Y are dependent, iff there are two actions

a and b in X respectively Y such that (a, b) ∈ D where D = Σ2 \ I. Hence, two

sets are dependent iff two of their members are dependent. This will be denoted by

XDY . If one of the sets X or Y is a singleton, we sometimes omit the curly braces

to simplify our notation. For example, we will write aIY instead of {a}IY .

3.2 Traces

The behavior of systems may be described by the actions which are executed. The

nature of a sequential system is that it can only execute one action after the other.

Hence, an execution of a sequential system may be described by a sequence of actions

which constitutes a linear order.

Given a concurrent system with a fixed notion of dependence, we will no longer

expect the different actions of the execution to form a linear order but a partial

order, as we pointed out in Chapter 2.

Therefore, we define an execution of a concurrent system to be a partial order.

Definition 3.2.1

Let Σ be an alphabet. A Σ-labeled partially ordered set is a triple (E,≤, λ) such

that

• (E,≤) is a partially ordered set (poset), i.e., ≤⊆ E × E and ≤ is reflexive,

transitive, and antisymmetric,

• λ is a labeling function from E to Σ which assigns to every element of E a

label which is an element of Σ.

If the alphabet Σ is clear from the context, we may omit it. The labeling function

λ can be extended to subsets of E in a straightforward manner viz for C ⊆ E, we

define λ(C) to denote {λ(e) | e ∈ C}.

Example 3.2.2 Let us fix the alphabet Σ = {a, b, c, d} in this example.

3.2. Traces 19

e1
a

e2
b

e3
c

e4
d

e5
a

e6
b

e7
c

(a)

e1
a

e2
b

e3
c

e4
d

e5
a

e6
b

e7
c

(b)

e0
a

e4
a

e3
a

e2
a

e1
a

(c)

Figure 3.2: Labeled partial orders

1. Let E = {e1, . . . , e7}, let ≤ be the reflexive and transitive closure of {(ei, ej) |

i ∈ {1, . . . , 5}, k = (i+ 1) mod 2, and, j = i+ 1 + k or j = i+ 2 + k}, and let

λ be defined by e1, e5 7→ a, e2, e6 7→ b, e3, e7 7→ c and e4 7→ d. Then (E,≤, λ)

is a poset. Its Hasse diagram is shown in Figure 3.2(a). Here, the elements

of E are written within circles and their labels are written next to them. To

denote that ei is smaller than ej with respect to ≤, we write ei → ej .

2. Let us consider a similar example where again E = {e1, . . . , e7}. Now, let ≤

be the reflexive and transitive closure of

{(e1, e2), (e2, e3), (e3, e4), (e3, e5), (e4, e6), (e4, e7), (e5, e7)}.

Let λ be defined as before by e1, e5 7→ a, e2, e6 7→ b, e3, e7 7→ c and e4 7→ d.

Then (E,≤, λ) is the poset depicted in Figure 3.2(b).

3. Let E = {ei | i ∈ IN} and let ≤⊆ E ×E be defined by ei ≤ ej iff

• i, j ∈ IN \ {0} and j is less or equal to i with respect to the usual order

over the naturals or

• i = 0.

Let λ send each element simply to a, i.e., for all i ∈ IN, let λ(ei) = a. Then

(E,≤, λ) is a labeled partially ordered set and its Hasse diagram is indicated

in Figure 3.2(c).

For describing executions, arbitrary partial orders are too general. Let us come back

to Example 3.2.2. We would like to interpret the elements of the poset as events

20 Chapter 3. Mazurkiewicz Traces

of the system under consideration. A label of an event is interpreted as the action

corresponding to the event. In other words, the actions executed by an underlying

system are represented by unique events with corresponding action labels. We call

an event e with label a also an a-event.

As pointed out in Chapter 2, it is reasonable to assume that our concurrent system

has an initial state and, as time proceeds, executes actions. Therefore, we require

a poset representing a run to have minimal elements, which denote starting points.

Let us look at Figure 3.2(c) on the page before. The depicted poset has a unique

starting point, the event e0. However, before event e4 can occur, an infinite number

of events e5, e6, . . . has to occur, i.e., infinitely many actions have to be executed

before. Assuming that every action takes a fixed amount of time, the event e4

describes a part of the behavior of a system after an infinite amount of time. Since

we do not want to deal with these situations, it is natural to require that every event

of a run is preceded only by a finite number of events. So Figure 3.2(c) does not

represent an execution.

Furthermore, a poset representing an execution of a system should respect its given

fixed dependence relation over the actions. Let us assume that we have the inde-

pendence relation I = {(a, d), (d, a), (b, c), (c, b)} (see Figure 3.1 on page 16). We

will not consider the poset shown in Figure 3.2(b) to be a run of our system for two

reasons. First, the events e2 and e3 are ordered although their corresponding actions

(their labels) are independent with respect to I. Second, the events e5 and e6 are

not ordered although their actions are dependent with respect to I. So Figure 3.2(b)

does not represent an execution.

We will limit the kind of partial orders we are considering by the items mentioned

before and will gain the notion of Mazurkiewicz traces. But let us introduce some

definitions before:

Definition 3.2.3

Let (E,≤, λ) be a poset where E is countable.4

• For e ∈ E, we define ↓ e = {x ∈ E | x ≤ e} and ↑ e = {x ∈ E | e ≤ x}. We

call ↓e the history of the event e and ↑e the future of the event e.

• We let l be the covering relation given by xl y iff x ≤ y, x 6= y, and for all

z ∈ E, x ≤ z ≤ y implies x = z or z = y.5

• Moreover, we let the concurrency relation be defined as x co y iff x 6≤ y and

y 6≤ x.
4Throughout this thesis, every set is assumed to be countable, i.e., there is a bijection to the

natural numbers (denoted by IN) or it is finite. This general assumption is sometimes not made

explicit.
5In other words, � =≤ − ≤2 where ≤2 denotes the relational product of ≤ with itself, i.e.,

≤2= {(x, z) | ∃y (x, y) ∈≤ and (y, z) ∈≤}.

3.2. Traces 21

We are now ready to define the fundamental objects studied in the rest of this work.

Definition 3.2.4

A Mazurkiewicz trace over the independence alphabet (Σ, I) is a Σ-labeled poset

T = (E,≤, λ) satisfying:

• ↓e is a finite set for each e ∈ E. (T1)

• For every e, e′ ∈ E, el e′ implies λ(e)Dλ(e′). (T2)

• For every e, e′ ∈ E, λ(e)Dλ(e′) implies e ≤ e′ or e′ ≤ e. (T3)

Since in this thesis we only deal with Mazurkiewicz traces, we will simply speak of

traces in the following. We call a trace (E,≤, λ) finite, if E is a finite set. Otherwise

we call it infinite.

Example 3.2.5 Let us consider the independence alphabet (Σ, I) with a set of

actions Σ = {a, b, c, d} and the independence relation I = {(a, d), (d, a), (b, c), (c, b)}.

Then, the poset shown in Figure 3.2(a) on page 19 is a trace while the one shown

in Figure 3.2(b) violates (T2) and (T3). The poset shown in Figure 3.2(c) does not

satisfy (T1).

Please observe that two events e and e′ with independent action labels (λ(e)Iλ(e′))

still might be ordered. However, (T2) ensures that this can only happen in the case

that there is a sequence of events between e and e′ with dependent labels, i.e., there

are k ≥ 3 and events e1, . . . , ek, and for i ∈ {1, . . . , k − 1}, ei l ei+1, λ(ei)Dλ(ei+1),

e = e1 and e′ = ek or e′ = e1 and e = ek. For example, the action labels a and d of

the events e1 and e4, respectively, as shown in Figure 3.2(a), are independent but

due to e2 (or alternatively e3) the events e1 and e4 are ordered.

Let us give further examples:

Example 3.2.6

1. Let (Σ, D) be a fully-dependent alphabet. Then every trace constitutes a linear

order with labels from Σ.

2. Let (Σ, I) be a fully-independent alphabet. Then every trace is a disjoint union

of linear orders each labeled with a single action.

3. Let (Σ, D) be a transitive dependence alphabet. Then every trace is a disjoint

union of linear orders.

As mentioned in Chapter 2, non-determinism is a typical property of concurrent

systems. So even if a concurrent behavior of the system is expressed by considering

partial orders instead of a set of sequential orders, we usually have to describe a

system not only by a single trace but a set of traces, called language.

22 Chapter 3. Mazurkiewicz Traces

a b c d

e f g h

Figure 3.3: A complex dependence alphabet

Definition 3.2.7

We shall let
���

(Σ, I) denote the class of traces over the independence alphabet (Σ, I).

A trace language, usually denoted by L, is a set of traces, i.e., L ⊆
���

(Σ, I).

We will not distinguish between isomorphic elements in
���

(Σ, I). We call two traces

T = (E,≤, λ) and T ′ = (E′,≤′, λ′) isomorphic iff there is a bijection f : E → E ′

which is label-preserving and order preserving with respect to ≤, and whose inverse

mapping f−1 is order preserving with respect to ≤′. In other words, for all e1, e2 ∈ E,

we have λ(e1) = λ′(f(e1)), and e1 ≤ e2 iff f(e1) ≤
′ f(e2). To simplify our notation,

we write T = T ′ not only for equal but also isomorphic T and T ′.

A larger example

In the rest of this section, we will consider a larger example showing the potential

benefit of traces for describing huge systems space efficiently. To simplify our pre-

sentation, we will explain this example on an intuitive basis instead of modeling the

situation formally. Since we only intend to give a feeling for the power of traces, one

might forgive us.

Let us consider the dependence alphabet given by the graphical representation shown

in Figure 3.3. It corresponds to the distributed alphabet

Σ̃ = ({a, b}, {c, d}, {e, f}, {g, h}, {b, c, f, g}),

which can easily be seen by considering the maximal cliques of the graph shown in

Figure 3.3.

Now, suppose we have five agents represented by transition systems over the previous

dependence alphabet (Figure 3.4 on the facing page).

We have four agents with pairwise disjoint sets of actions. The last agent is intended

to synchronize the behavior of the other four agents.

Let us assume the following execution principle of the five agents: The concurrent

system can execute an action a iff all agents participating in a are able to execute

3.2. Traces 23

{a, b} {c, d} {e, f} {g, h} {b, c, f, g}

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

S0

S10 S11

S20 S21

S30 S31

S40 S41

a

b

c

d

e

f

g

h

b

c

f

g

f

g

b

c

Figure 3.4: Five agents

a. Suppose the concurrent system is initially in the state (A0, A1, A2, A3, S0). Then

the system may execute the action a and evolve into the state (B0, A1, A2, A3, S0).

Although it is possible for the third agent to execute the action c, this is not possible

for the concurrent system because the last agent has to execute the action b first.

All (sequential) executions of the system are given as maximal paths starting from

the root in the graph represented in Figure 3.5 on the next page. Please note that

the nodes of the graph are encoded according to the following tabular. Furthermore,

we omit the state of the last agent since it is uniquely determined by the combination

of si and ti.

A0,A1 7→ s0
B0,A1 7→ s1
C0 ,A1 7→ s2
C0 ,B1 7→ s3
C0 ,C1 7→ s4

A2,A3 7→ t0
B2,A3 7→ t1
C2 ,A3 7→ t2
C2 ,B3 7→ t3
C2 ,C3 7→ t4

Another approach to describe a system with the same behavior, i.e., with the same

set of sequential executions, can be given by Petri nets. We only deal with Petri nets

on an intuitive level and assume that the reader has some basic knowledge about

them. See [Rei86] for an introduction to Petri nets.

Let us consider the Petri net shown in Figure 3.6 on the following page. The exe-

cutions of this Petri net are also represented by Figure 3.5. Analyzing both models,

either the system of the five transition systems or the Petri net, we will come to the

conclusion that there are basically two runs of each system. In terms of the transi-

tion system, it depends on the last agent whether we will find the sequence bcfg or

24 Chapter 3. Mazurkiewicz Traces

{s0, t0}

{s1, t0}

{s2, t0}

{s3, t0}

{s4, t0}

{s4, t1}

{s4, t2}

{s4, t3}

{s4, t4}

{s0, t1}

{s0, t2}

{s0, t3}

{s0, t4}

{s1, t4}

{s2, t4}

{s3, t4}

{s1, t1}

{s2, t1}

{s3, t1}

{s3, t2}

{s3, t3}

{s1, t2}

{s1, t3}

{s2, t3}

a

b

c

d

a

b

c

d

a

d

a

b

c

d

a

b

c

d

e

f

g

h

e

f

g

h

e

h

e

f

g

h

e

f

g

h

Figure 3.5: The state space of the concurrent system

•

•

•

s0 s1 s2 s3 s4

t0 t1 t2 t3 t4

a b c d

e f g h

Figure 3.6: A Petri net

3.3. Configurations and Configuration Graphs 25

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

Figure 3.7: Trace representation of state space shown in Figure 3.5

fgbc in the execution. Similarly, looking at the Petri net, one might distinguish two

runs. The first one in which transition b fires before f , and the second one in which

f fires before b.

Now, let us look at the traces of our system, given the independence alphabet

before. We directly see that there are only two different traces describing all possible

executions of our system as depicted in Figure 3.7. Please observe that we did not

show the events but presented their labels (shown in boxes) directly.

Of course, the trace representation will require less memory when stored on a com-

puter. Apart from the dependence alphabet, less nodes and edges have to be kept

in memory. Hence, traces might be a step towards the solution to the well-known

state-space explosion problem.

3.3 Configurations and Configuration Graphs

A concurrent system is studied in terms of its executions. We want to analyze an

execution while it is evolving, step by step. Given a sequence, a so-called prefix of

the sequence is a part of the execution after some time elapsed. What is a similar

notion in the setting of traces?

Let T = (E,≤, λ) be a trace over (Σ, D). We identified an event e ∈ E to represent

an execution step of our system corresponding to the action λ(e). In our interpre-

tation, we require that all events e′ before e, i.e., e′ ∈↓ e \ {e}, have already been

executed.

So it is natural to model a part of an execution T by a set of events C which contains

for every event also its history, i.e., for all e ∈ C, we have ↓ e ⊆ C. We call C a

26 Chapter 3. Mazurkiewicz Traces

e1
a

e2
b

e3
c

e4
d

e5
a

e6
b

e7
c

(a)

e1
a

e2
b

e3
c

e4
d

e5
a

e6
b

e7
c

C

(b)

Figure 3.8: A trace and one of its configurations

configuration of our execution. Let us be more formal.

Definition 3.3.1

Let T = (E,≤, λ) be a trace over (Σ, D). Let C be a set of events C ⊆ E. The

history of C, denoted by ↓C, is defined by

↓C =
⋃

e∈C

↓e.

A configuration of T is a finite subset C ⊆ E such that

↓C = C.

We denote by conf(T) the set of all configurations of the trace T .

Configurations will play a crucial rôle in this thesis. These and their natural relations

are the objects employed for specifying and analyzing concurrent systems.

Trivially, ∅ is a configuration for any trace T . We provide a further example:

Example 3.3.2 Let us consider the trace shown in Figure 3.8(a) over the trace

alphabet depicted in Figure 3.1 on page 16. The configuration C = {e1, e2, e3} is

shown in Figure 3.8(b) by the polygon labeled by C. Every configuration in conf(T)

can be represented in a similar way.

As will become apparent in Chapter 7, the formulas of the logics we are going to

consider are to be interpreted over configurations of traces.

Prefixes of sequences of actions constitute sequences on their own. To lift this

property towards the setting of traces, we define:

3.3. Configurations and Configuration Graphs 27

Definition 3.3.3

Let T = (E,≤, λ) be a trace and conf(T) its set of configurations. Every configura-

tion C ∈ conf(T) induces a finite trace T ′ = (C,≤ |C×C , λ|C). T ′ is called prefix of

the trace T . We let prf(T) denote the set of prefixes of a trace T .

The prefixes of a sequence can be linearly ordered in an obvious way. Intuitively,

a prefix is greater than another prefix, iff the first describes the system at a later

instance than the second one. Configurations of conf(T) are defined to be the trace-

theoretic analogues of finite prefixes of strings. The set of configurations conf(T)

of a trace T = (E,≤, λ) can be ordered in a natural way by inclusion. Given two

configurations C,C ′ ∈ conf(T), we might say that C ′ is greater than C iff C ′ ⊃ C,

hence, iff C ′ describes the configuration of the trace in which all events of C and

further events occurred. This yields a partial order.

Furthermore, the configurations can be equipped with a transition relation −→T⊆

conf(T)×Σ× conf(T). Given two configurations C,C ′ ∈ conf(T), we identify C ′ as

an a-successor of C, denoted by C
a

−→T C
′, iff C can be augmented with an a-event

yielding C ′:

Definition 3.3.4

Let T = (E,≤, λ) be a trace and conf(T) its set of configurations. We define −→T⊆

conf(T) × Σ × conf(T) by C
a

−→T C
′ iff there exists an e ∈ E such that λ(e) = a,

e 6∈ C, and C ′ = C ∪ {e}. Furthermore, we define the configuration graph of T ,

denoted by CG(T), by CG(T) = (conf(T),−→T).

Let us consider some examples:

Example 3.3.5

1. Let us consider the trace alphabet shown in Figure 3.1 and the trace of Fig-

ure 3.8(a). Its configuration graph is presented in Figure 3.9(a). To simplify

our presentation, we sometimes omit edge labels and denote the configurations

by a list of its labels (see Figure 3.9(b)).

2. Let (Σ, D) be a fully-dependent alphabet. As mentioned before, every trace T

over (Σ, D) constitutes a linear order. Thus, the corresponding configuration

graph CG(T) is linearly ordered as well.

Note that the configuration graph (considered as an undirected graph) is connected

for every trace over an arbitrary alphabet, even if a trace’s underlying graph is not

connected.

Although we have not introduced the notion of an execution or observation formally

yet, we would like to bring out some insight of configuration graphs. The config-

uration graph represents all possible executions or observations of the trace T , in

28 Chapter 3. Mazurkiewicz Traces

∅

{e1}

{e1, e2} {e1, e3}

{e1, e2, e3}

{e1, e2, e3, e5} {e1, e2, e3, e4}

{e1, e2, e3, e4, e5}

{e1, e2, e3, e4, e5, e6} {e1, e2, e3, e4, e5, e7}

{e1, e2, e3, e4, e5, e6, e7}

a

b c

c b

a d

d a

b c

c b

(a)

[]

[a]

[a, b] [a, c]

[a, b, c]

[a, b, c, a] [a, b, c, d]

[a, b, c, d, a]

[a, b, c, d, a, b] [a, b, c, d, a, c]

[a, b, c, d, a, b, c]

(b)

Figure 3.9: The configuration graph of the trace of Figure 3.8 (a)

other words, all executions which we consider to be equivalent. Each of its paths

represents a single observation. Every (maximal) path of the configuration graph

is isomorphic to a linearization of the trace T , which will be defined in the next

section.

3.4 Traces and Words

In its original formulation [Maz77], Mazurkiewicz introduced traces as certain equiv-

alence classes of words, and this correspondence turns out to be essential for our

developments here. While considering traces as partial orders reveals their corre-

spondence to partial order executions within the application domain of concurrency,

their treatment in terms of (equivalence classes of) words allows the employment

of the rich theory of (finite) automata. In this section, we bring out the concept

of linearizations providing a link between traces and (certain) equivalence classes of

words. We limit our examination to the extent that is needed for our later develop-

ments. Confer [DR95] for a thorough investigation on their relationship.

As usual, a word w over Σ is a sequence of elements of Σ. It is called finite respectively

infinite if the sequence is finite respectively infinite. The empty word is written as ε.

The length of a finite word w = a0 . . . an−1 is n and denoted by |w|. The length of an

infinite word w is ω and also denoted by |w|. The length |ε| of ε is 0. Let Σ∗ be the

3.4. Traces and Words 29

set of finite words over Σ and Σω be the set of (countably) infinite words generated

by Σ with ω = {0, 1, 2, . . . }. We set Σ∞ = Σ∗ ∪Σω, which is the union of finite and

infinite words. We let w and w′ range over Σω and u and v with or without primes

range over Σ∗. We call u ∈ Σ∗ a prefix of z ∈ Σ∞ iff there is a z′ ∈ Σ∞ such that

uz′ = z. Finally, we take prf(w) to be the set of finite prefixes of w and let alph(w)

denote the set of actions occurring in w.

Let us first bring out a relation of traces and linear orders. The basic idea is to

extend the partial order towards a linear order while keeping the well-foundedness

property.6

Definition 3.4.1

Let T = (E,≤, λ) ∈
���

(Σ, I). A linearization of T is a linear labeled order T ′ =

(E,≤′, λ) such that ≤⊆≤′ and, for all e ∈ E, we have ↓ e (with respect to ≤′) is

finite. We take lin(T) to denote the set of linearizations of the trace T .

It other words, a linearization of a trace T is a linearly ordered set in which concur-

rent events (with respect to T) are put into an arbitrary order so that no concurrent

events remain but still condition (T1) for traces holds. We can now associate with

every linearization a word w ∈ Σ∞ viz the sequence of labels of the events.

Definition 3.4.2

A word w = a0a1 · · · ∈ Σ∞ is a linearization of T = (E,≤, λ) iff

• |w| = |E| and

• there is a linearization (E,≤′, λ) of T such that, for all i ∈ {0, . . . , |w| − 1},

λ(ei) = ai where ei is the i-th element with respect to ≤′.

Although we call both words and linearly ordered sets linearizations, there will be

little chance of confusion since we can identify them anyway in most cases. In the

remaining cases, the context will give enough information to see whether we talk

about words or linearly ordered sets. Consequently, we shall also take lin(T) to

denote the set of words which are linearizations of the trace T .

Example 3.4.3

1. The linear order depicted in Figure 3.10(b) on the next page is a linearization

of the trace shown in Figure 3.10(a). Thus, the word acbdacb is a linearization

of the given trace. abcdacb is a different linearization of the given trace.

2. For the fully-dependent alphabet, every trace is a linear order. Thus, every

trace over the fully-dependent alphabet has a single linearization.
6Please wait for Example 3.4.4 on the following page for a motivation illustrating the benefit of

requiring well-foundedness.

30 Chapter 3. Mazurkiewicz Traces

e1
a

e2
b

e3
c

e4
d

e5
a

e6
b

e7
c

(a)

e1
a

e2
b

e3
c

e4
d

e5
a

e6
b

e7
c

(b)

Figure 3.10: A trace and one of its linearizations

Note that we require a linearization to be well-founded to ensure that we indeed can

associate a finite or ω-word with our linearization. Without requiring (T1) to hold,

this might not be the case:

Example 3.4.4 Take the dependence alphabet shown in Figure 3.1 on page 16.

Consider the trace given by E = {e0, e1, . . . }, ≤ given by e2i ≤ e2j and e2i+1 ≤ e2j+1,

and λ given by λ(e2i) = a and λ(e2i+1) = d, for i, j ∈ IN and i ≤ j (see Figure 3.11(a)

on the next page). The trace is partitioned into two linear orders, one always labeled

by a, the other one always labeled by d. A linear order ≤′ can be obtained by

extending ≤ by e2i ≤
′ e2j+1 for all i, j ∈ IN, ordering all events with an odd index

before the events having an even one (Figure 3.11(b)). However, the associated word

aa . . . dd . . . would quit the domain of ω-words. To make our life easier, we refrain

from non-well-founded linearizations.

We now wish to identify a trace with its set of linearizations. Therefore, we first

show that two different traces have disjoint sets of linearizations.

Proposition 3.4.5 Let T1, T2 ∈
���

(Σ, I). If lin(T1) ∩ lin(T2) 6= ∅ then T1 = T2.

Proof

Let us fix T1 = (E1,≤1, λ1) and T2 = (E2,≤2, λ2) and assume w = a0a1 · · · ∈ Σ∞ is

an element of lin(T1) as well as of lin(T2). Consider linearizations (E1,≤
′
1, λ1) and

(E2,≤
′
2, λ2) of T1 and T2, respectively, which both yield the word w. Then, E1 and

E2 have the same cardinality and are linearly ordered by ≤′
1 and ≤′

2, respectively.

Thus, there exists a bijection f : E1 → E2 sending the i-th element of E1 to the i-th

element of E2 (with respect to ≤′
1 and ≤′

2). It is a simple matter to observe that

3.4. Traces and Words 31

e0
a

e1
d

e2
a

e3
d

e4
a

e5
d

(a)

e0
a

e1
d

e2
a

e3
d

e4
a

e5
d

(b)

Figure 3.11: A trace and one of its extensions into a linear order

f and f−1 are order preserving and, furthermore, that f is label preserving. Note

that the i-th events of both E1 and E2 are labeled by ai, the i-th action of w. Thus,

T1 = T2. �

So we know that words which are linearizations for traces differ if the corresponding

traces are different. Let us now check that every word is also a linearization of a

trace. Therefore, we first introduce an operator yielding a trace for a given word.

Definition 3.4.6

We let tr : Σ∞ →
���

(Σ, I) be defined by w 7→ (E,≤, λ) where E = prf(w) \ {ε},

λ(va) = a, and ≤ is the smallest relation such that

• for all ua, vb ∈ prf(w), ua ≤ vb if ua ∈ prf(vb) and aDb, and

• ≤ is closed under transitivity.

We call tr(w) the canonical trace of w.

Strictly speaking, we should write tr(Σ,I) instead of tr. Since we usually work with a

fixed independence alphabet, this would complicate our notation in an unnecessary

way. Thus, we omit the index.

Example 3.4.7 The trace obtained by tr applied to the word acbdacb is shown in

Figure 3.12 on the following page. Note that tr(acbdacb) is isomorphic to the trace

shown in Figure 3.10(a) on the preceding page.

Let us check that tr is well-defined.

Remark 3.4.8 For all w ∈ Σ∞, we have tr(w) ∈
���

(Σ, I).

32 Chapter 3. Mazurkiewicz Traces

a
a

acb
b

ac
c

acbd
d

acbda
a

acbdacb
b

acbdac
c

Figure 3.12: tr(acbdacb)

Proof

We first show that ≤ is a partial order. Let ua and vb denote prefixes of w. Since

ua ∈ prf(ua) and aDa, ≤ is reflexive. By definition, ≤ is transitive. Since the prefix

relation on words is antisymmetric, ≤ is this as well. Thus, ≤ is a partial order.

Let us now show the items (T1) – (T3). Since prf(ua) is finite for every ua ∈ Σ∗,

every event has a finite history, so (T1) holds. Let us now consider ua and vb with

ua ≤ vb. If there is no v′ with ua ≤ v′ ≤ vb and v′ 6= ua and v′ 6= vb, then aDb

which shows (T2). Let us now consider ua and vb with aDb. Of course, ua ∈ prf(vb)

or vb ∈ prf(ua), and, by definition, ua ≤ vb or vb ≤ ua, respectively, so that (T3) is

satisfied. �

We have now an operator yielding a trace, given a word and the concept of lineariza-

tions. Let us show that our operator tr takes a linearization and delivers a trace so

that the original word is one of its linearizations. Furthermore, let us show a dual

property, that is, considering one of a trace’s linearizations, tr yields the original

trace when applied to that linearization.

Proposition 3.4.9

1. Let w ∈ Σ∞. Then w ∈ lin(tr(w)).

2. Let T ∈
���

(Σ, I). Then for every w ∈ lin(T) we have T = tr(w).

Proof

Let us show the first item. Let w ∈ Σ∞. By definition, tr(w) = (E,≤, λ) where

E = prf(w) \ {ε}, λ(va) = a and ≤ is the smallest relation such that ua ≤ vb if

ua ∈ prf(vb) and aDb, and which is closed under transitivity. Let ≤′ be defined by

u ≤′ v iff u ∈ prf(v), for all u, v ∈ prf(w). Then obviously ≤⊆≤′, and, ≤′ is a

linear ordering relation. Realizing that the sequence of labels of (E,≤′, λ) yields w

concludes the proof.

3.4. Traces and Words 33

Let us now show the second item. Take a w ∈ Σ∞ which is in lin(T). By the first

item of this proposition, we conclude that w ∈ lin(tr(w)). By Proposition 3.4.5 on

page 30, we have T = tr(w). �

The operator tr induces an equivalence relation on Σ∞ in a natural way:

Definition 3.4.10

Let (Σ, I) be an independence alphabet. The trace congruence relation ≡(Σ,I) ⊆

Σ∞ × Σ∞ induced by I is defined by: w ≡(Σ,I) w
′ iff tr(Σ,I)(w) = tr(Σ,I)(w

′). If

w ≡(Σ,I) w
′ we say that w and w′ are trace equivalent or trace congruent.

We abbreviate ≡(Σ,I) by ≡ if the independence alphabet is fixed. It is a simple

matter to check that ≡ is an equivalence relation. Furthermore, it is easy to see

that ≡ is compatible with respect to (partial) concatenation of words.7 Thus, ≡ is

a congruence relation.

We also obtain easily that w ≡ w′ iff there exists a trace T such that w ∈ lin(T) and

w′ ∈ lin(T): By definition, w ≡ w′ implies that tr(w) = tr(w′). Hence, T = tr(w)

has the required property (cf. Proposition 3.4.9(1)). If, on the other hand, there is a

T such that w and w′ are elements of lin(T), then we know by Proposition 3.4.9(2)

that T = tr(w) = tr(w′). However, there exists a trace T such that w ∈ lin(T) and

w′ ∈ lin(T) iff for all T : w ∈ lin(T) iff w′ ∈ lin(T), a result due to Proposition 3.4.5.

In other words, the equivalence relation ≡ is identical to the one induced by lin. The

latter is defined as expected: Two words are equivalent iff they are linearizations of

the same trace.

Let us sum up the results obtained so far: Given a trace, we can obtain a word

via the concept of linearizations. We further clarified that a word gives rise to a

trace via the operator tr. Both directions can be carried out in a compliant way,

i.e., a linearization of a trace yields the trace via tr and the trace for a given word

comprises the word among its linearizations. Thus, the domain of words can be

partitioned into sets of linearizations of traces, or, obtaining the same partition, by

preimages of tr, and there is a natural bijection between linearizations of traces and

traces.

We now consider the equivalence classes obtained by tr (or lin) in more detail. In

which way do the elements of an equivalence class differ? We mentioned already

that independent actions can be ordered in a different way for linearizations. But

what does it exactly mean on the level of words?

First, we define an equivalence relation ∼ on Σ∗ by u ∼ u′ if there is a finite sequence

of words u1, . . . , un such that u = u1, un = u′, and for each i < n, ui = vabv′,

7Given two words of Σω, their concatenation quits the domain of Σω . Therefore, we let the

concatenation of words in Σ∞ to be a partial operation which is defined whenever the resulting

word is in Σ∞. We do not provide further details on the algebraic properties of traces since it is

not needed for our goals. We refer to [DR95] for further details.

34 Chapter 3. Mazurkiewicz Traces

w

w′

u
z
∼
v

Figure 3.13: Definition of v

ui+1 = vbav′, for some (a, b) ∈ I and v, v′ ∈ Σ∗. In other words, u ∼ u′ iff u′ can be

obtained from u by permuting neighbored independent actions finitely often.

Example 3.4.11 With respect to the dependence alphabet represented in Exam-

ple 3.1.4 on page 16, we see that

abcdabc ∼ acbdabc ∼ abcadbc ∼ acbadbc ∼ . . .

The first equivalence can be seen by swapping the first b and c. The second and the

third word are equivalent with respect to ∼ since c and b and the subsequent a and d

are permuted. Note that every linearization yields the trace shown in Figure 3.10(a)

on page 30.

It is easy to see that for finite traces, we have u ∼ u′ iff u ≡ u′. Furthermore, for

finite traces, we easily get that if T is a prefix of T ′ then every linearization of T is

a prefix of a linearization of T ′.

Since our main focus lies on infinite traces, we have to extend ∼ towards the setting

of infinite traces. Taking over ∼ directly for infinite traces does not give a charac-

terization as before since a finite number of permutations is in general not sufficient

to obtain a second linearization from a given one: Consider again the trace shown

in Example 3.4.4 on page 30 respectively Figure 3.11(a) on page 31. Then both

adad . . . and dada . . . are linearizations. However, infinitely often a and d have to

be “swapped” to get the words, respectively. An arbitrary infinite number of per-

mutations, on the other hand, is too much: We might transform ad . . . to a . . . d . . .

which, for reasons of simplicity, is what we want to avoid since it is not an ω-word.

We take the following standard approach: Let v ⊆ Σ∞×Σ∞ be defined by w v w′ iff

for all u ∈ prf(w), there is a v ∈ prf(w′) and a z ∈ Σ∗ such that v ∼ z and u ∈ prf(z).

Stated differently, every prefix of a word w is a prefix of a word equivalent to a prefix

of w′. Figure 3.13 shows the definition in a more illustrative way.

We learn that two linearizations are trace equivalent iff their prefixes are equivalent

in the previous sense:

Proposition 3.4.12 Given the notation of the previous paragraph, we have

w ≡ w′ iff w v w′ and w′ v w.

3.4. Traces and Words 35

Proof

Assume w ≡ w′. Consider a finite prefix u of w. By definition, the events of tr(w) are

prefixes of w (except the empty word), which furthermore form a configuration C1 of

tr(w). Since tr(w) = tr(w′), there is an isomorphism mapping C1 to a configuration

C ′
1 of tr(w′). As C ′

1 is a finite set of prefixes of w′, it also contains one of maximal

length, which we call v. For v, there is the configuration C ′
2 which consists of all

prefixes of v. It is equal to C ′
1 or a successor configuration of C ′

1, so that C ′
1 ⊆ C ′

2.

Altogether, we have that tr(u) is isomorphic to the trace TC′
1

induced by C ′
1, which

is a prefix of the trace TC′
2

induced by C ′
2, which is isomorphic to tr(v). Hence, u is

a linearization of tr(u) as well as of TC′
1
, and u is a prefix of a linearization z of TC′

2
.

The second isomorphism yields z ∼ v. Summing up, we have shown that w v w ′.

Swapping the rôles of w and w′, we get w′ v w.

Now suppose w v w′ and w′ v w. We have to show that tr(w) and tr(w′) are

isomorphic. It is easy to see that for every finite prefix u of w, the trace tr(u) is

a prefix of tr(w). By definition of v, we know that there is a v ∈ prf(w ′) and

z ∼ v with u ∈ prf(z). The latter equivalence implies that tr(z) = tr(v), and since

u ∈ prf(z), we have that tr(u) is a prefix of tr(z), hence, also of tr(v) and tr(w ′).

Similarly, we get that every prefix of w′ yields a prefix of tr(w′) which is isomorphic

to a prefix of tr(w). Since every trace is uniquely determined by the union of its

prefixes, the desired result follows. �

We now know that linearizations of traces differ only by a somehow finite permuta-

tion of actions.

Let us recall that our main intention in this thesis is to study temporal logics inter-

preted over configurations of traces, and this, by studying certain words. We have

presented a link between traces and words. A link between words and configurations

of traces is still missing for using words instead of traces. We therefore introduce

the concept of run maps, which is inspired by the previous proof.

Definition 3.4.13

Let T = (E,≤, λ) ∈
���

(Σ, I) be a trace and w ∈ Σ∞ one of its linearizations. A

function % : prf(w) → conf(T) will be called a run map of the linearization w to the

trace T iff the following conditions are met:

• %(ε) = ∅.

• %(u)
a

−→T%(ua) for each ua ∈ prf(w).

• For every e ∈ E, there exists some u ∈ prf(w) such that e ∈ %(u).

Strictly speaking, we should write %w,T instead of %. For the sake of brevity, we omit

the index.

A run map—if it exists—relates prefixes of words to configurations respecting the

prefix order and the order on configurations. Every run map for a word w to a trace

36 Chapter 3. Mazurkiewicz Traces

[]

[a]

[a, b] [a, c]

[a, b, c]

[a, b, c, a] [a, b, c, d]

[a, b, c, d, a]

[a, b, c, d, a, b] [a, b, c, d, a, c]

[a, b, c, d, a, b, c]

a

c

b

d

a

c

b

(a)

acbdacb

acbdac

acbda

acbd

acb

ac

a

ε

(b)

Figure 3.14: A trace and one of its run maps

T induces a path of the configuration graph whose sequence of edge labels yields w.

Let us consider an example:

Example 3.4.14 Consider the part of the meanwhile well-known configuration

graph shown in Figure 3.14(a). A (part of a) run map for the word (acbd)ω is

denoted by the arrows.

It is a simple matter to show that the run map of a linearization is unique.

Proposition 3.4.15 Let T = (E,≤, λ) ∈
���

(Σ, I) and w ∈ Σ∞ be a linearization

of T . Then any two run maps % and %′ are equal.

Let us now check that a run map exists for every given trace T and linearization

w. Even more, for the straightforward generalization of the definition of a run map

towards an arbitrary word w and a given trace T , we see that there exists a run map

iff w is a linearization of T .

Proposition 3.4.16 Let T = (E,≤, λ) ∈
���

(Σ, I) and w ∈ Σ∞. Then there is a

run map % : prf(w) → conf(T) iff w ∈ lin(T).

Proof

Assume that w is a linearization of T . Then tr(w) = T and we can assume that

3.5. Trace Languages 37

E = prf(w) \ {ε}, λ(va) = a and ≤ is the smallest transitive relation satisfying

for all ua, vb ∈ prf(w), ua ≤ vb if ua ∈ prf(vb) and aDb (cf. Definition 3.4.6 on

page 31). Define % by u 7→ {u′ | u ∈ prf(u)}. Obviously, % is a function from prf(w)

to conf(T). Easy to see is that, %(ε) = ∅ and %(u)
a

−→T%(ua) for each ua ∈ prf(w).

Since %(u) contains u, there is for u ∈ E some u ∈ prf(w) such that u ∈ %(u). Hence,

% is a run map.

Now assume that there is a run map % from a word w ∈ Σ∞ to a trace T . We

show that there is an isomorphism between tr(w) to T and conclude that w is a

linearization of T .

Since % is a run map, there is for every e ∈ E some u ∈ prf(w) such that e ∈ %(u)

whereE denotes the set of events of T . Mapping every event e to the shortest u yields

the required isomorphism θ: Since for every e ∈ E, there exists some u ∈ prf(w)

such that e ∈ %(u), we know that θ is total. As %(u)
a

−→T%(ua) for each ua ∈ prf(w),

we have that for every two different events e and e′, the image of θ is different, and

that for every u, there is an event e (the one added to the configuration %(u)) that

yields u under θ. Hence, θ is injective as well as surjective. It is a routine matter to

check that θ is compatible with the partial order and labeling function of T . �

Let us indicate a difference between configurations obtained by elements of tr(w)

for a word w and configurations obtained via the run map for a prefix of w, which

sometimes causes slight confusion. We provide an example: acb is a prefix of the

word acbdacb. tr(acbdacb) is shown in Figure 3.12 on page 32. The configuration

obtained by %(acb) contains the events a, ac, and acb while the configuration ↓acb

only contains the events a and acb.

Let us now come to a last observation for run maps. If we consider two linearizations

w and w′ of a trace T with run maps % and %′, respectively, we see that for every

prefix u of w and u′ of w′ we have %(u) = %′(u′) iff u ≡ u′ (iff u ∼ u′).

We have now set out the scene for dealing with traces by means of words. To simplify

our forthcoming investigations, we simplify our notation: Instead of tr(w) we write

in the following Tw and instead of %(u) we write Cu.

We end this section with the general convention that, from now on, we only study

infinite traces.

3.5 Trace Languages

Regularity is one of the key notions for studying classes of languages. Regular

languages can usually be described by some kind of finite automaton giving evidence

for a collection of objects to be realizable in an intuitive sense. The aim of this section

is to recall notions of regularity for word as well as trace languages to the extent

needed here (cf. [Tho90a] for a comprehensive overview).

38 Chapter 3. Mazurkiewicz Traces

Let us begin with the notion of trace-consistent languages.

Definition 3.5.1

We call a word language L ⊆ Σω trace consistent iff for all words w,w′ ∈ Σω with

w ≡ w′, it holds w ∈ L iff w′ ∈ L.

Note that the set of linearizations of any trace language (also called the linearization

of a trace language) is a trace-consistent language.

Recall that a subset L ⊂ Σω is called a regular language or ω-regular language iff L

is a finite union of sets U.V ω where U, V ⊆ Σ∗ are regular sets of finite words. As

expected, U.V denotes the set {uv | u ∈ U, v ∈ V } and V ω is the set {v1v2 . . . | vi ∈

V for all i ∈ IN}.

A simple notion for regularity of trace languages is obtained by considering languages

of their linearizations.

Definition 3.5.2

We call a trace language L ⊆
���

(Σ, I) regular, iff
⋃

{lin(T) | T ∈ L} is a regular

ω-language.

We learned in the previous section that every word can be used to derive a trace

via the operator tr. Thus, a language Lw of words yields a trace language Lt when

applying the operator tr to every word. If Lw is trace-consistent, it is clear that the

set of linearizations of Lt is identical to Lw. We conclude:

Remark 3.5.3 Trace-consistent regular languages can be identified with regular

trace languages.

A different model characterizing regular trace languages was given by Zielonka

[Zie87]. It uses the notion of a distributed alphabet and of asynchronous automata.

Its benefit is that the language accepted by an asynchronous automaton is a trace-

consistent regular language and that for every trace-consistent regular language,

there is an asynchronous Büchi automaton accepting this language. This automa-

ton model inspired the model we use for modeling hardware systems studied in

Chapter 8.

Chapter 4

Automata for Trace Languages

In this chapter, we introduce the necessary tools for simplifying the construction of

decision procedures for the logics studied in this thesis. Following a long tradition

originating from Büchi [Büc62], we employ automata as devices recognizing struc-

tures satisfying the formula at hand. In our case, we recognize (linearizations of)

trace languages which are models for the underlying formulas. For these automata,

it is easy to decide whether the accepted language is empty or not yielding the

answer of the underlying satisfiability question.

We start by recalling the notion of Büchi automata in Section 4.1. They are the most

prominent device with a finite memory employed for studying infinite sequences of

actions.

We proceed with defining alternating automata, which have their origin in [BL80,

CKS81]. Vardi has given several examples showing the benefit of employing al-

ternating automata for defining decision procedures for satisfiability for temporal

logics. [Var96] provides a good overview of the field of alternating Büchi automata

together with an application for checking satisfiability of linear temporal logic (LTL)

over words. We will apply alternating automata for variants of linear temporal logic

interpreted over Mazurkiewicz traces.

We present our notion of alternating automata in Section 4.2. However, we follow the

style of Löding and Thomas [LT00]. It is equivalent to Vardi’s notion of alternating

automata with respect to expressiveness and complexity of checking emptiness but

fits nicer into the global picture of automata theory.

In Section 4.2.4, we introduce linear automata, which form a subclass of alternat-

ing automata characterizing exactly the languages definable by LTL formulas (over

words) [LT00].

We end this chapter with considering trace-consistent alternating Büchi automata,

which are well-prepared to be acceptors for (linearizations of) trace languages.

40 Chapter 4. Automata for Trace Languages

q0

q1 q2

q3q4

a
b

a

b

a

bc

Figure 4.1: A (graphical representation of a) Büchi automaton

4.1 Büchi Automata

Büchi automata were first introduced by Büchi in [Büc62] for obtaining a decision

procedure for the monadic second-order theory of structures with one successor. Let

us establish the key concepts of this kind of automata to the extent needed in our

thesis. For a thorough introduction to Büchi automata we refer to [Tho90a]. We

start directly with their definition:

Definition 4.1.1

A (non-deterministic) Büchi automaton (BA) over an alphabet Σ is a tuple A =

(Q, δ, q0, F) such that

• Q is a finite non-empty set of states,

• q0 ∈ Q is the initial state,

• F ⊆ Q is a set of accepting states, and

• δ : Q× Σ → 2Q is the transition function.

Let us fix a Büchi automaton A = (Q, δ, q0, F) for the rest of this section.

A Büchi automaton may be represented as an edge-labeled directed graph. Its nodes

are the states and an edge labeled by a ∈ Σ leads from a node (state) q ∈ Q to a node

(state) q′ ∈ Q iff q′ ∈ δ(q, a). The initial state is marked with an incoming arrow.

A final state, on the other hand, is identified by a second circle around the node.

Figure 4.1 shows an exemplifying Büchi automaton over the alphabet Σ = {a, b, c}.

The automaton operates on infinite input words. The idea of its behavior is that

it chooses (non-deterministically) a possible successor state in δ(q, a), provided it is

in the state q and reads an action a. Of course, the automaton starts in its initial

state.

4.1. Büchi Automata 41

Definition 4.1.2

A run of A on a word w = a0a1 . . . ∈ Σω is a function ρ : IN → Q such that ρ(0)

yields the initial state q0 of the automaton and ρ(i+ 1) ∈ δ(ρ(i), ai) for all i ∈ IN.

Sometimes, we represent a run ρ only by its sequence of images. For example, a run

of the automaton shown in Figure 4.1 on the word a(baba)ω is given by the sequence

q0(q1q2q3q4)
ω. A run on ababcω is given by q0q1q2q3q

ω
4 .

For automata over finite words, acceptance is defined according to the last state

visited by the run. When the words are infinite, there is no such thing as a “last

state”. Instead, acceptance is defined according to the set of states that are visited

infinitely often. For a run ρ, we define the set of states visited infinitely often,

denoted by Inf(ρ), by

Inf(ρ) = {q ∈ Q | for infinitely many k ∈ IN, we have ρ(k) = q}

Note that for every run ρ, the set of states visited infinitely often is non-empty.

However, a run is accepting iff final states are visited infinitely often.

Definition 4.1.3

A run ρ of A is accepting iff Inf(ρ) ∩ F 6= ∅.

Let us consider Figure 4.1 on the facing page. The run denoted by q0(q1q2q3q4)
ω on

the word a(baba)ω is accepting since the final states q2 and q3 are visited infinitely

often. The run on ababcω denoted by q0q1q2q3q
ω
4 is not accepting since the only state

visited infinitely often is q4, which is not a final state.

Definition 4.1.4

The language accepted or recognized by a Büchi automaton A consists of all words

of Σω for which an accepting run of the automaton exists and is denoted by L(A).

A language L ⊆ Σω is definable by a Büchi automaton iff there exists a Büchi

automaton A with L(A) = L.

It is well-known that the class of languages definable by Büchi automata is precisely

the class of regular languages:

Theorem 4.1.5 ([Büc62])

A language L ⊆ Σω is definable by a Büchi automaton iff L is regular.

A Büchi automaton is deterministic iff |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ. Thus,

the transition function can be understood as a mapping to Q instead of a mapping to

the power set of Q (δ : Q×Σ → Q). In other words, the successor state is determined

by the current state and the action. Note that non-deterministic Büchi automata

are strictly more expressive than deterministic Büchi automata. This means, there

42 Chapter 4. Automata for Trace Languages

is a language which is definable by a non-deterministic Büchi automaton but which

is not accepted by any deterministic Büchi automaton.

If an automaton A represents all structures satisfying a formula ϕ, complementation

of an automaton is an interesting operation on automata. Here, the complement of

an automaton A is an automaton A such that L(A) = L(A). If L(A) consists of all

structures satisfying ϕ, then L(A) comprises all structures satisfying the negation

of ϕ.

Büchi introduced a complementation construction which was based on a complicated

combinatorial argument. Indeed, it was one of the key contributions of [Büc62] to

show that the class of Büchi automata is closed under complementation, a result by

far non-trivial. However, his complementation involves a double exponential blow-

up. It was shown by Michel [Mic88] that the complementation of Büchi automata

has a lower bound of 2O(n logn) where n denotes the number of states of the original

automaton. In [SVW85], Sistla et al. suggested a construction which yields an

automaton with 2O(n2) states. The first optimal construction was given by Safra

in [Saf88]. Klarlund presented a different solution in [Kla91]. Both solutions are

difficult to implement though. A further approach for complementation of Büchi

automata is via the use of alternating automata (cf. [Tho99] and [KV01]). The

resulting algorithms are optimal and easy to implement. We summarize this short

overview about complementation in the following theorem:

Theorem 4.1.6 ([Saf88])

Let A = (Q, δ, q0, F) be a Büchi automaton with |Q| = n. Then there is an effective

algorithm constructing A = (Q′, δ′, q′0, F
′) where |Q′| = 2O(n log n).

Let us now turn to a further important question about Büchi automata. If an au-

tomaton represents all structures satisfying a formula, one can check the automaton’s

language for emptiness to decide whether the formula has a model. Thus, checking

emptiness is an important problem for Büchi automata. Let us understand that this

question can be answered in linear time, which is a result due to Emerson and Lei

[EL85]. However, we should clarify with respect to which measure this is true:

Definition 4.1.7

Let A = (Q, δ, q0, F) be a Büchi automaton.

• The unlabeled graph of A is the graph (V,E) such that

– V = Q and

– (q, q′) ∈ E iff there is an action a such that q ′ ∈ δ(q, a).

• The size of A, denoted by |A|, is defined as |V | plus |E| where (V,E) is assumed

to be the unlabeled graph representation of A.

4.1. Büchi Automata 43

In other words, the size of a Büchi automaton is measured in the number of its states

and transitions where transitions differing only in the action label are counted only

once.

Remark 4.1.8 For an unlabeled directed graph with n nodes, the number of edges

is bounded by n2. Thus, the size of a Büchi automaton with n states is in O(n2).

However, for our applications, a Büchi automaton usually has a fixed maximal num-

ber c of possible successor states. In this case, the number of edges is bounded by

c · n so that the size of the Büchi automaton is in O(n). We therefore often identify

the size of a Büchi automaton with its number of states. The careful reader might

forgive us.

Now we could state the previously mentioned result.

Theorem 4.1.9 ([EL85])

The non-emptiness problem for Büchi automata is decidable in linear time.

Proof

Given a Büchi automaton A, consider its unlabeled graph. Since the number of

final states is finite, every accepting run visits infinitely often final states iff it visits

a single final state infinitely often. As the number of states is finite, the graph of

the automaton then has to contain a cycle on which a final state occurs. Further-

more, one of the states on this cycle must be reachable from the initial state of the

automaton.

A depth-first-search algorithm can construct a decomposition of the graph into

strongly connected components [CLR90] in linear time with respect to the num-

ber of nodes plus the number of edges of the graph.

The language of the automaton is non-empty iff from a component that contains

the initial state a non-trivial connected component that intersects with the set of

final states non-trivially is reachable. Hence, Büchi automata non-emptiness can be

reduced to graph reachability.

The latter is known to be an operation which can be carried out in linear time by a

standard depth-first-search algorithm [CLR90] (see Theorem A.3.1 on page 154). �

With respect to the space needed for checking emptiness, it is easy to see that only

a finite number of states must be stored at the same time, provided our underlying

computational model offers non-determinism. The result can even be strengthened

in by showing that this problem is complete for Nlogspace which was shown by

[VW94].

Theorem 4.1.10

The non-emptiness problem for Büchi automata is Nlogspace-complete.

44 Chapter 4. Automata for Trace Languages

Proof

As pointed out in the proof of Theorem 4.1.9 on the preceding page, emptiness of

a Büchi automaton A can be reduced to a reachability question for the unlabeled

graph of A. Starting from the initial state q0 of A, an algorithm has to find a

state q which is a final state and which is (non-trivially) reachable from q. Thus, a

corresponding non-deterministic Turing machine starts with guessing a final state q

and writing q0qq on its working tape (coded binary). Now, it proceeds twice like the

Turing machine described in the proof of Theorem A.3.2 on page 154, once to find

q starting at q0, and, if successful, a second time to find q again, but now starting

at q. Observe that totally 3 states have to be kept on the tape. Thus, the problem

is in Nlogspace.

On the other hand, the graph accessibility problem can be reduced to emptiness of

a Büchi automaton in a straightforward way. Since the former was proven to be

Nlogspace-hard [Jon75], we are done. �

4.2 Alternating Büchi Automata

Alternating automata extend non-deterministic automata by universal choices. The

transition function denotes no longer a set of possible next states but a (positive)

Boolean combination. Alternation in the context of automata was first studied in

[BL80] and [CKS81]. In this section, we recall the notion of alternating automata

along the lines of [Var96] where alternating Büchi automata are used for model

checking LTL over strings. However, we modified the definition of a run to reflect the

ideas presented in [LT00] which simplifies several proofs. Furthermore, we mention

some of their properties.

4.2.1 The Concept

As we will see, the transition function of our automata will no longer yield a set of

successor states but positive Boolean combination thereof. We therefore need the

notion of positive Boolean formulas:

Definition 4.2.1

For a finite set X of variables, let B+(X) be the set of positive Boolean formulas

over X, i.e., the smallest set such that

• X ⊆ B+(X)

• tt,ff ∈ B+(X)

• ϕ,ψ ∈ B+(X) ⇒ ϕ ∧ ψ ∈ B+(X), ϕ ∨ ψ ∈ B+(X)

4.2. Alternating Büchi Automata 45

In the following, we usually assume that every positive Boolean formula is in dis-

junctive normal form and reduced with respect to idempotency and commutation.

Hence, for a set X with |X| elements, the size of B+(X) is bounded by 22|X|
. This

can easily be seen by considering the formulas as sets (disjunctions) of sets (con-

junctions).

Let us discuss this bound in more detail: Every Boolean formula with n variables

induces a Boolean function from � n to � where � = {0, 1}. If the formula is positive,

the resulting Boolean function will be monotone. We call a Boolean function f

monotone iff for (x1, . . . , xn) ≤ (x′1, . . . , x
′
n), we have f(x1, . . . , xn) ≤ f(x′1, . . . , x

′
n).

Here, we let (x1, . . . , xn) ≤ (x′1, . . . , x
′
n) iff for all i ∈ {1, . . . , n}, xi ≤ x′i where,

as expected, 0 ≤ 1. It is easy to see that the number of all Boolean functions is

22n . However, it is well-known that not all Boolean functions are monotone (e.g.

the complement function which sends 0 to 1 and vice versa). Thus, we should ask

for a smaller bound of the number of monotone Boolean functions.

Giving a closed formula for the number of monotone Boolean functions with n

variables is known as Dedekind’s problem. It was first considered by Dedekind in

1897 [Ded69]. Till today, there is no concise closed-form for this number. Its values

are known for n up to 8.1 It was shown in [Kle69] that the n-th Dedekind number

is

2(
n

bn/2c)(1+η(n))

where 0 < η(n) < c(log n/n) for an appropriate constant c. Thus, the n-th Dedekind

number is not in 2O(p(n)) for any polynomial function p. Let us end this small

excursion by learning that from the point of view of complexity theory, we get no

significant improvement of our previously known bound of 22n .

Let us continue with introducing further notions needed before we are able to define

our kind of automata. We say that a set Y ⊆ X satisfies (or is a model of) a formula

ϕ ∈ B+(X) iff ϕ evaluates to tt when the variables in Y are mapped to tt and the

members of X\Y are mapped to ff. A model is called minimal if none of its proper

subsets is a model. For example, {q1, q2} as well as {q1, q3} are minimal models of

the formula (q1 ∧ q2)∨ (q1 ∧ q3) whereas {q1, q2, q3} is a model which is not minimal.

Note that the minimal model of tt is the empty set and that ff has no model at all.

A variable q is essential for a formula ϕ ∈ B+(X) iff there is a minimal model Y of

ϕ containing q. For example, q1 is essential for q1 ∨ (q1 ∧ q2) while q2 is not. It is

easy to see that for every formula ϕ, there is a formula ϕ′ having the same minimal

models and comprising only essential variables. For convenience, we (usually) deal

with positive Boolean formulas (in disjunctive normal form) in which every variable

is essential.

1http://www.mathpages.com/home/kmath030.htm

46 Chapter 4. Automata for Trace Languages

Let us consider a Büchi automaton A = (Q, δ, q0, F). For a state q and an action a,

let {q1, . . . , qk} = δ(q, a) be the set of possible next states of the automaton when it is

in state q reading a. The key idea for alternation is to describe the non-determinism

by the formula q1∨· · ·∨qk ∈ B+(Q). Hence, we write δ(q, a) = q1∨· · ·∨qk. If k = 0

we write δ(q, a) = ff. An alternation is introduced by allowing an arbitrary positive

Boolean formula of B+(Q). Let us be more precise:

Definition 4.2.2

An alternating Büchi automaton A = (Q, δ, q0, F) over an alphabet Σ is a tuple such

that

• Q is a finite nonempty set of states,

• q0 ∈ Q is an initial state,

• F ⊆ Q is a set of accepting states, and

• δ : Q× Σ → B+(Q) is a transition function.

Remark 4.2.3 Later in our construction, logical formulas will take over the rôle of

states. Therefore, we should formally distinguish between a disjunction of formulas

and a disjunction of states. However, to simplify our presentation, we identify these

disjunctions when the context makes clear which one is meant. In particular, given

a formula ϕ in disjunctive normal form, ϕ =
∨∧

ϕij where no ϕij is a (top level)

disjunction or conjunction, we identify ϕ with the positive Boolean combination of

states ϕij . Measuring the complexity of a construction, it is sometimes necessary to

distinguish disjunctions of formulas and disjunctions of states, though. For example,

ϕ ∨ ψ counts as a single state when understood as formula but as two states when

understood as a Boolean combination of states. Then we sometimes write st(ϕ) to

denote {ϕij | ϕ =
∨∧

ϕij}, the Boolean combination of states.

Let us fix the alphabet Σ = {a, b} and the following alternating Büchi automaton

for illustrating further concepts of alternating Büchi automata.

Example 4.2.4 Let A = (Q, δ, q0, F) over the alphabet Σ defined by

• Q = {q0, q1, q2, q3} is the set of states,

• q0 is the initial state,

• F = {q2} is the set of accepting states, and

• δ : Q× Σ → B+(Q), the transition function, is given by

δ(q0, a) = q1 ∧ q2
δ(q0, b) = (q1 ∧ q2) ∨ (q1 ∧ q3)

δ(q1, a) = tt

δ(q1, b) = q1

δ(q2, a) = q1 ∧ q2
δ(q2, b) = q1 ∧ q2
δ(q3, a) = ff

δ(q3, b) = ff

4.2. Alternating Büchi Automata 47

q0

q2 q1 q3

tt ff

Figure 4.2: A transition graph of an alternating Büchi automaton

Then A is an alternating Büchi automaton.

We are now going to develop graphical representations for alternating Büchi au-

tomata. The key point to visualize is of course the transition function of the au-

tomaton. For a transition of a Büchi automaton of the form δ(q, a) = {q1, . . . , qk},

we simply introduced k edges labeled by a from q to q1, . . . , qk. Let us adopt but

also adapt this idea to define the notion of the transition graph of an alternating

Büchi automaton.

Definition 4.2.5

Let A = (Q, δ, q0, F) be an alternating Büchi automaton.

• The transition graph of A is the graph (Q,E, F) such that (q, q ′) ∈ E iff there

is an action a such that for δ(q, a) =
∨∧

qij, the state q′ equals one qij.
2

• The size of A, denoted by |A|, is defined as |Q| plus |E| where (Q,E, F) is

assumed to be the transition-graph representation of A.

Note that Remark 4.1.8 on page 43 for Büchi automata holds similarly for alternating

Büchi automata. That is, the size of E for an alternating Büchi automaton is

bounded by n2 if n is the size of Q (the number of states of the automaton). Since

we usually have a fixed number of disjunctions and conjunctions, we often forget to

consider the size of E when measuring the size of an automaton.

Figure 4.2 shows the transition graph of the automaton given in Example 4.2.4 on

the facing page. Final states are highlighted with a second circle around the node.

However, while the previous representation will turn out to be useful to define a

certain subclass of alternating automata, it does not suffice to represent an alternat-

ing Büchi automaton completely. Remember that for alternating Büchi automata,

a transition yields a Boolean combination of states. Representing a transition of

the form δ(q, a) =
∨∧

qij just by edges from q to qij—as we did before—does not
2silently considering tt and ff as states here

48 Chapter 4. Automata for Trace Languages

∨

∧ ∧

q2 q1 q3

Figure 4.3: A graph representation of a Boolean formula

q0

q2 q1 q3

∧

a

∨

∧ ∧

b

∧

a, b

tt

a

b

ff

a, b

Figure 4.4: A graphical representation of an alternating Büchi automaton

show the Boolean structure. A Boolean formula (over states) can be represented as

a graph by its natural tree representation. The latter can be simplified towards a

directed acyclic graph by sharing the leafs with the same state. Instead of a formal

definition, we just provide an example: Figure 4.3 shows the graph representation

of the formula (q1 ∧ q2) ∨ (q1 ∧ q3). Now, we represent a transition of the form

δ(q, a) =
∨∧

qij by adding an edge labeled by a from q to the root of the graph

representation of
∨∧

qij . The graphical representation of an alternating Büchi au-

tomaton is now the union of the graph representations of its transitions where nodes

labeled with the same state are identified. We call this graph the graphical repre-

sentation of an alternating Büchi automaton (as opposed to the term “transition

graph” which visualizes the transition function of an automaton in an abstracted

way). Figure 4.4 shows the graphical representation of the automaton presented in

Example 4.2.4 on page 46. Dashed lines are used to identify the graph of Figure 4.3

within the whole graph.

4.2. Alternating Büchi Automata 49

Like a Büchi automaton, an alternating Büchi automaton operates on infinite input

words. The idea of its behavior is a little bit more complicated than for the non-

deterministic version. Suppose the automaton is in the initial state q0 and reads

an action a. Then, it chooses (non-deterministically) a minimal set of states U

satisfying the formula δ(q0, a) and sends a copy of itself to every state of U . These

copies proceed similarly as before when reading the next input action. Each copy in

state q chooses (non-deterministically) a minimal set of states satisfying the formula

δ(q, b) (supposing that b is the next input action). To minimize the coming effort,

the copies unite their models to derive the next “level” of states to start with for

the next input action.

Thus, a run on an infinite word is no longer a sequence but a labeled directed acyclic

graph. The label l(v) of a node v reflects one of the current states of the automaton,

and the edges show transitions of the automaton with respect to the input string.

Hence, this graph should have a unique “root” labeled with q0. Furthermore, it has

to be divisible into “levels” i ∈ IN corresponding to the i-th input letter. Every node

except the root must have a “predecessor”. For a node v of level i, the labels of

nodes of level i+ 1 connected with v should further be a model for the transition in

state l(v) reading the i’s letter so that indeed a copy of the automaton proceeds in

the states required to satisfy the state l(v) with the given input. More precisely:

Definition 4.2.6

A run on an infinite string w = a0a1 . . . ∈ Σω is a Q-labeled directed acyclic graph

(V,E) such that there exist labelings l : V → Q and h : V → IN which satisfy the

following properties:

• h−1(0) = {v} with l(v) = q0.

• E ⊆
⋃

i∈IN(h−1(i) × h−1(i+ 1)).

• For every v′ ∈ V with h(v′) ≥ 1, {v ∈ V | (v, v′) ∈ E} 6= ∅.

• For every v, v′ ∈ V , v 6= v′, l(v) = l(v′) implies h(v) 6= h(v′).

• For every v ∈ V , {l(v′) | (v, v′) ∈ E} is a minimal model of δ(l(v), ah(v)).

Figure 4.5(a) on the next page shows a (part of a) run of the automaton A of

Example 4.2.4 on page 46 on the word w = abaa Its levels are emphasized in

Figure 4.5(b). Verify that the requirements for a run are indeed satisfied.

Since ff has no model, there is no run in which ff occurs. If the transition function

yields tt for a given state q and input action a, the minimal model satisfying tt is

the empty set. Thus, the automaton stops processing the corresponding branch (see

Figure 4.5(a)). This implies that a run of an automaton on an infinite word can be

finite.

50 Chapter 4. Automata for Trace Languages

q0

a

q1 q2

b

q1 q2

a

q1 q2

a

(a)

0

1

2

3

q0

a

q1 q2

b

q1 q2

a

q1 q2

a

(b)

Figure 4.5: An exemplifying run

For Büchi automata, a run is accepting, if infinitely many final states are visited. If

a run captures the behavior of several copies of the automaton at the same time, we

require that every path of the run visits infinitely many final states of the automaton,

unless the path is finite and thereby ending in a state whose transitions yield tt.

Definition 4.2.7

A run (V,E) on w = a0a1 . . . ∈ Σω is accepting if every maximal infinite path, with

respect to the labeling l, visits at least one final state infinitely often. The language

L(A) of an automaton A is determined by all words for which an accepting run of

A exists.

Note that every maximal finite path ends in a node v ∈ V with δ(l(v), ah(v)) = tt.

The run shown in Figure 4.5(a) is accepting since q2 is a final state.

The transition function δ of an alternating Büchi automaton can be extended to δ̌

applicable to Boolean combinations of states in the following way:

δ̌(tt, a) = tt

δ̌(ff , a) = ff

δ̌(ϕ ∨ ψ, a) = δ̌(ϕ, a) ∨ δ̌(ϕ, a)

δ̌(ϕ ∧ ψ, a) = δ̌(ϕ, a) ∧ δ̌(ϕ, a)

Sometimes it is convenient to allow an initial positive Boolean formula instead of

a single initial state. Thus, A = (Q, δ, ϕ, F) for ϕ ∈ B+(Q). The idea is that the

4.2. Alternating Büchi Automata 51

automaton can start in a set of states described by the formula. The notion of a run is

modified in the expected manner: Using the notation of Definition 4.2.6 on page 49,

l(h−1(0)) = {l(v) | v ∈ h−1(0)} must be a minimal model of ϕ and for all v, v ′ ∈

h−1(0) with v 6= v′, we have l(v) 6= l(v′). Using the extended transition function,

an alternating Büchi automaton with an initial formula can be translated into one

with a single initial state accepting the same language: Let A′ = (Q′, δ′, q0, F) with

Q′ = Q] {q0},
3 δ′(q0, a) = δ̌(ϕ, a), and δ′(q, a) = δ(q, a) for q ∈ Q and a ∈ Σ. Then

it is easy to see that L(A) and L(A′) coincide.

We can then easily extend a transition function δ : Q× Σ → B+(Q) to δ̂ : B+(Q) ×

Σ∗ → B+(Q) by δ̂(q, ε) = q and δ̂(q, au) = δ̂(δ̌(q, a), u) for a ∈ Σ and u ∈ Σ∗. It is a

simple matter to verify that for every automaton A = (Q, δ, q0, F) and every infinite

word uw ∈ Σω with finite prefix u ∈ Σ∗, the automaton A accepts uw iff A(δ̂(q0, u))

accepts w, where A(ϕ) denotes the automaton A with initial formula ϕ instead of

initial state q0. Note that for sake of brevity, we usually write δ instead of δ̂.

It is obvious that every Büchi automaton can be turned into an alternating Büchi

automaton accepting the same language by representing the set of possible successors

for each state and input action as a disjunction, as mentioned before. If the Büchi

automaton is deterministic, the disjunction consists of a single state and can also

be considered to be a conjunction. An alternating Büchi automaton for which the

transition function is restricted to yield only conjunctions is called a universal Büchi

automaton.

Remark 4.2.8 For every deterministic Büchi automaton A there is a universal

Büchi automaton A′ with L(A) = L(A′). The size of A′ is the same as the size of

A.

Vice versa, given an alternating Büchi automaton A, it is possible to construct

a Büchi automaton A′ accepting the same language. However, this construction

involves an exponential blow-up. The idea of the construction is that the states of

A′ represent different levels of the run tree of A. When the Büchi automaton reads

the next input action, it guesses the next level in the run tree of the alternating

automaton. However, A′ has to keep track of visited final states. Therefore, a level

is split into states which are on a path on which a final state was seen recently and

in the other states. Thus, a state of A′ will be a pair of subsets of states of A, the

second component of the pair holds the states which hit a final state recently, the

first the others. The result is due to [MH84]. However, we slightly adapted the proof

to meet our notion of runs.

Theorem 4.2.9 ([MH84])

For every alternating Büchi automaton A, there is a Büchi automaton A′ with

L(A) = L(A′). The size of A′ is exponential in the size of A.
3Q′ = Q ∪ {q0} and q0 /∈ Q

52 Chapter 4. Automata for Trace Languages

Proof

Let A = (Q, δ, q0, F) be an alternating Büchi automata. We are going to define

A′ = (Q′, δ′, q′0, F
′) accepting the same language. We let Q′ = 2Q × 2Q. The initial

state is q′0 = ({q0}, ∅). Thus, its first component contains the initial state of A and

its second component is the empty set since no final state has been visited yet.4 We

let the set of final states F ′ be {∅} × 2Q. The idea is that successor states of the

current states from the first component are shifted into the second if they are final

states. Thus, the empty set in the first component identifies that “enough” final

states have been seen. Therefore, these states are final in A′. Let us now define the

transition function δ′. For a pair (U, V) of sets of states and an action a let δ ′ yield

the pairs (U ′, V ′) defined as follows:

• case U 6= ∅: Intuitively, this case means that there are states in U for which

no final state was seen recently. Let X,Y ⊆ Q be minimal sets satisfying the

transitions requested by the states of respectively U and V reading the input

symbol, i.e. X |=
∧

q∈U δ(q, a) and Y |=
∧

q∈V δ(q, a). We put non-final states

of X in the first component and the final states in the second. Furthermore, we

add all members of Y to the second component except the ones which are also

in the first component. Thus, we set U ′ = X−F and V ′ = (X ∩F)∪ (Y −U ′).

• case U = ∅: Let Y ⊆ Q such that Y |=
∧

q∈V δ(q, a). Since for all states in U

we have seen a final state (the reason why U = ∅) we put all states into U ′

except the ones which are final states: U ′ = Y −F and V ′ = Y ∩F . Thus, we

are looking for final states again.

Note that we identify an empty conjunction with tt, so that (∅, ∅) ∈ δ ′((∅, ∅), a).

Observe that the two components are indeed a partition of each level in the run dag

of the alternating automaton. A careful analysis shows that visiting a state having

the empty set in its first component infinitely often guarantees visiting final states in

the corresponding run of the alternating automaton infinitely often and vice versa.

Let n = |Q|. The states of A′ are elements of 2Q×2Q. Thus, their number is bounded

by 2n2n = 22n. However, since the components have an empty intersection, we get

a bound of

∑n
k=0

(n
k

)

(

∑k
l=0

(k
l

)

)

=
∑n

k=0

(n
k

)

2k

= 3n

= 2n log 3

�

As a conjunction has a unique (minimal) model, the previous proof shows:

4If q0 is also a final state, it is a matter of taste to define q′0 = (∅, {q0}) instead.

4.2. Alternating Büchi Automata 53

Corollary 4.2.10 For every universal alternating Büchi automaton A there is a

deterministic Büchi automaton A′ with L(A) = L(A′). The size of A′ is exponential

in the size of A.

4.2.2 Emptiness of Alternating Büchi Automata

The transformation of an alternating Büchi automaton A into a Büchi automaton

A′ with an exponential blow-up implies that emptiness of A can be decided in

exponential time and polynomial space with respect to the number of states of A:

Just apply the emptiness test for the exponentially larger A′ (cf. Theorem 4.1.10 on

page 43).

Corollary 4.2.11 Emptiness for alternating Büchi automata is decidable in expo-

nential time and polynomial space.

However, one might think that there is an improved emptiness test by considering

the alternating automaton directly. Let us convince ourself that this is not the case

(unless P equals Pspace). The following result can be found in [Var96]. However,

we give a different and more direct proof.

Theorem 4.2.12

Emptiness for alternating Büchi automata is Pspace complete (with respect to the

number of states).

Proof

It remains to show Pspace-hardness. Our proof proceeds by a reduction of the

Pspace-complete problem In-Place Acceptance (cf. Section A.5 on page 155)

to the emptiness problem of alternating Büchi automata. In-Place Acceptance

is the problem whether a given deterministic Turing machine M accepts a given

input x using only |x| + 1 cells on the working tape. Let the Turing machine be

given by M = (Q,Γ,∆, q0, δ, F) where

• Q is a finite set of states,

• Γ is a finite input alphabet (thus, x ∈ Γ∗),

• ∆ is a finite working alphabet (with Γ ⊂ ∆),

• q0 ∈ Q is an initial state,

• F ⊆ Q is a set of final states, and

• δ : Q× ∆ → Q× ∆ × {l, r, s} is the transition function.

54 Chapter 4. Automata for Trace Languages

. x1 . . . xn
�

/

q0

0 1 n n+ 1 n+ 2

. x′
1

. . . xn
�

/

q1

0 1 n n+ 1 n+ 2

.
0

1 q0
x1

1

1 q0

. . . xn
n

1 q0

�n + 1

1 q0
/

n+ 2

1 q0

.
0

2 q1
x′

1

1

2 q1

. . . xn
n

2 q1

�n + 1

2 q1
/

n+ 2

2 q1

M: δ(q0, x1) = (q1, x
′

1
, r) A reading (q0, x1)

Figure 4.6: Encoding a Turing machine by an alternating Büchi automaton

Suppose the Turing machine is in the state q and the symbol under the head is

a. Then the transition function δ yields the next state of the machine, a symbol

replacing a, and a direction in which the head of the Turing machine has to move (l

means left, r means right, and s means stay).

First we note that we can change our machine so that it never leaves the space already

occupied by x plus three further cells. This can be achieved by modifying M in the

way that it first adds two new symbols . and / left and right of x�, respectively,

where x� is x plus the blank symbol of the Turing machine. Furthermore, we add

transitions that, whenever M reads . or /, it rejects the input.5 The benefit of this

modification is that the position of the head of the Turing machine is always between

0 and n+2 assuming that x is on positions 1 to n. Note that this modification does

not change the language consisting of the words accepted in place and that it can be

carried out in linear time adding a constant to the size of M. From now on, assume

that M has this restricted form.

The key idea for defining the alternating Büchi automaton A simulating the com-

putation of the Turing machine is to represent each cell of the Turing machine’s

working tape together with its current symbol as well as the position of the head

and the current state of M as a separate state of A. Consequently, we set Q′ =

{0, . . . , n + 2} × ∆ × {0, . . . , n + 2} × Q. A tuple (k, c, l, q) then means that cell k

of M contains the symbol c, the head of M is at position l, and M is in state q.

Figure 4.6 shows on the upper left half the initial configuration of the (modified)

Turing machine where x = x1 . . . xn is the input word. On the upper right side, we

can see for each cell a state of the automaton. To optimize the presentation, the

tuple (k, c, l, q) is shown in a two-dimensional fashion.

The automaton operates on a sequence of possible transitions of the Turing machine.

We let the alphabet Σ consist of input values for δ, i.e. Σ = Q×∆. The transitions

of A have to mimic the transitions of M. Consider a transition δ(q, a) = (q ′, b,m) of

5That means it stays in a non-final state at the same position.

4.2. Alternating Büchi Automata 55

M and a state (k, c, l, q′′). If k = l then the head of the Turing machine is over the

current cell. If further a = c and q = q ′′ the transition is applicable. If q′ is a final

state M is done and so should A. Thus, we let A move from (k, c, l, q ′′) to tt in this

case. If q′ is not a final state, we let (k, c, l, q′′) evolve to (k, b, l′, q′) where l′ = l− 1,

l′ = l + 0, or l′ = l + 1 if respectively m = l, m = s, or m = r. If a and c or q and

q′′ differ, the requested transition is not applicable and we let (k, c, l, q ′′) evolve to

ff. A cell currently not involved in the requested transition just updates the head

component and the state component in the same manner as before, or is replaced by

tt, if q′ is a final state. The behavior is visualized in Figure 4.6 on the facing page:

On the left hand side, we show the effect of the transition δ(q0, x1) = (q1, x
′
1, r) to

the working tape. On the right hand side, we show in which way this transition

yields a new level in the run tree of the automaton.

We sum up the transition function for A using the notation as before:

δ′((k, c, l, q′′), (q, a)) =

tt if k = l, a = c, q = q′′, q′ ∈ F

(k, b, l′, q′) if k = l, a = c, q = q′′, q′ /∈ F

ff if k = l but a 6= c or q 6= q′′

tt if k 6= l, q = q′′, q′ ∈ F

(k, c, l′, q′) if k 6= l, q 6= q′′, q′ /∈ F

The initial formula of A corresponds to the initial configuration of our Turing ma-

chine:

q′0 := (0, ., 1, q0)∧

(1, x1, 1, q0) ∧ . . . ∧ (n, xn, 1, q0) ∧ (n+ 1,�, 1, q0)∧

(n+ 2, /, 1, q0)

where x = x1 . . . xn. Starting in q′0, the automaton A mimics a transition of M in

the transitions of the (conjunction of the) states, reading the transitions of M as

input actions. If the Turing machine M accepts the input x in place, there is a

possible run of the constructed automaton ending successfully in tt in every branch.

If M rejects (by diverging) or does not accept in place, every run of A will be

infinite. We set the final states F ′ of A to the empty set, so that the corresponding

run is not accepting. Thus, L(A) 6= ∅ iff M accepts the input x in place. Note that

|Q′| = (n + 3)2|∆||Q| = c(n + 3)2 and that our construction can be carried out in

polynomial time. This concludes the proof. �

The previous proof allows us to draw some further conclusions.

Corollary 4.2.13 Emptiness for universal Büchi automata is decidable in exponen-

tial time and is Pspace-complete.

Proof

Observe that we only constructed conjunctions in the proof of Theorem 4.2.12 on

page 53. Thus, together with Corollary 4.2.11, the result follows. �

56 Chapter 4. Automata for Trace Languages

An alternating automaton is the straightforward extension of finite automata towards

alternation [Var96], and universal automata are alternating automata for which the

transition function is restricted to conjunctions.

Corollary 4.2.14 Emptiness for alternating automata or universal automata is de-

cidable in exponential time and is Pspace-complete.

Proof

In the proof of Theorem 4.2.12 on page 53, we constructed an automaton accepting

infinite sequences of Turing machine transitions for which a prefix yields an accept-

ing configuration of the Turing machine. Restricting to finite words, thus finitely

many transitions of the Turing machine, does not change the simulation and the

acceptance. �

4.2.3 Weak Alternating Büchi Automata

As pointed out already in the section dealing with Büchi automata (Section 4.1 on

page 40), complementation is one of the important operations on automata when

defining decision procedures for logics. Similar as in the case of Büchi automata,

we recall the basic ideas and results for complementing Büchi automata since they

allow us to prove our forthcoming constructions of decision procedures to be correct.

Although complementation of alternating Büchi automata is conceptually simpler

and has a lower complexity than for the case of Büchi automata, it is not straight-

forward. However, the possibility to use positive Boolean combinations of states

simplifies this task a little.

Let us consider an input word aw and a transition δ(q0, a) = q1∨q2 of an alternating

Büchi automaton A with initial state q0. Suppose that there is an accepting run on

aw. Then the automaton has to guess an accepting run on the given input word by

selecting either q1 or q2 for the next level in the run dag. From this level, it has to find

an accepting run on w in the same manner. Thinking of an automaton A accepting

the complement of the first one, it must reject the rest of the word in q1 as well as

in q2. Thus, given a kind of “dual acceptance condition”, it might be a good idea

to define the transition function of A (denoted by δ) by δ(q0, a) = δ(q0, a) = q1 ∧ q2.

Let us fix this general scheme in the following definition:

Definition 4.2.15

The dual of a formula ϕ ∈ B+(X) denoted by ϕ is the formula where ff is replaced

by tt, tt by ff, ∨ by ∧ and ∧ by ∨.

Since the dual of tt is ff and vice versa, finite paths ending in tt will abolish the path

of a run in the automaton having the dual transition function. A dual observation

also holds for runs now ending in tt. But dualizing formulas is not enough. A run

4.2. Alternating Büchi Automata 57

on w is accepting if all infinite paths visit final states infinitely often. However, non-

final states can also be visited infinitely often. Hence, switching to the complement

of the final states for the automaton A thus might yield runs which are accepting on

the same input for both automata A and A. The situation is easier if our automata

are weak, a notion due to [MSS86]:

Definition 4.2.16

An alternating Büchi automaton A = (Q, δ, q0, F) is called weak iff there exists a

collection of components Q1, . . . , Qm such that the following holds:

1. the collection of the Qi is a partition of Q, i.e., Q =
⋃

i∈{1,...,m}Qi and for all

i, j ∈ {1, . . . ,m} with i 6= j, it holds Qi ∩Qj = ∅.

2. for every i ∈ {1, . . . ,m}, we have

(a) either Qi ⊆ F , in which case Qi is an accepting set or accepting compo-

nent, or

(b) Qi ∩ F = ∅, in which case Qi is a rejecting set or rejecting component.

3. There exists a partial order ≤ on the collection of the components such that

for every q ∈ Qi and q′ ∈ Qj for which q′ occurs in δ(q, a) for some a ∈ Σ,

we have Qi ≤ Qj. Without loss of generality, we may assume that Qi ≤ Qj
implies i ≤ j.

For the transition graph of an alternating Büchi automaton, weakness means that it

can be partitioned into components which consist of either final or non-final states

(together with nodes labeled by ∧, ∨, ff, or tt), and which can be partially ordered by

their edges. A component is lower than another iff there are edges from the first to

the second. In other words, transitions from a state in Qi lead to states in either the

same Qi or a higher one. Figure 4.7 on the following page shows (one) partition of the

alternating Büchi automaton of Example 4.2.4 on page 46 into three components.

Note that Q1 and Q3 are rejecting while Q2 is accepting. Edges identifying the

partial order of the components are printed in boldface. Thus, Q1 ≤ Q2 ≤ Q3. We

learn that the automaton is weak. Let us mention that the partition is not unique

since tt, for example, could have estimated a single component.

It is now easy to see that every infinite path of a run of a weak alternating Büchi

automaton ultimately gets “trapped” within some Qi. The path then satisfies the

acceptance condition if and only if Qi is an accepting set. Indeed, a path of a

run visits infinitely many states in F iff it gets trapped in an accepting set. We

conclude that the complementation procedure motivated before works. Taking the

complement of the final states of an automaton means that a path of a previously

accepting run is it no longer since it visits only finitely many final states. We sum

up:

58 Chapter 4. Automata for Trace Languages

q0

q2 q1 q3

tt ff

Q1Q3Q2

Figure 4.7: The transition graph of a weak alternating Büchi automaton and its

partitions

Theorem 4.2.17 ([MS87])

Let A = (Q, δ, q0, F) be a weak alternating Büchi automaton over Σ. Then for

A = (Q, δ, q0, Q \ F), we have

L(A) = L(A)

where δ(q, a) = δ(q, a) for all q ∈ Q and a ∈ Σ.

A formal and simple proof of this result can be found in [LT00]. Note that the sizes

of the original and the complemented automaton are identical.

The small handicap of the previous theorem seems to be its restriction to weak

alternating automata. However, weak alternating Büchi automata and alternating

Büchi automata coincide with respect to expressiveness. Even more, there is a

simple procedure which transforms a given alternating Büchi automaton into a weak

alternating Büchi automaton accepting the same language with a quadratic blow-up.

Theorem 4.2.18 ([KV97, KV01])

Let A be an alternating Büchi automaton. There is a weak alternating Büchi au-

tomaton A′ such that L(A′) = L(A) and the number of states of A′ is quadratic in

the number of states of A.

Combining the two previous theorems we get:

Theorem 4.2.19

Let A = (Q, δ, q0, F) be an alternating Büchi automaton. Then there is a (weak)

alternating Büchi automaton A such that

L(A) = L(A)

and the number of states in A′ is quadratic in the number of states of A.

4.2. Alternating Büchi Automata 59

4.2.4 Linear Alternating Büchi Automata

As we already mentioned, linear temporal logic formulas can be translated into

alternating automata accepting precisely its models. However, the construction

yields a restricted kind of alternating Büchi automata, so-called linear alternating

Büchi automata, a notion due to Löding and Thomas [LT00].

On the other hand, [LT00] show that every linear alternating Büchi automaton

can be translated into a linear temporal logic formula having the elements of the

language of the automaton as models.

Linearity of alternating automata is defined by a restriction on the cycles of the

transition graph of an alternating automaton.

Definition 4.2.20

An alternating Büchi automaton A is called linear if the transition graph of A has

only trivial cycles, i.e., for every path q1 . . . qk with k ≥ 2 and q1 = qk, we have that

all qi are labeled by q1.

The automaton shown in Figure 4.4 on page 48 is linear, because (cf. Figure 4.7 on

the preceding page)

• there is neither a cycle containing q0 nor q3,

• there is no cycle from q2 back to q2 via q1, and

• there is no cycle from q1 back to q1 via q2.

Note however, that there is a cycle from q2 back to q2 but also a path from q2 to q1.

The linearity of the transition graph has an immediate consequence for the runs of

an alternating Büchi automaton. Let us first define linear runs:

Definition 4.2.21

Let A be a linear alternating Büchi automaton. A run (V,E) of A on a word w

is called linear iff it holds: For all n ≥ 2 and pairwise disjoint v1, . . . , vn ∈ V with

(vi, vi+1) ∈ E (for all i ∈ {1, . . . , n− 1}), l(v1) = l(vn) implies l(v1) = l(v2) = . . . =

l(vn).

Figure 4.8 on the following page shows a linear run for the automaton represented

in Figure 4.7 on the preceding page. It is now easy to see that all runs of linear

alternating automata are linear:

Lemma 4.2.22 Let A be a linear alternating Büchi automaton. Then every of its

runs is linear.

Note that the contrary does not hold:

60 Chapter 4. Automata for Trace Languages

q0

a

q1 q2

b

q1 q2

a

q1 q2

a

q0

a

q1 q2

b

q1 q2

a

q1 q2

a

Figure 4.8: A linear run of an alternating Büchi automaton

Example 4.2.23 Consider the alphabet Σ = {a, b} and the automaton shown in

Figure 4.9 on the facing page. Since there is a non-trivial cycle q0q
′q0, the automaton

is not linear. However, since δ(q, a) = δ(q, b) = ff, there is no run at all. Trivially,

all runs are linear.

Since the transition graph of a linear automaton has only trivial cycles, it is easy to

see that it is also weak.

Lemma 4.2.24 Every linear alternating Büchi automaton is weak.

Proof

Every single state estimates a component of the automaton. A component is ac-

cepting if the state is a final state, otherwise it is rejecting. Since the transition

graph has only trivial cycles, the partial order is given by the edge relation of the

transition graph, erasing loops. �

Thus, every linear automaton can be complemented by dualizing the transition

function and taking the complement of the final states as the new final states (cf.

Theorem 4.2.17 on page 58).

4.2.5 Trace-consistent Alternating Büchi Automata

We learned in the previous chapter to identify trace consistent word languages and

trace languages. It is therefore natural to separate automata which can be under-

stood as devices accepting trace languages.

4.2. Alternating Büchi Automata 61

q0

q q′

∧

a, b

a, b

ff

a, b

Figure 4.9: A non-linear alternating Büchi automaton

Definition 4.2.25

An alternating Büchi automaton A is called trace consistent iff L(A) is trace-

consistent.

As alternating Büchi automata accept precisely the regular languages, we conclude

that trace-consistent alternating Büchi automata accept precisely the regular trace

languages when the latter are considered as word languages.

We will show that linear trace-consistent automata correspond to LTL formulas

over Mazurkiewicz traces, i.e., that these automata accept precisely the languages

definable by formulas of this logic.

Chapter 5

First-Order Logic

We recall the notions of first-order logic interpreted over words and Mazurkiewicz

traces and give examples of its usage in the domain of specification. This allows us

to formulate expressiveness results for the linear temporal logics to be studied in the

next chapters in a precise way.

5.1 FO over Words

Definition 5.1.1 (Syntax of FOw)

The set of formulas of first-order logic over a countable set of variables Var =

{x, y, . . .} and an alphabet Σ ranges over a family of unary predicates (Ra)a∈Σ and

a binary predicate ≤, is denoted by FOw(Σ), and is given by the following grammar:

ϕ ::= Ra(x) | x ≤ y | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ (a ∈ Σ)

We usually use identifiers like ϕ,ψ, η, . . . or ϕ′, ψ′, η′, . . . for formulas. When it is

clear from the context that we interpret over words or if the alphabet is fixed, we

abbreviate FOw(Σ) by FO(Σ), FOw, or just FO. Let us fix an alphabet Σ and a set

of variables Var for the rest of this section.

A valuation is a mapping V : Var → IN yielding for every variable in Var a natural

number. For a variable x ∈ Var and a natural number i, we denote by V [x/i] the

valuation that coincides with V for every y 6= x and yields i when applied to x.

Definition 5.1.2 (Semantics of FOw)

Given a word w ∈ Σω of the form w = a1a2 . . ., a valuation V : Var → IN, and

ϕ ∈ FO(Σ), the notion of w |=V ϕ is defined inductively via:

• w |=V Ra(x) iff aV (x) = a

64 Chapter 5. First-Order Logic

• w |=V x ≤ y iff V (x) is less or equal V (y) with respect to the natural ordering

of natural numbers

• w |=V ¬ϕ iff w 6|=V ϕ

• w |=V ϕ ∨ ψ iff w |=V ϕ or w |=V ψ

• w |=V ∃xϕ iff there exists an i ∈ IN such that w |=V [x/i] ϕ

In the following, we assume that ϕ is a sentence, i.e., ϕ has no free variables.1 For

a sentence ϕ, w |=V ϕ is independent of V . Consequently, we write w |= ϕ instead.

The language of ϕ is denoted by L(ϕ) and is defined by

L(ϕ) = {w | w |= ϕ}

We will say that L ⊆ Σω is FO-definable iff there is a ϕ ∈ FO(Σ) such that L = L(ϕ).

5.2 FO over Mazurkiewicz Traces

Definition 5.2.1 (Syntax of FOt)

The set of formulas of first-order logic over a countable set of variables Var =

{x, y, . . .} and an independence alphabet (Σ, I) ranges over a family of unary pred-

icates (Ra)a∈Σ and a binary predicate ≤, is denoted by FOt(Σ, I), and is given by

the following grammar:

ϕ ::= Ra(x) | x ≤ y | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ (a ∈ Σ)

When it is clear from the context that we interpret over traces or if the alphabet is

fixed, we abbreviate FOt(Σ, I) by FO(Σ, I), FOt, or just FO.

Evidently, the syntax of FOw and FOt are equally defined. In particular, the syntax

of FOt does not explicitly involve the independence relation I. However, I is reflected

in ≤, which will be interpreted as the partial order relation associated with a trace

that does indeed respect I.

Again, we use identifiers like ϕ,ψ, η, . . . or ϕ′, ψ′, η′, . . . for formulas of FO(Σ, I).

Given a trace T = (E,≤, λ), a valuation is a mapping V : Var → E yielding for

every variable in Var an event of T . Strictly speaking, we should write VT , which we

avoid for the sake of brevity. For a variable x ∈ Var and an event e, we denote by

V [x/e] the valuation that agrees with V for every y 6= x and yields e when applied

to x.

1The notion of free variables is defined as usual.

5.2. FO over Mazurkiewicz Traces 65

Definition 5.2.2 (Semantics of FOt)

Given a trace T = (E,≤, λ) and an associated valuation V : Var → E, the relation

T |=V ϕ will denote that T is a model of ϕ ∈ FOt(Σ, I) under the valuation V , and

is defined inductively via:

• T |=V Ra(x) iff λ(V (x)) = a

• T |=V x ≤ y iff V (x) is less or equal V (y) with respect to the ordering of the

events of T

• T |=V ¬ϕ iff T 6|=V ϕ

• T |=V ϕ ∨ ψ iff T |=V ϕ or T |=V ψ

• T |=V ∃xϕ iff there exists an e ∈ E such that T |=V [x/e] ϕ

In the following, we assume that ϕ is a sentence, i.e., ϕ has no free variables. The

language of ϕ is denoted by L(ϕ) and is defined by

L(ϕ) = {T | T |= ϕ}

We will say that L ⊆
���

(Σ, I) is FO-definable iff there is a ϕ ∈ FO(Σ, I) such that

L = L(ϕ).

We will freely use the standard abbreviations such as ∀xϕ = ¬∃x¬ϕ, tt = ∀x x ≤ x,

ff = ¬tt, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), or ϕ → ψ = ¬ϕ ∨ ψ. Furthermore, we write x < y

for x ≤ y ∧ ¬(y ≤ x) and x 6≤ y for ¬(x ≤ y).

We fix a set of variables Var = {x, y, . . .}, an independence alphabet (Σ, I), a trace

T = (E,≤, λ), and a valuation V : Var → E for the rest of this section. We say

that x identifies e ∈ E iff V (x) = e.

FO is designed to formulate properties of events of a trace. For example, we can say

that an event identified by x is labeled by an action independent of some set Z ⊆ Σ

by

Independent(Z, x) = ¬

(

∨

aDZ

Ra(x)

)

where D is the dependence relation obtained by complementing I in Σ2.

As we will see in Chapters 7 and 8, the linear temporal logics to be studied are

interpreted in configurations of traces. We have seen that FO can be used to formu-

late properties of events of a trace but does not provide primitives to reason about

properties of configurations. Nevertheless, we can formulate properties of configura-

tions: We can associate a set of events with a configuration. The number of maximal

66 Chapter 5. First-Order Logic

e1
a

e2
b

e3
c

e4
d

e5
a

e6
b

e7
c

(a)

a

x1
b

x2
c

x3
d

y
a

b c

CXV

(b)

Figure 5.1: Identifying configurations and variables

events of each configuration is bounded by |Σ|, because there are at most |Σ| inde-

pendent events and maximal events are necessarily independent. Thus, a finite set

of variables X ⊆ Var can be used to identify for a given valuation V : Var → E the

configuration

CXV = {e | there is an x ∈ X such that e ≤ V (x)}

For example, for the trace shown in Figure 5.1(a) and the valuation mapping xi 7→

ei+1 for i ∈ {1, 2, 3}, the set X = {x1, x2, x3} identifies the configuration depicted

by CX
V in Figure 5.1(b). Note that {x1, x3} identifies the same configuration.

When defining formulas specifying requirements of traces, we can keep track of a

finite set X of variables used to identify a configuration of a trace.

Suppose X = {x1, . . . , xk} is used to identify the configuration CX
V . Then, we can

express that CX
V has an a-successor configuration by

∃y Ra(y) ∧

∧

i=1,...,k

y 6≤ xi

 ∧ ∀z

z < y →

∨

i=1,...,k

z ≤ xi

In other words, there is an event identified by y, labeled by a, and which is not

contained in the current configuration, but can be added to the current configuration,

still obtaining a configuration. Note that the set of variables used to represent the

successor configuration is {x1, . . . , xk, y}. The situation is depicted in Figure 5.1(b).

Let us give a collection of examples describing further properties of configurations.

We will come back to these formulas in Chapter 7 when explaining how to define

properties expressed in linear temporal logic for traces in terms of FO logic.

5.2. FO over Mazurkiewicz Traces 67

Suppose we employ finite X,Y ⊆ Var for representing configurations CX
V and CY

V

for a given valuation. Then

Below(X,Y) =
∧

x∈X

∨

y∈Y

x ≤ y

holds iff CX
V ⊆ CYV . Furthermore,

SBelow(X,Y) = Below(X,Y) ∧ ¬Below(Y,X)

holds iff CX
V $ CYV .

Suppose we want to express that for finite X,Y ⊆ Var , the configuration CX
V is a

subconfiguration of CY
V and furthermore, all events in CY

V −CXV are independent of

some Z ⊆ Σ.

A first guess might be

BelowIndep(X,Y,Z) = Below(X,Y)∧

∀z

∨

x∈X

∨

y∈Y

(x < z ∧ x ≤ y) → Independent(Z, z)

However, this fails for two reasons. First, there might be an event in C Y
V which is

incomparable with all the events identified by X. This also has to be independent

of the actions given by Z. Second, there might be x, x′ ∈ X with V (x) < V (x′).

Thus, the previous formula would require that λ(V (x′)) is also independent of Z,

which we did not postulate.

It is easy to formulate the desired property by considering when an element in C Y
V

is not in CY
V − CXV . This is whenever there is an event in CY

V that is smaller than

some event in V (x) for x ∈ X. Thus, we define—thanks to negation—

zInYminusX(X,Y, z) =

∨

y∈Y

z ≤ y

 ∧ ¬

(

∨

x∈X

z ≤ x

)

and

BelowIndep(X,Y,Z) = Below(X,Y)∧

∀z (zInYminusX(X,Y, z) → Independent(Z, z))

The formulas reduce as expected when one of the sets is empty.

Chapter 6

LTL over words

In this chapter, we recall the syntax and semantics of linear temporal logic inter-

preted over words, abbreviated by LTLw or LTL if the context makes clear that we in-

terpret the logic over words. In a landmark paper [Pnu77], Pnueli explained that LTL

can be used as a tool for specifying and verifying correctness properties of so-called

reactive programs. LTL gained a lot of interest and is today widely used as a speci-

fication language especially for concurrent systems. Confer [MP92, Var01, HHI+01]

for overviews.

In this thesis, we consider plain modal logics with labeled modalities in place of

propositional temporal logics. Thus, we do not support the usage of propositional

variables in our logics but allow labeled next-state modalities instead. We have ex-

perienced that this kind of logics fits better to implementations by means of process

algebra formalisms like CCS [Mil83, Mil89] or ACP [BK84, Fok00]. It should be

mentioned though, that our approach can be extended in a straightforward way to

support propositions as well. Basically, it would only complicate the formal presen-

tation rather than give new conceptual insights.

In the second section of this chapter, we rephrase a decision procedure for satisfia-

bility of LTLw formulas based on alternating Büchi automata due to Vardi [Var96],

which is slightly adapted to support labeled next-state modalities. We will extend

this logic and the decision procedure in the next chapter towards the setting of

traces.

The subsequent section shows that languages definable by LTLw formulas corre-

spond to languages definable by linear alternating Büchi automata. This result was

independently shown by Rohde [Roh97] and Thomas and Löding [LT00]. In the next

chapter, we will learn in which way this result has to be read in the setting of LTL

over Mazurkiewicz traces.

We conclude this chapter with a discussion of languages definable by LTLw formulas

and trace-consistent languages, model checking and satisfiability, and the relation of

70 Chapter 6. LTL over words

first order logic over words and LTL.

6.1 Syntax and Semantics

Linear temporal logic formulas are designed for describing sequences of actions.

They are parameterized by an alphabet Σ and are defined inductively as follows:

Definition 6.1.1 (Syntax of LTLw)

The set of linear temporal logic formulas over an alphabet Σ is denoted by LTLw(Σ)

and is given by the following grammar:

ϕ ::= tt | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ | ϕ1 Uϕ2 (a ∈ Σ)

We usually use identifiers like ϕ,ψ, η, . . . or ϕ′, ψ′, η′, . . . for formulas. When it is

clear from the context that we interpret over words or if the alphabet is fixed, we

abbreviate LTLw(Σ) by LTL(Σ), LTLw, or just LTL.

To simplify the forthcoming definition, let w(i) denote the suffix aiai+1 . . . of a word

w = a1a2 . . . ∈ Σω. Note that w(i) is in Σω for all i ∈ IN \ {0}. We are now ready to

define the semantics of LTL formulas over words.

Definition 6.1.2 (Semantics of LTLw)

Given a word w ∈ Σω of the form w = a1a2 . . . and ϕ ∈ LTLw(Σ), the notion of

w |= ϕ is defined inductively via:

• w |= tt

• w |= ¬ϕ iff w 6|= ϕ

• w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ

• w |= 〈a〉ϕ iff a1 = a and w(2) |= ϕ

• w |= ϕUψ iff there exists j ∈ IN with j ≥ 1 such that w(j) |= ψ and for all

1 ≤ i < j, we have w(i) |= ϕ

Iff w |= ϕ, we say w models ϕ, w is a model for ϕ, or w satisfies ϕ. Furthermore,

we call ϕ satisfiable iff there is a w ∈ Σω such that w |= ϕ. All models of a formula

ϕ ∈ LTLw(Σ) constitute a subset of Σω, thus a language. It is denoted by L(ϕ) and

is called the language defined by ϕ.

To give an example, 〈a〉〈b〉tt is satisfied by every word with prefix ab. 〈a〉tt∨〈b〉tt is

satisfied by every word which starts with either a or b. On the contrary, 〈a〉tt∧〈b〉tt

is not satisfiable since there is no word having a as well as b at the first position. To

arouse your curiosity, note that the latter formula is satisfiable it the setting of LTL

6.2. Deciding Satisfiability of LTLw 71

over Mazurkiewicz traces if the right independence alphabet is given (see Section 7.1

on page 84 for details).

We will freely use the standard abbreviations such as ff = ¬tt, ϕ∧ψ = ¬(¬ϕ∨¬ψ),

or ϕ→ ψ = ¬ϕ∨ψ. Furthermore, we usually write ♦ϕ for ttUϕ and �ϕ for ¬♦¬ϕ.

Thus, a formula ♦ϕ is satisfied by a word w iff there is a suffix w(i) of w such that

w(i) |= ϕ. Intuitively, w |= ♦ϕ iff eventually ϕ holds in w. Dually, globally ϕ is

expressed by �ϕ, i.e., for all i ∈ IN, we have w(i) |= ϕ.

To give a flavor of the utilization of LTL formulas within the application domain of

specification of concurrent systems, let us recall that a word’s sequence of actions

can be understood as the behavior of a system. Then we can identify certain types

of formulas:

1. Safety properties require that “nothing bad” ever happens. If a “bad” property

is expressed by ϕ then �¬ϕ is a safety property.

2. Liveness properties, on the other hand, express that something “good” will

happen. It can be formulated by ♦ϕ if ϕ identifies the “good” property. Of-

ten, one is interested in “good” things to happen infinitely often during a run

of a system. For example, a server should always—sooner or later—answer a

request. A formula of the form �(ϕrequest → ♦ϕanswer) describes exactly this

requirement if ϕrequest and ϕanswer specify a request and an answer, respec-

tively.

Consult [MP92] for a careful and accurate introduction to the field of specification

(and verification) using temporal logic.

6.2 Deciding Satisfiability of LTLw

In this section, we recall the key issues for defining a decision procedure for check-

ing satisfiability of LTLw formulas. It is based on alternating Büchi automata.

Although—as will turn out in the next chapter—the following procedure will come

up as a special case of the satisfiability procedure for LTL over Mazurkiewicz traces,

we provide a separate exposition to simplify our overall presentation.

To be able to estimate the complexity of the forthcoming decision procedure, we

have to define the length of a formula, which is going to be the reference value.

Definition 6.2.1

The length |ϕ| of a formula ϕ ∈ LTLw is inductively defined by |tt| = 1, |¬ϕ| =

|〈a〉ϕ| = 1 + |ϕ|, and |ϕ ∨ ψ| = |ϕUψ| = 1 + |ϕ| + |ψ|.

The decision procedure works on the subformulas (and negated subformulas) of a

given formula. Subformulas are defined as usual:

72 Chapter 6. LTL over words

Definition 6.2.2

The set Sub(ϕ) of subformulas for a given formula ϕ ∈ LTLw is inductively defined

by

Sub(tt) = {tt}

Sub(¬ϕ) = {¬ϕ} ∪ Sub(ϕ)

Sub(ϕ ∨ ψ) = {ϕ ∨ ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

Sub(〈a〉ϕ) = {〈a〉ϕ} ∪ Sub(ϕ)

Sub(ϕUψ) = {ϕUψ} ∪ Sub(ϕ) ∪ Sub(ψ)

We call ψ a subformula of ϕ iff ψ ∈ Sub(ϕ). Furthermore, it is called a strict

subformula iff ψ ∈ Sub(ϕ) and ψ 6= ϕ.

Please observe that the size of Sub(ϕ) is linear in the length of the formula ϕ for

every ϕ ∈ LTL.

As seen in the section for alternating Büchi automata (Section 4.2 on page 44),

dualization is a powerful concept simplifying complementation. Let us define the

dual of a positive Boolean combination of LTL formulas, which is employed in the

satisfiability construction to cope with negation of formulas.

Definition 6.2.3

The dual of a positive Boolean combination of LTLw formulas is given inductively

as follows:

• tt = ff, ff = tt.

• ¬ϕ = ϕ.

• ϕ ∨ ψ = ϕ ∧ ψ, ϕ ∧ ψ = ϕ ∨ ψ.

• 〈a〉ϕ = ¬〈a〉ϕ.

• ϕUψ = ¬(ϕUψ).

Consider ϕ ∈ LTL. For deciding satisfiability of ϕ, we pursue the following plan. We

construct an automaton accepting precisely the models of ϕ. This can be checked

for emptiness giving the desired answer. The states of the automaton turn out

to be subformulas of ϕ and negations thereof. The automaton works by choosing

an appropriate subset of the subformulas reading an input action. The idea is

understood easily, considering an automaton in state 〈a〉ϕ. Reading a means that

the word indeed begins with a. Thus, it remains to check that the suffix of the word

satisfies ϕ. Hence, the automaton proceeds in state ϕ after reading a. If, however,

the first input symbol is different from a, the formula is not satisfied by the word.

Thus, the automaton will proceed in state ff. Note that, while ff is no LTL formula,

it is a state of our automaton.

6.2. Deciding Satisfiability of LTLw 73

What to do in a state ϕ ∨ ψ? The automaton has to check whether ϕ or ψ holds

reading an input action. Let ϕ′ and ψ′ be the Boolean combination of states in which

to proceed for ϕ or respectively ψ reading the input action. We let the automaton

choose ϕ′ or ψ′ by defining the successor states of ϕ ∨ ψ by ϕ′ ∨ ψ′.

Negation is handled straightforward. For ¬ϕ, consider the Boolean combination of

successor states of ϕ reading a and dualize the result. For example, given ¬(ϕ∨ψ),

the automaton proceeds in ϕ′ ∨ ψ′ = ϕ′ ∧ ψ′ for ϕ′ and ψ′ obtained in the way

described before. Note that ∧ is a conjunction of states of the automaton and no

abbreviation for a negated disjunction here.

It is easy to see that an until-formula of the form ϕUψ is logically equivalent to ψ∨
(

ϕ ∧
∨

a∈Σ〈a〉(ϕUψ)
)

, i.e., both formulas have the same class of models. Prosaically,

ϕUψ is satisfied iff ψ is satisfied at the current position of the word or the current

position satisfies ϕ and the next position ϕUψ. Thus, reading an action a in state

ϕUψ, it is right to proceed either in the state(s) obtained by reading a in ψ or in

states ϕUψ and the one(s) ϕ yields reading a.

Let us sum up the transition function δ of our alternating Büchi automaton:

Definition 6.2.4

For each formula ϕ ∈ LTLw(Σ), we define a transition function δϕ : Sub(ϕ) ∪

¬Sub(ϕ) → B+(Sub(ϕ) ∪ ¬Sub(ϕ)) inductively via:

δϕ(tt, a) = tt

δϕ(ψ ∨ η, a) = δϕ(ψ, a) ∨ δϕ(η, a)

δϕ(¬ψ, a) = δϕ(ψ, a)

δϕ(〈b〉ψ, a) =

{

ψ if a = b

ff else

δϕ(ψ U η, a) = δϕ(η, a) ∨ (δϕ(ψ, a) ∧ ψ U η)

We can now finally bring out the definition of the alternating Büchi automaton Aϕ

accepting precisely the models of a formula ϕ ∈ LTLw(Σ).

Definition 6.2.5

Given a formula ϕ ∈ LTLw(Σ), we let the alternating Büchi automaton of ϕ, denoted

by Aϕ, be the tuple (Q, δ, q0, F) where

• Q = Sub(ϕ) ∪ ¬Sub(ϕ) is the set of states, where ¬Sub(ϕ) abbreviates {¬ψ |

ψ ∈ Sub(ϕ)}.

• δ = δϕ is the transition function as in Definition 6.2.4.

• q0 = ϕ is the initial state.

• F = {¬ψ | ¬ψ ∈ Sub(ϕ)} is the set of accepting states.

74 Chapter 6. LTL over words

Let us give an intuitive but non-exhaustive argument for defining the set of final

states in the way we did: Our whole approach can be understood as a kind of tableau

construction. The formula to check is transformed into a Boolean combination of

new formulas to check. In this way, a goal is reduced to several subgoals. Of course,

the generation of subgoals has to terminate at one point to get an answer. A “positive

formula”, that is one in which every subformula starting without ¬ is preceded by

an even number of ¬, counting 0 as an even number, must be “proved” indeed:

State tt of the automaton has to be reached. Since any positive formula except one

containing a subformula of the form ϕUψ is turned into strict subformulas, every

path of a potential run of the automaton reaches either tt or ff. The latter signalizes

non-acceptance, of course. For ϕUψ, the automaton might follow an infinite path

trying to show ϕUψ. Consequently, we do not accept such a path since ψ is not

shown to be satisfied by the input word considered. The situation is dual for a

negative, i.e., not positive formula. A path labeled infinitely often with ¬(ϕUψ),

for example, should be accepting since the automaton failed to “prove” ψ or ϕ. We

get:

Theorem 6.2.6

Let ϕ be a formula of LTLw(Σ) and let its alternating Büchi automaton be given as

Aϕ. Then

L(Aϕ) = L(ϕ)

We do not provide a proof of the previous theorem since we formulate an extended

theorem which is accompanied with a proof for the case of traces. Since words are

a special case of traces and our LTL version considered for Mazurkiewicz traces

coincides for words with LTLw, as we will see in the next chapter, we get a proof of

Theorem 6.2.6 for free.

Let us give an example for the construction of an alternating Büchi automaton,

given an LTLw formula.

Example 6.2.7 Let Σ = {a, b}. Suppose we want to specify that a sequence of

b-actions is followed by an a-action. This can be formulated in LTLw by the formula

ϕ1 = 〈b〉ttU 〈a〉tt. According to Definition 6.2.4 on the preceding page, we therefore

get:

δ(ϕ1, a) = δ(〈a〉tt, a) ∨ (δ(〈b〉tt, a) ∧ ϕ1)

= tt ∨ (ff ∧ ϕ1)

δ(ϕ1, b) = δ(〈a〉tt, b) ∨ (δ(〈b〉tt, b) ∧ ϕ1)

= ff ∨ (tt ∧ ϕ1)

The result can be simplified to δ(ϕ1, a) = tt and δ(ϕ1, b) = ϕ1. Let ϕ2 denote that,

globally, we can do an a-action or a b-action and then ϕ1 is satisfied. More specifi-

cally, ϕ2 = � (〈a〉ϕ1 ∨ 〈b〉ϕ1). Recall that �ϕ is an abbreviation for ¬ (ttU¬ϕ). We

6.3. Linear Alternating Automata and LTL over Words 75

obtain

δ(ϕ2, a) = δ(� (〈a〉ϕ1 ∨ 〈b〉ϕ1) , a)

= δ(¬ (ttU¬(〈a〉ϕ1 ∨ 〈b〉ϕ1)) , a)

= δ(〈a〉ϕ1, a) ∨ δ(〈b〉ϕ1, a) ∨ (δ(tt, a) ∧ (ttU¬(〈a〉ϕ1 ∨ 〈b〉ϕ1)))

= ϕ1 ∨ ff ∨ (tt ∧ (ttU¬(〈a〉ϕ1 ∨ 〈b〉ϕ1)))

= (ϕ1 ∨ ff) ∧ (ff ∨ ϕ2)

Thus, δ(ϕ2, a) = δ(ϕ2, b) is equivalent to ϕ1 ∧ ϕ2. ϕ3 = ¬ (〈a〉tt ∨ 〈b〉tt) is satisfied

iff neither a nor b is a possible action to execute. The corresponding transitions

δ(ϕ3, a) and δ(ϕ3, b) are equivalent to ff.

Now, consider the formula ϕ = 〈a〉(ϕ1 ∧ ϕ2) ∨ 〈b〉((ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3)). A simple

calculation shows that altogether we get an automaton accepting the same language

as the one of Example 4.2.4 on page 46.

It is obvious that the size of Aϕ for a given formula ϕ ∈ LTLw is linear in the size

of ϕ. Thus, by Corollary 4.2.11 on page 53, we conclude:

Corollary 6.2.8 Let ϕ be a formula of LTLw(Σ). Deciding whether ϕ is satisfiable

can be done in exponential time and polynomial space with respect to the size of ϕ.

It was shown by Sistla and Clarke [SC82, SC85] that these bounds are optimal:

Theorem 6.2.9

Satisfiability of LTLw formulas is Pspace-complete.

The previous result was shown by a reduction of Turing machine. The authors also

showed that satisfiability of LTL−
w formulas is Pspace-complete where LTL−

w is the

logic in which no until -operator is allowed but a ♦-operator.

6.3 Linear Alternating Automata and LTL over Words

The aim of this section is to characterize LTLw formulas by means of alternating

Büchi automata. We have already seen in the previous section that for every formula,

ϕ there is an alternating Büchi automaton Aϕ accepting precisely ϕ’s models. A

rather simple observation is that Aϕ is linear.

Corollary 6.3.1 Let ϕ be a formula of LTLw(Σ). Then there is a linear alternating

Büchi automaton A such that

L(A) = L(ϕ)

76 Chapter 6. LTL over words

Proof

Consider the transition function in Definition 6.2.4 on page 73 of Aϕ. Check that

δ(ψ, a) yields a positive Boolean combination of strict subformulas (and their nega-

tions) unless ψ is of the form ψ1 Uψ2 or ¬(ψ1 Uψ2) in which case ψ occurs as well.

�

Let us now see that for every linear alternating Büchi automaton there is an LTLw

formula such that the language of the automaton coincides with the language defined

by the formula. We therefore can understand linear alternating Büchi automata as a

different representation for LTLw formulas. Due to Kamp’s famous result [Kam68],

we know that LTL formulas express exactly the first-order properties of words. We

therefore can understand linear alternating automata also as a representation for

those. We will discuss similar issues for the setting of traces in Chapter 7.3 on

page 108.

Note that the results of this section are due to Rohde [Roh97] and Thomas and

Löding [LT00]. We follow the latter construction, though with an adaption towards

our slightly different version of LTLw and with a different correctness proof.

Theorem 6.3.2

Let A = (Q, δ, q0, F) be a linear alternating Büchi automaton over the alphabet Σ.

Then there is a formula ϕA ∈ LTLw(Σ) such that

L(A) = L(ϕA)

Proof

Our proof proceeds in the following way: We provide a construction of ϕA and show

that L(A) = L(AϕA
), i.e., the language of the automaton derived from the LTL

formula ϕA coincides with the language of A. Because of Theorem 6.2.6 on page 74,

we know that L(ϕA) = L(AϕA
). Hence, L(ϕA) = L(A).

Before we give the construction, observe that, using distributive laws, every pos-

itive Boolean formula ϕ ∈ B+(Q) containing q can easily be transformed into an

equivalent one of the form (q ∧ ϕq) ∨ ϕ′
q as well as (q ∨ ϕq) ∧ ϕ′

q where ϕq and

ϕ′
q do not contain q. Thus, without loss of generality, δ(q, a) = (q ∧ ϕq,a) ∨ ϕ′

q,a,

δ(q, a) = (q ∨ ϕq,a) ∧ ϕ
′
q,a, or δ(q, a) = ϕ′

q,a for all q ∈ Q, a ∈ Σ, and appropriate

ϕq,a, ϕ
′
q,a ∈ B+(Q \ {q}).

Since A is linear, we further conclude that q is not reachable from states in ϕq,a and

ϕ′
q,a (with respect to the transition graph of the automaton).

Let us give the construction of ϕA for a given linear automaton A. We start with

a function ltlA : B+(Q) → LTLw mapping Boolean combinations of states of A to

LTLw formulas. It will turn out that ϕA := ltlA(q0) will have the desired properties.

6.3. Linear Alternating Automata and LTL over Words 77

We define ltlA : B+(Q) → LTLw by

ltlA(tt) = tt

ltlA(ff) = ¬tt

ltlA(ϕ ∨ ψ) = ltlA(ϕ) ∨ ltlA(ψ)

ltlA(ϕ ∧ ψ) = ¬(¬ltlA(ϕ) ∨ ¬ltlA(ψ))

ltlA(q) =
∨

a∈Σ〈a〉ltlA(δ(q, a)) if q /∈
∨

a∈Σ δ(q, a)

where q ∈ ϕ is a shorthand for ϕ ∈ B+(Q \ {q}). If q occurs on the right side of

δ(q, a) for one a ∈ Σ, we distinguish whether q is a final state or not: If q /∈ F then

ltlA(q) =

(

∨

a∈Σ

〈a〉ltlA(ϕq,a)

)

U

(

∨

a∈Σ

〈a〉ltlA(ϕ′
q,a)

)

for δ(q, a) = (q ∧ ϕq,a) ∨ ϕ
′
q,a or δ(q, a) = ϕ′

q,a. If q ∈ F then

ltlA(q) = ¬

((

∨

a∈Σ

〈a〉ltlA(ϕq,a)

)

U

(

∨

a∈Σ

〈a〉ltlA(ϕ′
q,a)

))

for δ(q, a) = (q ∨ ϕq,a) ∧ ϕ
′
q,a or δ(q, a) = ϕ′

q,a and the dual ϕ of an LTL formula

is defined in the expected manner. Note that we can assume that ltlA(ϕq,a) and

ltlA(ϕ′
q,a) are given by induction in the two previous definitions.

It is now a routine matter to show by induction that for every q of A and a ∈ Σ, we

have L(A(δ(q, a))) = L(AϕA
(δ(ltlA(q), a))). This can easily be seen by obtaining an

equivalence of both states considering the latter as a Boolean combination of states.

For example, for

q =

(

∨

a∈Σ

〈a〉ltlA(ϕq,a)

)

U

(

∨

a∈Σ

〈a〉ltlA(ϕ′
q,a)

)

we obtain:

δ
((
∨

a∈Σ〈a〉ltlA(ϕq,a)
)

U
(
∨

a∈Σ〈a〉ltlA(ϕ′
q,a)
)

, a
)

= δ
((
∨

a∈Σ〈a〉ltlA(ϕ′
q,a)
)

, a
)

∨
(

δ
((
∨

a∈Σ〈a〉ltlA(ϕq,a)
)

, a
)

∧ q
)

=
(

ϕ′
q,a ∨

∨

b∈Σ\{a} ff
)

∨
((

ϕq,a ∨
∨

b∈Σ\{a} ff
)

∧ q
)

≡ ϕ′
q,a ∨ (ϕq,a ∧ q)

We leave a precise formulation as an exercise for the reader. �

Example 6.3.3 Let us derive a formula ϕA defining the language of the automaton

A over the alphabet Σ = {a, b} given in Example 4.2.4 on page 46. We transform

right hand sides of the transition function δ into

δ(q0, a) = q1 ∧ q2
δ(q0, b) = (q1 ∧ q2) ∨ (q1 ∧ q3)

δ(q1, a) = tt

δ(q1, b) = (q1 ∧ tt) ∨ ff

δ(q2, a) = (q2 ∨ ff) ∧ q1
δ(q2, b) = (q2 ∨ ff) ∧ q1
δ(q3, a) = ff

δ(q3, b) = ff

78 Chapter 6. LTL over words

Using the notation and the construction as in the proof of Theorem 6.3.2 on page 76,

we get, for example,

ltlA(q3) =
∨

a∈Σ

〈a〉ltlA(ff)

= 〈a〉(¬tt) ∨ 〈b〉(¬tt)

Let ϕ3 denote the last formula.

For q1, we get

ltlA(q1) =

(

∨

a∈Σ

〈a〉ltlA(ϕq1,a)

)

U

(

∨

a∈Σ

〈a〉ltlA(ϕ′
q1,a)

)

= 〈b〉ttU (〈a〉tt ∨ 〈b〉(¬tt))

Note that ltlA(q1) is equivalent to 〈b〉ttU 〈a〉tt which is abbreviated by ϕ1 in the

following.

Let us check ltlA(q2):

ltlA(q2) = ¬

((

∨

a∈Σ

〈a〉ltlA(ϕq2,a)

)

U

(

∨

a∈Σ

〈a〉ltlA(ϕ′
q2,a)

))

= ¬

((

∨

a∈Σ

〈a〉ltlA(ff)

)

U

(

∨

a∈Σ

〈a〉ltlA(q1)

))

≡ ¬

(

(〈a〉tt ∨ 〈b〉tt) U

(

∨

a∈Σ

〈a〉ϕ1

))

≡ ¬ (ttU ((〈a〉¬ϕ1) ∨ (〈b〉¬ϕ1)))

≡ ¬ (ttU¬ ((〈a〉ϕ1) ∨ (〈b〉ϕ1)))

≡ � (〈a〉ϕ1 ∨ 〈b〉ϕ1)

=: ϕ2

Finally, ltlA(q0) emerges as:

ltlA(q0) =
∨

a∈Σ

〈a〉ltlA(δ(q0, a))

≡ 〈a〉 (ϕ1 ∧ ϕ2) ∨ 〈b〉 ((ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3))

Obviously, the initial state is—as expected—equivalent to the LTL formula of Ex-

ample 6.2.7 on page 74 which was the origin of the considered automaton.

A drawback of the previous construction is that it is involved with a blow-up. Start-

ing with an LTL formula, transforming it into a Büchi automaton (of equal size)

yields a larger formula when translated back to an LTL formula.

6.4. Trace-consistent LTLw 79

6.4 Trace-consistent LTLw

As we have seen in Chapter 2 on page 11, Mazurkiewicz traces are an appealing

framework for specifying and modeling concurrent systems. On the other hand,

LTLw is a simple to understand logic for specifying properties of those systems and

is widely accepted in industry. However, it’s a simple matter to specify properties

that are not so-called trace consistent. We call a formula ϕ ∈ LTLw trace consistent

iff the language L(ϕ) defined by ϕ is trace consistent.

For example, 〈a〉〈b〉tt defines a language of ω-words with the prefix ab. Thus, the

defined language is not necessarily trace consistent. Given a framework in which

a and b are independent actions of a concurrent system, one will obtain for ev-

ery execution sequence beginning with ab also one beginning with ba. Hence, no

such concurrent system will satisfy the given requirement. In other words, the

formula is not adequate for systems providing the mentioned independence. Note

that 〈a〉〈b〉tt ∨ 〈b〉〈a〉tt defines a trace-consistent language (if a and b are the only

independent actions).

From a practical point of view, it is not convenient to allow a prospective user of

a verification tool to formulate such requirements. The user should be guided to

specify only requirements respecting the inherent structure of an underlying system.

One solution to this problem is to check whether the formula is compatible with a

given independence relation. Stated differently, the problem is to find out whether

the formula defines a trace-consistent language. Peled, Wilke and Wolper present in

[PWW98] a procedure for checking certain closure properties of ω-regular languages.

Among them is also trace consistency for languages defined by LTL formulas. How-

ever, they also prove that checking this consistency is Pspace-complete and hence

not efficient.

Apart from complexity issues, the approach has the drawback that it is painful for

a user to write a formula, to learn that is not trace consistent and to modify it until

it is. We therefore follow a different approach, starting in the next chapter. The

logic is directly interpreted over Mazurkiewicz traces (giving the formulas a new

meaning, of course). In this way, every formula defines a trace-consistent language.

In other words, every requirement for a system will respect its underlying structure

automatically.

6.5 Model Checking

The main application for linear temporal logic—we are interested in—is within the

domain of formal methods. However, in this area, model checking is more important

than satisfiability. Model checking denotes the problem whether a given language L

is a subset of the language defined by a formula ϕ. The language L is assumed to

80 Chapter 6. LTL over words

describe the set of executions of an underlying system while ϕ is a specification of

the system. So L ⊆ L(ϕ) means that all executions are according to the specification

ϕ.

The model-checking problem has consequently two parameters, first, the language

L, usually given by some kind of Büchi automaton, and second, the formula ϕ.

Thus, its complexity can be measured with respect to the size of the (description of

the) language L as well as to the size of the formula ϕ. In the first case, one often

speaks about the program complexity of model checking while for the latter the term

formula complexity is used. For practical applications, the program complexity is

usually the limiting factor, since the size of the Büchi automaton to study is often

much bigger than the formula to check. However, one has to keep an eye on the

formula complexity as well, which we do in this section.

L ⊆ L(ϕ) is equivalent to L ∩ L(ϕ) = ∅ where L′ denotes the complement of L′.

Thanks to negation, we can write this equation as L ∩ L(¬ϕ) = ∅.

The automata-theoretic approach makes use of the previous equation. The general

idea is to describe the set of executions in terms of a Büchi automaton A and to define

a Büchi automaton A¬ϕ accepting precisely the models of ¬ϕ (via an alternating

automaton, as proposed here). Then, L(A) ∩ L(A¬ϕ) = ∅ must be tested. The

intersection of two languages defined by Büchi automata can easily be reduced two

an automata-theoretic construction (cf. [Tho90a]). The resulting Büchi automaton

can be tested in linear time for emptiness (cf. Theorem 4.1.9 on page 43).

While this approach truly convinces because of its clear structure, one might ask

whether there is a price to pay for this methodology. Clearly, a satisfiability pro-

cedure is inhibited within this model-checking procedure. Intuitively, it might be

more difficult to search for a model and then to compare whether it is present in

a set of executions than directly testing a given execution. Thus, one might think

that model checking in easier than satisfiability. While this is true for logics like

Kozen’s µ-calculus [Koz83], this does not hold in the linear time framework:

Suppose we want to check whether ψ is satisfiable, that is, whether L(ψ) 6= ∅. Let a

model-checking procedure answering whether L ⊆ L(ϕ) be given. Take L = Σω and

ϕ = ¬ψ. Then the model-checking procedure answers whether Σω ∩ L(¬¬ψ) = ∅,

and, in this way, whether L(ψ) = ∅. Thus, we get an answer whether ψ is satisfiable.

We conclude that model checking is at least as complex as satisfiability. We did not

explicitly use the syntax of our logic. The only requirement is that it is closed under

negation. Of course, we have to take into account the representation of the language

handed over to the model checker. As mentioned before, this is usually given in form

of a Büchi automaton. Thus, we could restrict model checking to regular languages.

However, Σω is regular and can be given by a simple automaton. We conclude that,

even when restricted to regular languages, the formula complexity of model checking

is at least as high as satisfiability in the domain of words. Note that with the same

6.6. FO versus LTL 81

arguments we show that for every logic that is closed under negation and that is

interpreted over words, satisfiability is at most as difficult as model checking. We

especially mention the linear temporal logics studied in this thesis that are defined

over traces but whose model-checking problem is defined in terms of linearizations.

We sum up:

Theorem 6.5.1

For LTLw, the complexity of deciding satisfiability is less than or equal to the formula

complexity of model checking.

The preceding theorem justifies the automata-theoretic approach of model checking,

which incorporates a decision procedure for satisfiability.

6.6 FO versus LTL

First-order logic turned out to be a fruitful mathematical framework. Introducing

a new logical framework requires arguments of its adequacy. This can be achieved

by providing several examples for its usefulness but also via a link to a well-known

framework. Kamp provided such a link for LTLw:

Theorem 6.6.1 ([Kam68])

LTLw is expressively complete with respect to FO over words.

We call a logic L1 expressively complete with respect to a logic L2 iff each class

definable by a formula of L1 can also be defined by a formula of L2 and vice versa.

As we have not introduced the notion of a logic formally, let us make this general

definition precise for our setting: We say that LTLw is expressively complete with

respect to FOw iff

• for every ϕ ∈ LTLw, there is a ψ ∈ FOw such that L(ϕ) = L(ψ) and

• for every ψ ∈ FOw, there is a ϕ ∈ LTLw such that L(ϕ) = L(ψ).

Chapter 7

LTL over Mazurkiewicz Traces

In this chapter, we introduce a linear temporal logic which is interpreted over

Mazurkiewicz traces and is abbreviated by LTLt or LTL if the context makes clear

that we interpret the logic over Mazurkiewicz traces. The syntax coincides with that

of LTLw, but the semantics is adapted to respect a given independence relation. In

the case of a fully dependent alphabet, in which we can identify traces and words,

the semantics of LTLw and LTLt formulas agree.

LTLw has turned out to be well-suited for the specification of hardware and software

systems. In Chapter 2 we have seen that Mazurkiewicz traces are an appealing

framework for specifying and modeling concurrent systems. Thus, it is natural to

look for a linear temporal logic interpreted over Mazurkiewicz traces. It is well-

known that LTLw is expressively complete with respect to first-order logic over

words, a famous result due to Kamp [Kam68]. The “right” logic over traces should

therefore be expressively complete with respect to first-order logic over traces.

LTLt—strictly speaking a syntactically slightly richer version thereof—was intro-

duced by Thiagarajan and Walukiewicz [TW97], and they proved that it is expres-

sively equivalent to first-order logic over Mazurkiewicz traces. Later, Diekert and

Gastin showed in [DG00] that even without the restricted past modality employed

in [TW97] this logic is expressively complete with respect to first-order logic over

traces. Consequently, we consider their LTL version.

In the first section of this chapter, we introduce LTLt by means of its syntax and its

semantics. We also define a simple fragment of LTLt which we call Hennessy-Milner

logic since it is in the spirit of the logic defined in [HM85] (see also [Sti01]).

The second section provides one of the main contributions of this thesis: We give

a decision procedure for LTLt formulas using alternating Büchi automata. To sim-

plify our presentation, we show our method first for the Hennessy-Milner fragment

and extend our approach later to support the until -operator of LTLt. We further-

more present a simplified decision procedure for the case that the until -operator is

84 Chapter 7. LTL over Mazurkiewicz Traces

substituted by an eventually-operator.

7.1 Syntax and Semantics

In this section, we bring out the syntax and semantics of the linear temporal logic

interpreted over Mazurkiewicz traces. Its formulas are parameterized by a trace

alphabet (Σ, I). Their syntax is defined as for the case of LTLw:

Definition 7.1.1

The set of linear temporal logic formulas over an independence alphabet (Σ, I) is

denoted by LTLt(Σ, I) and is given by the following grammar:

ϕ ::= tt | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ | ϕ1 Uϕ2 , a ∈ Σ.

We usually use identifiers like ϕ,ψ, η, . . . or ϕ′, ψ′, η′, . . . for formulas. When it is

clear from the context that we interpret over Mazurkiewicz traces or if the alphabet

is fixed, we abbreviate LTLt(Σ, I) by LTL(Σ, I), LTLt, or just LTL.

Although LTLt formulas are syntactically identical to LTLw formulas, they have

a different meaning. Formulas of LTL(Σ, I) are interpreted over configurations of

traces over (Σ, I). More precisely:

Definition 7.1.2

Given a trace T ∈
���

(Σ, I), a configuration C ∈ conf(T), and a formula ϕ ∈

LTL(Σ, I), the notion of T,C |= ϕ is defined inductively via:

• T,C |= tt.

• T,C |= ¬ϕ iff T,C 6|= ϕ.

• T,C |= ϕ ∨ ψ iff T,C |= ϕ or T,C |= ψ.

• T,C |= 〈a〉ϕ iff there exists a C ′ ∈ conf(T) such that C
a

−→TC
′ and T,C ′ |= ϕ.

• T,C |= ϕUψ iff there exists a C ′ ∈ conf(T) with C ⊆ C ′ such that T,C ′ |= ψ

and for all C ′′ ∈ conf(T) with C ⊆ C ′′ ⊂ C ′, we have T,C ′′ |= ϕ.

We abbreviate T, ∅ |= ϕ by T |= ϕ. Similarly as in the case of LTLw, we say T

models ϕ, T is a model for ϕ, or T satisfies ϕ iff T |= ϕ . Furthermore, we call ϕ

satisfiable iff there is a T ∈
���

(Σ, I) such that T |= ϕ. All models of a formula

ϕ ∈ LTLt(Σ, I) constitute a subset of
���

(Σ, I), thus a language. It is denoted by

L(ϕ) and is called the language defined by ϕ. Furthermore, every formula defines

an ω-language viz the set {w ∈ lin(T) | T |= ϕ}, which is also indicated by L(ϕ).

Given a (regular) trace-consistent language L and a formula ϕ ∈ LTLt, model check-

ing is the problem whether L ⊆ L(ϕ). Analogously to Theorem 6.5.1 on page 81,

we obtain the following result:

7.1. Syntax and Semantics 85

[]

[a]

[a, b] [a, c]

[a, b, c]

|= 〈a〉〈c〉〈b〉tt

|= 〈c〉〈b〉tt

|= 〈b〉tt

|= tt

|= 〈b〉tt

a

b c

c b

Figure 7.1: The semantics of 〈 〉

Theorem 7.1.3

For LTLt, the complexity of deciding satisfiability is less than or equal to the formula

complexity of model checking.

As before, we will freely use the standard abbreviations such as ff = ¬tt, ϕ ∧ ψ =

¬(¬ϕ ∨ ¬ψ), and ϕ→ ψ = ¬ϕ ∨ ψ.

The meaning of Boolean combinations of formulas is as usual. A new flavor is

provided by the temporal operators 〈 〉 and U . Let us illustrate their semantics by

giving examples.

A simple 〈 〉-formula1 of LTLt is ϕ = 〈a〉〈c〉〈b〉tt. Given a trace T , it is satisfied in

the empty configuration iff there is an a-successor configuration satisfying 〈c〉〈b〉tt.

Let us consider the trace T with the configuration graph shown in Figure 7.1 (cf.

Figure 3.1 on page 16, Figure 3.2(a) on page 19, and Figure 3.8 on page 26). The

empty configuration indeed has an a-successor configuration Ca (denoted by [a] in

the figure), which has to be studied now. Ca has a c-successor configuration Cac,

which itself has a b-successor configuration Cacb. Thus, ϕ is satisfied by the trace

with the configuration graph shown. The formula ϕ requested a path labeled by acb

in the configuration graph and CG(T) provides such a graph.

We now might be tempted to think that an LTLt formula ϕ can be understood as an

LTLw formula interpreted just over the “right” linearization of a trace T . This is not

the case! Note that the configuration Ca of T in Figure 7.1 also satisfies the formula

〈b〉tt since it also provides a b-successor configuration. Thus, T,Ca |= 〈b〉tt ∧ 〈c〉tt,

and, T |= 〈a〉〈b〉tt ∧ 〈a〉〈c〉tt. Now, consider the linearizations of T . They start with

either ab or ac. But neither satisfies ϕ′ = 〈a〉〈b〉tt ∧ 〈a〉〈c〉tt when ϕ′ is considered

as an LTLw formula. Even more, ϕ′ is not satisfiable at all when considered as an

LTLw formula.

Intuitively, a Boolean combination of 〈 〉 formulas describes an initial segment of the

structure of the configuration graph of a trace T .
1a formula of the form 〈a〉ψ for appropriate a and ψ

86 Chapter 7. LTL over Mazurkiewicz Traces

The previous example probably raised an unpleasant feeling with respect to the

semantics of the 〈 〉-operator since it seems sometimes to be difficult to understand.

In many situations, it is very helpful though. Assume that we want to specify that

a system has initially to execute the actions a, b, and c to reach a state in which

it operates according to a goal expressed by ϕoperate . Suppose that a has to be

executed before b and c but b and c might be executed in an arbitrary order. In

LTLw we have to write

〈a〉〈b〉〈c〉ϕoperate ∨ 〈a〉〈c〉〈b〉ϕoperate

since we should not care in which order b and c are executed. Specifying only one

clause, e.g., 〈a〉〈b〉〈c〉ϕoperate , we might later fail to verify an implementation of our

system since it might provide also the execution b after c.

In the setting of LTLt, we take an alphabet in which b and c are independent of each

other but dependent on a and simply write

〈a〉〈b〉〈c〉ϕoperate

and do not have to deal with any order of the execution of the events b and c. Note

that we could have likewise chosen 〈a〉〈c〉〈b〉ϕoperate . Both formulas are equivalent :

Definition 7.1.4

Two formulas ϕ,ϕ′ ∈ LTL(Σ, I) are called equivalent iff for every trace T ∈
���

(Σ, I)

and every configuration C ∈ conf(T), we have

T,C |= ϕ iff T,C |= ϕ′

Let us stress a further fact of LTLt formulas. Although the independence relation

of a given independence alphabet has no influence on the syntax of LTLt formulas,

it has on their semantics. 〈b〉〈c〉tt and 〈c〉〈b〉tt, for example, are equivalent iff b and

c are independent actions. 〈b〉tt ∧ 〈c〉tt is satisfiable iff b and c are independent.

In case of the fully-dependent alphabet, the empty configuration of a trace can be

understood as the empty prefix of a word. Furthermore, every configuration has a

unique successor configuration. Thus, the 〈 〉-operator of LTLt coincides with the

〈 〉-operator of LTLw.

Now let us try to understand until -formulas2 in more detail. We recall that T,C |=

ϕUψ iff there exists a C ′ ∈ conf(T) with C ⊆ C ′ such that T,C ′ |= ψ and all

C ′′ ∈ conf(T) with C ⊆ C ′′ ⊂ C ′ satisfy ϕ.

Suppose we consider the trace shown in Figure 7.2(a) on the facing page and the

formula ψ = 〈a〉tt∧〈d〉tt. It is obvious that configuration C ′ depicted in Figure 7.2(b)

satisfies ψ and that C ′ is the only one doing so. Thus, for an arbitrary formula ϕ,

2formulas of the form ϕUψ for appropriate ϕ and ψ

7.1. Syntax and Semantics 87

a

b c

da

b c

(a)

a

b c

da

b c

C ′

(b)

[]

[a]

[a, b] [a, c]

[a, b, c]

[a, b, c, a] [a, b, c, d]

= C ′

a

b c

c b

a d

(c)

Figure 7.2: The meaning of until

the formula ϕUψ holds for the given trace iff every dashed configuration satisfies

ϕ. The situation is also depicted in the (fragmentary) configuration graph shown in

Figure 7.2(c). For ϕ, every configuration on every path from the empty configuration

to configuration C ′ has to be checked. Intuitively, ϕUψ holds if there is a future

configuration C ′ that satisfies ψ and meanwhile ϕ holds, regardless how C ′ is reached.

Note that the configurations to analyze are in general only partially but not linearly

ordered.

In case of the fully-dependent alphabet, the configurations of a trace are linearly

ordered and can be identified with prefixes of its linearization. Thus, the until -

operator of LTLt coincides with the until -operator of LTLw. We conclude that

LTLt and LTLw can be identified when the underlying dependence relation is fully-

dependent. More specifically, the set of linearizations of all traces satisfying a for-

mula ϕ ∈ LTLt(Σ, I) is identical to the set of words satisfying ϕ when it is considered

as a formula of LTLw(Σ) when I is empty.

From the practical point of view, LTLt allows to specify arbitrary liveness and safety

properties, similar as in the case of LTLw. ¬ (ttU¬ψ), for example, is satisfied by a

trace T iff in all configurations, the (bad) property ψ does not hold.

Another logic interpreted over partial order executions is interleaving set temporal

logic, ISTL for short, which was introduced by Katz and Peled in [KP91]. Its syntax

and semantics is also defined in the spirit of LTLw and adapted towards the setting

of partial order executions. One of its main differences to LTLt is that the until -

operator requires a future configuration C ′ to satisfy ψ and on one path from the

current configuration to C ′ ϕ has to hold, as opposed to LTLt, where on every

path to C ′ ϕ must be satisfied. Figure 7.2(c) illustrates that—as expected—the two

definitions are not equivalent. Consider the formula η = (〈a〉ttU 〈c〉tt) U 〈d〉tt. 〈d〉tt

88 Chapter 7. LTL over Mazurkiewicz Traces

is obviously satisfied in configuration C ′. 〈c〉tt holds in configuration Ca. Thus,

along the path ∅
a

−→TCa the formula 〈a〉ttU 〈c〉tt holds. Thus, using the semantics

employed in ISTL for the until -operator, η holds. However, since Cac has no c-

successor configuration and not all configurations that are subsets of Cabcdac provide

an a-successor configuration, η does not hold when understood as an LTLt formula.

Note that satisfiability of ISTL formulas is undecidable because of the until -operator,

as shown in [AMP98].

For LTLw, we saw in Chapter 6 that ϕUψ is equivalent to ψ ∨
(

ϕ ∧
∨

a∈Σ〈a〉ϕUψ
)

:

ϕUψ is satisfied iff ψ is satisfied at the current position of the word or the current

position satisfies ϕ and the next position satisfies ϕUψ. The next position is iden-

tified by using the 〈 〉-operator. This equivalence allowed a—conceptually as well as

with respect to the complexity—simple treatment of the until -operator when defin-

ing a decision procedure for LTLw formulas. Does such a simple equivalence also

hold in the setting of traces? We learned already in the previous paragraph that the

equivalence does not hold: Let ϕc = 〈a〉ttU 〈c〉tt then ϕc U 〈d〉tt is not satisfied in

the empty configuration but ϕc∧〈a〉 (ϕc ∧ 〈b〉 (ϕc U 〈d〉tt)) is. The reason is of course

that the c-successor configuration of Ca is not studied. A next guess might result in

ψ∨
(

ϕ ∧
∧

a∈Σ〈a〉ϕUψ
)

as an equivalent formula for ϕUψ since now every successor

configuration is required to satisfy ϕUψ. Of course, the idea is not correct because

〈a〉 requires an a-successor configuration to exist which is often not the case.

Let us study a final plan for the moment. We define a weak next state operator Oϕ

as an abbreviation for
∧

a∈Σ (〈a〉tt → 〈a〉ϕ) with the meaning that every (existing)

successor configuration has to satisfy ϕ. We are now tempted to think that ϕUψ

is equivalent to ψ ∨ (ϕ ∧ O(ϕUψ)). However, again our intuition is deceiving: Let

ψ = 〈b〉tt ∧ ¬〈c〉tt, expressing that a configuration has one b-successor but no c-

successor configuration. Obviously, it is satisfied by the trace shown in Figure 7.2

on the preceding page in configuration Cac but not in configuration Ca. Thus, ttUψ

is satisfied in Ca. However, ψ ∨ (tt ∧ O(ttUψ)) is not satisfied in Ca: Ca 6|= ψ and

in its b-successor configuration Cab there is no b-successor configuration reachable

which is requested by ψ.

The previous discussion shows that the until -operator is somehow awkward to han-

dle. That is why we first identify the so-called Hennessy-Milner fragment of LTLt,

which is LTLt without until -operator. This will simplify the presentation of the

forthcoming decision procedure for satisfiability of LTLt formulas as well as the esti-

mation of its complexity. We will see in Section 7.2 on the next page how to subdue

the until -operator.

Definition 7.1.5 (Hennessy-Milner logic)

Hennessy-Milner logic over an independence alphabet (Σ, I) is the fragment of LTLt

with formulas given by the following grammar:

ϕ ::= tt | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ , a ∈ Σ.

7.2. Deciding Satisfiability of LTLt 89

The semantics is according to Definition 7.1.2 on page 84. We denote the Hennessy-

Milner fragment of LTLt by LTLHM.

It is evident that Hennessy-Milner logic can only speak over a restricted prefix of a

trace. Concepts describing properties of its infinite “behavior” are missing. Thus,

it is a quite simple logic but the first choice to study independence in the context of

temporal logics.

Let us end this section by mentioning the main appealing property of LTLt:

Theorem 7.1.6 ([DG00])

LTLt is expressively complete with respect to FO over traces.

We say that LTLt is expressively complete with respect to FOt, iff the following two

propositions are fulfilled.

Proposition 7.1.7 For every ϕ ∈ LTLt, there is a ψ ∈ FOt such that L(ϕ) = L(ψ).

Proposition 7.1.8 For every ψ ∈ FOt, there is a ϕ ∈ LTLt such that L(ϕ) = L(ψ).

Since satisfiability of FO over traces was shown to be decidable by Ebinger and

Muscholl in [EM93] we immediately get:

Corollary 7.1.9 Satisfiability of LTLt formulas is decidable.

7.2 Deciding Satisfiability of LTLt

In this section, we present a decision procedure for satisfiability of LTLt formulas.

Before one starts to consider a decision procedure for a certain problem, it is worth-

while to estimate its complexity. We already learned that satisfiability of LTLt is

decidable. However, it was shown by Walukiewicz in [Wal98] that its complexity is

non-elementary, i.e., the complexity with respect to a measure n cannot be bounded

by a function that is an iterated composition of an exponential function for a fixed

number c, thus by a function of the form

22·
··
2n
}

c

He shows, using the fact that a model can consist of two independent linear orders,

that one can describe in LTLt very large counters and compare their values. This

in turn allows to code “long” computations of Turing machines.

On the first sight, this might limit LTLt’s usage in verification tools. However, as

we will point out in detail, an exponential blow-up only occurs for a nesting of until -

operators. Since nested until -operators are difficult to understand, they are rarely

used in practice.

90 Chapter 7. LTL over Mazurkiewicz Traces

A decision procedure for LTL was given by Gastin, Meyer, and Petit in [GMP98a]

(see also [GMP98b]), which is based on automata. Their construction was inspired

by the seminal work of Büchi [Büc62] who provided an automaton construction

for monadic second-order logic interpreted over words. This construction proceeds

bottom-up, subject to the inductive structure of the formula. For atomic formulas, a

Büchi automaton is constructed and combinations of formulas are reflected by com-

binations of the previously defined automata. For example, for ¬ϕ, an automaton

for ϕ is complemented—involving an exponential blow-up.

Thus, their approach is not based on alternating automata, and more importantly,

it requires the construction of the full automaton every time, so optimizations such

as on-the-fly checking cannot be applied. A further drawback is its high complexity.

While an exponential blow-up is unavoidable for nested until -formulas, their proce-

dure produces also an exponential blow-up for every negation. Since deeply-nested

until -formulas are rare in specifications but negations are typical for specifying un-

wanted behavior, this limits the practical applicability of this procedure.

Our procedure generalizes the approach shown in the previous chapter by construct-

ing an alternating Büchi automaton Aϕ accepting the models for a given formula ϕ.

As motivated before let us start with considering satisfiability of LTLHM, before we

cover full LTLt.

7.2.1 Deciding Hennessy-Milner logic

Our goal is to construct an alternating Büchi automaton Aϕ accepting the set of

linearizations of traces satisfying a given formula ϕ. The states of this automaton

are derived from an extended subformula closure, which we first define. Following

this, we define a notion of independence rewriting of such formulas, and this will

eventually become the transition relation of Aϕ. Finally, we pin down the details of

our construction and give a proof of correctness.

In essence, the automaton Aϕ accepts a word w ∈ Σω whenever the corresponding

trace Tw satisfies ϕ. To appreciate the developments to come, we commence with a

small example.

Consider the formula ϕ = 〈a〉〈b〉ψ. Suppose that w1 is of the form abw′ for some

w′ ∈ Σω. It is then not hard to see that Tw1 , ∅ |= ϕ if and only if Tw1 , Ca |= 〈b〉ψ.

Consequently, a device that studies ϕ can proceed with 〈b〉ψ if it is fed with an

action a. Note that 〈b〉ψ is obtained from 〈a〉〈b〉ψ by removing 〈a〉: 〈b〉ψ.

Let us now take w2 = baw′. Thus, the only difference between w1 and w2 is that

b and a are swapped. Suppose an algorithm is initialized with b and ϕ as before.

When ϕ is considered as LTLw formula, we suggest that an algorithm stops the

analysis of ϕ since the first given b does not match the a requested by ϕ = 〈a〉

There is no chance to satisfy ϕ.

7.2. Deciding Satisfiability of LTLt 91

However, in the domain traces, Tw2 might still satisfy ϕ even though the first action

of w2 is b and not a: If a and b are independent then the empty configuration has

an a-successor configuration as well as a b-successor configuration. Thus, if we want

a decision procedure to accept all linearizations of a formula ϕ, we cannot reject w2

for such an alphabet (yet).

As this point we might ask whether our goal to find a decision procedure accepting

precisely all linearizations of all models of a given formula is a tall order. Of course,

we could think of an automaton construction accepting only a certain linearization of

a trace satisfying the formula at hand. The emptiness procedure for the automaton

only answers yes or no so that the overall procedure does not loose its correctness

when instead of all linearizations of a model for the formula only a special character-

istic one is accepted.3 One might even be very pleased when remembering that we

employ non-deterministic automata: Perhaps the automaton can guess the “right”

linearization to accept? However, the careful reader remembers the discussion in the

previous section, which already exposed that there are formulas that are not satisfi-

able when understood as LTLw formulas but very well satisfiable when interpreted

over traces. In other words, there are LTLHM formulas that are satisfiable, but no

linearization will show this fact when the methods for LTLw are used. Thus, there

is no chance to take over the construction for LTLw directly.

Let us come back to ϕ = 〈a〉〈b〉ψ. Suppose a and b are indeed independent. Then

we see that Tw2 , ∅ |= ϕ exactly when Tw2 , Cb |= 〈a〉ψ. In this sense, the “proof

obligation” at the empty configuration, 〈a〉〈b〉ψ, has been transformed by b to the

proof obligation “〈a〉ψ” at Cb; the a-action still has to be witnessed, but the present

b has been matched. Note that 〈a〉ψ can be obtained from 〈a〉〈b〉ψ by erasing 〈b〉:

〈a〉 ψ.

In effect, our automaton proceeds in this way by “independence rewriting” the proof

obligations by the actions read. The state space thus consists of all subformulas

together with formulas obtained by transformations as described above and Boolean

combinations thereof. We will call this set the extended closure of ϕ.

Definition 7.2.1

Let η be a formula of LTLHM. We define the extended closure of η denoted by ecl(η)

to be the least set that satisfies the following:

• η itself is contained in its closure: η ∈ ecl(η).

• For ϕ ∨ ψ ∈ ecl(η), it also contains the closure of ϕ and of ψ as well as

the disjunction of any ϕ′ and ψ′ of the respective closures: ecl(ϕ) ⊆ ecl(η),

ecl(ψ) ⊆ ecl(η), and ϕ′ ∨ ψ′ ∈ ecl(η) for all ϕ′ ∈ ecl(ϕ), ψ′ ∈ ecl(ψ).

3We indeed follow this idea for the decision procedure in Chapter 8 on page 119.

92 Chapter 7. LTL over Mazurkiewicz Traces

• For 〈a〉ϕ ∈ ecl(η), it also contains the extended closure of ϕ as well as 〈a〉ϕ ′

for every ϕ′ ∈ ecl(ϕ).

• For ϕ ∈ ecl(η), it also contains ¬ϕ ∈ ecl(η). We identify ¬¬ϕ with ϕ. Hence,

ecl(η) is closed under negation.

• The closure is closed under positive Boolean combinations, i.e., B+(ecl(η)) ⊆

ecl(η).

At first sight, Definition 7.2.1 on the preceding page might seem not to be well-

defined since the domain of LTLHM formulas could be left since the closure under

positive combination yields subformulas that are conjunctions of subformulas. Note

that exactly in these cases, a conjunction has to be understood as an abbreviation.

We assume that all positive Boolean formulas are in disjunctive normal form4 and,

moreover, that they are reduced with respect to idempotency and commutation.

With these assumptions we can prove the following essential result.

Proposition 7.2.2 ecl(η) is a finite set for each formula η of LTLHM.

Proof

The proof proceeds by a standard induction. The claim is obvious for atomic for-

mulas. For η = 〈a〉ϕ, ecl(η) consists of positive Boolean combinations of formulas in

ecl(ϕ) and formulas of the form 〈a〉ϕ′ for ϕ′ ∈ ecl(ϕ). Thus, |ecl(η)| ≤ O(22|ecl(ϕ)|
).

The results for negation and disjunction follow with similar arguments. �

For extended formulas, we will make use of the important notion of its dual, which

is obtained as usual by applying de Morgan’s laws to push negations inwards as far

as possible.

Definition 7.2.3

The dual of a formula is given inductively as follows:

• tt = ff, ff = tt.

• ¬ϕ = ϕ.

• ϕ ∨ ψ = ϕ ∧ ψ, ϕ ∧ ψ = ϕ ∨ ψ.

• 〈a〉ϕ = ¬〈a〉ϕ.

Again, we have to understand conjunctions or ff as abbreviations in a certain context.

Our further study will clarify when.

4In general, transforming a formula into disjunctive normal form might involve an exponential

blow-up. For the moment, we are not interested in exact bounds so that we abstract from this. In

a forthcoming detailed analysis we will learn that we can withdraw this assumption.

7.2. Deciding Satisfiability of LTLt 93

We are now set to introduce the operator || || , which will constitute the transition

relation of the alternating automaton. Essentially, ||ϕ||a is to be thought of as the

independence rewriting of ϕ by the action a.

It follows from the intuition conveyed earlier that it should be the case that ||〈a〉ψ||a
is ψ. Then, for the case where aIb, ||〈b〉ψ||a = 〈b〉ψ′ where ψ′ = ||ψ||a. Of course,

whenever aDb and the actions are not identical, then ||〈b〉ϕ||a must be ff because

b cannot be the next action of a trace satisfying 〈a〉〈b〉ϕ. Definition 7.2.4 formally

captures this intuition:

Definition 7.2.4

For each formula η ∈ LTLHM and each action a, the rewrite operator ||η||a yields a

formula of B+(ecl(η)) and is defined inductively via:

||tt||a = tt

||ϕ ∨ ψ||a = ||ϕ||a ∨ ||ψ||a
||¬ϕ||a = ||ϕ||a

||〈b〉ϕ||a =

ϕ if a = b

〈b〉||ϕ||a if aIb

ff if aDb, a 6= b

Note that since ecl(η) is closed under positive Boolean combination, we have ecl(η) =

B+(ecl(η)).

It is not hard to verify that || || is well-defined. As will turn out soon, the rewrite

operator will be the transition function of the automaton accepting the models of

the formulas at hand. To show that our construction is indeed correct, we proceed

in two steps. First, we show that the automaton’s transition function is correct: We

show that given a formula ϕ and an action a, the formula is satisfied by a trace T

in the empty configuration iff ||ϕ||a is satisfied in configuration Ca of T . In terms of

automata this means that reading a it is OK to move from state ϕ to state ||ϕ||a.

The second part of our correctness proof consists of defining the remaining com-

ponents of an automaton, especially initial and final states, and to show that this

guides the automaton to accept precisely the models of the underlying formula.

Let us now formulate and prove the first part:

Proposition 7.2.5 Let η be any formula of LTLHM(Σ, I). Then for every w ∈ Σω

with w ≡ vaw′,

Tw, Cv |= η if and only if Tw, Cva |= ||η||a

Proof

The proof proceeds by induction on the formula η. We only show the most important

cases since the other cases follow in a similar manner.

94 Chapter 7. LTL over Mazurkiewicz Traces

The case when η = tt is trivial.

Suppose η = ϕ ∨ ψ. Then Tw, Cv |= ϕ ∨ ψ means by definition that Tw, Cv |= ϕ or

Tw, Cv |= ψ. By induction, this is equivalent to Tw, Cva |= ||ϕ||a or Tw, Cva |= ||ψ||a,

which is equivalent to Tw, Cva |= ||ϕ ∨ ψ||a by definition of the rewrite operator.

Suppose η = ¬ϕ. By definition, Tw, Cv |= ¬ϕ iff not Tw, Cv |= ϕ. Induction yields

that not Tw, Cva |= ||ϕ||a, which means Tw, Cva |= ¬||ϕ||a. The dual of a formula

is obviously logically equivalent to the negation of the formula so that the previous

statement is equivalent to Tw, Cva |= ||ϕ||a.

Suppose η = 〈b〉ϕ. By definition, Tw, Cv |= 〈b〉ϕ iff there is a configuration C ′ such

that Cv
b

−→TC
′ = Cvb and Tw, C

′ |= ϕ. We consider three different cases:

• b = a: Then C ′ = Cva. Hence Tw, Cva |= ϕ.

• b 6= a, bDa: Then Cv
b

−→TC
′ and Cv

a
−→TCva. However, then w is not a

linearization of the trace, which is a contradiction.

• bIa: Tw, Cvb |= ϕ is by induction equivalent to Tw, Cvba |= ||ϕ||a. Since aIb,

this means Tw, Cvab |= ||ϕ||a which is equivalent to Tw, Cva |= 〈b〉||ϕ||a.

Putting together all the cases, we get that Tw, Cv |= 〈b〉ϕ if and only if Tw, Cva |=

||〈b〉ϕ||a.

This concludes the proof. �

According to the previous proposition, it is possible to consider the word action by

action and to modify the formula according to the rewrite operator.

We can now finally bring out the definition of the alternating Büchi automaton Aϕ

corresponding to a formula ϕ ∈ LTLHM(Σ, I) as follows:

Definition 7.2.6

Given a formula ϕ ∈ LTLHM(Σ, I), the alternating Büchi automaton Aϕ is the tuple

(Q, δ, q0, F) where

• Q = ecl(ϕ) is the set of states.

• δ(q, a) = ||q||a is the transition function.

• q0 = ϕ is the initial state.

• F = {¬ψ | ¬ψ ∈ ecl(ϕ)} is the set of accepting states.

Note that we defined the set of final states to be all negated formulas. The intuitive

idea is that failing to prove a proposition infinitely often suffices to assume that its

negation is true. In the work of Vardi [Var96], one could likewise take all negated

formulas as final states as we did in Chapter 6 in Definition 6.2.5 on page 73. Since

7.2. Deciding Satisfiability of LTLt 95

in the case of LTL over words, only until -formulas can occur infinitely often, the set

of final states is restricted to negated until -formulas in [Var96].

The correctness of the construction is summarized in the following theorem:

Theorem 7.2.7

Let ϕ be a formula of LTLHM(Σ, I) and let its alternating Büchi automaton over the

alphabet Σ be given as Aϕ = (Q, δ, q0, F). Then

w ∈ L(Aϕ) if and only if Tw, ∅ |= ϕ

for every w ∈ Σω.

Proof

For w ∈ Σω, we have to show that Aϕ has an accepting run on w iff Tw |= ϕ. Note

that every run has (at most) three kinds of paths

• finite paths ending in tt,

• infinite paths on which from some point on every node is labeled by a 〈 〉-

formula, or

• infinite paths on which from some point on every node is labeled by a negated

〈 〉-formula.

For ψ ∈ ecl(ϕ) and w = aw′ ∈ Σω, let δ̂(ψ,w) be the extension of δ defined

by δ̂(ψ, aw′) = δ̂(δ̌(ψ, a), w′) (cf. Chapter 4.2.1, page 50). By Proposition 7.2.5,

δ̂(ϕ,w) = δ̂(δ̌(ϕ, a), w′) = δ̂(||ϕ||a, w
′) and Tw, Cε |= ϕ iff Tw, Ca |= ||ϕ||a. Now,

consider an accepting run of Aϕ. Its finite paths end in tt, thus all proof obligations

are proved. Conversely, a run should be accepted only if the finite paths end in tt,

i.e., that all proof obligations are proved indeed. Now, let us consider the infinite

paths of a run. These can only occur by reading actions independent of the one

given within a (negated) 〈 〉-formula. Thus, the requested successor configuration is

not witnessed, which can be accepted iff the underlying 〈 〉-formula is preceded by

a negation. This is captured by the acceptance condition for infinite paths given by

the final states of the automaton. �

Let us explain our automaton construction for an LTLHM formula in a more illus-

trative way by providing an example.

Example 7.2.8 We take ϕ = 〈a〉〈b〉〈c〉tt to be checked for satisfiability over our

standard alphabet with actions a, b, c, d where a and d as well as b and c are inde-

pendent (cf. Example 3.1.4 on page 16). It is easy to see that every trace with a

minimal event labeled by a which has two direct successor events labeled by b and

respectively c satisfies ϕ. In other words, the automaton Aϕ to be defined has to

96 Chapter 7. LTL over Mazurkiewicz Traces

|| || a b c d

ϕ 〈b〉〈c〉tt ff ff 〈a〉¬tt

〈b〉〈c〉tt ff 〈c〉tt 〈b〉tt ff

〈b〉tt ff tt 〈b〉tt ff

〈c〉tt ff 〈c〉tt tt ff

〈a〉¬tt ¬tt ff ff 〈a〉¬tt

¬tt ff ff ff ff

Table 7.1: The transition function of Aϕ

accept all words with a prefix of the form ab+c or ac+b. We should start with the

state space of Aϕ, which is ecl(ϕ). However, as we will see in the next paragraph, it

is a good idea to restrict the presentation to the states reachable from the initial sate

ϕ. Let us therefore consider the successor states of ϕ: Reading a “removes” 〈a〉, thus

||ϕ||a = 〈b〉〈c〉tt. ||ϕ||b = ||ϕ||c = ff because a and b as well as a and c are dependent.

Finally, let us consider ||ϕ||d. As a and d are independent, it evolves to 〈a〉||〈b〉〈c〉||d .

||〈b〉〈c〉||d yields ff because d is dependent on b. Note that 〈a〉ff is no formula so that

ff has to be understood as an abbreviation for ¬tt. Hence, ||ϕ||d = 〈a〉¬tt. Note

that although 〈a〉¬tt is logically equivalent to ff, our construction does not directly

yield ff.

Reading b or c in state 〈b〉〈c〉tt yields 〈c〉tt or respectively 〈b〉tt. a and d will guide

the automaton to state ff.

A little more involved are the successor states of 〈a〉¬tt. Reading a yields ¬tt.

Since b and c are dependent on a, the automaton will move to state ff reading

these actions. If the next input symbol is d, we obtain ||〈a〉¬tt||d = 〈a〉||¬tt||d =

〈a〉||tt||d = 〈a〉tt = 〈a〉ff, which has to be understood as an abbreviation for 〈a〉¬tt.

Let us summarize the definition of the transition function in Table 7.1.

The set of final states consists only of ¬tt because it is the only state/formula

beginning with a negation symbol. However, since there are no cycles containing

this state, every accepting run has to reach state tt. The automaton can be visualized

as in Figure 7.3 on the facing page where edges to the state ff are left out to enhance

the presentation. It is easy to see that along every path reaching tt, we indeed read

a word of the desired form.

Before we study the complexity of our procedure, let us consider it for the case

that the underlying alphabet is fully-dependent so that traces and words can be

identified. We have seen that LTLt and LTLw coincide over this alphabet. What

happens for the decision procedure? In case of the fully dependent alphabet, no two

7.2. Deciding Satisfiability of LTLt 97

〈a〉〈b〉〈c〉tt 〈b〉〈c〉tt

〈a〉¬tt

〈c〉tt

〈b〉tt

¬tt

tt
a

b

c

b

c

c

b
a,b,c,d

d

a

Figure 7.3: The graphical representation of Aϕ

independent actions exist. Hence,

||〈b〉ϕ||a =

ϕ if a = b

〈b〉||ϕ||a if aIb

ff if aDb, a 6= b

of Definition 7.2.4 on page 93 can be simplified to

||〈b〉ϕ||a =

{

ϕ if a = b

ff else

and we get exactly the construction shown in Section 6.2 on page 71 for LTLt (when

restricted to formulas without until -operators).

Complexity Proposition 7.2.2 guarantees that the state space of the constructed

automaton is finite. When we take a look at its proof, we get a double exponential

upper bound for the state space with respect to the length of the underlying formula.

This gives immediately a triple exponential upper bound for the overall decision

procedure for satisfiability.

However, to appreciate the presentation, we have defined the state space of our

automaton in a straightforward manner and presented a simple argument to show

that it is finite to guarantee that we indeed get a decision procedure. When we

analyze our construction in more detail, we obtain a smaller upper bound. Let us

find out, which states are really needed in our construction. In other words, let us

consider the states that are reachable from the initial state.

98 Chapter 7. LTL over Mazurkiewicz Traces

Given a formula ϕ ∈ LTLHM(Σ, I), a state ψ of Aϕ, and a set Y ⊆ Σ, let reachY (ψ)

denote the set of states reachable from ψ in Aϕ by words whose actions are inde-

pendent of Y . More precisely:

reachY (ψ) = {ψ′ | ∃w ∈ Σ∗, wIY : ψ′ ∈ st(δ̂(ψ,w))}

where δ̂ is the extension of δ defined in the obvious manner (cf. Chapter 4.2.1,

page 50), st(ϕ) yields the disjuncts of ϕ (cf. Remark 4.2.3 on page 46), and wIY is

a shorthand for alph(w)IY . Let us give an inductive characterization of the set of

states reachable from a given one:

Proposition 7.2.9 Given ϕ ∈ LTLHM(Σ, I), we get upper bounds for the number

of states reachable from a state of Aϕ by words independent of Y inductively as

follows:

• |reachY (tt)| = 1

• |reachY (ff)| = 1

• |reachY (¬ψ)| = |reachY (ψ)|

• |reachY (ψ1 ∨ ψ2)| ≤ |reachY (ψ1)| + |reachY (ψ2)|

• |reachY (ψ1 ∧ ψ2)| ≤ |reachY (ψ1)| + |reachY (ψ2)|

• |reachY (〈a〉ψ)| ≤

{

|reachY (ψ)| + |reachY ∪{a}(ψ)| + 1 if aIY

|reachY ∪{a}(ψ)| + 1 if aDY

Proof

The obvious cases are if the state formula is tt or ff.

Since negation is shifted inwards by the dual operator , the states reachable from

¬ψ are the same states that are reachable from ψ, except that every state is preceded

by ¬. Thus, the cardinality is the same.

Given 〈a〉ψ, assume a to be independent of Y . Reading an action dependent on but

different from a (and independent of Y) yields the state ff and in our formula the

1. Reading a yields the state ψ, thus, the states reachable from ψ are obviously

reachable from 〈a〉ψ, which results in |reach Y (ψ)|. The last possibility is reading

an action b independent of a and Y . This yields formulas of the form 〈a〉ψ ′ where

ψ′ is obtained by rewriting ψ by actions independent of Y and a. Since 〈a〉ψ ′

distributes over disjunctions and conjunctions, we get the same number of states

as obtained by considering the states reachable from ψ by words independent of

Y ∪ {a} (|reachY ∪{a}(ψ)|). If a is dependent on some action in Y , the case yielding

|reachY (ψ)| will not occur since 〈a〉 cannot be “removed”. �

With the help of the operator reachY (ψ) and the previous proposition we are able

to give a coarser bound for the states reachable from a given state:

7.2. Deciding Satisfiability of LTLt 99

Proposition 7.2.10 For every state ψ of an automaton Aϕ for a formula ϕ ∈

LTLHM(Σ, I), we obtain |reachY (ψ)| ≤ |ψ||Σ−Y |.

Proof

First, recall the binomial formula (a + b)n =
∑n

i=0

(n
i

)

an−ibi. The proof follows by

induction of which we pick out the most difficult two cases:

Consider |reachY (ψ1 ∨ ψ2)|. By Proposition 7.2.9 on the facing page, this number

is smaller than |reachY (ψ1)| + |reachY (ψ2)|. Using the induction hypothesis, we

know that the sum is smaller than |ψ1|
|Σ−Y | + |ψ2|

|Σ−Y |. Let n = |Σ − Y | so

that we abbreviate the studied term by |ψ1|
n + |ψ2|

n. The previous value can be

augmented by adding
∑n−1

i=1

(n
i

)

|ψ1|
n−i|ψ2|

i. The binomial formula now yields that

the cardinatility is bounded by (|ψ1| + |ψ2|)
|Σ−Y | which is of course smaller than

(|ψ1| + |ψ2| + 1)|Σ−Y |.

Let us study |reachY (〈a〉ψ)|. Assume that a is independent of Y . From Proposi-

tion 7.2.9 on the preceding page we learn, that the value is smaller than |reach Y (ψ)|+

|reachY ∪{a}(ψ)|+1. Induction yields the bound |ψ||Σ−Y |+|ψ||Σ−Y |−1+1 which reads

with n = |Σ − Y | as |ψ|n + |ψ|n−1 + 1. Note that |ψ|n can be written as |ψ|n · 10

and |ψ|n−1 is less or equal
(

n
1

)

|ψ|n−1 so that we obtain the desired upper bound

(|ψ| + 1)|Σ−Y | by applying the binomial formula. �

Let us come back to a formula ϕ and its automaton Aϕ. The previous proposition

limits the number of states reachable from the initial state ϕ by |ϕ||Σ−Y | for an

arbitrary set Y . This value is maximized when Y equals the empty set. Thus, the

number of states visited and hence to be constructed is bounded by |ϕ||Σ| which is

a polynomial in the size of the underlying formula with degree bounded by the size

of the alphabet.

Due to the exponential blow-up, the construction of an equivalent Büchi automaton

for Aϕ causes, we conclude

Corollary 7.2.11 Checking satisfiability of a formula from the Hennessy-Milner

fragment LTLHM(Σ, I) can be done in exponential time and polynomial space with

respect to the size of ϕ.

7.2.2 Supporting Until-formulas

In this section, we will see how to extend our decision procedure towards full LTLt.

Therefore, we augment all definitions, propositions and proofs with appropriate

notions for the remaining until -operator.

For bringing out the decision procedure itself, it will be convenient to assume that

the syntax of LTL is augmented with an indexed until -operator ΦUZψ where Φ =

{ϕY1
1 , . . . , ϕYnn } is a finite set of annotated formulas, where Z and Y1, . . . , Yn are

subsets of actions. Formally, it will have the following semantics:

100 Chapter 7. LTL over Mazurkiewicz Traces

• T,C |= ΦUZψ iff there exists a C ′ ∈ conf(T) with C ⊆ C ′ such that T,C ′ |= ψ

and λ(C ′ −C)IZ. Moreover, for each 1 ≤ i ≤ n and every C ′′ with C ⊆ C ′′ ⊂

C ′ and λ(C ′′ − C)IYi, it holds C ′′ |= ϕi.

Hence, a trace satisfies the formula ΦUZψ in the configuration C iff there is a future

configuration C ′ satisfying ψ and all the actions from C to C ′ are independent of

the actions in Z. Furthermore, the configurations between C and C ′ that can be

reached from C by performing actions independent of Yi, all satisfy ϕi.

Note that ϕUψ can be identified with {ϕ∅}U ∅ψ and we will not always make this

distinction explicit.

Let us present some examples. Recall that 〈d〉tt is satisfied by the trace shown in

Figure 7.2 on page 87 exactly in configuration C ′. Thus, {tt∅}UZ〈d〉tt is satisfied

in the empty configuration for Z = ∅. However, it is not for Z = {d} because

configuration C ′ can only be obtained by adding a b- and a c-event to the empty

configuration but both actions are dependent on d. We turn our interest towards

the formula ϕ = (〈b〉tt∧〈c〉tt)U 〈d〉tt. We easily see that it is not satisfied in config-

uration Ca of the trace shown in Figure 7.2: C ′ satisfies 〈d〉tt, Ca models 〈b〉tt∧〈c〉tt

but Cab has no b-successor configuration and Cac has no c-successor configuration.

However, {(〈b〉tt){b}, (〈c〉tt){c}}U ∅〈d〉tt is satisfied in configuration Ca. C
′ still sat-

isfies 〈d〉tt and because the until -operator is indexed with the empty set, there is no

restriction on the labels of the events added to gain C ′. The configurations between

Ca and C ′ are Ca, Cab, and Cac. Ca still satisfies 〈b〉tt and 〈c〉tt. As Cab is obtained

from Ca by adding a b-event, which is of course dependent on b, there is no reason

for 〈b〉tt to hold in Cab. Similarly, although Cac does not satisfy 〈c〉tt, the overall

formula holds, because Cac evolves from Ca by adding c.

The examples show that with the help of the extended until -operator a finer control

on the configurations to be considered can be realized.

Let us convince ourself, that ΦUZψ is derivable within LTL itself and has conse-

quently no influence on the expressiveness of LTL. Instead of defining for ΦU Zψ

an equivalent LTL formula directly, we provide a translation of LTLt with extended

until -operator to FOt. As the latter captures exactly the LTL-definable languages

(cf. Theorem 7.1.6 on page 89), we know that LTL with and without extended un-

til -operator coincide with respect to expressiveness. Let LTLZ(Σ, I) denote the set

of LTL formulas with extended until -operator.

Proposition 7.2.12 Let ϕ ∈ LTLZ(Σ, I). Then there exists η ∈ FOt(Σ, I) such

that

L(ϕ) = L(η)

Proof

As pointed out in Section 5.2 on page 64, we use finite sets of variables to represent

7.2. Deciding Satisfiability of LTLt 101

configurations. For a countable set of variables Var , for every finite set X ⊂ Var ,

and every formula ϕ ∈ LTLZ(Σ, I), we will construct a formula ηXϕ of FO(Σ, I)

with free variables in the set X. This formula will have the property that for every

valuation V : Var → E

T |=V ηXϕ iff T,CX
V |= ϕ

where CX
V denotes the configuration identified by X (cf. Section 5.2 on page 64). In

particular, taking X = ∅ will obtain the desired result.

The construction proceeds by structural induction on ϕ. If ϕ = tt then for every X

we put ηXϕ = tt. The cases for disjunction and negation are straightforward.

Suppose ϕ = 〈a〉η. Let X = {x1, . . . , xk} (which may be empty). As pointed out in

Section 5.2 on page 64, the formula ηXϕ defined by

∃y Ra(y) ∧ ϕ
X∪{y}
η ∧

∧

i=1,...,k

y 6≤ xi

 ∧ ∀z

z < y →

∨

i=1,...,k

z ≤ xi

has the desired property.

Suppose ϕ = ΦUZψ where Φ = {ϕY1
1 , . . . , ϕYnn }. For X 6= ∅, we let ηXϕ be given by

∃Y ′ BelowIndep(X,Y ′, Z) ∧ ηY
′

ψ ∧
∧

ϕYi ∈Φ

∀Y ′′ (BelowIndep(X,Y ′′, Y) ∧ SBelow(Y ′′, Y ′) → ηY
′′

ϕi)

In the above, the quantifier ∃Y ′ is a shorthand for ∃y′1 . . . ∃y
′
|Σ|. Similar holds for

∀Y ′′. Note that we make use of the abbreviations defined in Section 5.2 on page 64.

For X = ∅, we have to take into account that ψ holds in the empty configuration

which cannot be identified with a non-empty set of variables (like y ′1, . . . , y
′
|Σ|). Thus,

we define η∅ϕ by

η∅ψ ∨ ∃Y ′ BelowIndep(∅, Y ′, Z) ∧ ηY
′

ψ ∧
∧

ϕYi ∈Φ

∀Y ′′ (BelowIndep(∅, Y ′′, Y) ∧ SBelow(Y ′′, Y ′) → ηY
′′

ϕi)

The case for ϕUψ is just a special case of the previous one.

By structural induction, the claim follows. �

Note that the previous proposition proves Proposition 7.1.7 on page 89, which pro-

vides one direction of the expressive-completeness result. The other direction is

employed for showing that for every formula of LTLZ(Σ, I) there is one of LTL(Σ, I)

defining the same language.

Following the scheme worked out in the previous section, we now have to extend the

definition of the subformula closure towards until -formulas:

102 Chapter 7. LTL over Mazurkiewicz Traces

Definition 7.2.13 (extends Definition 7.2.1)

Let η be a formula of LTL. We take ecl(η) to be the least set that satisfies the items

of Definition 7.2.1 on page 91 and furthermore:

• For ϕUψ ∈ ecl(η), the closure contains ecl(ϕ) as well as ecl(ψ). Furthermore,

for all Z ⊆ Σ, all ψ′ ∈ ecl(ψ), and all Φ ⊆ {ϕ′Y |ϕ′ ∈ ecl(ϕ), Y ⊆ Σ}, the

closure contains ΦUZψ′.

• For {ϕY1
1 , . . . , ϕYnn }UZψ ∈ ecl(η), the closure contains ecl(ϕi) as well as ecl(ψ),

for i ∈ {1, . . . , n}. Furthermore, for all Z ⊆ Z ′ ⊆ Σ, all ψ′ ∈ ecl(ψ), and all

Φ ⊆ {ϕ′Y ′
|∃i ϕ′ ∈ ecl(ϕi), Yi ⊆ Y ′ ⊆ Σ}, the closure contains ΦUZ′

ψ′.

Again, the definition reflects the idea that “everything” which might be obtained by

rewriting is contained in the closure while assuring the closure to be finite:

Proposition 7.2.14 ecl(η) is a finite set for each formula η of LTLt.

Proof

For η = {ϕY1
1 , . . . , ϕYnn }UZψ it is easy to see that |ecl(η)| is bounded by

22

��
22 � n

i=1(|ecl(ϕi)|·2
|Σ|)

·|ecl(ψ)|·2|Σ| ��

The three factors are upper bounds for the derivatives of {. . .}, UZ , and ψ, respec-

tively, and the powers bound their positive Boolean combination. The remaining

cases are treated as in the proof of Proposition 7.2.2 on page 92. �

We call formulas of the form ΦUZψ with Φ being a finite set of extended formulas,

ψ a single extended formula and Z ⊆ Σ again until -formulas.

We likewise will make use of the important notion of its dual, which is obtained as

usual by applying de Morgan’s laws to push negations inwards as far as possible.

Definition 7.2.15 (extends Definition 7.2.3)

The dual of an (extended) formula is given inductively by the rules stated in Defini-

tion 7.2.3 on page 92 as well as:

• ϕUψ = ¬(ϕUψ).

• ΦUZψ = ¬(ΦUZψ).

We now only need to specify the case of ||ΦUZψ||a. This turns out to be inherently

more complex, and before providing the precise definition, we carefully analyze the

semantics of the indexed until modality in Figure 7.4. For this purpose, consider

some given trace T and suppose C,C ′ ∈ conf(T) such that C ⊆ C ′. Furthermore,

let C ′′ be a configuration between C and C ′ (Figure 7.4(i)). Of course, the idea in

7.2. Deciding Satisfiability of LTLt 103

C′

C

C′′

C′

C

C′′
a

C′

C

C′′
a

C′

C

C′′

a

(i) (a) (b) (c)

Figure 7.4: Configuration and actions.

mind is that we consider an until -formula ϕUψ in the current configuration C and

assume that ψ holds in configuration C ′. Then ϕ has to be considered in C ′′.

Let us now consider the next action of a linearization. In other words, suppose we

can augment C by an a-labeled event e to obtain a successor configuration C ′′′ of

C, i.e., C
a

−→TC
′′′. Then C ′′′ ⊆ C ′′ ⊆ C ′, or C ′′′ 6⊆ C ′′ but C ′′′ ⊆ C ′, or C ′′′ 6⊆ C ′.

This situation can be stated also in the following way (cf. Figure 7.4 (a) – (c)): The

action a is neither in the future of C ′′ nor of C ′ (Case (a)), in the future of C ′′

(Case (b)) or in the future of C ′′ as well as of C ′ (Case (c)).

In Case (b), it is obvious that λ(C ′′ −C)Ia, and for Case (c), we have λ(C ′ −C)Ia

(as well as λ(C ′′ − C)Ia).

Consider a formula ϕUψ which is to be checked in the configuration C. In Case (c),

we have to employ a for verifying ψ as well as ϕ. Note that for Case (c) we get two

subcases depending upon whether C ′ = C or C ′ ⊃ C. While ϕ is not relevant in the

first case, ϕ is required to hold in the configurations between C and C ′. Note that

these configurations are reached by actions independent of a.

For Case (a), we have to use a for verifying ϕ in configuration C but not for C ′′. In

Case (b), we have to prove ϕ considering a in the configuration C ′′, which might be

equal to C as well as different from C. Note that in the latter case, every event of

C ′′ − C is independent of a.

Consequently, we define the rewrite operator for a formula ΦUZψ as follows.

Definition 7.2.16 (extends Definition 7.2.4)

Let

Ψ1 = ||ψ||a Ψ2 = {||ϕ||Y ∪{a}
a | ϕY ∈ Φ}UZ∪{a}||ψ||a.

Moreover, we set Ψ′ = Ψ1 ∨ Ψ2. Let

||Φ||a = { ||ϕ||
Y ∪{a}
a | ϕY ∈ Φ}

∪ { ϕY | ϕY ∈ Φ, aIY }

and

Φ1 =
∧

ϕY ∈Φ

||ϕ||a Φ2 = ||Φ||aU
Zψ

104 Chapter 7. LTL over Mazurkiewicz Traces

and Φ′ = Φ1 ∧ Φ2.

Then we define

||ΦUZψ||a =

{

Ψ′ if aDZ

Ψ′ ∨ Φ′ if aIZ

Note that Ψ′ captures Case (c) in which an action a is used for verifying ψ under

the assumption that C ′ = C (Ψ1) or not (Ψ2). Φ′ covers the idea that a is not in

the future of C ′ but is employed for verifying the obligations in Φ.

We now state that our rewrite operator is locally correct:

Proposition 7.2.17 Let η be any formula of LTLt(Σ, I). Then for every w ∈ Σω

with w ≡ vaw′,

Tw, Cv |= η if and only if Tw, Cva |= ||η||a

Proof

As in Proposition 7.2.5 on page 93, the proof proceeds by induction on the structure

of the formula. The only remaining case is η = ΦUZψ. Let Φ = {ϕY1
1 , . . . , ϕYNN }.

Recall that Tw, Cv |= {ϕY1
1 , . . . , ϕYNN }UZψ if and only if

∃x ∈ Σ∗, y ∈ Σω, aw′ ≡ xy, xIZ, such that Tw, Cvx |= ψ, and

∀i ∈ {1, . . . , N},∀x1, x2 ∈ Σ∗ satisfying x1x2 ≡ x, x1IYi, x2 6= ε, it holds

Tw, Cvx1 |= ϕi.

We consider here only the case where aI(Yi ∪ Z). The other cases follow similarly.

Let us first discuss the “if ”-part: We consider the following cases for x:

• x = ε: Then Tw, Cvx |= ψ means Tw, Cv |= ψ which implies by induction

Tw, Cva |= ||ψ||a. This shows (Ψ1).

• x 6= ε, a 6∈ alph(x):

We consider the cases for ψ and ϕi simultaneously:

⇒ aIx ⇒ aIx1

Tw, Cvx |= ψ Tw, Cvx1 |= ϕi
I.H.
⇒ Tw, Cvxa |= ||ψ||a

I.H.
⇒ Tw, Cvx1a |= ||ϕi||a

⇒ Tw, Cvax |= ||ψ||a ⇒ Tw, Cvax1 |= ||ϕi||a
⇒ ∃x ∈ Σ∗, xI(Z ∪ {a}), ⇒ ∀x1, x2 ∈ Σ∗, x1x2 ≡ x, x1I(Yi ∪ {a}),

Tw, Cvax |= ||ψ||a. x2 6= ε, Tw, Cvax1 |= ||ϕi||a.

Hence, Tw, Cva |= {||ϕ||
Y ∪{a}
a | ϕY ∈ Φ}UZ∪{a}||ψ||a which shows (Ψ2).

7.2. Deciding Satisfiability of LTLt 105

• x 6= ε, a ∈ alph(x):

We easily see that x ≡ ax′ and a, x′IZ and Tw, Cvax′ |= ψ. We will show

(Φ1) and (Φ2). Let us consider x1. If x1 = ε then Tw, Cv |= ϕi implies by

induction Tw, Cva |= ||ϕi||a. If x1 6= ε and a 6∈ alph(x1), we see that aIx1

and x1IYi. Hence, x1I(Yi ∪ {a}). Now, Tw, Cvx1 |= ϕi yields by induction

Tw, Cvx1a |= ||ϕi||a proving Tw, Cvax1 |= ||ϕi||a since aIx1. For the case x1 6= ε

but a ∈ alph(x1) we see that x1 ≡ ax′1 and Tw, Cvax′1 |= ϕi. Summing up the

cases for x1 we get Tw, Cva |= ||Φ||aU
Zψ, which shows (Φ2), and Tw, Cva |=

||ϕ||a for all ϕY ∈ Φ, which shows (Φ1).

Altogether, we showed that Ψ′ or Φ′ hold in the until case proving the “if ”-part.

Now, let us consider the “only-if ” part: Suppose Tw, Cva |= ||ΦUZψ||a, i.e.

Tw, Cva |= Ψ1 ∨ Ψ2 ∨ Φ′.

We discuss the disjunction by drawing the conclusions of each formula

• Tw, Cva |= ||ψ||a:

This implies by induction that Tw, Cv |= ψ. Hence, Tw, Cv |= ΦUZψ.

• Tw, Cva |= {||ϕ||
Y ∪{a}
a | ϕY ∈ Φ}UZ∪{a}||ψ||a:

Then there exist x, y, xI(Z∪{a}), w ≡ vaxy such that Tw, Cvax |= ||ψ||a. Since

xIa also Tw, Cvxa |= ||ψ||a which yields by induction Tw, Cvx |= ψ. We further

know that for every proper prefix (modulo ≡) x1 of x with x1I(Y ∪{a}) we have

Tw, Cvax1 |= ||ϕ||a. Then Tw, Cvx1a |= ||ϕ||a and, by induction, Tw, Cvx1 |= ϕ.

Hence, Tw, Cv |= ΦUZψ.

• Tw, Cva |=
∧

ϕY ∈Φ ||ϕ||a ∧ ||Φ||aU
Zψ:

We first obtain by induction that Tw, Cv |= ϕ for every ϕY ∈ Φ, considering

the first conjunct. Let us analyze

Tw, Cva |= ({||ϕ||Y ∪{a}
a | ϕY ∈ Φ} ∪ {ϕY | ϕY ∈ Φ, aIY })UZψ

It implies that there is an x′, independent of Z, such that Tw, Cvax′ |= ψ.

Since we are in the case of aIZ, we conclude that there is an x, xIZ (viz

x ≡ ax′) such that Tw, Cvx |= ψ. Now, consider x1x2 ≡ x, x2 6= ε. For every

x1I(Y ∪ {a}), x1 a prefix of x′, we know Tw, Cvax1 |= ||ϕ||a and, by induction,

Tw, Cvx1 |= ϕ. For x′ = ε we already know Tw, Cv |= ϕ. For x1IY and x1Da we

obtain x1 ≡ ax′1, x
′
1IY , since Cva is a valid configuration. By Tw, Cvax′1 |= ϕ

we deduce Tw, Cvx1 |= ϕ. Altogether, this shows Tw, Cv |= ΦUZψ.

This concludes the proof. �

We can now finally bring out the definition of the alternating Büchi automaton Aϕ

corresponding to a formula ϕ ∈ LTLt(Σ, I) similar as in Definition 7.2.6 on page 94:

106 Chapter 7. LTL over Mazurkiewicz Traces

Definition 7.2.18

Given a formula ϕ ∈ LTLt(Σ, I), the alternating Büchi automaton Aϕ is the tuple

(Q, δ, q0, F) where

• Q = ecl(ϕ) is the set of states.

• δ(q, a) = ||q||a is the transition function.

• q0 = ϕ is the initial state.

• F = {¬ψ | ¬ψ ∈ ecl(ϕ)} is the set of accepting states.

To show the overall correctness of our construction we must extend Theorem 7.2.7

on page 95 and its proof:

Theorem 7.2.19

Let ϕ be a formula of LTLt(Σ, I) and let its alternating Büchi automaton over the

alphabet Σ be given as Aϕ. Then

w ∈ L(Aϕ) if and only if Tw, ∅ |= ϕ

for every w ∈ Σω.

Proof

For w ∈ Σω, we have to show that Aϕ has an accepting run on w iff Tw |= ϕ. Note

that every run has (at most) three kinds of paths

• finite paths ending in tt

• infinite paths on which from some point on every node is labeled by an until -

formula or 〈 〉-formula, or

• infinite paths on which from some point on every node is labeled by a negated

until -formula or a negated 〈 〉-formula.

Note that additionally to the cases considered in Theorem 7.2.7 on page 95, we now

obtain infinite paths labeled with (negated) until -formulas. Thus, suppose we have

an infinite path along which a (negated) until -formula is seen infinitely often. This

can be accepted iff the underlying until -formula is preceded by a negation. This is

captured by the acceptance condition for infinite paths given by the final states of

the automaton. �

Let us again examine our procedure for the case that the underlying alphabet is

fully-dependent so that traces and words can be identified. When we start in state

{ϕ∅}U ∅ψ, reading an action a, it is independent of Z = ∅ so that the resulting state

7.2. Deciding Satisfiability of LTLt 107

is obtained by considering the second case in Definition 7.2.16 on page 103. We get,

using the notation in the mentioned definition:

Ψ1 = ||ψ||a

Ψ2 = {||ϕ||{a}a }U {a}||ψ||a

Ψ′ = Ψ1 ∨ Ψ2

Φ1 = ||ϕ||a

Φ2 = {||ϕ||{a}a , ϕ∅}U ∅ψ

Φ′ = Φ1 ∧ Φ2

A simple analysis shows that states Ψ2 and ||ϕ||
{a}
a in Φ2 can be left out without

changing the accepted language of the automaton. Thus, the correctness of our

construction yields a correctness proof for the word case which was formulated as

Theorem 6.2.6 on page 74. Moreover, we will point out in detail in Section 7.4 on

page 110 that it is easy to adapt the rewrite operator to get a conservative extension:

Definition 7.2.20 (substitutes Definition 7.2.16)

Let

Ψ1 = ||ψ||a Ψ2 = {||ϕ||Y ∪{a}
a | ϕY ∈ Φ}UZ∪{a}||ψ||a.

Let

||Φ||a = { ||ϕ||
Y ∪{a}
a | ϕY ∈ Φ,∃b ∈ Σ bI(Y ∪ {a}}

∪ { ϕY | ϕY ∈ Φ, aIY }

and

Φ1 =
∧

ϕY ∈Φ

||ϕ||a Φ2 = ||Φ||aU
Zψ

and Φ′ = Φ1 ∧ Φ2.

Let Z ′ = Z ∪ {a}. Then we define

||ΦUZψ||a =

Ψ1 ∨ Ψ2 if aDZ,∃b ∈ Σ bIZ ′

Ψ1 if aDZ,@b ∈ Σ bIZ ′

Ψ1 ∨ Ψ2 ∨ Φ′ if aIZ,∃b ∈ Σ bIZ ′

Ψ1 ∨Φ′ if aIZ,@b ∈ Σ bIZ ′

Complexity We do not intend to give a detailed analysis of the complexity of

our decision procedure for whole LTLt. As mentioned before, [Wal98] has shown

that the until -operator of LTLt makes the decision problem for satisfiability of LTLt

formulas non-elementary. Thus, we are pleased having eliminated the exponential

blow-up for negation present in the decision procedure presented in [GMP98b] and

leaving an exponential blow-up only for the until -operator.

108 Chapter 7. LTL over Mazurkiewicz Traces

7.3 Linearity of our Construction

Now, we characterize LTLt(Σ, I) as equivalent to that subclass of alternating Büchi

automata that we called trace-consistent linear alternating Büchi automata, and we

start observing the linearity of the above construction.

Proposition 7.3.1 Given ϕ ∈ LTL(Σ, I), Aϕ is linear.

Proof

We have to show that the transition graph of Aϕ has only trivial cycles, i.e., for

every path q1 . . . qk with k ≥ 2 and q1 = qk, we have that all qi are labeled by q1.

Therefore we define a well-founded strict ordering relation5 ≺ on the states of our

automaton and show that ||ψ||a yields a Boolean combination of strictly smaller

states or ψ.

For a formula η ∈ LTL(Σ, I), ≺⊆ecl(η) × ecl(η) is inductively defined by

• ϕ ≺ 〈a〉ϕ,

• 〈a〉ϕ ≺ 〈a〉ψ if ϕ ≺ ψ,

• ϕ ≺ ¬ψ if ϕ ≺ ψ,

• ψY1
1 ≺ ψY2

2 if ψ1 � ψ2 and Y1 ⊇ Y2 and one of the orderings is strict, i.e.,

ψ1 ≺ ψ2 or Y1 % Y2,

•
∨∧

ϕij ≺
∨∧

ψij if {ϕij} � {ψij} where � is the (strict) (multi-)set ordering

induced by ≺, i.e., M1 � M2 iff there exist a set X and an element m ∈ M2

with m′ ≺ m for all m′ ∈ X such that M1 = (M2 −{m})∪X. In other words,

a set M1 is smaller than M2 if an element of M2 is replaced by a set of smaller

elements resulting in M1 (cf. [BN98]).

• ψ′ ≺ ΦUZψ if ψ′ ≺ ψ,

•
∨∧

ϕij ≺ ΦUZψ if {ϕΣ
ij} � Φ,

• Φ1 U
Z1ψ1 ≺ Φ2 U

Z2ψ2 if Φ1�Φ2 and Z1 ⊇ Z2 and ψ1 � ψ2 and one of the

orderings is strict, i.e., Φ1 � Φ2 or Z1 % Z2 or ψ1 ≺ ψ2, where � is the

reflexive closure of �,

and contains its transitive closure. Here, � is the reflexive closure of ≺.

We easily verify that, given formulas ϕ,ψ ∈ ecl(η), an action a ∈ Σ, and a minimal

model Ψ of ||ψ||a with ϕ ∈ Ψ, it holds ϕ � ψ and furthermore that for arbitrary

5i.e. a transitive and acyclic relation

7.3. Linearity of our Construction 109

ϕ,ψ ∈ ecl(η), ϕ ≺+ ψ implies ϕ 6= ψ. We conclude the linearity of our construction.

�

Let us bring out some important consequences of the last proposition:

Given an LTL formula ϕ over Mazurkiewicz traces, it is simple to construct a trace-

consistent LTL formula ψ over words defining the same set of ω-words:

1. Construct Aϕ according to Definition 7.2.18 on page 106.

2. For Aϕ, construct a formula ψ ∈ LTLw according to the proof of Theorem 6.3.2

on page 76.

As Aϕ is a (trace-consistent) linear alternating Büchi automaton, Theorem 6.3.2 can

be applied indeed to derive an LTLw formula ψ accepting the same language.

To derive a second consequence, let us recall that LTLw-definable trace-consistent

languages coincide with first-order definable languages over traces:

Proposition 7.3.2 ([EM96]) Let L ⊆ Σω and I ⊆ Σ × Σ be an independence

relation. Then the following statements are equivalent:

1) L is trace-consistent with respect to I and LTL(Σ)-definable.

2) {Tw | w ∈ L} is FO(Σ, I)-definable.

So we can conclude that the languages definable by LTLt formulas over Mazurkiewicz

traces are FO-definable over Mazurkiewicz traces: For every LTLt formula ϕ, we can

obtain an LTLw formula ψ defining the same language which is therefore an LTLw

definable trace-consistent ω-language. By Proposition 7.3.2, this is also FO-definable

(over traces). Thus, we get a proof for one direction of the expressive-completeness

result for LTLt (Proposition 7.1.7 on page 89).

Let us further mention a practical consequence of our construction. Partial order

reduction techniques work for LTL over Mazurkiewicz traces as usual: Given an

LTL formula ϕ over Mazurkiewicz traces, consider its automaton Aϕ. It is a (trace-

consistent) linear automaton over words so that we are in a well-known setting.

Several powerful partial-order reduction techniques have been developed, which will

have the same success here [Val91, Pel98] without any modifications. Hence, spec-

ifying with LTL over Mazurkiewicz traces promises—despite the bad worst-case

runtime of its decision procedure—efficient verification tasks in practice.

Let us close this section with a result explaining that trace-consistent linear alter-

nating Büchi automata correspond to LTLt formulas, lifting a similar result (cf.

Theorem 6.3.2 on page 76) to the setting of traces.

110 Chapter 7. LTL over Mazurkiewicz Traces

Theorem 7.3.3

Let A be a trace-consistent linear alternating Büchi automaton. There is a formula

ϕ ∈ LTL(Σ, I) such that

L(A) = lin(L(ϕ))

Recall that lin(L(ϕ)) is a shorthand for {lin(T) | T ∈ L(ϕ)}.

Proof

According to Proposition 6.3.2 on page 76, given a trace-consistent linear alternating

Büchi automaton A, there is a formula ψA ∈ LTLw(Σ) satisfying L(ψA) = L(A)

where L(ψA) is likewise trace-consistent. Employing Proposition 7.3.2 on the page

before, we obtain an FO formula defining the same language. By Theorem 7.1.6 on

page 89, the existence of a formula ϕ ∈ LTLt(Σ, I) with Tw, ∅ |= ϕ if and only if w ∈

L(A) for every w ∈ Σω immediately follows. �

A little sloppily, we can say that linear alternating Büchi automata coincide with

LTL over words. When transferring LTL to traces, one gets or has to add trace

consistency to this result.

7.4 LTL−
t

As mentioned before, the complexity of deciding LTLt is non-elementary. It is the

nesting of until -operators that gives such a high complexity. It is therefore natural

to examine a restricted fragment of LTLt. LTL−
t is the logic in which no until -

operator is allowed but a ♦-operator. In other words, it is LTLHM enriched with a

♦-operator.

Walukiewicz pointed out in [Wal98] that deciding LTL−
t is Expspace-hard. Thus,

the best we can hope is to get a decision procedure using exponential space with

respect to the length of the formula. Employing the automata theoretic approach,

we meet this goal by providing a decision procedure with double exponentially many

states.

In [Wal98] a sketch of a decision procedure for LTL−
t using time that grows dou-

ble exponential in the length of the underlying formula was given. The procedure

adopted a construction presented in [AMP98]. However, some “difficulties” arose

with this construction and it is no longer present in the extended version of the

paper [Wal].

We apply our method to define a decision procedure for LTL−
t . For the cases of

the fully-dependent and the fully-independent alphabet, we show that the number

of reachable states of our alternating Büchi automaton is bounded by a single expo-

nential number so that the resulting decision procedure is indeed optimal. For an

arbitrary dependence alphabet, however, it is not clear to us whether we obtain a

single exponential number of reachable states.

7.4. LTL−
t 111

Similarly as in Subsection 7.2.2, it will be convenient to assume that the syntax of

LTL−
t is augmented with an extended ♦-operator ♦Zϕ. Formally, it has the following

semantics:

• T,C |= ♦Zϕ iff there exists a C ′ ∈ conf(T) with C ⊆ C ′ such that T,C ′ |= ϕ

and λ(C ′ − C)IZ.

Hence, a trace satisfies the formula ♦Zϕ iff there is a future configuration C ′ satis-

fying ϕ and all the actions from C to C ′ are independent of the actions in Z.

Note that ♦ϕ can be identified with ♦∅ϕ and we will not always make this distinction

explicit. Furthermore, we can understand ♦Zϕ as {tt∅}UZϕ.

Following the scheme worked out in Subsection 7.2.1 on page 90, we now have to

extend the definition of the subformula closure towards ♦-formulas:

Definition 7.4.1 (extends Definition 7.2.1)

Let η be a formula of LTL−
t . We take ecl(η) to be the least set that satisfies the

items of Definition 7.2.1 on page 91 and furthermore:

• For ♦Zϕ ∈ ecl(η) the closure contains ecl(ϕ), and, furthermore, for all Z ′ ⊆ Σ,

all ϕ′ ∈ ecl(ϕ) the closure contains ♦Z
′
ϕ′.

Again, the definition reflects the idea that “everything” that might be obtained by

rewriting is contained in the closure while assuring the closure to be finite, which is

a direct consequence of Proposition 7.2.14 on page 102:

Proposition 7.4.2 ecl(η) is a finite set for each formula η of LTL−
t .

Formulas of the form ♦ϕ or ♦Zϕ are both called ♦-formulas.

The notion of a dual of formula carries over as expected:

Definition 7.4.3 (extends Definition 7.2.3)

The dual of an (extended) formula is given inductively by the rules stated in Defini-

tion 7.2.3 on page 92 as well as:

• ϕ = ¬(ϕ).

• ♦Zϕ = ¬(♦Zϕ).

We now only need to specify the case of ||♦Zϕ||a. Our approach is similar as in

Section 7.2.2 on page 99. However, we have to be a little bit more careful to obtain

a conservative extension of a decision procedure for LTL−
t over words which is defined

in the expected manner.

112 Chapter 7. LTL over Mazurkiewicz Traces

C

C′
a

C

C′
a

(a) (b)

Figure 7.5: Configuration and actions for a ♦-formula

Again, consider some given trace T with C,C ′ ∈ conf(T) such that C ⊆ C ′ and a

formula ♦Zϕ. Suppose that C is the current configuration and that C ′ is a configu-

ration in which ϕ holds (cf. Figure 7.5).

Let us now consider the next action a of a linearization. This might be within

configuration C ′ or not, as depicted in Figure 7.5, Case (a) and Case (b), respectively.

We can distinguish the following cases: If C ′ = C then ϕ has to hold in the current

configuration. If C ′ is a superset of C then there are events in C ′−C. If one of these

is labeled a, then we are in Case (a) and ♦Zϕ holds in the configuration obtained

by adding the a-event to C. If none of them is labeled a, then a has to be used for

verifying ϕ still allowing the situation that there are actions which “turn” C into

C ′. Note that the latter is only possible if there are indeed actions left which are

independent of Z and the current action a.

Consequently, we define the rewrite operator for a ♦-formula as follows:

Definition 7.4.4 (extends Definition 7.2.4)

Let ♦Zϕ and a ∈ Σ, and Z ′ = Z ∪ {a}. We define

||♦Zϕ||a =

||ϕ||a ∨ ♦Zϕ ∨ ♦Z
′
||ϕ||a if aIZ , ∃b bIZ ′

||ϕ||a ∨ ♦Zϕ if aIZ , @b bIZ ′

||ϕ||a ∨ ♦Z
′
||ϕ||a if aDZ, ∃b bIZ ′

||ϕ||a if aDZ, @b bIZ ′

We now state that our rewrite operator is locally correct:

Proposition 7.4.5 Let η be any formula of LTL−
t (Σ, I). Then for every w ∈ Σω

with w ≡ vaw′,

Tw, Cv |= η if and only if Tw, Cva |= ||η||a

Proof

As in Proposition 7.2.5 on page 93, the proof proceeds by induction on the structure

of the formula. The only remaining case is η = ♦Zϕ.

7.4. LTL−
t 113

We can easily conclude the direction “⇐”: Suppose aIZ. If T,Cva |= ||♦Zϕ||a then

||ϕ||a ∨ ♦Zϕ ∨ ♦Z
′
||ϕ||a holds in this configuration (uniting the first two cases in

Definition 7.4.4 on the preceding page). This formula can be written as

||ϕ||a ∨ (||tt||a ∧ {tt{a}}UZϕ) ∨ {tt{a}}U Z′
||ϕ||a

and thus as

||{tt}UZϕ||a

which consequently holds in Cva. By Proposition 7.2.17 on page 104, we get T,Cv |=

{tt}UZϕ which can be read as

T,Cv |= ♦Zϕ

Similarly, we show this result for aDZ.

Although the direction “⇒” cannot directly be reduced to the proof of Proposi-

tion 7.2.17 on page 104, we can at least use the results obtained there: ||♦Zϕ||a can

be read as ||{tt∅}UZϕ||a which, supposing the case aIZ, evolves to

||ϕ||a ∨ (||tt||a ∧ {||tt||{a}a , tt∅}UZϕ) ∨ {tt{a}}U Z′
||ϕ||a

This formula can be reduced to the equivalent formula

||ϕ||a ∨ ♦Zϕ ∨ ♦Z
′
||ϕ||a

By definition, ♦Z
′
ψ holds in a configuration C iff C |= ψ or there is a future config-

uration C ′ % C with C ′ |= ψ and λ(C ′ − C)IZ ′. The latter is only possible if there

is an action independent of Z ′. Thus, we can split the disjunction into two cases:

||ϕ||a ∨ ♦Zϕ ∨ ♦Z
′
||ϕ||a if ∃b bIZ ′

||ϕ||a ∨ ♦Zϕ if @b bIZ ′

Using the same arguments, the case aDZ can be split up into two cases.

Altogether, we get

Tw, Cv |= ♦Zϕ if and only if Tw, Cva |= ||♦Zϕ||a

�

Let us consider the rewrite operator for the fully-dependent alphabet. For ♦∅ϕ, we

are in the case that regardless which action a is read, it is independent of ∅. However,

there is no action b which is independent of a. Thus, ||♦∅ϕ||a = ||ϕ||a ∨ ♦∅ϕ. The

automaton to be defined will exactly behave as the decision procedure for the word

case (cf. Chapter 6) assumed to be reduced to the straightforward definition of LTL−
w

for words.

114 Chapter 7. LTL over Mazurkiewicz Traces

Retrospectively, it is clear, how to adapt the decision procedure for full LTLt to get

a conservative extension of the decision procedure for LTLw, which is pointed out

in Definition 7.2.20 on page 107.

In the previous constructions for LTLHM and LTLt, we identified the transition

function of the automaton and the rewrite operator. Our goal is now to prove an

exponential bound on the number of states of our automaton to be defined. To be

able to achieve this result, we shall be more precise. We therefore define:

Definition 7.4.6

Given a formula η ∈ LTL−
t (Σ, I), the alternating Büchi automaton Aη is the tuple

(Q, δ, q0, F) where

• Q = ecl(η) is the set of states.

• δ is the transition function defined by

δ(tt, a) = tt

δ(ϕ ∨ ψ, a) = δ(ϕ, a) ∨ δ(ψ, a)

δ(¬ϕ, a) = δ(ϕ, a)

δ(〈b〉ϕ, a) =

ϕ if a = b

〈b〉||ϕ||a if aIb

ff if aDb, a 6= b

δ(♦Zϕ, a) =

δ(ϕ, a) ∨ ♦Zϕ ∨ ♦Z
′
||ϕ||a if aIZ , ∃b bIZ ′

δ(ϕ, a) ∨ ♦Zϕ if aIZ , @b bIZ ′

δ(ϕ, a) ∨ ♦Z
′
||ϕ||a if aDZ, ∃b bIZ ′

δ(ϕ, a) if aDZ, @b bIZ ′

for Z ′ = Z ∪ {a}.

• q0 = η is the initial state.

• F = {¬ψ | ¬ψ ∈ ecl(η)} is the set of accepting states.

Of course, there seems to be only a subtle difference between the rewrite operator

and the transition function. However, for two formulas ϕ and ψ, their disjunction

ϕ ∨ ψ counts as two states for our automaton but only as a single formula or string

when obtained by the rewrite operator.

The key result we are looking for is an exponential bound for the number of reachable

states for an automaton Aϕ with respect to the length of ϕ.

Our procedure is built-up using two different ingredients, (string) rewriting and the

transition function of the final automaton. One question is, how many “different

objects” we can obtain for a given formula using the rewrite operator. Here, we

consider a formula and consequently also the result obtained by applying the rewrite

7.4. LTL−
t 115

operator as a string and identify two strings iff they differ only with respect to

commutativity and associativity. We call the strings obtained by (subsequently)

rewriting a formula ϕ also derivative of ϕ, and we let ϕ to be among its derivatives.

Let rew : LTL−
t → 2LTL−

t be defined by

rew (ϕ) = {ϕ′ | ∃v ∈ Σ∗ ||ϕ||v = ϕ′}

Thus, we are looking for a bound on rew .

The final question is of course: How many states does our automaton have with

respect to the length of the formula ϕ? Given a formula ϕ ∈ LTL−
t and a state ψ of

Aϕ, let reach (ψ) denote the set of states reachable from ψ in Aϕ:

reach (ψ) = {ψ′ | ∃w ∈ Σ∗ : ψ′ ∈ st(δ̂(ψ,w))}

To refrain from trivial considerations and to simplify the notations to come, we

assume that |Σ| ≥ 2. Suppose the number of rew (ϕ) is bounded by kp(|ϕ|) for some

constant k ≥ 2 and some polynomial function p in the length of ϕ. Then the number

of reachable states (from the initial state ϕ) is bounded by 2kp(|ϕ|) when we require

k ≥ |Σ| + 1.

Proposition 7.4.7 For ϕ ∈ LTL−
t (Σ, I) and rew (ϕ) ≤ 2kp(|ϕ|) for k ≥ |Σ| + 1 and

a polynomial function p, we get

reach (ϕ) ≤ 2kp(|ϕ|)

Proof

The proof proceeds by induction on the formula η ∈ LTL−
t . For η = tt, the claim

is immediate. For η = ϕ ∨ ψ, we get by induction 2kp(|ϕ|) and 2kp(|ψ|) many states

reachable from ϕ and respectively ψ. Thus, we get less than 2kp(|ϕ|)+kp(|ψ|) many

states, which is less than 2kp(|ϕ|+|ψ|). Negation does not change the number of states.

The interesting case is η = ♦Zϕ. For a single action a, ♦Zϕ transforms at most into

a disjunction of the states δ(ϕ, a), ♦Zϕ, and ♦Z∪{a}||ϕ||a. The situation is depicted

in Figure 7.6 on the next page where the successor states of ♦∅ϕ for a and b are

shown. Thus, it suffices to sum up the number of states reachable from ϕ (colored

light grey in Figure 7.6) and all states of the form ♦Z ′ϕ′ for ϕ′ a rewriting of ϕ

and Z ′ ⊆ Σ (painted grey in the figure). The latter are rewritings of ϕ which are

decorated with some ♦Z
′
for some Z ′ ⊆ Σ.

Thus, we get 2kp(|ϕ|) + 2|Σ|2kp(|ϕ|). The first addend is obtained by induction while

the second addend is due to the bound given for rew . The sum is less or equal to

2kp(|ϕ|) + 2k−12kp(|ϕ|), which is 2kp(|ϕ|)(1 + 2k−1). This is bounded by 2kp(|ϕ|)(2k−1 +

2k−1), so that we get a bound of 2k(p(|ϕ|)+1), which is less or equal to 2k(p(|ϕ|+1)).

116 Chapter 7. LTL over Mazurkiewicz Traces

. . .

δ(ϕ, a)

. . .

δ(ϕ, b)

♦{b}||ϕ||b♦{a}||ϕ||a

a b
a

♦∅ϕ a, b

Figure 7.6: Reachable states for a ♦-formula

It seems that we have forgotten to count the states which are “obtained” within

a state of the form ♦Z
′
ϕ′. If the automaton chooses ♦Z

′
ϕ′ as one successor state,

then it might further proceed in state ϕ′ (or one derivative hereof). However, for

every ♦Z
′
ϕ′ we already counted the states reachable from ϕ′. This is indicated by

the thick arrows from the grey areas to the light grey areas in shown in Figure 7.6.

Thus, we are done. �

The difficult part is to count the different number of derivatives for a given formula.

It is easy to see that for formulas of the Hennessy-Milner fragment of LTL, rew

is bounded by an exponential number. The interesting case is when we consider a

♦-formula. For technical reasons, we modify the definition of the rewrite operator

slightly, without loosing any of the complexity results obtained so far:

δ(♦Zϕ, a) =

{

δ(ϕ, a) ∨ ♦Z
′
||ϕ||a ∨ ϕ ∨ ♦Zϕ if aIZ

δ(ϕ, a) ∨ ♦Z
′
||ϕ||a if aDZ

Thus, ♦Zϕ rewrites for a single action a, which is assumed to independent of Z, to

||ϕ||a ∨ ♦Z∪{a}||ϕ||a ∨ ϕ ∨ ♦Zϕ

which turns into

||ϕ||ab∨

||ϕ||ab ∨ ♦Z∪{a,b}||ϕ||ab ∨ ||ϕ||a ∨ ♦Z∪{a}||ϕ||a∨

||ϕ||b∨

||ϕ||b ∨ ♦Z∪{b}||ϕ||b ∨ ϕ ∨ ♦Zϕ

assuming that b is independent of Z and a and that || || is extended in the obvious

way to cope with words instead of actions. Modulo associativity and commutativity

7.4. LTL−
t 117

this reads as

∨

u∈{ε,a,b,ab}

(

||ϕ||u ∨ ♦Z∪alph(u)||ϕ||u
)

(∗)

Obviously, ♦Zϕ can be rewritten to some disjunction of derivatives of ϕ, some of

which are decorated with ♦Z
′
. This yields a bound exponential in the number of

derivatives of ϕ. However, since the latter is supposed to be exponential as well, we

would get a non-elementary upper bound, which is too much to be contented with.

Let us restrict to a fully-independent alphabet for the rest of this section. Consider

formula (∗). Suppose ϕ = 〈a〉〈b〉〈a〉〈b〉tt. Then (∗) can be written as

∨

u∈{ε,a,b,ab}

(

||〈a〉〈b〉〈a〉〈b〉tt||u ∨ ♦Z∪alph(u)||〈a〉〈b〉〈a〉〈b〉tt||u
)

= 〈a〉〈b〉tt ∨ ♦Z∪{a,b} 〈a〉〈b〉tt

∨ 〈b〉〈a〉〈b〉tt ∨ ♦Z∪{a} 〈b〉〈a〉〈b〉tt

∨ 〈a〉 〈a〉〈b〉tt ∨ ♦Z∪{b}〈a〉 〈a〉〈b〉tt

∨ 〈a〉〈b〉〈a〉〈b〉tt ∨ ♦Z〈a〉〈b〉〈a〉〈b〉tt

The formula ♦Z〈a〉〈b〉〈a〉〈b〉tt rewrites for aa to

〈b〉 〈b〉tt ∨ ♦Z∪{a} 〈b〉 〈b〉tt

∨ 〈b〉〈a〉〈b〉tt ∨ ♦Z∪{a} 〈b〉〈a〉〈b〉tt

∨ 〈a〉〈b〉〈a〉〈b〉tt ∨ ♦Z〈a〉〈b〉〈a〉〈b〉tt

We can recognize a kind of monotonicity within this shape. It is immediate to

write down each of the previously mentioned formulas given their second disjunct,

which are ♦Z∪{a,b}||ϕ||ab and respectively ♦Z∪{a}||ϕ||aa. It is a simple observation

that this remark holds for arbitrary formulas of LTLHM and, using induction, also

for arbitrary formulas of LTL−
t (over the fully-independent alphabet). Again by

induction, we can bound the number of derivatives for ϕ by an exponential number,

so that we obtain an exponential bound for the number of derivatives for ♦Zϕ:

Theorem 7.4.8

Let (Σ, I) be a fully-independent alphabet and ϕ ∈ LTL−
t . Then

rew (ϕ) ≤ 2kp(|ϕ|)

for k = |Σ| + 1.

Let us set the formal framework that allows a formal proof of the previous theorem.

We introduce constants e and f representing the empty word and f within formulas,

118 Chapter 7. LTL over Mazurkiewicz Traces

respectively. Counting (certain) formulas built-up with these constants is much

easier and we will get an exponential bound for the number of those. We show that

every formula of LTL−
t can be represented by at least one such extended formula,

so that we get the same bound for the number of formulas.

Consider the following rewrite operator |d e| :

|dtte|a = tt

|dϕ ∨ ψe|a = |dϕe|a ∨ |dψe|a
|d¬ϕe|a = |dϕe|a

|d〈b〉ϕe|a =

〈e〉|dϕe|a if b = e

〈f〉ϕ if b = f

〈e〉ϕ if a = b

〈b〉|dϕe|a if aIb

〈f〉ϕ if aDb, a 6= b

|d♦Zϕe|a = |dϕe|a ∨ ♦Z
′
|dϕe|a ∨ ϕ ∨ ♦Zϕ

for Z ′ = Z ∪ {a}. The idea of the previous rewrite operator is that 〈 〉-operators

with a formula are not deleted or transformed to ff but only turned into e or f,

respectively. We can understand the objects created by this rewrite operator as

LTL−
t formulas over the alphabet Σ′ = Σ ∪ {e, f}, which are rewritten by actions of

Σ. For convenience, we do not place any independence/dependence restrictions on

e and f.

Note that every LTL−
t formula over Σ is also one over Σ′. Furthermore, every formula

over Σ′ can be transformed into one over the alphabet Σ by mapping e to the empty

word and f to ff, additionally “removing the rest of the formula”. Of course, one

formula over Σ is represented by many over Σ′. Importantly, given a formula ϕ and

a word v, ||ϕ||v is represented by |dϕe|v .

Let us now find a bound for the rewrite operator |d e| , which is consequently also a

bound for the rewrite operator rew . The benefit of the operator |d e| is that it does

not modify the length of the original formula except when it is of the form ♦Zϕ. A

part of a formula of the form 〈a〉 stays 〈a〉 or is turned into 〈e〉 or 〈f〉. Thus, for

〈 〉-formulas, we get a bound of 3|ϕ|. What happens with ♦Zϕ? For the case of the

fully-independent alphabet, this is easy to see:

Consider the rewrite operator |d e|′ that is defined as |d e| , except for the case

|d♦Zϕe|′a = ♦Z∪{a}|dϕe|′a

For the fully-independent alphabet, there will never occur the symbol f, so that |d e|

and |d e|′ yield sets of the same cardinality when applied to a formula and to a set

of finite words. For |d e|′ , it is immediate that the number of reachable states is

bounded by a single exponential number. Thus, the same result holds for |d e| and

consequently for || || , which shows Theorem 7.4.8 on the preceding page.

Chapter 8

LTL over Foata Configuration

Graphs

In this chapter, we introduce a different kind of linear temporal logic which can be

used for specifying properties of synchronized systems. Important examples among

these systems are hardware circuits which are build up by separate entities working

together in parallel but which are synchronized by a global clock.

We exhibit the notion of a distributed synchronous transition system (DSTS) as a

model for these hardware designs. DSTSs can be equipped naturally with a Foata

configuration graph-based semantics, which provides a link between these systems

and the framework of Mazurkiewicz traces.

We define Foata linear temporal logic (LTLf) which is a temporal logic with a flavor

of linear temporal logic adapted for specifying properties of the behavior of DSTSs.

More specifically, LTLf formulas are interpreted over Foata configuration graphs of

traces.

We give a decision procedure for satisfiability of LTLf formulas as well as a model

checking procedure, both based on alternating Büchi automata. It turns out that

these procedures are as efficient as for LTLw (for words) viz they are exponential

in the length of the formula and linear in the size of the system and are essentially

optimal. The model checking procedure employs an optimization which is similar to

a technique known as partial order reduction [Pel98]. However, instead of defining

the interleaving product of the sequential processes and then trying to omit states

with no influence to the result of the model checking procedure, we are able to

define smaller systems directly due to our underlying model. This relieves us of the

difficulties involved with computing so-called ample sets [Val91].

To simplify the task of defining DSTSs, we introduce a simple calculus, which we call

synchronous process systems (SPS) and which is inspired by Milner’s CCS [Mil89]

but is adapted towards the special nature of our underlying systems.

120 Chapter 8. LTL over Foata Configuration Graphs

In Section 8.1, we present some examples for the kind of systems we want to support.

We proceed with introducing the key structure providing a link for the study of the

underlying systems in terms of Mazurkiewicz traces, which is a Foata configuration

graph. Furthermore, we describe their relation to words in Foata normal form.

We carry on by defining distributed transition systems (Section 8.3) and a calculus

for synchronous process systems allowing them to be presented in a compact way

(Section 8.4). In Sections 8.5 – 8.7, we define LTLf and develop a decision procedure

for satisfiability as well as for model checking. We conclude this chapter with a larger

example in that we design a two-bit counter.

8.1 Motivation

Many digital circuits, especially embedded controllers, can be modeled as transition

systems with respect to their logical behavior. The controller is in one of finitely

many states and executes one of its instructions which we call actions, as usual.

The action modifies the current state transforming it into a new one. Usually, the

executions are synchronized by a global clock or oscillator. Every time tick, an action

takes place. Actions lasting for more than one tick can be modeled as a sequence

of single-tick actions. Several circuits or controllers for different tasks are combined

on a switching board. The global clock synchronizes the execution.

Let us consider Figure 8.1 on the next page which shows a sample layout of a

simple so-called embedded system. Embedded systems are (the heart of) electrical

devices such as mass storage systems, ISDN cards, video adapters, laser printers,

etc. The shown setup is taken from “The PowerPCTM 601 User’s Manual” [Mot93],

which explains how to use the central processing unit (CPU) called PowerPCTM and

developed by IBM r© and Motorola r© to construct these kinds of systems.

Abstracting from the details to obtain main ingredients of this example, we can think

of Circuit 1 to Circuit 3 to be PowerPCsTM and let Circuit 4 be a memory controller.

These controllers are connected to a bus. The general idea is that, whenever a CPU

wants to obtain the content of a memory location, it puts a corresponding request

on the bus. Every circuit connected to the bus can see this request. However, only

the memory controller is responsible for this request so that it will be the only one

answering the request by putting the demanded memory content on the bus.

If several circuits write to the bus at the same time, the information gets corrupted,

of course. Thus, an arbiter is used to coordinate the access to the bus. Every circuit

has to ask the arbiter, which grants the access to the bus. This can be realized as

follows: Every circuit is connected by two wires to the arbiter, one is employed for

requesting the bus (ri), the second one for granting it (gi). The circuits and the

arbiter communicate via common actions. A request of Circuit 1 recognized by the

arbiter can be modeled by the common action r1. If the arbiter is not in the state

8.1. Motivation 121

Circuit 1 Circuit 2 Circuit 3 Circuit 4

{r1, g1, . . . , r4, g4}

r1

g1
r4

g4

Arbiter

Clock

Bus

Figure 8.1: Synchronized digital circuits

for receiving the request, Circuit 1 suspends.

The overall setting is synchronized or clocked by a global clock. In every tick, the

other circuits may execute actions independently.

Note that this setting is only adequate for small electronic devices. Larger systems,

like main boards of todays personal computers are build up by several embedded

systems. While each of them is synchronized by a clock, they may run on different

speeds or they have their own clock. Then, for example, the CPU works with a

higher clock rate than the memory controller. For these systems, an asynchronous

communication scheme as the one underlying CCS and the view on traces taken in

the previous chapters is more realistic and hence should be preferred.

Verifying embedded systems, however, the synchronous approach is closer to the

realization of the system and should therefore be used. In effect, for model check-

ing linear time specifications, one might even fail to prove a property of a system

when its clock is ignored and the components of the system are assumed to run

asynchronously, although the underlying system fulfills the requirement.

Let us sum up the main ingredients of our system: We have several devices which

are connected by wires. The execution of the devices is clocked and might change

an internal state of the system. As the devices are capable of executing actions

independently, we can observe a set of actions for every time tick. The devices

can communicate via wires to rule out which device is allowed to use a common

resource. The communication can be understood as an agreement on the same

(communication) action of the two devices communicating (circuit/arbiter).

We employ distributed transition systems (DTS), which are a well-known model for

122 Chapter 8. LTL over Foata Configuration Graphs

distributed systems (cf. [Zie87, TH98]) for describing such a given setup. However,

DTSs are usually considered with an asynchronous model of execution. We introduce

distributed synchronous transition systems (DSTS), which are distributed transition

systems with a global clock synchronizing the execution of actions. They can be

understood as a model for the parallel composition of hardware circuits as described

above.

Distributed synchronous transition systems can also be interpreted as a model for

Petri nets with a maximal step semantics. We only want to provide the idea on an

intuitive level and refer for basic notions on Petri nets to [Rei86] and to [Muk92]

for an analysis of Petri nets with respect to (not necessarily maximal) step seman-

tics. Figure 8.2 recalls the Petri net (place-transition-net) we already have seen in

Figure 3.6 on page 24. The maximal step semantics is obtained by the rule that all

transitions which are capable of firing simultaneously, fire simultaneously. In other

words, in every step, we can observe a set of transitions which have fired, and, this

set is required to be maximal.

Let us come back to the presented Petri net. Transitions a and e are ready to fire

since each of the places s1 and t1 contain a token. As they do not rely on the same

place, they can fire simultaneously. Furthermore, they are the only transitions which

can fire. Thus, the first maximal step is {a, e} so that each of s2 and t2 are filled

with a token. Now, b as well as f can fire. But, in contrast to the previous situation,

this cannot happen simultaneously because both transitions require a token to be

present in r. Thus, we get two different possible steps, either {b} or {f}. Hence,

a possible execution sequence with respect to maximal step semantics for the given

Petri net is, for example, the sequence

{a, e}{b}{c}{d, f}{g}{h}

where each set consists of the actions occurring concurrently. When we speak of a

step in the following, we always assume it to be maximal.

In the literature, the simultaneous execution of two independent actions a and b

is usually modeled by interleaving a and b, i.e., first a and then b as well as b

and then a [Mil89]. In this way, concurrency is reduced to sequences and non-

deterministic choice. Although we introduced Mazurkiewicz traces as a model to

avoid this interleaving, we adopted this view when defining our decision procedures

for LTLt in the previous chapters while passing from traces to linearizations of traces.

The view taken here is somehow dual. If two actions a and b can occur concurrently,

then we require them to occur concurrently and abstract from interleaving.

Synchronous systems have been studied by several authors. Milner defined a variant

of his (asynchronous) Calculus of Communicating Systems (CCS, [Mil80, Mil89])

for synchronous systems (SCCS, [Mil83], see also [Bru97]). Lustre [CPHP87] is a

programming language for synchronous systems. Usually, these contributions con-

centrate on the design of the underlying systems. The problem of verification is

8.2. Foata Configurations 123

•

•

•
r

s0 s1 s2 s3 s4

t0 t1 t2 t3 t4

a b c d

e f g h

Figure 8.2: A Petri net

tackled by the notion of bisimilarity [Mil89] or by theorem proving [BCPVD99].

Simple model-checking-based verification techniques are lacking.

We present a simple model for synchronous hardware systems together with an

implementation driven definition of a satisfiability and a model checking algorithm.

Confer [Kro99] for an introduction to formal hardware verification.

8.2 Foata Configurations

In this section, we derive the basic structure underlying distributed synchronous

transition systems as well as Foata linear temporal logic: Foata configurations. If

not stated otherwise, we argue with respect to a fixed dependence alphabet (Σ, D)

in this chapter.

In the previous section, we suggested to consider independent actions which can be

executed concurrently as a single step of a system. Since within a Mazurkiewicz

trace independent actions are not ordered, it is easy to identify them. Consider

the trace shown in Figure 8.3(a) on the next page (over the meanwhile well-known

dependence alphabet shown in Figure 3.1 on page 16). The first step in every

linearization will consist of the event e1 labeled by a. It is the only minimal event

which must have occurred in all non-empty configurations. In Figure 8.3(b) on the

next page, we identify the first step by drawing a line above the event e1. If the

event e1 is removed from the trace, the minimal events are e2 and e3 labeled by b

respectively c. These events form the next step. We proceed in the same manner to

identify all steps of the given trace.

Observe that the action label of every event e′ of a subsequent step is dependent on

some action label of an event of the current step because otherwise e′ would already

be minimal with respect to the current step. It is clear that the steps of a trace are

a linearly ordered and that the union of a step together with all smaller steps yields

a configuration.

124 Chapter 8. LTL over Foata Configuration Graphs

e1
a

e2
b

e3
c

e4
d

e5
a

e6
b

e7
c

(a)

e1
a

e2
b

e3
c

e4
d

e5
a

e6
b

e7
c

(b)

Figure 8.3: A trace and one of its partition into steps

We have now set out the scene to make our ideas more precise:

Definition 8.2.1

Given a trace T = (E,≤, λ), let min(E ′) = {e ∈ E′ | e is minimal with respect to ≤}

denote the set of minimal elements of a partially ordered set. Let FC be the smallest

set such that

• ∅ ∈ FC and

• for every C ∈ FC also ↓min(E \ C) ∈ FC.

The Foata configuration graph of a trace T is the subgraph (FC ,⊆) of CG(T) and

is denoted by FCG(T). The set of Foata configurations of the trace are the elements

of FC and are denoted by fconf(T).

The Foata configurations are linearly ordered. More precisely, FCG(T) = (FC ,⊆)

is a linearly ordered set. Let ·⊂ be the covering relation of ⊆, i.e., ·⊂ =⊆ −(⊆ ◦ ⊆).

For two Foata configurations C and C ′ with C ·⊂ C ′, we call the events of C ′ − C a

step of T .

Figure 8.4(a) on the facing page shows the configuration graph of the trace shown

in Figure 8.3(a) while Figure 8.4(b) shows its Foata configuration graph, both rep-

resenting the configuration in the slightly sloppy notation introduced in Chapter 3.

Comparing Figure 8.4(b) on the facing page with Figure 8.3(b), we can see the

correspondence of Foata configurations and steps.

As we will see in Section 8.5 on page 134, the formulas of the Foata temporal logic

are interpreted with respect to Foata configurations of traces.

8.2. Foata Configurations 125

[]

[a]

[a, b] [a, c]

[a, b, c]

[a, b, c, a] [a, b, c, d]

[a, b, c, d, a]

[a, b, c, d, a, b] [a, b, c, d, a, c]

[a, b, c, d, a, b, c]

(a)

[]

[a]

[a, b, c]

[a, b, c, d, a]

[a, b, c, d, a, b, c]

(b)

Figure 8.4: The configuration graph of the trace of Figure 8.3 (a)

We learned in Section 3.4 on page 28 that a linearization of a trace (E,≤, λ) is a

linearization of the partial order, i.e., it is a labeled linear order (E,≤ ′, λ) such that

≤⊆≤′. To find a link with automata theory for words, we again consider the concept

of linearizations and identify so-called Foata linearizations which are linearizations

that conform with the order of steps:

Definition 8.2.2

A Foata linearization of a trace (E,≤, λ) is a linearization (E,≤′, λ) which can be

written as a product of disjoint finite traces

(E,≤′, λ) =
∏

i=1,...,∞

(Ei,≤
′
i, λi)

such that for every i ≥ 1,

• Ei is a set of pairwise independent actions, i.e., for every e ∈ Ei, we have

λi(e)Iλi(Ei \ {e}) and

• for every e ∈ Ei+1, there is an e′ ∈ Ei such that λ(e)Dλ(e′).

Note that the product of finite traces is defined canonically by uniting the set of

events of both traces, uniting the labeling functions (considered as a graph), and

126 Chapter 8. LTL over Foata Configuration Graphs

uniting the ordering relations of the events plus ordering dependent events:1

(E,≤, λ)(E ′,≤′, λ′) = (E ∪E′,≤′′, λ ∪ λ′)

where

≤′′=≤ ∪ ≤′ ∪{(e, e′) ∈ E ×E′ | (λ(e), λ′(e′)) ∈ D}

The first item of Definition 8.2.2 on the preceding page guarantees that only inde-

pendent events are present in each step and the second item checks that every event

of each step cannot occur in a previous step.

In the same manner as in Section 3.4, a Foata linearization corresponds to a word in

Foata normal form which is again called a Foata linearization. It is defined similarly

having the idea of steps in mind.

Definition 8.2.3 ([DM96])

A word w ∈ Σω is in Foata normal form iff

1. w = u1u2 . . . for ui ∈ Σ∗,

2. for each i ≥ 1, the word ui is a product of pairwise independent actions, and

3. for each i ≥ 1 and for each letter a of ui+1, there exists a letter b in ui which

is dependent on a.

The words ui are again called steps. It is easy to see that for w = u1u2 . . . in Foata

normal form and for every i, the suffix uiui+1 . . . is in Foata normal form. The steps

correspond to the top actions of every configuration in the Foata configuration graph

of a trace. For example, a Foata linearization of the trace shown in Figure 8.3(a) is

(a)(bc)(ad)(bc) where the steps are accentuated by parentheses.

Note that the Foata normal form as defined here is unique up to permutation of

independent actions within a step. Given a linear oder ≺ for the actions of Σ and

requiring each step to be minimal with respect to the lexicographic order derived

from ≺, we obtain a unique Foata normal form for every trace.

Let I(Σ) denote the set of sets of pairwise independent actions of Σ. As every step

consists only of pairwise independent actions, it can be considered as an element of

I(Σ). Thus, an ω-word in Foata normal form can also be identified as an element

of I(Σ)ω. Since Foata configuration graphs and words in Foata normal form are the

basic objects to be studied in this chapter, we could debate whether we are just

in the case of words over the alphabet I(Σ) and could take over notions of linear

temporal logic and its decision procedures directly.

1Note that we silently assume that E ∩E′ = ∅ within this definition.

8.3. Distributed Synchronous Transition Systems 127

However, not every word of I(Σ) is in Foata normal form. Suppose, for example,

that the actions b and c are independent. (b)(bc) can be considered as a word of I(Σ)

but its Foata normal form (as a word over Σ) would be (bc)(b). Thus, words in Foata

normal form can only be considered as special words over the alphabet I(Σ). This

implies that the existing decision procedures cannot be taken over directly. These

have to be modified to reflect the special structure of words in Foata normal form.

We follow a different, more direct approach. We stay with the alphabet Σ and

provide decision procedures for satisfiability and model checking incorporating words

in Foata normal form over Σ.

8.3 Distributed Synchronous Transition Systems

We now introduce a formal model which is useful for describing our kind of un-

derlying concurrent systems in form of transition systems: distributed synchronous

transition systems. It is based on Zielonka’s asynchronous automata (without fi-

nal states, [Zie87]), or the notion of distributed transition systems (described for

example in [TH98]). Our presentation is inspired by [PP95].

While the definition of the components of a distributed (synchronous) transition

system is as usual, the definition of its execution 2 is modified to reflect the idea of

a global synchronizing clock. Strictly speaking, we only define distributed transition

systems (DTS) as well as their synchronous and asynchronous executions. However,

to identify the respective context, we speak of either synchronous or asynchronous

DTSs. We fix a distributed alphabet Σ̃ = (Σ1, . . . ,Σn) with Proc(Σ̃) = {1, . . . , n}

for this chapter (cf. Chapter 3.1 on page 15).

Definition 8.3.1

A distributed transition system (DTS) over a distributed alphabet Σ̃ is a tuple A =

(Q1, . . . , Qn,−→, I) with the following:

• Each Qi is a finite nonempty set of local states of the i-th component.

• Let Q̄ =
∏

i∈Proc Qi be the set of global states and I ⊆ Q̄ be the set of initial

states.

• Let States =
∏

i∈Proc(Qi ∪ {−}). The dummy − is used as a placeholder in

components which have no significance for the transition: −→⊆ States × Σ ×

States is a transition relation satisfying the following condition:

if (q̄, a, q̄′) ∈−→ then q̄[i] = q̄′[i] = − for i ∈ Proc\pr (a)

2In the framework of transition systems, we prefer the notion of executions rather than the one

of runs, because we associate with runs a device gaining input. Technically, it is possible to identify

transition systems with certain automata and to speak of runs instead of executions.

128 Chapter 8. LTL over Foata Configuration Graphs

{a, b} {a, c} {b, d} {c, d}

q11 q21 q31 q41

q12 q22 q32 q42

A : a A : a B : b C : cB : b C : c D : d D : d

Figure 8.5: A distributed transition system

where q̄[i] ∈ Qi ∪ {−} denotes the i-th component of q̄ ∈ States.

Of course, we often write q̄
a

−→ q̄′ instead of (q̄, a, q̄′) ∈−→. The dummy − in the

definition of the transition relation −→ is used for denoting components of a global

state which are not affected by the transition. Given a global state q̄ = (q1, . . . , qn) ∈

Q̄ and M ⊆ {1, . . . , n}, we denote by q̄|M the element (q′1, . . . , q
′
n) ∈ States such that

qi = q′i for i ∈M and q′i = − else.

As an example, consider the distributed transition system shown in Figure 8.5. The

underlying distributed alphabet is Σ̃ = ({a, b}, {a, c}, {b, d}, {c, d}). The transition

system consists of four components Q1, . . . , Q4 and each component Qi comprises

two states qi1 and qi2. Action a participates exactly in components Q1 and Q2 so

that every transition in which a is involved can only modify the components 1 and 2.

A transition can be visualized by an edge showing the movement in each component

labeled with an action plus a sequence of names (taken from some domain of names)

to identify which moves must be taken together. An action labeled edge is called

a local transition in the following so that, using this notation, we can say that a

transition can be represented by a set of local transitions plus a sequence of names

grouping together local transitions. For example, the transition (q11, q21,−,−)
a

−→

(q12, q22,−,−) can be represented by two a-labeled arrows (q11, q12) and respectively

(q21, q22) together with the name A which is written before the action labels, as shown

in the figure. Note that for representing the two transitions (q11, q21,−,−)
a

−→

(q12, q21,−,−) and (q11, q21,−,−)
a

−→ (q11, q22,−,−) (which are not present in the

automaton of our example), it would be necessary to use two different names A1

and A2 preceding the labels of the edges of each component. Often, the transitions

are of the form that a single name can be used for every action, as in our example.

In these cases, the name grouping together local transitions can be omitted which

is done in further examples. Note that in our example, we could indeed leave out

A, B, C and D. Initial states can be represented using an edge linking together the

local states, as shown in Figure 8.5 by the dotted line.

Let us now define the “execution” of a DTS. Usually, the idea is that the system

starts in one initial state and proceeds with a sequence of transitions yielding a

8.3. Distributed Synchronous Transition Systems 129

(q11, q21, q31, q41)

(q12, q22, q31, q41)

(q11, q21, q32, q42)

(q12, q22, q31, q41)

{a}

{b, c}

{a, d}

(a)

(q11, q21, q31, q41)

(q12, q22, q31, q41)

(q11, q22, q32, q41)

(q11, q21, q32, q42)

(q11, q21, q31, q41)

(q12, q22, q31, q41)

a

b

c

d

a

(b)

Figure 8.6: Synchronous vs. asynchronous execution

sequence of action labels. To capture our intuition that the underlying system

should commence “as many transitions” in parallel as possible, we introduce the

notion of a synchronous execution:

Definition 8.3.2

A synchronous execution ρ of a DTS is an infinite sequence q̄1A1q̄2 . . . of global states

and sets of pairwise independent actions which satisfies the following conditions:

• q̄1 ∈ I, i.e., q̄1 is an initial state.

• For j ≥ 1 and all a ∈ Aj, (q̄j |pr(a), a, q̄j+1|pr(a)) ∈−→ and q̄j|P = q̄j+1|P
for P = Proc\

⋃

a∈Aj
pr (a). Hence, a transition is the “parallel” execution of

concurrent actions according to the transition rules.

• Further, Aj must be maximal in the following sense: For every j ≥ 1 and for

all A′ ∈ I(Σ) with A′ ⊇ Aj such that for all a ∈ A′, (q̄j|pr(a), a, q̄j+1|pr(a)) ∈−→

we have A′ = Aj. This ensures that all components being able to do a transition

participate in the execution step.

Abusing notation, we call a DTS also a distributed synchronous transition system

if we consider its synchronous executions. Figure 8.6(a) shows a part of one of the

executions of the DTS shown in Figure 8.5 on the preceding page. The crucial point

in the execution is that the actions b and c occur synchronously.

For a distributed transition system, we also define the notion of an asynchronous

execution which is obtained by interleaving transitions.

130 Chapter 8. LTL over Foata Configuration Graphs

Definition 8.3.3

An asynchronous execution ρ of a DTS is an infinite sequence q̄1a1q̄2 . . . of global

states q̄j and actions aj which satisfies the following conditions:

• q̄1 ∈ I, i.e., q̄1 is an initial state.

• For every j ≥ 1, we have (q̄j|pr(aj), aj , q̄j+1|pr(aj)) ∈−→ and q̄j |Proc\pr(aj) =

q̄j+1|Proc\pr(aj).

In the same manner as before, we call a distributed transition system also a dis-

tributed asynchronous transition system when considering its asynchronous execu-

tions. For the distributed transition system presented in Figure 8.5 on page 128, a

part of an asynchronous execution is shown in Figure 8.6(b) on the page before.

A synchronous execution can be related to a Mazurkiewicz trace and and a Foata

configuration graph as expected: Consider an execution sequence q̄1A1q̄2 Every

a in every Ai can be identified with a unique event eia labeled by a labeling function

λ with a. We let ≤ be the least transitive relation satisfying eia ≤ ejb iff i ≤ j and

aDb where D is the dependence relation given by Σ̃ (cf. Chapter 3.1 on page 15).

It is easy to see that ({eia|i ≥ 1, a ∈ Ai},≤, λ) is a Mazurkiewicz trace with steps

A1, A2, The Foata configuration graph of this trace is now of the form

CA0 −→ CA1 −→ CA2 −→ . . .

where CA0 = ∅ and CAi consists of the events eia for a ∈ Ai and of the ones in CAi−1

if i ≥ 1. Thus, we can understand executions of DSTSs as Foata configuration

graphs. This allows us to analyze DSTSs by considering the Foata configuration

graphs corresponding to executions.

Observe that an asynchronous execution q̄1a1q̄2a2q̄3 . . . can be identified with the

word a1a2 . . . which can be understood as a Mazurkiewicz trace (cf. Section 3.4 on

page 28).

We have seen in the previous section that Foata configuration graphs can be iden-

tified with words in Foata normal form. Thus, every execution can be considered

to be an infinite word which is furthermore in Foata normal form. Thus, we have a

link between executions and words in Foata normal form.

Every synchronous execution q̄1A1q̄2A2q̄3 . . . can be translated into an asynchronous

execution by interleaving each step of actions

q̄1 a1,1 q̄1,1 . . . q̄1,k1−1 a1,k1 q̄2 a2,1 q̄2,1 . . . q̄2,k2−1 a2,k2 q̄3 . . .

for ai,j ∈ Ai, ki = |Ai| and suitable q̄i,l. We call the latter the interleaved synchronous

execution of the synchronous one.

However, not every asynchronous execution can be obtained by interleaving a syn-

chronous one. Note that, obviously, the sequence a1,1 . . . a1,k1a2,1 . . . a2,k2 . . . is a

8.4. A Calculus for DSTS 131

{a, b} {a, c} {b, d} {c, d}

q11 q21 q31 q41

q12 q42

a a, c b, d db c

Figure 8.7: Asynchronous executions and synchronous executions differ

word in Foata normal form. Thus, it remains to show that there is an asynchronous

execution with a sequence of actions which is not Foata normal form:

Theorem 8.3.4

There is a distributed transition system for which the class of interleaved synchronous

executions is strictly contained in the class of asynchronous executions.

Proof

Consider the system depicted in Figure 8.7. The steps of every synchronous exe-

cution form the sequence (ad)(bc)(ad) Thus, for every asynchronous execution

which is an interleaving synchronous one, there is an action d between two actions a.

However, one possible sequence of actions obtained by an asynchronous execution is

abab �

Though the previous theorem is easy to obtain, it has an important impact for

model checking. Suppose we indeed model a synchronized system by means of a

DTS. To be able to use standard model checking approaches, one might be tempted

to consider all of its asynchronous executions instead of all of its synchronous ones.

Furthermore, one might be in favor of using LTLw to specify requirements of our

sequences of actions. But then it is likely to get false evidence. We might find a

sequence of actions which is a counter example for the given LTLw formula which is

not obtained by an interleaving synchronous execution.

8.4 A Calculus for DSTS

In this section, we introduce the process calculus synchronous process system (SPS)

which may be employed to define a distributed synchronous transition system.

Within the area of verification, a distributed system is preferably given in terms

of such a calculus instead of directly presenting a transition system. A lot of differ-

ent kinds of so-called process algebras have been developed. Besides CCS [Mil89],

there are CSP [Hoa85] and ACP [BV94, Fok00] to name the most popular ones. See

[BPS01] for an overview.

132 Chapter 8. LTL over Foata Configuration Graphs

Our notion of synchronous process systems is inspired by Milner’s CCS [Mil89].

CCS is, however, designed to support the communication of two communication

partners. It is difficult to realize a so-called broadcast in which every entity of a

system has to be consulted. SPS does not distinguish between sender and receiver

but communication is modeled by executing common actions which can also be

requested by more than two communication partners. Thus, broadcasts can easily

be defined.

The presented approach is quite simple and is mainly intended to show that our syn-

chronous approach can be enriched with a process algebra formalism in a straight-

forward manner.

An SPS specification consists of the synchronous product of independently defined

processes. Each process is given as a set of recursive equations that are built up

using prefixing with actions and non-deterministic choice operators. Furthermore,

we add the empty process nil.

Definition 8.4.1

Let Γ = {nil(0),+(2), .(2)} be a ranked alphabet, Σ a finite set of nullary actions and

P a set of (process) variables. The set of sequential process terms SPT (Σ,P) is

inductively defined by

• P,nil ∈ SPT (Σ, P), if P ∈ P,

• t1, t2 ∈ SPT (Σ, P), a ∈ Σ ⇒ a.t1, t1 + t2 ∈ SPT (Σ,P).

We let Sub(t) denote the set of subterms of t which is defined in the usual way. For

the alphabet Σ = {a, b, c, d} (which underlies also further examples in this chapter),

a.b.nil, a.b.P , and a.nil + b.nil are examples of process terms.

Process terms can be used in process definitions as right hand sides of equations.

Several process definitions are combined to yield the overall process system:

Definition 8.4.2

A process definition over (Σ,P) is a tuple D = (P 0, (P = tP)P∈P) where P 0 is an

initial process variable from P and (P = tP)P∈P is a family of equations where tP
is a sequential process term over (Σ,P).

A synchronous process system over a distributed alphabet Σ̃ = (Σ1, . . . ,Σn) and

a finite tuple of sets of process variables P = (P1, . . . ,Pn) is a family of process

definitions

S = (D1, . . . ,Dn)

where each Di (i ∈ {1, . . . , n}) is a process definition over (Σi,Pi).

8.4. A Calculus for DSTS 133

When the process definitions Di = (P 0
i , . . .) are given by the context, we often write

S as

S = P 0
1 ‖ · · · ‖ P 0

n

For example,

P1 = a.b.P1

P2 = a.c.P2

P3 = b.d.P3

P4 = c.d.P4

are process definitions (the processes P1, . . . , P4 are defined), which can be turned

into a synchronous process specification by adding the equation

P = P1 ‖ P2 ‖ P3 ‖ P4

The semantics of a synchronous process system is defined in two steps. First, we

define the semantics of a process definition, i.e., the semantics of a single family

of equations, using inference rules in the way as done to define an SOS semantics

[Plo81]. Second, we explain how to combine the local systems to derive a distributed

synchronous transition system.

Definition 8.4.3

The semantics of a process definition (P 0, (P = tP)P∈P) over (Σ,P) is a (finite)

transition system (S,→) where S =
⋃

P∈P({P}∪Sub(tP)−{tP}) and → : S×Σ×S

is a labeled transition relation defined by the following inference rules:

a.t1
a
→ t1

t1
a
→ t′1

t1 + t2
a
→ t′1

t
a
→ t′

P
a
→ t′

(P=t)
t2

a
→ t′2

t1 + t2
a
→ t′2

The semantics of the definition P1 = a.b.P1 is given by the transition system with

states {P1, b.P1} and transitions P1
a

−→ b.P1 and b.P1
b

−→ P1.

The single transition systems are now combined to derive a synchronous process

system. We simply take a typical product approach to obtain an overall semantics

for an SPS:

134 Chapter 8. LTL over Foata Configuration Graphs

Definition 8.4.4

The semantics of a process system S = (D1, . . . ,Dn) is defined to be the following

distributed synchronous transition system: For Di, let (Si,→i) be its semantics. Let

−→=

{

((q1, . . . , qn), a, (q
′
1, . . . , q

′
n))

∣

∣

∣

∣

∣

∀i ∈ pr(a) (qi, a, q
′
i) ∈ →i and

∀i ∈ Proc\pr (a) qi = q′i = −

}

The distributed transition system for S is (S1, . . . , Sn,−→, {(P 0
1 , . . . , P

0
n)})

It is easy to see that the synchronous process specification shown in the example

yields the distributed transition system shown in Figure 8.5 on page 128.

A drawback of our calculus is that not every DSTS can be defined in terms of an

SPS. This can easily be seen by considering the language of an DSTS, which is the

set of sequences of actions of every possible execution whereby every set of actions is

linearized in every possible way. It is an easy exercise to see that no SPS can define

a DSTS such that we obtain the trace language Σ∗(bc + cb)Σω over the alphabet

Σ = {a, b, c, d} where the only independent actions are a and d, and b and c (cf.

Example 3.1.4 on page 16). Intuitively, we will either get a DSTS whose language

contains baccω or one whose language does not contain bc On the contrary, it is

simple to define this language when DSTSs are considered.

Lemma 8.4.5 The class of languages definable by SPS is strictly contained in the

class of languages definable by DSTSs.

For a further study, we mention the concepts of product languages and trace lan-

guages and refer to [Thi95], in which these concepts are investigated in detail.

8.5 Foata Linear Temporal Logic (LTLf)

We are ready to introduce Foata linear temporal logic (LTLf), which is patterned

after LTLw and may be used to specify the behavior of a distributed synchronous

transition system.

Definition 8.5.1 (Syntax of LTLf)

Let (Σ, I) be an independence alphabet and I(Σ) the set of pairwise independent

subsets of Σ. LTLf(Σ, I) is the set of formulas given by the following grammar:

ϕ ::= tt | ¬ϕ | ϕ1 ∨ ϕ2 | 〈A〉ϕ | Oϕ | ϕUψ

where A ∈ I(Σ).

Of course, we make use of our standard abbreviation scheme for LTLf(Σ, I). LTLf

comprises the usual Boolean connectives and an until -operator. An important dif-

ference in the syntax of LTLf and LTLw is that (independent) sets of actions may

8.5. Foata Linear Temporal Logic (LTLf) 135

be used in the 〈 〉-operator in LTLf while in LTLw only a single action is allowed.

The set of actions is used to define atomic steps of a DSTS which becomes visible

considering the semantics of LTLf formulas:

Definition 8.5.2 (Semantics of LTLf)

Let T be a trace over (Σ, I). The satisfaction relation of a formula ϕ ∈ LTLf(Σ, I)

with respect to a Foata configuration C of T is inductively defined by

• T,C |= tt,

• T,C |= ¬ϕ⇔ T,C 6|= ϕ,

• T,C |= ϕ ∨ ψ iff T,C |= ϕ or T,C |= ψ,

• T,C |= 〈A〉ϕ iff there exists an A′ ∈ I(Σ), A′ ⊇ A and C ′ ∈ fconf(T) such that

C
A′

→ C ′ and T,C ′ |= ϕ, where C
A′

→ C ′ iff C,C ′ ∈ fconf(T), A′ ∈ I(Σ), and

λ(C ′ \ C) = A′,

• T,C |= Oϕ iff there exists an A ∈ I(Σ) and C ′ ∈ fconf(T), such that C
A
→ C ′

and T,C ′ |= ϕ,

• T,C |= ϕUψ iff there exists C ′ ∈ fconf(T), C ′ ⊇ C such that T,C ′ |= ψ and

for all C ′′ ∈ fconf(T), C ⊆ C ′′ ⊂ C ′ implies T,C ′′ |= ϕ.

T, ∅ is often abbreviated by T , a habit which was already practiced when con-

sidering LTLt. Similarly, we say T models ϕ, T is a model for ϕ, or T satis-

fies ϕ iff T |= ϕ. Furthermore, we call ϕ satisfiable iff there is a T ∈
���

(Σ, I)

such that T |= ϕ. All models of a formula ϕ ∈ LTLf(Σ, I) constitute a sub-

set of
���

(Σ, I), thus a language. It is denoted by L(ϕ) and is called the lan-

guage defined by ϕ. Furthermore, every formula defines an ω-language viz the set

{w ∈ lin(T) | T |= ϕ and w in Foata normal form}, which is also indicated by L(ϕ).

Let a distributed synchronous transition system and a formula ϕ ∈ LTLf be given.

Then let L be the set of all words (in Foata normal form) corresponding to executions

of the transition system. Model checking is the problem whether L ⊆ L(ϕ).

The semantics of Boolean connectives is as usual. For formulas of the kind 〈A〉ϕ, we

require a superset A′ of A to exist for transforming the system from configuration C

to C ′. This simplifies the task of specification since the user only has to specify the

actions he or she wants to see while leaving the atomic actions of the components

not involved by actions in A unspecified. For example, 〈{a}〉〈{b}〉tt is satisfied by

the configuration graph shown in Figure 8.4(b) on page 125 (which can be identified

with the execution shown in Figure 8.6(a) on page 129) because Foata configuration

{b, c} follows {a}.

136 Chapter 8. LTL over Foata Configuration Graphs

If we change our semantics in the way that exactly the actions specified must be

employed to move from configuration C → C ′, we can transform every formula

of our logic into this logic by taking any combination of the remaining actions.

However, in general this causes an exponential blow-up of our formula augmenting

the overall effort of deciding satisfiability and model checking. For the same reason,

we also added a O-operator, which could have been simulated by a disjunction of

〈 〉-operators where the disjunction ranges over all elements of I(Σ).

Of course, additional operators requiring A′ to be a subset of A or requiring A′ to

be equal to A are desirable as well. It is an easy exercise to enrich our logic and

algorithms to support these additional operators without increasing the complexity

of the latter. To simplify the presentation, we only picked out a single interpretation

of a 〈 〉-operator.

The until -operator is defined similarly as in the case of LTLt. However, only Foata

configurations are considered, which are linearly ordered. As we will see in the next

section, this simplifies the algorithm as well as its complexity of deciding satisfiability

dramatically.

Let us note that LTLf can be called a conservative extension of LTLw:

Remark 8.5.3 For a fully-dependent alphabet Σ, I(Σ) is a set of singletons, each

containing a single action. Thus, every step of a trace consists of a singleton. Hence,

the LTLf and LTLw can be identified.

As usual, we introduce abbreviations of the following kind to simplify the task of

specifying requirements:

• ϕ ∧ ψ for ¬(¬ϕ ∨ ¬ψ)

• ♦ϕ for ttUϕ

• �ϕ for ¬♦¬ϕ

Hence, it is possible to express global liveness and safety properties in a manner as

known from LTL.

Our logic can be understood as LTL over the alphabet I(Σ) with the exception

of the different interpretation of the next-state operator. Then one might think of

employing the standard LTL algorithms for deciding LTLf . However, since not every

word in I(Σ)ω is in Foata normal form, the standard algorithms for deciding and

model checking algorithm for LTL have to be modified to consider only models in

Foata normal form. Furthermore, the algorithms have to be modified to respect our

special form of the 〈 〉-operator.

With respect to model checking, the models to analyze are given by distributed

transition systems over the alphabet Σ. To employ a logic over I(Σ)ω, the transition

8.6. Satisfiability of LTLf 137

system has to be transformed into a single bisimilar [Mil89] one over I(Σ). For

practical reasons, this has to be carried out on-the-fly. It is not clear how to achieve

this goal.

Altogether, we are convinced that understanding LTLf as a logic over I(Σ)ω might

be theoretically interesting but is the second choice for practical algorithms. We

therefore directly formulate decision procedures for satisfiability and model checking

over Σ, since this yields more efficient practical implementations. However, the

decision procedure for satisfiability owes some ideas from the previously mentioned

interpretation.

8.6 Satisfiability of LTLf

We now present a decision procedure for LTLf formulas by means of alternating

Büchi automata. The decision procedure is divided into two steps. First, given a

formula ϕ ∈ LTLf(Σ, I), we define an automaton Aϕ that, for all Foata linearizations

w, accepts w if and only if the trace Tw induced by w satisfies ϕ. In a second step,

we will define a Büchi automaton AF accepting a word in Σω iff it is in Foata

normal form. Hence, the language of the automaton accepting the intersection of

the languages Aϕ and AF is non-empty if and only if ϕ is satisfiable.

Let us fix a formula ϕ ∈ LTLf for this section. Again, the idea for defining Aϕ is

to take Sub(ϕ) (plus their negations) as (one part of) the state space of Aϕ where

Sub(ϕ) denotes the set of subformulas of ϕ, which is defined as usual. Boolean

combinations of formulas and until -formulas can be treated as usual, the latter

because until -formulas can be “unwinded” subject to the equivalence ϕUψ ≡ ψ ∨

(ϕ ∧ O(ϕUψ)). The only non-straightforward case is a 〈 〉-formula.

Given a linearization of a trace in Foata normal form, the different steps are charac-

terized by actions dependent on the preceding step. The idea for the transition func-

tion of the automaton with respect to 〈 〉-formulas is to collect the independent ac-

tions of the current step in one component of the automaton’s state. When an action

dependent on the current step is read, the underlying formula (which is contained in

a second component of the current state) is compared with the actions of the step.

Thus, the state space of the automaton is defined as I(Σ) × (Sub(ϕ) ∪ ¬Sub(ϕ)).

Let us give a precise definition of Aϕ:

Definition 8.6.1

Let ϕ ∈ LTLf(Σ, I). Then Aϕ = (Q, δ, q0, F) is defined by Q = I(Σ) × (Sub(ϕ) ∪

138 Chapter 8. LTL over Foata Configuration Graphs

¬Sub(ϕ)), q0 = (∅, ϕ) and δ : Q× Σ → B+(Q) by

((S, tt), a) 7→ tt

((S, ψ ∨ η), a) 7→ δ((S, ψ), a) ∨ δ((S, η, a)

((S,¬ψ), a) 7→ δ((S, ψ), a)

((S, 〈A〉ψ), a) 7→

δ((∅, ψ), a) if aDS,A ⊆ S

ff if aDS,A 6⊆ S

(S ∪ {a}, 〈A〉ψ) if aIS

((S,Oψ), a) 7→

δ((∅, ψ), a) if aDS

(S ∪ {a},Oψ) if aIS

((∅, ψUη), a) 7→ δ((∅, η ∨ (ψ ∧ O(ψUη))), a)

The set of final states is, as usual, given by the states with negative formulas, F =

I(Σ) × {¬ϕ | ϕ ∈ Sub(ϕ)}.

Note that the dual of an LTLf formula is defined is a straightforward way (cf.

Definition 6.2.3 on page 72).

As mentioned before, until -formulas are directly unwinded according to ϕUψ ≡

ψ ∨ (ϕ ∧ O(ϕUψ)). Hence, the transition function δ just treats the situation for an

empty step.

Let us explain the acceptance conditions of the automaton. Every finite branch of a

run of Aϕ ending in tt gives a “proof” for our formula. Infinite branches only occur

by infinitely often unwinding until -formulas. Hence, they must be accepted iff the

until -formula is negated. A formal proof of our construction is straightforward and

only technically involved, which encourages us to declare it an exercise. We instead

commence with a small example:

Example 8.6.2 Suppose we want to know for the formula ϕ = 〈{a}〉〈{b}〉tt whether

it is satisfiable or not. We underlay our well-known independence alphabet of Fig-

ure 3.1.4 on page 16. We already know that ϕ is satisfiable. To simplify our pre-

sentation, we do not present Aϕ completely3 but only accepting and rejecting runs.

Suppose the first input action is a. Starting in state (∅, ϕ), the automaton then

proceeds in state ({a}, ϕ). Suppose the next input action is d. As d is independent

of a, it is added to the current step and the automaton moves to state ({a, d}, ϕ).

Now, let us read the action c, which is dependent on a. As the a action requested

by ϕ is contained in {a, d}, the automaton proceeds in state ({c}, 〈{b}〉tt). Note

that, without having seen a before reading c, the run of the automaton would have

been withdrawn. Reading b and one further action dependent on b will guide the

automaton to tt and the corresponding run is accepting.
3Aϕ has 21 reachable states and far more transitions

8.6. Satisfiability of LTLf 139

As the example shows, it is important that we deal with infinite words. This guar-

antees that we indeed consider every step because every step consists of only finitely

many actions.

Note that for the case of the fully-dependent alphabet, we obtain a slightly different

decision procedure as for LTLw (cf. Chapter 6 on page 69), although maintaining

the same complexity bounds. Intuitively, Aϕ “carries” the action read and modifies

the underlying formula when reading the subsequent action while the construction

in the case of LTLw directly processes the input action read.

Now, we define an automaton AF accepting Foata linearizations of traces, which

will be used to guarantee that the previous automaton indeed “is fed” with words

in Foata normal form. It can be understood as a kind of filter, rejecting ω-words

which cannot be a Foata linearization of a trace.

According to the definition of the Foata normal form (see Section 8.2), a word is in

Foata normal form if it can be written as a product of steps. A step is a word of

pairwise independent letters. Furthermore, for every step (excluding the first one)

there is a dependent action in the previous one. AF reads a word step by step. A

part of a step is stored in S, which is one part of AF ’s current state. An action

independent on actions of the current step must belong to the current step. Hence

it is added to S. As soon as an action is read which is dependent on one of the

actions of the current step, it must be part of the next step which is initialized by

this action. Furthermore, to reflect the second requirement for steps, we store in G

the actions dependent on S or the current read action. These are the good actions

which we allow to be read from now on, because these are either dependent of the

previous step (and independent of the current) or dependent on the current.

Let D(S) denote the set of actions dependent on some action in S, i.e., D(S) = {b ∈

Σ | bDS}, and let us make our considerations precise.

Definition 8.6.3

AF = (Q, δ, q0, F) is defined by

• Q = 2Σ × I(Σ),

• q0 = (Σ, ∅),

• F = Q, and

• δ : Q× Σ → 2Q by

((G,S), a) 7→

{

∅ if a 6∈ G

{(G′, S′)} if a ∈ G

where G′ and S′ are defined in the following way:

140 Chapter 8. LTL over Foata Configuration Graphs

– if aIS then S ′ = S ∪ {a}, G′ = G ∪D(S′) and

– if aDS then S ′ = {a}, G′ = D(S ∪ S′).

If an input action is independent on the current step, new actions might be “good”

viz the ones which are dependent on the action currently read. This is expressed

by G′ = G ∪D(S′) in the previous definition. Because of ((G,S), a) 7→ ∅ if a 6∈ G,

it is ensured that all read actions added to the step S are indeed dependent on one

action of the previous step. Again, correctness is a matter of studiousness.

To obtain a decision procedure for checking satisfiability of a formula ϕ, it remains

to construct an automaton accepting the intersection of the languages of Aϕ and

AF which then can be examined for (non-)emptiness. A simple way to reach this

goal is translating Aϕ into a Büchi automaton A′
ϕ and to use standard constructions

on Büchi automata [Tho90a].

Since in AF every state is also a final state, its intersection with a Büchi automaton

has a simple form: Let A = (Q, δ, q0, F) be a Büchi automaton. Define A′ =

(Q× 2Σ × I(Σ), δ′, (q0,Σ, ∅), F × 2Σ × I(Σ)) by

(q′, G′, S′) ∈ δ′((q,G, S), a)

iff q′ ∈ δ(q, a) and a ∈ G and if aIS then

S′ = S ∪ {a}

G′ = G ∪D(S′)

and if aDS then

S′ = {a}

G′ = D(S ∪ S′)

Complexity It is easy to see that for ϕ ∈ LTLf , the size of Aϕ is linear in the size

of ϕ. Hence, the size of the resulting Büchi automaton is exponential in the size of

ϕ. AF is independent of ϕ, so is its size. Hence, deciding whether there is a model

for ϕ is exponential in its length and can be carried out in polynomial space. This

is optimal since for the fully-dependent alphabet, we are in the situation of LTL.

Expressiveness A formula ϕ ∈ LTLf defines a trace language L(ϕ) = {T | T |=

ϕ}. Which kind of languages are definable by LTLf formulas? Foata configurations

are defined in an inductive manner. Thus, it is easy to see that these languages are

definable by monadic second order logic for Mazurkiewicz traces, which is defined

as expected [EM93]. However, it is neither clear whether first-order formulas are

expressive enough nor whether any language defined by a first-order formula can

also be defined by an LTLf formula. We assume that both is not the case.

8.7. Model Checking for DSTS and LTLf 141

8.7 Model Checking for DSTS and LTLf

In this section, we present a model checking algorithm for LTLf with respect to

the executions of a distributed synchronous transition system. Let a DSTS A and

a formula ϕ be given. We construct a Büchi automaton BA accepting for every

synchronous execution of A a single asynchronous one. In contrast to accepting

every asynchronous execution, this reduces the number of possible transitions and,

more importantly, the number of reachable states.

For the negation of ϕ, we construct an alternating Büchi automaton A¬ϕ and trans-

form it into a Büchi automaton B¬ϕ as described in the previous section. Testing

the intersection of BA and B¬ϕ for emptiness answers whether there is an execution

of A violating ϕ.

The underlying idea is rather simple. Every word in Foata normal form is accepted

by B¬ϕ, iff the corresponding Foata configuration graph satisfies ¬ϕ. A straightfor-

ward approach would be to translate A into a Büchi automaton BA accepting all

Foata normal forms such that the corresponding Foata configuration graph corre-

sponds to an execution of A. However, several words in Foata normal form yield

the same Foata configuration graph. Since B¬ϕ accepts all Foata linearizations of a

Foata configuration graph satisfying ¬ϕ, we may design BA in the way that it only

accepts a single characteristic one.

Definition 8.7.1

Let A = (Q1, . . . , Qn,−→, I) be a DSTS. Then let BA = (Q, δ, I × {∅}, F) be the

Büchi automaton defined by Q = Q1 × · · · ×Qn × I(Σ) and F = Q, i.e., every state

is also a final state. Fix a linear order ≺ on the alphabet Σ.4 We call an action

a enabled in q̄ ∈ Q̄ iff there is a q̄′ ∈ Q̄ such that (q̄|pr(a), a, q̄
′|pr(a)) ∈−→. Let

(q̄′, S′) ∈ δ((q̄, S), a) iff

1. (q̄|pr(a), a, q̄
′|pr(a)) ∈−→, i.e., it is a valid transition according to the underlying

DTS, and

2. if aDS then

(a) {b ∈ Σ | bIS and b enabled in q̄} = ∅, i.e., there is no action independent

of the current step left for execution, and

(b) a is strictly smaller than each element of the set {b ∈ Σ | bIa and

b enabled in q̄} with respect to ≺ and S ′ = {a}

and

4Note that it suffices to define ≺ of pairs of independent actions only. Hence, Σ1, . . . ,Σn induces

an appropriate ≺.

142 Chapter 8. LTL over Foata Configuration Graphs

(q11, q21, q31, q41, ∅)

(q12, q22, q31, q41, {a})

(q11, q22, q32, q41, {b})

(q11, q21, q32, q42, {b, c})

(q12, q22, q32, q42, {a})

(q12, q22, q31, q41, {a, d})

a

b

c

a

d

b

Figure 8.8: A Büchi automaton for the DSTS shown in Figure 8.5

3. if aIS then a is strictly smaller than each element of {b ∈ Σ | bIa, bIS, and b

enabled in q̄} with respect to ≺ and S ′ = S ∪ {a}.

Item 2.(a) guarantees that the next step is considered only if the current one is

“full”. Items 2.(b) and 3 handle the selection of “equivalent” transitions. The rule

is: Just let the smallest action with respect to ≺ make a transition. The new current

step S′ is treated as in the definition of AF (see Section 8.6). Note that we do not

have to concentrate on good actions since our selection strategy ensures to fill a step

before considering the next one. This shows that BA accepts for every synchronous

execution of A exactly one linearization. For example, BA for A as in Figure 8.5 is

shown in Figure 8.8

Complexity Model Checking is exponential in the size of the formula and linear

in the size of BA. The size of BA is exponential in the number of the components of

A. The experiences gained by partial order reduction [Pel98] allow the conclusion

that the number of reachable states is in the average case much smaller. Note that,

using the same arguments as for Theorem 6.5.1 on page 81 and using the fact that

it is easy to define a distributed transition system whose executions form Σω, we get

Theorem 8.7.2

The complexity of deciding satisfiability is less than or equal to the formula complex-

ity of model checking for LTLf .

8.8 A Two Bit Counter

Let us commence with a larger, more detailed example, again taken from the domain

of hardware systems. We use notions of circuit design on an intuitive basis because

8.8. A Two Bit Counter 143

FD

D

Clk Q̄

Q

Figure 8.9: A D-flip-flop

we only want to give a flavor of our methods. Please consult [TS01] or [Cha99] for

further details on designing digital systems.

Suppose we want to develop a two bit counter. This is a digital circuit in which we

can spot two bit values that take all of the values {00, 01, 11, 10} in an infinite loop.

In other words, we want to identify 4 states determined by the value of two bits and

the circuit loops in these four states.

Furthermore, the device should be “hazard-free”. In our setting, this means that

only one bit is changed at a time. Thus, from state 01 we proceed in state 11

instead of 10. The reason is that changing a single bit each time makes a design

more “robust” in practice. Suppose we are in state 01 and proceed in state 10, which

can be obtained by “flipping” both bits. Only in theory, it is possible to flip two

bits exactly at the same point in time, but in practice, there will be a (quite small)

delay between both changes. Hence, we would be in state 11 or 00 for a moment.

As these cases are undesirable, we will go for the safer design requiring our circuit

to behave like:

00, 01, 11, 10, 00, . . .

It is simple to realize our design using a D-flip-flop. A D-flip-flop can be visualized

as in Figure 8.9. It has four connectors, Clk , D, Q, and Q̄. Clk is the input of the

(global) clock signal. We take a setting in which the D-flip-flop proceeds with every

rising edge of the clock. D is the data input, Q is the output, and Q̄ is the inverted

output of Q. Input- and Output-lines can take the values logical 0 or 1. Reading

a value on the input D, the flip-flop stores this input in an internal state S with

each rising edge. The previous internal state is available at Q and its negation at Q̄.

Thus, it takes two rising edges to pass an input value on D to the output Q. The

behavior of the flip-flop can be described by the function shown in Table 8.1 on the

next page in which the input D and the current state S are transformed to output

values Q and Q̄ as well as to a new state S.5

We are now ready to combine two D-flip-flops to obtain a two bit counter, as shown

in Figure 8.10 on the following page. The negated output of the first flip-flop is
5The behavior of circuits can also be described by means of finite automata with output like

Mealy- and Moore-automata [Kro99]. However, to limit the formal notions to be introduced, we

rely on a slightly more sloppy description of circuits.

144 Chapter 8. LTL over Foata Configuration Graphs

D S 7→ Q Q̄ S

0 0 7→ 0 1 0

0 1 7→ 1 0 0

1 0 7→ 0 1 1

1 1 7→ 1 0 1

Table 8.1: Function table of a D-flip-flop

FD FD

D

Clk Q̄

Q D2

Clk Q̄2

Q2

Figure 8.10: A two bit counter

connected with the input of the second one, and the input of the first is fed with the

output of the second. It is easy to see that we get the bit values shown in Table 8.2

where in the first column the rising edges of the clock are counted (#re) and the

subsequent columns represent the values in this moment. The initial situation is

consequently shown in the first row beginning with 0.

The values of the bits for the eights rising edge are identical to the initial case so that

the first eight cases are characteristic for the whole system. The value of the two bit

counter can be obtained by considering Q and Q2 which is highlighted in the last two

columns in Table 8.2. Thus, we indeed get the desired sequence 00, 01, 11, 10, 00,

Our goal is to describe the system formally using our notions of synchronous process

systems and distributed synchronous transition systems.

#re D S Q D2 S2 Q2 Q Q2

0 0 0 0 1 0 0 0 0

1 0 0 0 1 1 0 0 0

2 1 0 0 1 1 1 0 1

3 1 1 0 1 1 1 0 1

4 1 1 1 0 1 1 1 1

5 1 1 1 0 0 1 1 1

6 0 1 1 0 0 0 1 0

7 0 0 1 0 0 0 1 0

8 0 0 0 1 0 0 0 0

Table 8.2: The two bit counter

8.8. A Two Bit Counter 145

We first start with modeling a D-flip-flop.

The idea is to implement the dynamic behavior of the system incorporating the

logical values on each connector and to describe each connector as a separate process.

Thus, we deal with actions of the form D0 and D1 denoting that connector D

is logical 0 or logical 1, respectively. As pointed out before, a D-flip-flop has an

internal state which is affected by the value of D and influences the values of Q

and Q̄. Thus, we commence with two further actions S0 and S1. However, the

values at the connectors D and Q are not directly dependent. Altogether, we set

the distributed alphabet as

Σ̃ = ({D0, D1, S0, S1}, {Q0, Q1, S0, S1}, {Q̄0, Q̄1, S0, S1})

Let us define the behavior of a connector. A connector can be considered to be a

process. For each connector we employ two variables P and P ′, for example, PD and

P ′
D for connector D. As mentioned before, connector D affects the internal state.

Let us assume that initially the value at connector D is 0. Then, the internal state

is set 0 as well. Whenever the value at connector D is changed, the internal state is

modified accordingly. Thus we define

PD = D0.S0.P ′
D P ′

D = D0.S0.P ′
D +D1.S1.P ′

D

Similarly, we define PQ and PQ̄ as

PQ = Q0.P ′
Q P ′

Q = S0.Q0.P ′
Q + S1.Q1.P ′

Q

PQ̄ = Q̄1.P ′
Q̄ P ′

Q̄ = S0.Q̄1.P ′
Q̄ + S1.Q̄0.P ′

Q̄

The D-flip-flop FD can now be defined as

FD = PD ‖ PQ ‖ PQ̄

The resulting DSTS can be visualized as in Figure 8.11 on the next page.

One synchronous execution of this system can be given as the word in Foata normal

form

(D0Q0 Q̄1)(S0)(D1Q0 Q̄1)(S1)(D1Q1 Q̄0) . . .

which represents the situation that the input on connector D is initially 0 and then

changed to 1.

We now turn towards the definition of the two bit counter. Similarly as combing the

D-flip-flops, we combine their equations. In principal, we now deal with a second

copy of the previous actions D20, D21, Q20, Q21, Q̄20, and Q̄21, which represent

the logical values at the connectors of the second flip-flop. As the output Q2 of

146 Chapter 8. LTL over Foata Configuration Graphs

{D0, D1, S0, S1} {Q0, Q1, S0, S1} {Q̄0, Q̄1, S0, S1}

D0

S0

D0 D1

S0 S1

Q0

S0

Q0

S1

Q1

Q̄1

S0 S1

Q̄1 Q̄0

Figure 8.11: A DSTS for the D-flip-flop

the second flip-flop is connected with input D of the first, we have to identify the

connectors in our definition and therefore also the actions D0 and Q20. This counts

also for the other logical value on this wire and the values on the wire connecting Q̄

and D2.

As our goal by introducing SPS was only to give a flavor of a process-algebra-like

calculus suitable for defining DSTSs, we refrained from introducing operations like

renaming [Mil89] etc. However, we have slightly more work to do now. We give the

list of the equations defining the elements of the two bit counter:

PD = D0.S0.P ′
D

P ′
D = D0.S0.P ′

D +D1.S1.P ′
D

PQ = Q0.P ′
Q

P ′
Q = S0.Q0.P ′

Q + S1.Q1.P ′
Q

PQ̄ = Q̄1.P ′
Q̄

P ′
Q̄

= S0.Q̄1.P ′
Q̄

+ S1.Q̄0.P ′
Q̄

PD2 = Q̄1.S21.P
′
D2

P ′
D2

= Q̄0.S20.P
′
D2

+ Q̄1.S21.P
′
D2

PQ2 = D0.P ′
Q2

P ′
Q2

= S20.D0.P ′
Q2

+ S21.D1.P ′
Q2

PQ̄2
= Q̄21.P

′
Q̄2

P ′
Q̄2

= S20.Q̄21.P
′
Q̄2

+ S21.Q̄20.P
′
Q̄2

8.8. A Two Bit Counter 147

Thus, the two bit counter is given by

TBC = PD ‖ PQ ‖ PQ̄ ‖ PD2 ‖ PQ2 ‖ PQ̄2

The overall system is depicted in Figure 8.12.

{D0, D1, S0, S1} {Q0, Q1, S0, S1} {Q̄0, Q̄1, S0, S1}

D0

S0

D0 D1

S0 S1

Q0

S0

Q0

S1

Q1

Q̄1

S0 S1

Q̄1 Q̄0

{Q̄0, Q̄1, S20, S21} {D0, D1, S20, S21} {Q̄20, Q̄21, S20, S21}

Q̄1

S21

Q̄0 Q̄1

S20 S21

D0

S20

D0

S21

D1

Q̄21

S20S21

Q̄21 Q̄20

Figure 8.12: A DSTS for the two bit counter

It is now a simple matter to observe the following execution, which is again ab-

stracted to a word in Foata normal form:

(D0Q0 Q̄1 Q̄21)(S0S21)(D1Q0 Q̄1 Q̄20)(S1S21) . . .

Comparing this sequence with Table 8.2 on page 144, we see the correspondence of

the execution of the defined two bit counter DSTS and the behavior of the two bit

counter.

The system may now be analyzed with respect to specifications in terms of LTLf

formulas. For example, we can verify whether state 00 is always followed by 01 by

checking the formula

� (〈{D0, Q0}〉tt → 〈{D0, Q0}〉〈{}〉〈{D1, Q0}〉tt)

Chapter 9

Conclusion

In this thesis, we have introduced a new method for defining decision procedures for

satisfiability of logical formulas in the domain of partial commutation. It is based

on alternating automata and uses a notion of independence rewriting to formulas of

the logic.

Specifically, we presented a decision procedure for LTL over Mazurkiewicz traces

that generalizes the classical automata-theoretic approach to a linear temporal logic

interpreted no longer over sequences but restricted labeled partial orders. We con-

structed a linear alternating Büchi automaton accepting the set of linearizations of

traces satisfying the formula at hand. The salient point of our technique is to apply

a notion of independence-rewriting to formulas of the logic.

Furthermore, we showed that the class of linear and trace-consistent alternating

Büchi automata corresponds exactly to languages definable by LTL formulas over

Mazurkiewicz traces, lifting a similar result from Löding and Thomas formulated in

the framework of LTL over words.

For language theory, we could therefore paint the picture visualized in Figure 9.1

on the following page. Within the domain of all languages, we can identify the reg-

ular languages and herein the star-free languages. Orthogonally, we can distinguish

trace-consistent and non-trace-consistent languages. We can sum-up the following

characterizations:1

Theorem

Let Σ be an alphabet. Furthermore, let L ⊆ Σω. Then the following statements are

equivalent:

1. L is regular.

1Note that this list is far from complete. Further characterizations can be found in [Tho90a].

Since we only want to give an overview, we refer to this article also for notions we have not

introduced.

150 Chapter 9. Conclusion

regular languages

star−free trace−consistent languages

trace−consistent languages

star−free languages

Figure 9.1: Regular languages

2. L is recognizable by a Büchi automaton.

3. L is definable in monadic second-order logic (over words).

4. L is recognizable by an alternating Büchi automaton.

Equivalences of (1) – (3) trace back to Büchi [Büc62]. Equivalence of (2) and (4)

was shown in [MH84] (cf. Theorem 4.2.9 on page 51).

For star-free languages, we have the following characterizations:

Theorem

Let Σ be an alphabet. Furthermore, let L ⊆ Σω. Then the following statements are

equivalent:

1. L is a star-free language.2

2. L is definable in first-order logic (over words).

3. L is definable in LTLw.

4. L is recognizable by a linear alternating Büchi automaton.

Thomas [Tho79] has shown equivalence of (1) and (2). Equivalence of (2) and (3) is

Kamp’s famous theorem [Kam68]. Löding and Thomas [LT00] have shown the last

equivalence (cf. Theorem 6.3.2 on page 76).

Let us now turn towards the domain of traces, more precisely, to the domain of

trace-consistent languages:

2We call L star free if it is a finite union of sets U.V ω where U, V ⊆ Σ∗ are star-free and V.V ⊆ V .

151

Theorem

Let Σ be an alphabet. Furthermore, let L ⊆ Σω. Then the following statements are

equivalent:

1. L is a trace-consistent regular language.

2. L is recognizable by a trace-consistent Büchi automaton.

3. L is recognizable by an asynchronous automaton.

4. L is a linearization of a language definable in monadic second-order logic (over

traces).3

Equivalence of (1) and (2) is immediate. The equivalence of (1) and (3) was intro-

duced by Zielonka [Zie87]. Ebinger and Muscholl [EM93] have shown the equivalence

of (1) and (4), extending a similar result for finite traces due to Thomas [Tho90b].

The star-free trace-consistent setting looks as follows:

Theorem

Let Σ be an alphabet. Furthermore, let L ⊆ Σω. Then the following statements are

equivalent:

1. L is a star-free trace-consistent language.

2. L is a linearization of a language definable in first-order logic (over traces).

3. L is a linearization of a language definable in LTLt.

4. L is recognizable by a linear trace-consistent alternating Büchi automaton.

Equivalence of (1) and (2) traces back to [EM93]. Diekert and Gastin have shown

equivalence of (2) and (3). We have shown the equivalence of (3) and (4) in Theo-

rem 7.3.3 on page 110.

While the studied temporal logic LTLt is a trace theoretic analogue of LTLw because

it captures the first-order definable languages, it does differ from LTLw in one im-

portant point. Satisfiability of first-order logic is non-elementary for words as well

as traces. LTLw formulas can be tested for satisfiability in Exptime. For LTLt,

however, the complexity for satisfiability remains non-elementary.

It is therefore natural to look for an expressively complete linear temporal logic

for traces with an elementary time satisfiability procedure. We have not touched

this problem here. But we feel that our characterization in terms of linear trace-

consistent alternating Büchi automata might give a new direction to tackle this

question.
3Recall that a linearization of a trace language is defined as the set of the linearizations of

members.

152 Chapter 9. Conclusion

In a second part of this thesis, we introduced a linear temporal logic designed for

specifying properties of synchronized systems that comprise clocked hardware cir-

cuits or Petri nets supplied with a maximal step semantics. We called this logic

Foata linear temporal logic (LTLf). The idea underlying this model is dual to the

well-known approach of interleaving. Concurrent actions are not put into some order

but are considered as single steps of the distributed system.

Distributed synchronous transition systems have been defined as a formal model of

these systems and were equipped with a Foata configuration graph-based semantics,

which provides a link between these systems and the framework of Mazurkiewicz

traces. Foata configuration graphs can be understood as a kind of subgraph of the

configuration graph of a trace.

We have given optimal decision procedures for satisfiability of LTLf formulas as well

as for model checking, both based on alternating Büchi automata. The model check-

ing procedure further employs an optimization which is similar to a technique known

as partial order reduction. The complexity of both procedures is single exponential

in the length of the formula. Thus, leaving out configurations which are obtained by

a kind of interleaving in the formal study of trace configuration graphs pays back in

terms of complexity. It would be interesting to identify the expressiveness of LTLf .

Appendix A

Basic Notations, Notions, and

Problems

A.1 Basic Notations

Within this whole thesis, every set is assumed to be countable. This general assump-

tion is sometimes not made explicit. We call a set countable if there is a bijection to

the set of natural numbers, which is denoted by IN, or if it is finite.

Let X be a (countable) set. The set of all subsets of X is called the power set

of X and is denoted by 2X . The disjoint union of two sets X and Y is the set

{(1, x) | x ∈ X} ∪ {(2, y) | y ∈ Y } and is denoted by X] Y . If X ∩ Y = ∅, we

identify X] Y with X ∪ Y . For a fixed set Z, we denote the complement of X ⊆ Z

by X, which is, of course, the set {z ∈ Z | z /∈ X}.

As usual, we write the binomial coefficients n!
k!(n−k)! as

(n
k

)

, where n and k are

assumed to be natural numbers with n ≥ k. For a positive real number x, floor of

x is denoted by bxc and is the largest natural number less or equal x.

A.2 Graph-theoretic Notions and Notations

A graph G is a pair G = (Q,↔) where Q is an arbitrary set and ↔ is a subset of

Q × Q that satisfies (q, q′) ∈↔ iff (q′, q) ∈↔, for all q, q′ ∈ Q. Instead of ↔, we

sometimes use −, especially when a graph is depicted. A directed graph G is a pair

G = (Q,→) where Q is an arbitrary set and →⊆ Q × Q. Instead of (q, q ′) ∈↔ or

(q, q′) ∈→, we usually write q ↔ q′ or q → q′, respectively. We use ⇒� whenever we

mean ↔ or →.

For a (directed) graph (Q,⇒�), the elements of Q are called nodes of G and the

elements of E are called edges of G.

154 Appendix A. Basic Notations, Notions, and Problems

For q, q′ ∈ Q, a path from q to q′ is a sequence of nodes q0, . . . , qn ∈ Q, n ≥ 1, such

that q = q0 ⇒� . . . ⇒� qn = q′. A cycle in G is a path q0, . . . , qn such that q0 = qn. We

say that a node q ∈ Q is contained or reached in a cycle iff there is a cycle q0, . . . , qn
in G and q = qi for an i ∈ {0, . . . , n}. A loop is a cycle containing two nodes. For a

directed graph (Q,→), we call q′ ∈ Q a successor of q ∈ Q, iff q → q′.

A component of a graph G is a subgraph G ′ of G induced by a set of nodes Q′, that

is G′ = (Q′,⇒�′) where Q′ ⊆ Q, and ⇒�′=⇒� ∩ (Q′ × Q′). Sometimes, we call also

Q′ a component. A (strongly) connected component is a component G ′ = (Q′,⇒�′)

of G such that for all q, q′ ∈ Q′ there is a path from q to q′ in G′. A (connected)

component and a cycle are called non-trivial if they contain a least two nodes.

A graph (Q,↔) is called complete iff ↔= Q×Q. Similarly, the notion of a complete

component is defined. A complete component of a graph is also called clique.

When we consider node-labeled graphs, especially graphs, whose nodes are labeled

by formulas, we say that a cycle contains a formula ϕ, iff the cycle contains a node

that is labeled by ϕ.

Often, we deal with so-called pointed graphs, that is, a graph G = (Q,→) together

with an initial node q0 ∈ Q. A node is reachable in G iff there is a path from q0 to

q. For the sake of brevity, we often do not explicitly mention that the considered

graph is pointed.

A.3 Graph-theoretic Problems

Let G = (Q,→) be a directed graph. For x, y ∈ Q, Reachability is the problem

whether there is a path in G from x to y. Strictly speaking, Reachability is a

language that consists of all words that are an encoding of a graph together with

two of its nodes x and y for which a path from x to y in G exists.

Theorem A.3.1

Reachability can be decided in linear time with respect to the size of a graph.

Theorem A.3.2

Reachability can be decided in logarithmic space with respect to the number of

nodes of a graph on a non-deterministic Turing machine.

Proof

Suppose you want to check whether y is reachable from x via a path in the graph.

Then y is reachable from x iff

• x = y or

• there is a successor x′ of x and y is reachable from x′.

A.4. Notions for Relations 155

Starting with x, the Turing machine first checks whether x = y and if not, it guesses

an appropriate successor x′. Since x is no longer important, the space needed for

storing x can be reused. Now, the Turing machine proceeds with trying to find a

path from x′ to y.

Please observe that iff there is a path from x to y, then there is one with length at

most |Q|. Thus, the machine can count the length of the path k and can stop in a

state denoting non-acceptance, if n is obtained. To keep k, the current x′, and y on

the tape, a space of 3 · log n is used at most. Note that nodes are coded binary on

the tape of the Turing machine, thus, a number k takes log k bits. �

A.4 Notions for Relations

Let R be a binary relation over a set Q, that is R ⊆ Q × Q. The diagonal of R is

denoted by ∆(R) and is defined by

{(q, q) | q ∈ R}

For two relations R and R′ over Q, we define their product by

{(q, q′) | q, q′ ∈ Q,∃q′′ ∈ Q such that (q, q′′) ∈ R and (q′′, q′) ∈ R′}

and denote it by R ◦R′.

The covering relation of R or cover of R is the subrelation of R where two elements q

and q′ are only related, iff there is no third q ′′ with (q, q′′) ∈ R as well as (q′′, q′) ∈ R.

In other words, the covering relation is the least relation such that its transitive

closure is a superset of R. Stated differently, it is the relation obtained from R by

removing all pairs which can be obtained by transitivity. Thus, the cover of R is

defined by R− (R ◦R). For a partial order ≤, we denote the covering relation of ≤

usually by l.

For a graph G = (Q,⇒�), the Hasse diagram of G is given by the graph (Q,⇒�′) where

⇒�′ is the cover of ⇒�.

A.5 Turing Machine Problems

In this section, we present a Pspace-complete problem. Recall that a problem is in

Pspace, if it can be solved on a deterministic Turing machine using space bounded

by a polynomial with respect to the size of its input. A problem is Pspace-complete,

if it is in Pspace and every problem in Pspace cab be reduced to this problem.

A basic Pspace-complete problem is In-Place Acceptance: Given a determinis-

tic Turing machine M and input x, does M accept x without ever leaving the |x|+1

first symbols of its strings?

156 Appendix A. Basic Notations, Notions, and Problems

Theorem A.5.1 ([Pap94], Chapter 19)

In-Place Acceptance is Pspace-complete.

Proof

It is easy to see that this problem is in Pspace: In linear space, we can simulate M

on x, keeping a counter for the number of steps. We reject if the machine rejects.

Furthermore, we reject if the machine tries to use more than the admitted space by

adding a blank symbol �. Finally, we reject the input if the machine operates for

more than k = |Q||x||Σ||x| steps where Q denotes the set of states and Σ the working

alphabet of the Turing machine. Note that k is the number of different configurations

of a Turing machine using at most |x| cells of the working tape. Thus, after k steps,

the deterministic Turing machine would enter an infinite loop. Hence, rejecting the

input in this case is the appropriate thing to do. Using a logarithmic encoding for

this number, our constructed machine only uses space polynomially in the size of

the input |x|.

We consider completeness: Suppose a language L is in Pspace, i.e., it is accepted by

a Turing machine M in space nk for some constant k ∈ IN. Obviously, M accepts

x if and only if it accepts the string x�nk , the string consisting of x and nk blanks.

Hence, x ∈ L iff (M, x�nk) is decided positively by the previous procedure. Since

x�nk can be computed in polynomial time, we have reduced an arbitrary problem

in Pspace to In-Place Acceptance. �

Bibliography

[ABP97] A. Ayari, D. Basin, and A. Podelski. LISA: A specification language

based on WS2S. In M. Nielsen and W. Thomas, editors, 11th Interna-

tional Conference of the European Association for Computer Science

Logic (CSL’97), volume 1414 of Lecture Notes in Computer Science,

pages 18–34. Springer, 1997.

[AMP98] R. Alur, K. McMillan, and D. Peled. Deciding global partial-order

properties. In K. Larsen, S. Skyum, and G. Winskel, editors, Proceed-

ings of 25th International Colloquium on Automata, Languages and

Programming (ICALP’98), volume 1443 of Lecture Notes in Computer

Science, pages 41–52, 1998.

[APP95] R. Alur, D. Peled, and W. Penczek. Model checking of causality prop-

erties. In Proceedings of the 10th Annual IEEE Symposium on Logic

in Computer Science (LICS’95), pages 90–100, San Diego, California,

26–29 June 1995. IEEE Computer Society Press.

[BB89] T. Bolognesi and E. Brinksma. Introduction to the ISO specification

language LOTOS. In P. H. J. van Eijk, C. A. Vissers, and M. Diaz, edi-

tors, The Formal Description Technique LOTOS, pages 23–73. Elsevier

Science Publishers North-Holland, 1989.

[BCPVD99] S. Bensalem, P. Caspi, C. Parent-Vigouroux, and C. Dumas. A method-

ology for proving control systems with Lustre and PVS. In C. B.

Weinstock and J. Rushby, editors, Dependable Computing for Criti-

cal Applications—7, volume 12 of Dependable Computing and Fault

Tolerant Systems, pages 89–107, San Jose, CA, January 1999. IEEE

Computer Society Press.

[BH93] E. Best and R. P. Hopkins. B(PN)2 — A basic Petri net programming

notation. In A. Bode, M. Reeve, and G. Wolf, editors, PARLE’93

Parallel Architectures and Languages Europe, volume 694 of Lecture

Notes in Computer Science, pages 379–390. Springer, June 1993.

158 Bibliography

[BH99] J. P. Bowen and M. G. Hinchey, editors. Industrial-Strength Formal

Methods in Practice. Formal Approaches to Computing and Informa-

tion Technology. Springer, 1999.

[BK84] J. A. Bergstra and J. W. Klop. Process algebra for synchronous com-

munication. Information and Control, 60:109–137, 1984.

[BL80] J. Brzozowski and E. Leiss. On equations for regular languages, fi-

nite automata, and sequential networks. Theoretical Computer Science,

10:19–35, 1980.

[BL01a] B. Bollig and M. Leucker. Deciding LTL over Mazurkiewicz traces.

In C. Bettini and A. Montanari, editors, Proceedings of the Symposium

on Temporal Representation and Reasoning (TIME’01), pages 189–197.

IEEE Computer Society Press, June 2001.

[BL01b] B. Bollig and M. Leucker. Modelling, specifying, and verifying message

passing systems. In C. Bettini and A. Montanari, editors, Proceedings of

the Symposium on Temporal Representation and Reasoning (TIME’01),

pages 240–248. IEEE Computer Society Press, June 2001.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge

University Press, New York, 1998.

[BPS01] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of

Process Algebra. Elsevier, 2001.

[Bru97] G. Bruns. Distributed Systems Analysis. Prentice Hall, 1997.

[Büc60] J. Büchi. Weak second order logic and finite automata. Z. Math. Logik,

Grundlag. Math., 5:66–62, 1960.

[Büc62] J. R. Büchi. On a decision method in restricted second order arithmetic.

In Proceedings of the International Congress on Logic, Method, and

Philosophy of Science, pages 1–12, Stanford, CA, USA, 1962. Stanford

University Press.

[BV94] J. C. M. Baeten and C. Verhoef. Concrete process algebra. In S. Abram-

sky, D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in

Computer Science, volume 4, pages 149–268. Oxford University Press,

1994.

[BVW94] O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata–theoretic

approach to branching–time model checking. In D. Dill, editor, Pro-

ceedings of the 6th International Conference on Computer–Aided Ver-

ification (CAV’94), volume 818 of Lecture Notes in Computer Science,

pages 142–155. Springer, 1994.

Bibliography 159

[Cau96] D. Caucal. On infinite transition graphs having a decidable monadic

theory. In F. M. auf der Heide and B. Monien, editors, Proceedings of

the 23th International Colloquium on Automata, Languages and Pro-

gramming (ICALP’96), volume 1099 of Lecture Notes in Computer Sci-

ence, pages 194–205, Berlin-Heidelberg-New York, 1996. Springer.

[CE81] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchro-

nization Skeletons using Branching Time Temporal Logic. In D. Kozen,

editor, Proceedings of the Workshop on Logics of Programs, volume 131

of Lecture Notes in Computer Science, pages 52–71, Yorktown Heights,

New York, May 1981. Springer.

[CF69] P. Cartier and D. Foata. Problèmes combinatoires de commutation et

réarrangements. Number 85 in Lecture Notes in Mathematics. Springer,

1969.

[Cha99] K. C. Chang. Digital Systems Design with ”VHDL” and Synthesis.

IEEE Computer Society Press, 1999.

[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Jour-

nal of the ACM, 28(1):114–133, January 1981.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to

algorithms. MIT Press and McGraw-Hill Book Company, 6th edition,

1990.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A

declarative language for programming synchronous systems. In Confer-

ence Record of the Fourteenth Annual ACM Symposium on Principles

of Programming Languages, pages 178–188, Munich, West Germany,

January 21–23, 1987. ACM SIGACT-SIGPLAN, ACM Press.

[CW96] E. M. Clarke and J. M. Wing. Formal methods: State of the art and

future directions. ACM Computing Surveys, 28(4):626–643, December

1996.

[Ded69] R. Dedekind. Über Zerlegungen von Zahlen durch ihre grössten gemein-

samen Teiler. In R. Fricke, E. Noether, and Ö. Ore, editors, Richard

Dedekind. Gesammelte mathematische Werke, volume II, pages 103–

148. Chelsea Publishing Corporation, 1969. appeared 1897.

[DG00] V. Diekert and P. Gastin. LTL is expressively complete for

Mazurkiewicz traces. In Proceedings of 27th International Colloquium

on Automata, Languages and Programming (ICALP’2000), volume

160 Bibliography

1853 of Lecture Notes in Computer Science, pages 211–222. Springer,

2000.

[DG01] V. Diekert and P. Gastin. Local temporal logic is expressively complete

for cograph dependence alphabets. In R. Nieuwenhuis and A. Voronkov,

editors, Proceedings of the 8th International Conference on Logic for

Programming, Artificial Intelligence, and Reasoning (LPAR’01), vol-

ume 2250 of Lecture Notes in Artificial Intelligence, pages 55–69.

Springer, 2001.

[DM96] V. Diekert and Y. Métivier. Partial commutation and traces. Tech-

nical Report TR-1996-02, Universität Stuttgart, Fakultät Informatik,

Germany, March 1996.

[DM97] V. Diekert and Y. Métivier. Partial commutation and traces. In

G. Rozenberg and A. Salomaa, editors, Handbook on Formal Languages,

volume III. Springer, Berlin-Heidelberg-New York, 1997.

[DR95] V. Diekert and G. Rozenberg, editors. The Book of Traces. World

Scientific, Singapore, 1995.

[EC82] E. A. Emerson and E. M. Clarke. Using branching time temporal logic

to synthesize synchronization skeletons. Science of Computer Program-

ming, 2(3):241–266, December 1982.

[EL85] E. A. Emerson and C.-L. Lei. Modalities for model checking: Branch-

ing time strikes back. In Conference Record of the Twelfth Annual

ACM Symposium on Principles of Programming Languages, pages 84–

96, New Orleans, Louisiana, January 13–16, 1985. ACM SIGACT-

SIGPLAN, ACM Press. Extended abstract.

[EM93] W. Ebinger and A. Muscholl. Logical definability on infinite traces. In

A. Lingas, R. Karlsson, and S. Carlsson, editors, Proceedings of the 20th

International Colloquium on Automata, Languages and Programming

(ICALP’93), volume 700 of Lecture Notes in Computer Science, pages

335–346, Lund, Sweden, 1993. Springer.

[EM96] W. Ebinger and A. Muscholl. Logical definability on infinite traces.

Theoretical Computer Science, 154(1):67–84, January 1996.

[Fok00] W. Fokkink. Introduction to Process Algebra. Springer, 2000.

[GHJV00] Gamma, Helm, Johnson, and Vlissides. Design Patterns Elements of

Reusable Object-Oriented Software. Addison-Wesley, Massachusetts,

2000.

Bibliography 161

[GHP97] J.-C. Grégoire, G. J. Holzmann, and D. A. Peled, editors. The Spin

Verification System, volume 32 of DIMACS series. American Mathe-

matical Society, 1997.

[GMP98a] P. Gastin, R. Meyer, and A. Petit. A (non-elementary) modular de-

cision procedure for LTrL. In MFCS: Symposium on Mathematical

Foundations of Computer Science, volume 1450 of Lecture Notes in

Computer Science, 1998.

[GMP98b] P. Gastin, R. Meyer, and A. Petit. A (non-elementary) modular deci-

sion procedure for LTrL. Technical report, LSV, ENS de Cachan, 1998.

extended version of MFCS’98.

[HHI+01] J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Y. Vardi,

and V. Vianu. On the unusual effectiveness of logic in computer science.

The Bulletin of Symbolic Logic, 7(2):213–236, jun 2001.

[HJJ+95] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige,

T. Rauhe, and A. Sandholm. Mona: Monadic second-order logic in

practice. In E. Brinksma, R. Cleaveland, K. G. Larsen, T. Margaria,

and B. Steffen, editors, Tools and Algorithms for the Construction and

Analysis of Systems, volume 1019 of Lecture Notes in Computer Sci-

ence, pages 89–110. Springer, 1995.

[HM85] M. Hennessy and R. Milner. Algebraic laws for indeterminism and

concurrency. Journal of the ACM, 32:137–162, 1985.

[Hoa85] C. A. R. Hoare. Communcating Sequential Processes. Prentice Hall,

1985.

[Jon75] N. D. Jones. Space-bounded reducibility among combinatorial prob-

lems. Journal of Computer and System Sciences, 11(1):68–85, August

1975.

[Kam68] H. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,

University of California, Los Angeles, 1968.

[Kat99] J.-P. Katoen. Concepts, Algorithms and Tools for Model Checking,

volume 32-1 of Arbeitsberichte der Informatik. Friedrich-Alexander-

Universität Erlangen Nürnberg, 1999.

[Kla91] N. Klarlund. Progress measures for complementation of omega-

automata with applications to temporal logic. In Proceedings of

the 32nd Annual Symposium on Foundations of Computer Science,

FoCS’91, pages 358–367. IEEE Computer Society Press, 1991.

162 Bibliography

[Kle69] D. Kleitman. On Dedekind’s problem: the number of monotone

Boolean functions. In 5–th Proceedings of the American Mathematics

Society, volume 21, pages 677–682, 1969.

[Koz83] D. Kozen. Results on the propositional mu-calculus. Theoretical Com-

puter Science, 27:333–354, December 1983.

[KP91] S. Katz and D. Peled. Interleaving set temporal logic. Theoretical

Computer Science, 75(3):21–43, 1991. Preliminary versions appeared

in 6th Annual ACM Symposium on Distributed Computing 1987, and

in LNCS 398, Temporal Logic in Specification, 1988.

[Kro99] T. Kropf. Introduction to Formal Hardware Verification. Springer,

1999.

[KV97] O. Kupferman and M. Y. Vardi. Weak alternating automata are not

that weak. In Proceedings of the Fifth Israel Symposium on Theory

of Computing and Systems, ISTCS’97, pages 147–158, Los Alamitos,

California, 1997. IEEE Computer Society Press.

[KV00] O. Kupferman and M. Y. Vardi. An automata-theoretic approach to

reasoning about infinite-state systems. In E. A. Emerson and A. P.

Sistla, editors, Proceedings of the 12th International Conference on

Computer-Aided Verification (CAV’00), volume 1855 of Lecture Notes

in Computer Science. Springer, 2000.

[KV01] O. Kupferman and M. Y. Vardi. Weak alternating automata are not

that weak. ACM Transactions on Computational Logic, 2(3):408–429,

2001.

[KVW00] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic

approach to branching-time model checking. Journal of the ACM,

47(2):312–360, March 2000.

[Leu00] M. Leucker. On model checking synchronised hardware circuits. In

J. He and M. Sato, editors, Proceedings of the 6th Asian Computing

Conference (ASIAN’00), volume 1961 of Lecture Notes in Computer

Science, pages 182–198, Penang, Malaysia, November 2000. Springer.

[Leu02] M. Leucker. Prefix-recognizable graphs and monadic second order logic.

In W. Thomas, T. Wilke, and E. Grädel, editors, Automata, Logics and

Infinite Games. Springer, 2002. to be published.

[LN01] M. Leucker and T. Noll. Truth/SLC - A parallel verification plat-

form for concurrent systems. In G. Berry, H. Comon, and A. Finkel,

Bibliography 163

editors, Proceedings of the 13th Conference on Computer-Aided Verifi-

cation (CAV’01), volume 2102 of Lecture Notes in Computer Science,

pages 255–259. Springer, July 2001.

[LT00] C. Löding and W. Thomas. Alternating automata and logics over in-

finite words. In Proceedings of the IFIP International Conference on

Theoretical Computer Science, IFIP TCS2000, volume 1872 of Lecture

Notes in Computer Science, pages 521–535. Springer, August 2000.

[Maz77] A. Mazurkiewicz. Concurrent program schemes and their interpreta-

tions. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[Maz88] A. Mazurkiewicz. Basic notions of trace theory. In J. W. de Bakker,

W.-P. de Roever, and G. Rozenberg, editors, Proceedings of the

School/Workshop on Linear Time, Branching Time and Partial Order

in Logics and Models for Concurrency, volume 354 of Lecture Notes in

Computer Science, pages 364–397. Springer, June 1988.

[McM92] K. L. McMillan. The SMV system, symbolic model checking - an ap-

proach. Technical Report CMU-CS-92-131, Carnegie Mellon University,

1992.

[MH84] S. Miyano and T. Hayashi. Alternating finite automata on ω-words.

Theoretical Computer Science, 32:321–330, 1984.

[Mic88] M. Michel. Complementation is more difficult with automata on infinite

words. CNET, Paris, 1988.

[Mil80] R. Milner. A Calculus for Communicating Processes, volume 92 of

Lecture Notes in Computer Science. Springer, 1980.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer

Science, 25(3):267–310, July 1983.

[Mil89] R. Milner. Communication and Concurrency. International Series in

Computer Science. Prentice Hall, 1989.

[Mol92] F. Moller. The Edinburgh Concurrency Workbench (Version 6.1). De-

partment of Computer Science, University of Edinburgh, October 1992.

[Mot93] Motorola, editor. The PowerPC (TM) 601 User’s Manual. Motorola,

1993.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur-

rent Systems. Springer, New York, 1992.

164 Bibliography

[MS87] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees.

Theoretical Computer Science, 54:267–276, 1987.

[MSS86] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata,

the weak monadic theory of the tree, and its complexity. In Proceed-

ings of the 13th International Colloquium on Automata, Languages and

Programming, ICALP’86, volume 226 of Lecture Notes in Computer

Science, pages 275–283. Springer, 1986.

[MT96] M. Mukund and P. S. Thiagarajan. Linear time temporal logics over

Mazurkiewicz traces. Lecture Notes in Computer Science, 1113:62–92,

1996.

[Muk92] M. Mukund. Petri nets and step transition systems. IJFCS: Interna-

tional Journal of Foundations of Computer Science, 3, 1992.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, New

York, 1994.

[Pel98] D. Peled. Ten years of partial order reduction. In Proceedings of 10th

International Conference on Computer-Aided Verification (CAV’98),

volume 1427 of Lecture Notes in Computer Science, pages 17–28, Van-

couver, BC, Canada, 1998. Springer.

[Per91] D. Perry. VHDL. McGraw-Hill, New York, 1991.

[Plo81] G. D. Plotkin. A Structural Approach to Operational Semantics. Tech-

nical Report FN-19, DAIMI, University of Aarhus, Denmark, Septem-

ber 1981.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th

IEEE Symposium on the Foundations of Computer Science (FOCS-77),

pages 46–57, Providence, Rhode Island, October 31–November 2 1977.

IEEE Computer Society Press.

[PP95] D. Peled and W. Penczek. Using asynchronous Büchi automata for

efficient model-checking of concurrent systems. In Protocol Specifica-

tion Testing and Verification, pages 90–100, Warsaw, Poland, 1995.

Chapman & Hall.

[PWW96] D. Peled, T. Wilke, and P. Wolper. An algorithmic approach for check-

ing closure properties of ω-regular languages. In Proceedings of the

7th International Conference on Concurrency Theory (CONCUR’96),

volume 1119 of Lecture Notes in Computer Science, pages 596–610,

Pisa,Italy, 1996. Springer.

Bibliography 165

[PWW98] D. Peled, T. Wilke, and P. Wolper. An algorithmic approach for

checking closure properties of ω-regular languages. Theoretical Com-

puter Science, 195(2):183–203, 1998. A preliminary version appeared

in [PWW96].

[QS82] J. Queille and J. Sifakis. Specification and verification of concurrent

systems in CESAR. In Proceedings of the Fifth International Sym-

posium in Programming, volume 137 of Lecture Notes in Computer

Science, pages 337–351, New York, 1982. Springer.

[Rei86] W. Reisig. Petrinetze. Springer, 2 edition, 1986.

[Roh97] S. Rohde. Alternating automata and the temporal logic of ordinals.

PhD thesis, University of Illinois at Urbana-Champaign, 1997.

[RV01] A. Robinson and A. Voronkov, editors. Handbook of Automated Rea-

soning. Elsevier, 2001.

[Saf88] S. Safra. On the complexity of omega-automata. In Proceedings of

the 29th Annual Symposium on Foundations of Computer Science,

FoCS’88, pages 319–327, Los Alamitos, California, October 1988. IEEE

Computer Society Press.

[SC82] A. P. Sistla and E. M. Clarke. The complexity of propositional lin-

ear temporal logics. In Proceedings of the Fourteenth Annual ACM

Symposium on Theory of Computing, pages 159–168, San Francisco,

California, 5–7 May 1982.

[SC85] A. P. Sistla and E. M. Clarke. Complexity of propositional temporal

logics. Journal of the ACM, 32:733–749, 1985.

[SNW96] V. Sassone, M. Nielsen, and G. Winskel. Models for concurrency: To-

wards a classification. Theoretical Computer Science, 170(1–2):297–

348, 15 December 1996.

[SP99] P. Stevens and R. Pooley. Using UML: software engineering with objects

and components. Object Technology Series. Addison-Wesley Longman,

1999. Updated edition for UML1.3: first published 1998 (as Pooley and

Stevens).

[Sti01] C. Stirling. Modal and Temporal Properties of Processes. Texts in

Computer Science. Springer, 2001.

[SVW85] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem

for Büchi automata with applications to temporal logic (extended ab-

stract). In W. Brauer, editor, Automata, Languages and Programming,

166 Bibliography

12th Colloquium, volume 194 of Lecture Notes in Computer Science,

pages 465–474, Nafplion, Greece, 15–19 July 1985. Springer.

[TH98] P. S. Thiagarajan and J. G. Henriksen. Distributed versions of linear

time temporal logic: A trace perspective. Lecture Notes in Computer

Science, 1492:643–681, 1998.

[Thi94] P. S. Thiagarajan. A trace based extension of linear time temporal logic.

In Proceedings, Ninth Annual IEEE Symposium on Logic in Computer

Science, pages 438–447, Paris, France, 4–7 July 1994. IEEE Computer

Society Press.

[Thi95] P. S. Thiagarajan. A trace consistent subset of PTL. In I. Lee and

S. A. Smolka, editors, Proceedings of the 6th International Conference

on Concurrency Theory (CONCUR’95), volume 962 of Lecture Notes

in Computer Science, pages 438–452, Philadelphia, Pennsylvania, 21–

24 August 1995. Springer.

[Tho79] W. Thomas. Star-free regular sets of ω-sequences. Information and

Control, 42(2):148–156, August 1979.

[Tho90a] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, chapter 4, pages 133–191.

Elsevier Science Publishers B. V., 1990.

[Tho90b] W. Thomas. On logical definability of trace languages. In V. Diekert,

editor, Proceedings of a workshop of the ESPRIT Basic Research Ac-

tion No 3166: Algebraic and Syntactic Methods in Computer Science

(ASMICS), TUM-I9002, pages 172–182, Kochel am See, Bavaria, 1990.

Technical University of Munich.

[Tho99] W. Thomas. Complementation of Büchi automata revisited. In

J. Karhumäki et al., editors, Jewels are forever – Contributions on

Theoretical Computer Science in Honor of Arto Salomaa, pages 109–

122. Springer, 1999.

[TS01] U. Tietze and C. Schenk. Halbleiter-Schaltungstechnik. Springer, 11

edition, 2001.

[TW97] P. S. Thiagarajan and I. Walukiewicz. An expressively complete linear

time temporal logic for Mazurkiewicz traces. In Proceedings, Twelth

Annual IEEE Symposium on Logic in Computer Science, pages 183–

194, Warsaw, Poland, 29 June–2 July 1997. IEEE Computer Society

Press.

Bibliography 167

[Val91] A. Valmari. A stubborn attack on state explosion. In E. M. Clarke and

R. P. Kurshan, editors, Proceedings of Computer-Aided Verification

(CAV’90), volume 531 of Lecture Notes in Computer Science, pages

156–165, Berlin, Germany, June 1991. Springer.

[Var96] M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal

Logic, volume 1043 of Lecture Notes in Computer Science, pages 238–

266. Springer, New York, NY, USA, 1996.

[Var01] M. Y. Vardi. Branching vs. linear time: Final showdown. In T. Mar-

garia and W. Yi, editors, Proceedings of the 7th International Con-

ference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’01), volume 2031 of Lecture Notes in Computer Sci-

ence, pages 1–22. Springer, April 2001.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to auto-

matic program verification. In Symposium on Logic in Computer Sci-

ence (LICS’86), pages 332–345, Washington, D.C., USA, June 1986.

IEEE Computer Society Press.

[VW94] M. Y. Vardi and P. Wolper. Reasoning about infinite computations.

Information and Computation, 115(1):1–37, 15 November 1994.

[Wal] I. Walukiewicz. Difficult configurations – on the complexity of LTrL.

Formal Methods in System Design. to appear.

[Wal98] I. Walukiewicz. Difficult configurations - on the complexity of LTrL.

In K. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of 25th

International Colloquium on Automata, Languages and Programming

(ICALP’98), volume 1443 of Lecture Notes in Computer Science, pages

140–151, 1998.

[Zie87] W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. —

Informatique Théorique et Applications, 21:99–135, 1987.

Symbol Index

I independence relation 15

D dependence relation 15

(Σ, I) independence alphabet 15

(Σ, D) dependence alphabet 15

G(Σ, D) dependence graph 16

∆(R) diagonal 16

XIY independence of X and Y

18
���

(Σ, I) domain of traces 22

conf(T) configurations 26

prf(T) prefixes of traces 27

C
a

−→T C
′ successor relation 27

CG(T) configuration graph 27

|w| length of word 28

Σ∗ finite words 28

Σω infinite words 29

Σ∞ words 29

prf(w) prefixes of words 29

alph(w) letters of w 29

lin(T) linearizations 29

lin(T) linearizations 29

tr(w) word to trace 31
≡(Σ,I) congruence for traces 33

∼ (finite) trace equivalence

33

v prefix order 34
% run map 35

Tw trace of w 37

Cu configuration of u 37

U.V language product 38

Inf(ρ) states visited infinitely of-

ten 41

L(A) language of automaton 41

A complement of automaton

42

|A| size of automaton 42

B+(X) positive Boolean formulas

44

st(ϕ) states 46

|A| size of automaton 47

M Turing machine 53

ϕ dual of formula 56

V [x/i] modified valuation 63

w |=V ϕ w models ϕ 63

L(ϕ) language of ϕ 64

V [x/e] modified valuation 64

T |=V ϕ T models ϕ 65

L(ϕ) language of ϕ 65

CXV configuration by variables

66

LTLw LTL over words 69

LTL linear temporal logic 69

w(i) suffix of word at i 70

w |= ϕ w models ϕ 70

L(ϕ) language of ϕ 70

|ϕ| length of formula 71

Aϕ A of ϕ 73

LTLt LTL over traces 83

LTL linear temporal logic 83

L(ϕ) language of ϕ 84

ecl(η) extended closure 91

||η||a rewrite operator 93

reachY (ψ) reachable states 98

rew rewrites 115

reach (ψ) reachable states 115

FCG(T) Foata conf. graph 124

170 Symbol Index

fconf(T) Foata conf. 124

I(Σ) independence sets 126

LTLf(Σ, I) FLTL 134

L(ϕ) language of ϕ 135

D(S) dependent on S 139

2X power set of X 153

X] Y disjoint union 153

X complement 153
(

n
k

)

binomial coefficients 153

bxc floor 153

∆(R) diagonal 155

l covering relation 155

Index

a-event, 20

accepting, 50

accepting component, 57

accepting set, 57

action, 11, 15, 120

dependent, 12

independent, 12

observe, 12

alphabet, 15

concurrent, 16

distributed, 17

fully-dependent, 16

fully-independent, 16

transitive dependent, 16

alternating automaton, 56

alternating Büchi automaton, 46

alternating Büchi automaton of ϕ, 73

arbiter, 120

asynchronous automata, 38

asynchronous execution, 130

automaton

linear, 59

trace-consistent, 61

weak, 57

Büchi automaton, 40

size, 42, 47

binomial coefficients, 153

Boolean function

monotone, 45

Buchi automaton

deterministic, 41

bus, 120

Calculus of Communicating Systems,

122

causally dependent, 12

CCS, 122

central processing unit, 120

clocked, 121

communication action, 12

complement, 153

complement of an automaton, 42

components, 57

concurrency relation, 20

concurrent alphabet, 16

configuration, 26

Foata, 124

successor, 27

configuration graph, 27

conservative extension, 7

countable, 153

cover, 155

covering relation, 20

CPU, 120

D-flip-flop, 143

data input, 143

Dedekind’s problem, 45

defined, 70, 84

dependence alphabet, 15

dependence graph, 16

dependence relation, 15

dependent, 18

derivative, 115

directed graph, 153

disjoint union, 153

distributed alphabet, 17

172 Index

distributed asynchronous transition sys-

tem, 130

distributed synchronous transition sys-

tem, 129

distributed transition system, 127

DTS, 127

dual, 72, 92, 102, 111

edges, 153

equivalent, 86

event, 19

identify, 65

eventually, 71

expressively complete, 81

extended closure, 91

finite trace, 21

floor, 153

FO-definable, 64, 65

Foata configuration, 124

Foata configuration graph, 124

Foata linear temporal logic, 5, 8, 134

Foata linearization, 125, 126

formal methods, 1

formula

dual, 56

equivalence, 73

length, 71

model, 45

represented, 118

satisfies, 45

formula complexity, 80

future, 20

global states, 127

globally, 71

graph, 153

D-clique, 18

(strongly) connected component,

154

clique, 154

complete, 17, 154

complete component, 154

component, 154

cycle, 154

induced by, 154

initial node, 154

is contained, 154

loop, 154

non-trivial component, 154

path, 154

pointed, 154

reachability, 154

reached in, 154

successor node, 154

graphical representation, 48

Hasse diagram, 155

hazard-free, 143

Hennessy-Milner, 88

history, 20, 26

independence alphabet, 15

independence relation, 15, 17

independent, 18

infinite trace, 21

initial state, 40, 46, 127

interleaved synchronous execution, 130

interleaving set temporal logic, 87

internal, 12

isomorphic, 22

label, 18

labeled partially ordered set, 18

labeling function, 18

language, 41, 50, 64, 65, 134, 135

ω-regular, 38

definable, 41

linearization, 38

language of A, 50

length, 28

linear, 59

linear temporal logic, 84

linearization, 29, 36

Index 173

Foata, 126

liveness property, 71

local states, 127

local transition, 128

maximal step semantics, 5, 8, 122, 152

Mazurkiewicz trace, 21

model, 70, 84, 135

minimal, 45

model checking, 79, 84, 135

models, 70, 84, 135

nodes, 153

non-elementary, 89

poset, 18

positive Boolean formulas, 44

power set, 153

PowerPC, 120

prefix, 27, 29

process, 11, 17

process definition, 132

program complexity, 80

reactive program, 69

regular, 38

regular trace language, 38

rejecting component, 57

relation

covering, 155

diagonal, 155

product, 155

reliability, 1

rewrite operator, 93

run, 41, 49

accepting, 41

linear, 59

run map, 35

safety properties, 71

satisfiable, 70, 84, 135

satisfies, 70, 84, 135

SCCS, 122

sequential process term, 132

set of linearizations, 29

states, 40, 46

states visited infinitely often, 41

step, 123, 124, 126

string, 115

subformula, 72

strict, 72

suffix, 70

synchronous execution, 129

synchronous process system, 132

system validation, 1

tick, 120

trace

canonical, 31

induced, 27

trace congruence relation, 33

trace congruent, 33

trace consistent, 38, 61, 79

trace equivalent, 33

trace language, 22

transition function, 40, 46

transition graph, 47

transition relation, 127

Turing machine, 53

two bit counter, 143

universal automaton, 56

universal Büchi automaton, 51

unlabeled graph, 42

until-formula, 73

valuation, 63, 64

variable

essential, 45

identify, 66

weak, 57

word, 28

finite, 28

infinite, 28

words, 29

Aachener Informatik-Berichte 175

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports

please consult http://aib.informatik.rwth-aachen.de/ or send your request

to: biblio@informatik.rwth-aachen.de

99-01 ∗ Jahresbericht 1998

99-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

99-03 ∗ R. Gallersdörfer / M. Jarke / M. Nicola: The ADR Replication Manager

99-04 M. Alpuente / M. Hanus / S. Lucas / G. Vidal: Specialization of Func-

tional Logic Programs Based on Needed Narrowing

99-07 Th. Wilke: CTL+ is exponentially more succinct than CTL

99-08 O. Matz: Dot-Depth and Monadic Quantifier Alternation over Pictures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge / Marcin Jurdziński: A Discrete Strategy Improvement Al-

gorithm for Solving Parity Games

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 ∗ Mareike Schoop: Cooperative Document Management

2000-06 ∗ Mareike Schoop, Christoph Quix (Ed.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-

ternational Workshop of Functional Languages

2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server

Implementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model

Checking for the Alternation free µ-calculus

2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC lan-

guages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe / Stefan Wöhrle: An Existential Locality Theorem

176 Aachener Informatik-Berichte

2001-08 Mareike Schoop / James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts / Jürgen Giesl: A collection of examples for termination

of term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark and Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl / Aart Middeldorp: Transformation Techniques for

Context-Sensitive Rewrite Systems

2002-03 Benedikt Bollig / Martin Leucker / Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl / Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter / Thomas von der Maßen / Thomas Weiler: Modelling

Requirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

Lebenslauf

Name Martin Leucker

Geburtsdatum 16.05.1971

Geburtsort Kamp-Lintfort

Bildungsgang

1977 – 1981 Besuch der Grundschule am Niersenberg (Kamp-Lintfort)

1981 – 1990 Besuch des Gymnasiums Kamp-Lintfort

Abschluß: allgemeine Hochschulreife

Okt. 1990 Beginn des Studiums der Mathematik (mit Nebenfach Informatik) an

der RWTH Aachen

Okt. 1991 Beginn des Studiums der Informatik (mit Nebenfach Mathematik) an

der RWTH Aachen

Aug. 1992 Vordiplom in den Fächern Mathematik und Informatik

26.04.1996 Beendigung des Studiums der Mathematik mit Abschluß Diplom in

Mathematik mit Nebenfach Informatik

seit Mai 1996 Beschäftigung als wissenschaftlicher Angestellter am Lehrstuhl für In-

formatik II (Prof. Dr. K. Indermark) an der RWTH Aachen

