Functional Reactive Programming

Maximilian Krome
Email: maximilian.krome @student.uni-luebeck.de

Abstract—FRP (Functional reactive programming) is an ap-
proach to use functional programming paradigms on processing
dynamic signals. Those signals can either be continuous, so called
”Behaviors” or discrete referred to as ”Events”. The inherited
declarative aspect of FRP enables the programmer to model the
solution as opposed to model the way to obtain it via imperative
programming.

FRP allows the programmer to write solutions that abstract
away from platform and hardware specifics. Due to the nature
of functional programming less code is needed resulting in less
errors and increased readability. While being advertised as more
intuitive, it has not overtaken classic imperative frameworks or
programming languages.

FRP is used for GUI (Graphical User Interface) development.
Although not limited to this field the seminar will focus on this
aspect

I. BENEFITS OF FUNCTIONAL PROGRAMMING

In this section I will briefly cover some key benefits of
functional programming over imperative programming that
explain why FRP was developed in the first place. It is mainly
based on John Backus’ statements on functional programming

(L.

A. Problems with Imperative Programming

Back in the beginnings of computer science Von Neumann
founded the architecture of computers that is still in use today.
It consists of a central bus that connects the CPU and memory,
as well as the periphery. Imperative languages where designed
by computer engineers in order to control this structure. They
went from pure Machine code to Assembly to the modern
programming languages we all know and use. Along the
way they achieved some abstraction from the underlying
hardware but still stuck close to the inherited Von Neumann
architecture. Every command consists of some assignment of
some computation. The assignment part is limited to only one
memory unit at once and so are the commands. This splits
the solution for any given problem in so many small steps
that the original intent is most likely no longer visible. Of
course more steps mean more code and more code inevitably
leads to more mistakes and consequently more development
costs. A further problem is the reliance on states in order to
control the program flow. One word instructions prevent from
doing otherwise since you need some way to take previous
computation in account. This leads to the requirement of com-
plex frameworks in order to control such state computations
and everything that is designed on top of that framework is
of limited expressiveness, because expressions and statements
are strictly separated in these languages (again the one word
at a time limit is at fault). For Example imagine your classic
if, while and for statements in your imperative language of

choice. Now try build your own statement of them. All of
these problems came because languages where not build on
a solid mathematic foundation but on hardware requirements.
Therefore along these problems comes another one: It is very
difficult to reason about the possible outcome of programs
written in such languages in a scientific/mathematic way.

B. Solutions of Functional Programming

The pioneers of functional programming where aware of
these issues and solved them developing, guess what, func-
tional programming languages. Instead of looking at the given
hardware and thinking of what to do with it, they designed
languages looking at Math and thinking of implementing its
properties. Inspired by Mathematics, functional programming
languages come with a complete formal description of their
syntax and semantics. Those descriptions can then be utilized
for formal proofs of certain properties. And like in Math you
describe objects rather than telling the computer how to get
them. A very common example of functional programming is
the faculty function:

fac (Inmt n) =>n —> n
fac 0 =1
fac n = n x factorial (n — 1)

Although it is entirely possible to write this similarly in, for
example, Java, this is pretty much the mathematical definition
written down. There is no fat to it. Code in functional
programming languages comes close to specifying the problem
itself. There is another very common example that embodies
the idea behind functional programming very well:

gsort (Ord a) => [a] —> [a]

qsort [] =[]

gsort (x:xs) = qsort less ++ [x] ++ gsort
more

where less = filter (<x) xs

more = filter (>=x) Xxs

The above example is an implementation of the quick sort
algorithm in Haskell. It illustrates nicely how elegant and
concise functional programming can be, there is no need to
fully understand it. [1_-] The code does not contain any state
transitions and the core idea of quick sort is immediately
visible. Interestingly this little example already follows every
possible paradigm of functional programming:

'If you really want to this may help: The first line is for type definition, not
really interesting and can be ignored. ++ concatenates two lists; a:b pushes
element a on list b; where allows you to define helper functions; in Haskell
you do not put parenthesis around arguments. Haskell uses pattern matching,
line three basically says: Do stuff when the input is a list containing at least
one element and I want to refer to the first element as x while I will call the
rest of the list xs. Goto the [Haskell Wiki for a detailed explanation.

https://wiki.haskell.org/Why_Haskell_matters

1) Referential Transparency: At no point it is valid to
reassign variables. For example x = x + 1 would be
invalid.

2) Purity: Functions do not have side effects and functions
will always produce the same result when given the same
values again.

3) First Class Functions or Higher Order Functions: Func-
tions may appear anywhere every other object could do.
More specific: They can be parameters or return values
of other functions. For example the filter function takes
a function that returns a boolean value for a single
argument. With this property comes partial application
and currying. Every function does not evaluate all its
arguments at once but instead evaluates one argument,
then returns a function that evaluates the remaining
arguments the same way. For example 1 + 2 would first
become function 1 + applied to 2. This is also exem-
plified above where the < is only given one argument
consequently returning another function.

4) Recursion: Since you are not allowed to reassign vari-
ables the standard for and while loop are useless leaving
you with no alternatives but recursion. You can see it in
the third line of example code.

How does all this knowledge help in regard to the original
topic? The underlying tone is that every effort is taken in order
to shun out those state computations. However you still need
them in order to interact with the real world. A program may
be supposed to act differently upon input if button x was or
was not pressed beforehand, even though that is a violation of
the purity paradigm. There are a variety of solutions for this
problem:

1) Not making the functional programming language pure,
meaning it allows for side effects and mutable values.
Obviously this pretty much leaves only the First Class
Function paradigm unharmed and is a major setback. It
is also noted that many imperative languages support
functional programming to some extend (Java and C
sharp for example). Due to their imperative heritage they
could never be purely functional without being a totally
different language.

2) Using a special type system for mutable values. The
prime example here is Haskell and its Monads. I wont
go into a detailed explanation of Monads, but they
are generally considered one of the hardest aspects of
Haskell and functional programming all together. [2]

3) Always pass a state object as parameter around

Functional reactive programming takes the next step.

II. THE BEGINNINGS: FRAN

A. Introduction

The idea of FRP was founded by Paul Hudak and Conal
Elliott in an award winning paper published at the Interna-
tional Conference on Functional Programming 1997 [3]]. They
developed a set of functions and data types revolving around
signals, specifically continuous behaviors and discrete events.
Both of which are implemented as first class values, functions
and signals can be combined with each other and themselves

at will. Fran itself is not a real programming language but
instead embedded in Haskell and running on Hugs (Haskell
User Gofer System, basically a Haskell interpreter), thus they
use Haskell syntax. They give a descent motivation for their
work as they describe the properties of Fran, more precise
Modeling. In the sense of functional programming modeling
can be viewed as what you want to animate and presentation
as how you want to do it. Ideally you do not have to bother
with the later so you can focus on the former and that is what
Fran wants to deliver. Similar to later papers on the matter of
FRP, formal semantics of included functions and data types
are presented. These contain the following:

1) Time: Is given as a basic behavior

2) Time transformation: the timeTransform function takes
two behaviors as parameters, of which the second one
is an alternation of the time signal. It returns the first
behavior at the time value that the second behavior
currently holds. timeTransform b (time/2) is behavior
b slowed down by factor 1/2.

3) Lifting: The liftn function takes a function with n
parameters and n further behaviors. It can be thought
of as a mapping function that takes the current values
of each signal, feeds them to the function and returns
the resulting values as another behavior. Lifting is so
important and common, that it often happens implicit
(like in the example above with time)

4) Integration: Works on numeric signals, takes a starting
time and integrates the signal from that point on.

5) Reaction: Until takes a behavior and an event of a
behavior as parameter. It returns a behavior that is either
the one first given or the one contained in the event if
the event happened.

Here a couple of basic examples:

t0 x=>
tl x=>

colorCycle t0 = red ’untilB’
\tl —> green ’untilB~’
\t2 —> colorCycle t2

Ibp
lbp

This behavior switches from red to green E] every time the left
mouse button is pressed lbp. Ibp is parameterized with the
time after which it should start producing values, like many
other behaviors. The backslash initiates a lambda abstraction
or anonymous function definition (Aparameter Name.term
equals \ parameterName —> term). The *=> is used to map
events.

followMouseRate im tO0 = move offset im

where offset = integral rate t0
rate = mouse t0 .—. pos
pos = origin2 .+~ offset

followMouseRate takes an image and lets it follow the current
mouse position at speed that is dependent on their current
distance. Remind yourself of the equation for the relationship
between velocity and distance: s = [vdt. Here v is dependent
on the distance between the mouse position and the current

2red and green are not just values in this context but behaviors that
continuously carry the same value

3t2 —> colorCycle 2 could also be written as just colorCycle, because
Haskell supports function currying

position of the picture. Since the mouse position is a 2
dimensional vector some vector specific operators are used:
.—. creates a vector from to points, .+~ adds a point and a
vector resulting in another point. offset, rate and pos are
defined mutually recursive. It may seem odd at first, if these
were normal functions they would call each other infinitely,
never terminating nor returning a result. However since they
are all behaviors things are a little different. Each of them map
the current value of some other signal to their own current
value. They do not care if the value they mapped originally
changes under their feet as a result of their doing.

B. Behaviors

Behaviors could be implemented as follows:

data Behavior a = Behavior (Time —> a)

data is the Haskell key word for the definition of a constructor.
The ”a” on the left side is a type parameter similar to Generics
in Java or Templates in C++. On the right side the actual
parameters for the constructor are written, in this case just
a function that takes time and returns a value of type “a”.
Unfortunately this does not work efficiently. When sampling
a behavior that is dependent on some events it would be
necessary to go back and look at every occurrences of these
events every time sampling. Therefore behaviors could be
defined like this:

data Behavior a =
Behavior a))

Behavior (Time —> (a,

When sampling this one receives the value and a new behavior.
The new behavior is a (simplified) version of the existing one
that starts out at the sampling time. This way there is no need
to to redo the same work. The catch is that one must not
sample with times earlier than with the time he sampled last.
In fact behaviors are even more complicated:

data Behavior a = Behavior (Time —> (a,
Behavior a)) (lvl Time —> (1lvl a,
Behavior a))

The first part is like the previous definition, the second is
similar to that but operates on Intervals 1vl of time and value.
The purpose of this is explained below.

C. Predicate

One interesting problem is the translation of behaviors
into events. Fran offers the predicate function which takes
a boolean behavior and a time while returning an event that
evaluates to () (unit type) when the behavior first becomes
true after the given time. This bears a large problem: Boolean
behaviors may evaluate to true for an infinitely small time to
instantaneously

predicate (time * exp (4 x time) ==x 10)
0

At this point it is no longer possible to get a correct pro-
gram execution via sampling of signals. Symbolic solving
of equations is not an option either since it only works on

simple problems. Therefore interval analysis was introduced.
Remember the second part of the final behavior definition?
Well, it contains a function that returns an interval of values
the behavior assumes in the given time frame. These functions
are called inclusion functions. E] Booleans can be considered
ordered like False < True, so the Intervals [False, False]
, [False, True] and [True, True] are possible results of an
inclusion function of a boolean behavior. For the predicate
function this means the event time can be approximated: If
the result of the inclusion function is [False, False] the event
does not take place in the given timespan, if it is [True, True
] it takes place immediately and [False, True] we cut the
time interval in two halves upon which we call the inclusion
function and check the results recursively. Of course it is not
necessary nor possible to shrink the interval infinitely, instead
one proceeds this formula until sufficient accuracy is achieved.

D. about Haskell as a host language

The type system of Haskell allows for relatively easy
development of embedded languages. Haskell itself is, along
other things, a purely functional programming language and
passes its properties down to whatever language you build
of it. Haskell is a lazy programming language, which means
it does not compute its functions when called but when the
return value is needed. This allows for infinite data structures,
which in turn allow for very intuitive problem solutions. For
example imagine you wanted every item of a list bound to its
index you can call:

zip [1..] yourList

zip takes two lists and returns a list of tuples, each tuple
containing corresponding elements of the lists. The length
of the shortest list delimits the length of the resulting list.
Therefore even if [1..] goes to infinity the program termi-
nates, because it only builds the list as long as required by the
second argument. E] Generally it is nice to spare unnecessary
computation, unfortunately there is a major drawback to it:
The Haskell interpreter can pile up a very large stack of
computations (space leaks) which then have to be executed
all at once (time leaks). This greatly hinders responsiveness
and consequently real time systems as well as GUIs. However
you might have noticed that infinite data types are essential to
the definition of behaviors (read above) and consequently the
design of Fran would not have been possible the same way
without laziness.

III. REAL TIME FRP
A. Introduction

RT-FRP [3]] is an alternation that is designed to suit real
time applications. Programmers in this field must be able to
predict how much time and space any given computation may
take (and it should not be much regardless.) Unfortunately that
is impossible, it is well known that there is no program that

“How these functions do that is not explained in the paper regarding Fran
but is the topic of another [4]
SIf the second list is infinite the program will of course not terminate

can tell in limited time whether any given program terminates,
let alone how much resources it uses. The only way around
this is to limit the expressiveness of the language in which the
program is written that you want to analyze.

RT-FRP is not designed to be used as language you write
programs in, instead the main goal for it was to be an
intermediate language. Classic FRP should be compiled in RT-
FRP which would then be either compiled in C or interpreted.

Classic FRP has the full power of the lambda calculus with
first class signals, so things like: behaviors of behaviors, recur-
sive behaviors, function defining behaviors and vice versa are
entirely possible and so are programs which do not terminate.
RT-FRP has taken it upon itself to cut away expressiveness in
such a way that you still end up with an useful language that
meets real time constraints.

A few simple functions are provided in order to operate on
signals:

1) ext lifts an expression to a signal. It can be seen as
liftO .

2) let signal x =sl in s2 allows to access the current
value of the first signal in an ext term forming the
second signal. Example: let signal x = time in ext
(x — 1) is the current time delayed by one second.

3) delay v s delays a signal by one tick. It displays v in
the first tick.

4) sl switch on x = ev in s2 switches from sl to s2
whenever event ev occurs. Starts out as sl.

It has three main properties that guarantee its real time
capabilities: It is statically typed and type preserving meaning
runtime errors are impossible, costs for each execution step
are bounded to a constant as well as the space for a running
program and terms can not grow unbounded.

A strong type system is used to enforce these properties.
In the end every well typed program does not get stuck in
execution.

B. Syntax

RT-FRP has a very simple grammar describing its syntax
that strictly separates values, terms and signals:

e s=zlel()l(er, el L |
Az.eley es|fix x.e
v u=c|()|(v1, vo)lvL| L |Az.e
s, ev ==input|timelext e|delay v s|
let signal x = s1 in so|

s1 switch onx = evin s

e, v, s, ev refer to functional terms, values, signals and events.
It is just the basic lambda calculus with some extensions
for signal processing. The only function that can bridge the
gap between functional terms and signals is ext, so the
expressiveness is limited at this bottleneck.

C. Signals

Since signals are not first class, the things mentioned about
classic FRP are not possible or very limited. It uses a simple
isomorphism between behaviors and events:

Event a = Behaviour (Maybe a)

Maybe a is a Haskell data type which either evaluates to
Nothing or Just a ﬂ So if an event is happening the Maybe
contains something and otherwise not. This trick enabled the
developers of RT-FRP to combine behaviors and events into
one data type. [Z]

D. Recursion

Recursive signals are prohibited by the grammar of RT-FRP
but still needed in some places, therefore let signal bindings

let

are allowed to be recursive to achieve the same effect. How-
ever, this is still too general since it can produce a faulty
program even though it is well-typed:

let

In order to limit this operations like ext are only allowed on
a limited subset of expressions. It is possible to statically test
if they fulfill this requirement.

signal x = sl in s2

signal x = ext x in ext x

E. Compiling FRP into RT-FRP

RT-FRP does not feature a lift function like Fran does.
However it is possible to build this function for an arbitrary
amount of parameters. liftl e s =

let (e x)

Other common FRP constructions can be translated int RT-
FRP as well.

signal x = s in ext

F. Hybrid Automaton

HA is mix of continuous and discrete components. You can
picture it as a graph with nodes that contain “continuous”
computations similar to what FRP does with behaviors. These
nodes are then connected via edges which are labeled with
a condition upon which they are traversed. Only one node is
active at a time.

HA is a very important subject in the field of embedded
systems. The most common example is a thermostat which in
one state heats the room up until a threshold is reached then
switches to another state where it lets the room cool down until
the next threshold is reached when it switches back. Similar to
RT-FRP safety and reliability are primary concerns (imagine
the thermostat in a nuclear reactor or something). In order to
be useful for embedded systems RT-FRP needs to be at least
equally expressive as hybrid automatons are.

Nodes can be realized as signals but what about the transi-
tions? Although sl switch on x = ev in x2 is an option, it
does not scale well with increasingly complex transition rules.
Therefore RT-FRP provides parameterized signals with let
continue {k_j x_j =s_j} in s and s until {ev_j => k_j}
can be used as jump conditions for changing states.

6Similar to the Nullable class in Java
7Just a is written as a_ , Nothing is written as L

IV. ELM
A. Introduction

Elm [6], [[7] is a language implementation of Functional
Reactive Programming. It is neither the only one nor the first,
but it is relatively well documented in a number of research
papers which served as sources for this seminar. It is compiled
to an intermediate language (like Java does with its Bytecode)
and from thereon out to JavaScript. The development of
web application is this languages main purpose, hence the
JavaScript which runs in pretty much any browser nowadays.
In contrast to the previous two languages Elm is designed with
focus on practical use and not academics. It does not add more
power to FRP in any way, there is no problem that cannot be
solved with classic FRP but with Elm, though the Elm version
may perform better. Elm provides a few simple functions in
order to process signals:

1) lift . Self explanatory at this point

2) async. Marks code that can be executed independently

from the rest

3) foldp It takes the current value of signal s and the

accumulator a and feeds them to the function f. The

result then replaces the accumulator. foldp f a s itself

evaluates to a signal that contains all accumulator values.
That is it. No switch or until constructs this time. Elm is
distinct from other implementations of FRP because it tackles
two issues that most of them have: global delays and needless
recomputation.

B. Syntax

e :=()|n|z|\x : n.ele; esle; ® e
if e1 e es|llet x = ey in esi
lift, e ey ,... ey|foldp ey es es]
async e

T n=unitlint|T — 7’

o n=signalt|t — olo — o’

nu=Tlo

7,0 and 7 stand for simple types, signal types and types. Note
that it prohibits signals of signals per definition: Only signals
of simple types are allowed. In contrast to the grammar for
RT-FRP functional terms or expressions of signals are allowed.

C. Signals

Contrary to the previous languages Elm does not feature
continuous behaviors. Only a signal type is featured which
is some mixture of behaviors and events: It always contains
a value (like behaviors) and that value changes discretely.
When it changes an event gets triggered which then causes
computation of program. Other FRP versions may struggle
on behaviors as they try to compute the program as often as
possible in order to approximate continuation. As a result a
great deal of needles recomputation is sorted out. Signals of

signals are not allowed in order to ensure efficiency. There is
a simple explanation why these signals are so problematic. It
revolves around the function foldp f a s: Imagine you have
a signal of signals of integers. You want to form a signal of
all sums of the integer signals. It could go like this:

lift (foldp (+) 0) signalOfSignals

Now the problem is how should the foldp be evaluated? There
are two options and both are flawed:

1) Every time the signal of signals produces a new sig-
nal, that signal gets evaluated in its entirety. This im-
plies that every value any signal ever produced has
to be saved. Consequently memory usage would grow
proportionally to program execution time, ultimately
exceeding all bounds. If we consider signals as se-
quences the example above would behave as follows:
Input: < <1,2,34,..>, <5,6,7.8,..>, ..> Output:
<<1,3,6,10,..>, <5,11,18,26,..>, ..>

2) Every new signal only gets evaluated from the point on
it was produced. This could then lead to expressions
that are equally defined yet evaluate differently, which
is also undesirable. Assuming the signal changes at the
second value, the same input as above would evaluate
to something like: <<1,3>, <7, 15,..>, ..>.

Therefore signals of signals have been prohibited.

D. Graph representation

An Elm program can be considered as an acyclic
graph. Its nodes are always signals, either input signals
or compositions of signals. Input signals (like mouse
button presses for example) do not receive any edges.

Global
Event
Dispatcher

wordPairs

Whenever an event occurs at any input signal, all signals
produce a value that trickles down the graphﬂ All signals
which values have not changed produce the previous value

8Systems like this are called push based systems. They compute when input
“happens”, as opposed to pull based systems which compute when output is
demanded

and mark it as unchanged. Nodes do not recompute input
that has not changed, instead they just return their previous
output, also marked as unchanged. This is one form of
memoization and reduces needless recomputation. Since the
graph is acyclic events can be pipelined. It is unnecessary to
wait for an event to make its way through the whole program,
if it finished the first stage the next event is ready to go.

E. Automaton

Automatons are a construct that allow changing single nodes
in the program graph (read above). Remember the hybrid
automaton section? This is basically another approach on that.
Automatons are defined like this (again Haskell syntax):

data Automaton a b =
Automaton a b, b))

Step (a — (

This seems similar to the definition of behaviors in Fran, as
it follows along the same idea. Feed a value to an automaton
and you get another automaton and a resulting value. Using it
on signals:

step a —> Automaton a b —> (Automaton a
b, b)
step input (Step f) = f input
run Automaton a b —> b —> Signal a —>
Signal b
run automaton base inputs =
let step’ input (Step f, _) = f
input
in lift snd (foldp step’ (

automaton , base) inputs)

The step just applies the function that is in Step to the input.
run takes an automaton, a base value and a signal. Every time
the signal produces a value the automaton is applied to it.
The resulting automaton replaces the current one while the
resulting values form a signal that defines run.

F. Asynchronous Functional Reactive Programming

Global delays are not a problem limited to FRP, since
they happen when languages demand that all events must be
treated in the same order they happened and evaluation of
an event is only allowed when the evaluation of the previous
event is finished. Therefore a large computation can delay
minor subsequent tasks that are completely unrelated to it. Elm
provides the programmer with the async keyword to mark code
that is independent and can be executed asynchronous from the
rest.

G. "A Farewell to FRP”

Coincidentally the title of this subsection is the same as that
of an article on the Website of Elm. The author Evan Czaplicki
is also author of two papers on FRP: ”Asynchronous Func-
tional Reactive Programming for GUIs” and ”Elm: Concurrent
FRP for Functional GUIs” which both served as sources for
this seminar. How come so? Well, it turns out the FRP parts

of Elm where the hardest parts to learn and since Elm is all
about easiness they were cut out and have been [...] replaced
with something simpler and nicer”. Furthermore it is not even
considered a big deal since most existing Elm code does not
use signals anyways. The parts that use them can be replaced
by a new system which revolves around subscriptions and web
sockets.

V. CONCLUSION

Fran has initiated the development of FRP. RT-FRP catered
it to the needs of real time applications. Elm used in order
to create GUIs. They prove that the ideas behind FRP are
suitable for a variety applications. They all treat behaviors
and events differently in order to succeed: Fran has both in
the form you would expect, RT-FRP has only behaviors and
Elms signals are more like events. All of them work and allow
the programmer to benefit from every aspect of functional
programming when working with signals. While FRP has
not overtaken classic imperative programming languages and
frameworks, some ideas like events can be found in pretty
much every GUI framework. They are even part of the core
syntax of C#. So ideas of FRP stay prevalent, even though
FRP itself is not so popular and Elm shifts away from it.

REFERENCES

[1] J. Backus, “Can programming be liberated from the von
neumann style?: A functional style and its algebra of
programs,” Commun. ACM, vol. 21, no. 8, pp. 613-641,
Aug. 1978. [Online]. Available: http://doi.acm.org/10.
1145/359576.359579

[2] M. Lipovaca.

[3] C. Elliott and P. Hudak, “Functional reactive animation,”
in International Conference on Functional Programming,
June 1997, pp. 163-173.

[4] J. M. Synder.

[5] Z. Wan, W. Taha, and P. Hudak, “Real-time FRP,”
in International Conference on Functional Programming
(ICFP’01), 2001.

[6] E. Czaplicki, Ph.D. dissertation.

[7]1 E. Czaplicki and S. Chong, “Asynchronous functional re-
active programming for GUIs,” in Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language
Design and Implementation. New York, NY, USA: ACM
Press, Jun. 2013, pp. 411-422.

http://elm-lang.org/blog/farewell-to-frp
http://doi.acm.org/10.1145/359576.359579
http://doi.acm.org/10.1145/359576.359579

	Benefits of Functional Programming
	Problems with Imperative Programming
	Solutions of Functional Programming

	The Beginnings: Fran
	Introduction
	Behaviors
	Predicate
	about Haskell as a host language

	Real Time FRP
	Introduction
	Syntax
	Signals
	Recursion
	Compiling FRP into RT-FRP
	Hybrid Automaton

	Elm
	Introduction
	Syntax
	Signals
	Graph representation
	Automaton
	Asynchronous Functional Reactive Programming
	"A Farewell to FRP"

	Conclusion
	References

