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Intermediate Representation

Definition
An intermediate representation (IR) is data structure as
representation of a program between a high-level
programming language and machine code.

An intermediate language (IL) is a low-level assembly
language as IR for a virtual machine.
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Classical Compiler Process

Lexical Analysis (Scanner)

Syntax Analysis (Parser)

Semantic Analysis

Optimization

Code Generation

Tokens

ST/AST

CFG

CFG

Frontend

Backend
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Abstract Sytax Tree
An abstract syntax tree (AST) . . .

. . . describes the syntactical structure of a program

. . . depends on the programming language

. . . is generated during by the parser

program

block

. . .

while

condition

. . .

body

assign

variable sum bin op: *

variable i

return

variable sum
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Control-Flow-Graph

int s = 1;
for(int i=1; i<=10; i++)
s += i;

return (s);

yes
no

i← 1, s← 0

i ≤ 10

i← i+ 1

s← s+ i

ret(s)
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Stack Machines

Definition
A general StackMachine has

I a stack as storage
I a set of instructions / operations op = F(a1, a2, . . . , an)

including (push and pop)

Executing an operation takes the arguments from top of
the stack, computes the result in the accumulator, and
pushes the result back the stack.

Example

push 1
push 2
push 3
add
pop

1 1
2

1
2

3

1

5

1
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Stack-machines
Code Generation

We can generate the control by traversing the syntax tree.
Assume we have to compute the expression

√
x2 + y2.

AST
sqrt

add

mul

x x

mul

y y

push x
push x
mul
push y
push y
mul
add
sqrt
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Stack Machines
Summary

I Programs for stack machines are short
Only the opcodes ( or constants) in the byte code.

I In practical use stack machines can be extended
1. An external memory to store and load values

(computations are still limited to the stack)
2. Top-Level registers
3. Metainformations (see CIL later)

I Problem: Most processor-architectures use registers.
⇒ Hybrid Models, Special informations in the
intermediate representation.
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Register Machines

Definition
A register machine . . .

I consists of an infinite number of memory cells named
registers

I each register is accessible
I has a limited set of instruction / operations:

1. Arithmetical Operations: Computes a function F using
selected registers 〈o1, 〉 . . . , 〈on〉 as operands and stores
the result in a target register 〈r〉

2. Jumps/Branches

12 / 34
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Three-Address Code (3AC/TAC)
I Each TAC is a sequence of instructions I1, I2, . . . , In for a

register machine.
I Instructions can be

1. Assignments r1 := r0

2. Unconditional Jumps (Instructions can be labeled)
L0: goto L1
...
L1: r0 := 1

3. Conditional Branches
if a<b then goto L1

4. Arithmetical operations r3 := add(r1,r2)
I Each instruction contains at most 3 registers

Example (
√

x2 + y2)

t1 := x * x
t2 := y * y
t3 := t1 + t2
result := sqrt(t3)
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Three-Address Code (3AC/TAC)
How to design the Byte-Code

For practical use we should store TAC in byte code format.
I Each operation has an opcode for the virtual machine
I Each instruction can be represented by tuples

Quadruples
opcode op1 op2

t1 MUL x x
t2 MUL y y
t1 ADD t1 t2
res SQRT t1 -

Triples
opcode op1 op2
MUL x x
MUL y y
ADD (1) (2)
SQRT (3) -

Note
Registers can be assigned implicitly (Triples). But then each
register has to be assigned only once.

14 / 34



Intermediate
Representaions

Malte Skambath

We need Compilers!

Classical Compiler
Process

Machine Models
Stack Machines

Register Machines

Three-Address Code

Static-Single-Assignment

Implementations
LLVM

CIL

Conclusion

Static-Single-Assignment

Definition (Static-Single Assignment)
A Three-Adress Code is in Static-Single Assignment-from if
each register gets assigned once in the code.

Example (
√

x2 + y2)

Not in SSA

L1: x := x * x
L2: y := y * y
L3: x := x + y
L4: z := sqrt(x)

SSA

L1: x0 := x * x
L2: y0 := y * y
L3: x1 := x0 + y0
L4: z := sqrt(x1)
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Static-Single-Assigment
How to get SSA-form?

A simple Algorithm

I For each used register: 〈R〉
1. Check if 〈R〉 gets assigned more than once
2. For each assignment/definition of 〈R〉:

I Rename on the left side to 〈R.i〉 if this assignment is the
i-th
assignment to 〈R〉

3. For each use of 〈R〉:
I Replace 〈R〉with 〈R.j〉where 〈R.j〉was the previous

replacement for 〈R〉.

Is this algorithm correct?

No!
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Static-Single-Assignment
What if we have branches?

if a>b then goto L_A
max := b;
goto L_END

L_A:
max := a;
goto L_END

L_END:

a>b?

max:=a max:=b

a>b?

m1:=a m2:=b

max:=m?

17 / 34



Intermediate
Representaions

Malte Skambath

We need Compilers!

Classical Compiler
Process

Machine Models
Stack Machines

Register Machines

Three-Address Code

Static-Single-Assignment

Implementations
LLVM

CIL

Conclusion

Static-Single-Assignment
The Φ-function

The Φ-function computes the value depending on the
incoming branch.

a← 1

x ← Φ(a, b)

b← 2

x has value

Note
There is no real operation like Φ in real machines. After
optimization Φ-statements have to be removed.

18 / 34
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Static-Single-Assignment
The Φ-function

The Φ-function computes the value depending on the
incoming branch.

a← 1

x ← Φ(a, b)

b← 2

x has value 1

Note
There is no real operation like Φ in real machines. After
optimization Φ-statements have to be removed.
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Static-Single-Assignment
The Φ-function

The Φ-function computes the value depending on the
incoming branch.

a← 1

x ← Φ(a, b)

b← 2

x has value 2

Note
There is no real operation like Φ in real machines. After
optimization Φ-statements have to be removed.
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Getting Code in SSA-form.

L1:
if r_a < r_b then goto L3:
L2:
t_1 := r_a
goto L4

L3:
t_2 := r_b
goto L4

L4: max := phi t_1 [from L2], t_2 [from L3]

19 / 34



Intermediate
Representaions

Malte Skambath

We need Compilers!

Classical Compiler
Process

Machine Models
Stack Machines

Register Machines

Three-Address Code

Static-Single-Assignment

Implementations
LLVM

CIL

Conclusion

Converting to SSA-Form

1. Place Φ-function terms

2. Rename registers to achieve SSA-form

z← . . .

a← . . . b← . . .

z← Φ(z, z)

Using the Φ-function after each branch for previous
registers is an unpractical solution.
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Dominance Frontiers

Definition
We say x dominates y (x dom y) if on all paths to Y in the CFG
the program has to run over X .

Definition
y is in the dominance frontier of x (DF(x)) iff not x dom y and
y has a direct predecessor on all paths to y

1

2

3

4

9

5

6 7

8

1

2

3

5

6 7 8

4 9

DOM(5) = {5, 6, 7, 8}
DF(5) = {4, 9}
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Dominance Frontiers

Assume that node 3 defines variable x, DF(3) = {5}

1

2 3

45

6

x ∈ Def(3)

Is 5 the only node we need to insert a Φ-function for x?

No, at node 6. Why?
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Architecture of the LLVM-compiler process

LLVM
Optimizer

x86
Backend

ARM
Backend

PowerPC
Backend

clang

llvm-
gcc

GHC

C

Fortran

Haskell

x86

PPC

ARM

LLVM uses a special intermediate representation (LLVM-IR)
for a virtual register machine.
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LLVM Compilation Strategy

linkers typically are limited to low-level optimizations such as profile-driven code layout, interprocedural regis-
ter allocation, constant propagation, and dead code elimination.

� Profile information is traditionally collected by creating a special “profile enabled” build of the application,
running it with representative input, and feeding the data generated back into another build cycle. The primary
problems with this approach are that it requires extra work for the developers to use (which reduces the likely-
hood that profile directed compilation will be used), and that getting a representative input sample can be very
difficult for some classes of application.

� Traditionally, once the application has been linked, the executable remains frozen throughout its lifetime. While
speculative, we believe there may be use for runtime and offline optimization, which are not available in existing
systems. Program transformation extremely late in the lifetime of the application is neccesary to adapt to
changing usage patterns of the end-user and to adapt to hardware changes that may occur (allowing retuning for
a new CPU, for example).

In contrast, LLVM enables novel interprocedural transformations at link time, runtime, and even in the field.
It fits the standard “compile-link-execute” build model, working as a drop-in replacement for an existing compiler
in build scripts, easing deployment of new optimizers. LLVM can gather profiling information transparently to the
programmer, without requiring a special profile build and “representative” training executions.

This paper describes the high level approach to compilation used by LLVM (Section 2), contains detailed in-
formation about the virtual instruction set used throughout the compilation process (Section 3), describes some of
the transformations implemented in the LLVM infrastructure (Section 4), and describes key components of our in-
frastructure (Section 5). An online reference manual describes the individual LLVM instructions and tools in more
detail [19].

2 The LLVM Approach

The centerpiece of the system is the LLVM virtual instruction set. It combines a low-level representation with high-
level information about operands, by using Static Single Assignment (SSA) form and high-level, language independent
type information (more detail is provided in Section 3). The RISC like, low-level instructions of LLVM allow for many
traditional optimizations to be directly applied to LLVM code, while the high-level type information allows for novel
high-level transformations as well. This common representation enables the powerful multi-phase compilation strategy
shown in Figure 1.

     

Optimizing Linker
.
.

Runtime Optimizer
Optimized

Code
Profile

& Trace
Info

Offline Reoptimizer
Profile

& Trace
Info

LLVM

LLVM
LLVM      Native

Libraries

           Host Machine

Static Compiler 1

Static Compiler N
.o files

LLVM
.exe

(llvm +
native)

.exe

Figure 1: LLVM Compilation Strategy Overview

As Figure 1 illustrates, the LLVM compilation strategy exactly matches the standard compile-link-execute model
of program development, with the addition of a runtime and offline optimizer. Unlike a traditional compiler, however,
the .o files generated by an LLVM static compiler do not contain any machine code at all – they contain LLVM code
in a compressed format.

The LLVM optimizing linker combines LLVM object files, applies interprocedural optimizations, generates native
code, and links in libraries provided in native code form. An interesting feature of the executables produced by the

2

C. Lattner, The LLVM Instruction Set and Compilation Strategy, 2002
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LLVM-IR
@.str = private unnamed_addr constant [11 x i8] c"

%d <= %d \00", align 1

; Function Attrs: nounwind uwtable
define void @minmax(i32 %a, i32 %b) #0 {
%1 = icmp sgt i32 %a, %b
br i1 %1, label %2, label %3

; <label>:2 ; preds = %0
br label %4

; <label>:3 ; preds = %0
br label %4

; <label>:4 ; preds = %3, %2
%max.0 = phi i32 [ %a, %2 ], [ %b, %3 ]
%min.0 = phi i32 [ %b, %2 ], [ %a, %3 ]
%5 = call i32 (i8*, ...) @printf(i8*
getelementptr inbounds ([11 x i8], [11 x i8]*
@.str, i32 0, i32 0), i32 %min.0, i32 %max.0)

ret void
}

declare i32 @printf(i8*, ...) #1

; Function Attrs: nounwind uwtable
define i32 @main() #0 {
call void @minmax(i32 5, i32 10)
ret i32 0
}

25 / 34
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LLVM-IR
I LLVM is register-based. Registers are written as

%<registername> (e.g. %R1 = ...)
@ is used for global variables (e.g. function names)

I LLVM use types i1, i8, i32 for boolean, Byte and
32-Bit Integer values

I Reduced instruction-set
I Memory Access %ptr = alloca i32
I Comparing %res = icmp <opt> <type> %a, %b

I Conditional Branches
br i1 %cond, label %IfLabel, label %ElseLabel

I Function calls %res = call

I phi-Instruction for assignments depending on the
control flow

I Functions:
define <type> @FctName(<type> %arg1,...){...}

I Metadata
26 / 34
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LLVM-IR
@.str = private unnamed_addr constant [11 x i8]
c" %d <= %d \00", align 1

; Function Attrs: nounwind uwtable
define void @minmax(i32 %a, i32 %b) #0 {
%1 = icmp sgt i32 %a, %b
br i1 %1, label %2, label %3

; <label>:2 ; preds = %0
br label %4
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}
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define i32 @main() #0 {
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}
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LLVM-IR
Another example

define i32 @main() #0 {
%c = alloca [10 x i32], align 16
br label %1

1:
%sum.0 = phi i32 [ 0, %0 ], [ %4, %7 ]
%i.0 = phi i32 [ 1, %0 ], [ %8, %7 ]
%2 = icmp sle i32 %i.0, 10
br i1 %2, label %3, label %9

3: ; preds = %1
%4 = add nsw i32 %sum.0, %i.0
%5 = sext i32 %i.0 to i64
%6 = getelementptr inbounds [10 x i32], [10 x
i32]* %c, i32 0, i64 %5

store i32 %4, i32* %6, align 4
br label %7

7: ; preds = %3
%8 = add nsw i32 %i.0, 1
br label %1

9: ; preds = %1
ret i32 0

} 28 / 34
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Common Intermediate Language

C# F# VB.net

Common Language Runtime (CLR)

Common Intermediate Language (CIL)
Executable-File containing CIL

JIT-C Libraries

Common Language Infrastructure (CLI)

The CLR is the CLI-Implementation of Microsoft and part of
the .net-Framework. The CLI also speciefies a Type System
(CTS) and a basic set of class libraries.
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CIL

I Stack based virtual machine.
I Each method has a header
I Typed instruction-set (e. g. ldc.i4.0 load constant 0

as 4-Byte int)
I Access to local variables ldloc.<index>,

stloc.<index>

I Object oriented
I Load field values

ldfld string Program/Person::prename
I Create new objects newobj instance void class

<CLASS>’.ctor’(...)

30 / 34
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CIL
An Example

.method public static hidebysig
default int32 sum (int32 a, int32 b) cil
managed {
.maxstack 2
.locals init (int32 V_0, int32 V_1)
IL_0000: ldc.i4.0 //
...
}

31 / 34
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IL_0000: ldc.i4.0 //
IL_0001: stloc.0 // sum = 0
IL_0002: ldarg.0 // load a on the stack
IL_0003: stloc.1 // store a in first var
(i=a)
IL_0004: br IL_0011 // --+
IL_0009: ldloc.0 // | <--+
IL_000a: ldloc.1 // | |
IL_000b: add // |
IL_000c: stloc.0 // |
IL_000d: ldloc.1 // |
IL_000e: ldc.i4.1 // |
IL_000f: add // | .
IL_0010: stloc.1 // | .
IL_0011: ldloc.1 // <-+ .
IL_0012: ldarg.1 // load b |
IL_0013: ble IL_0009 // i<=b -+
IL_0018: ldloc.0
IL_0019: ret
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Intermediate Representations . . .
I allow a clean and general

compiler-architecture/infrastructure
I allowmixing different programming languages
I programmer may loose control on the real

control-flow
I program-flow can be optimized
I adaption to different hardware configurations

(including GPU-support).
I improve the development of new programming

languages
I can realize translations between different languages
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