7 S UNIVERSITAT ZU LUBECK
5

Intermediate Representaions
Concepts of Programming Languages (CoPL)

Malte Skambath
malte@skambath.de

November 16, 2015

OVG rVieW Intermediate

Representaions

Malte Skambath

We need Compilers!

Classical Compiler Process

Machine Models
Stack Machines
Register Machines

Implementations
LLVM
CIL

Conclusion

2/34

Developing Software

We need compilers!

~J

Intermediate
Representaions

Malte Skambath

We need Compilers!

Classical Compiler
Process

Machine Models
Stack Machines

r Machines

Address Code

gle-Assignment
Implementations
LLVM

L

Conclusion

3/34

Developing Software Representaions
We need compilers! Malte Skambath

We need Compilers!

AMDo64 ARM

3/34

Developing Software Representaions
We need compilers! Malte Skambath

We need Compilers!

~J

\ 4 \ 4 /
£ LD JESEE |
x86 AMD64 ARM

3/34

Intermediate Representation Representaions
The solution! Malte Skambath

We need Compilers!

x86 AMDo64 ARM

4/34

Intermediate

Intermediate Representation Representaions

Malte Skambath

We need Compilers!

Definition

An intermediate representation (IR) is data structure as
representation of a program between a high-level
programming language and machine code.

An intermediate language (IL) is a low-level assembly
language as IR for a virtual machine.

5/34

Intermediate

Classical Compiler Process Representaions

N Malte Skambath
Mwm Classical C il
v Process
Lexical Analysis (Scanner) 1
$ Tokens
Syntax Analysis (Parser) Frontend
v ST/AST
Semantic Analysis
I CFG '
Optimization
v CFG N
[Code Generation] Backend
* A\

£

6/34

Abstract Sytax Tree

An abstract syntax tree (AST) . . .

... describes the syntactical structure of a program
... depends on the programming language

... is generated during by the parser

program

return

[condition] [body] [variable sum]

assign

[variable sum] [bin op: *]

)

Intermediate
Representaions

Malte Skambath

Classical Compiler
Process

7/34

Control-Flow-Graph

int s = 1;

for (int i=1; 1i<=10; i++)
s += 1i;

return (s);

Intermediate
Representaions

Malte Skambath

Classical Compiler
Process

8/34

Stack Machines Represeniatons
Malte Skambath
Definition
A general Stack Machine has
» astack as storage

Stack Machines

» aset of instructions / operations op = F(a, da, ..., an)
including (push and pop)
Executing an operation takes the arguments from top of

the stack, computes the result in the accumulator, and
pushes the result back the stack.

Example

push 1

Paen 5 2 5

add ERE 1 1] [1]

pop

9/34

Intermediate

StaCk‘maChineS Representaions

Code Generation Malte Skambath

We can generate the control by traversing the syntax tree.
Assume we have to compute the expression y/x2 + y2.

Stack Machines

10/34

Intermediate

StaCk‘maChineS Representaions

Code Generation Malte Skambath

We can generate the control by traversing the syntax tree.
Assume we have to compute the expression y/x2 + y2.

Stack Machines

AST
push x
push x
mul
m push y
push y
mul
mul mul add

\é) CD/\ sqrt

10/34

Intermediate

StaCk MaChineS Representaions

Summary Malte Skambath

» Programs for stack machines are short
Only the opcodes (or constants) in the byte code.
» In practical use stack machines can be extended

1. An external memory to store and load values
(computations are still limited to the stack)

2. Top-Level registers

3. Metainformations (see CIL later)

Stack Machines

» Problem: Most processor-architectures use registers.
= Hybrid Models, Special informations in the
intermediate representation.

11/34

Intermediate

Register MaChineS Representaions

Malte Skambath

Definition
A register machine . . .

» consists of an infinite number of memory cells named o
registers

» each register is accessible

» has a limited set of instruction / operations:

1. Arithmetical Operations: Computes a function F using
selected registers (01,) ..., {(0,) as operands and stores
the result in a target register (r)

2. Jumps/Branches

12/34

Three-Address Code (3AC/TAQ)

» Each TACis a sequence of instructions /1, /,..., I, fora
register machine.
» Instructions can be
1. Assignmentsrl := r0
2. Unconditional Jumps (Instructions can be labeled)

LO: goto L1

Ll: r0O :=1
3. Conditional Branches
if a<b then goto L1

4. Arithmetical operations r3 := add(rl,r2)
» Each instruction contains at most 3 registers

Intermediate
Representaions

Malte Skambath

Three-Address Code

13/34

Three-Address Code (3AC/TAQ)

» Each TACis a sequence of instructions /1, /,..., I, fora
register machine.
» Instructions can be
1. Assignmentsrl := r0
2. Unconditional Jumps (Instructions can be labeled)

LO: goto L1

Ll: r0O :=1
3. Conditional Branches
if a<b then goto L1

4. Arithmetical operations r3 := add(rl,r2)
» Each instruction contains at most 3 registers

Example (1/x? + y?)

tl = x x x
t2 = y x vy
t3 = tl + t2

result := sqgrt (t3)

Intermediate
Representaions

Malte Skambath

Three-Address Code

13/34

Intermediate

Th ree'AddreSS COde (3AC/TAC) Representaions

How to design the Byte-Code Malte Skambath

For practical use we should store TAC in byte code format.
» Each operation has an opcode for the virtual machine
» Each instruction can be represented by tuples

Three-Address Code

Quadruples Triples
opcode opl op2 opcode opl op2
t1 MUL X X MUL X X
12 MUL y y MUL y y
t1 ADD t1 12 ADD (1) (2)
res SQRT t1 - SQRT (3) -

Note
Registers can be assigned implicitly (Triples). But then each
register has to be assigned only once.

14/34

Static-Single-Assignment Represeniatons

Malte Skambath

Definition (Static-Single Assignment)
A Three-Adress Code is in Static-Single Assignment-from if
each register gets assigned once in the code.

Example (\/x? + y?)

Not in SSA SSA

Ll: X := x * X Ll: x0 := x * X
L2: y 1=y %y L2: y0 =y %y
L3: x 1= xXx +y L3: x1 := x0 + yO
L4: z := sqrt(x) Ld: z 1= sqgrt(x1)

15/34

Static-Single-Assigment

How to get SSA-form?

A simple Algorithm

» For each used register: (R)

1. Check if {R) gets assigned more than once
2. For each assignment/definition of (R):
> Rename on the left side to (R.i) if this assignment is the
i-th
assignment to (R)
3. For each use of (R):
> Replace (R) with (R.j) where (R.j) was the previous
replacement for (R).

Is this algorithm correct?

Intermediate
Representaions

Malte Skambath

Static-Single-Assignment

16/34

Static-Single-Assigment

How to get SSA-form?

A simple Algorithm

» For each used register: (R)
1. Check if {R) gets assigned more than once
2. For each assignment/definition of (R):

> Rename on the left side to (R.i) if this assignment is the
i-th
assignment to (R)
3. For each use of (R):
> Replace (R) with (R.j) where (R.j) was the previous
replacement for (R).

Is this algorithm correct?
No!

Intermediate
Representaions

Malte Skambath

Static-Single-Assignment

16/34

Static-Single-Assignment Representaions
What if we have branches? Malte Skambath

if a>b then goto L_A
max := b,
goto L_END Stack Machi

L_A: R
max = a, Static-Single-Assignment
goto L_END

L_END: o

> S

e fnein]))

"4 ¥

17/34

Static-Single-Assignment
The O-function

The O-function computes the value depending on the
incoming branch.

a<+ 1 b+ 2

x < O(a,b)

Note
There is no real operation like ® in real machines. After
optimization @®-statements have to be removed.

Intermediate
Representaions

Malte Skambath

Static-Single-Assignment

18/34

Static-Single-Assignment
The O-function

The O-function computes the value depending on the
incoming branch.

a<+ 1 b+ 2

x < O(a,b)

X has value 1

Note
There is no real operation like ® in real machines. After
optimization @®-statements have to be removed.

Intermediate
Representaions

Malte Skambath

Static-Single-Assignment

18/34

Static-Single-Assignment
The O-function

The O-function computes the value depending on the
incoming branch.

X has value 2

Note
There is no real operation like ® in real machines. After
optimization ®-statements have to be removed.

Intermediate
Representaions

Malte Skambath

Static-Single-Assignment

18/34

Getting Code in SSA-form.

Ll:

if r_a < r_b then goto L3:
L2:

t_1 := r_a

goto L4

L3:

:= phi t_1 [from L2],

t_2

[from L3]

Intermediate
Representaions

Malte Skambath

We need Compilers!

Classical Compiler
Process

Machine Models

Stack Machines

r Machines
Three-Address Code

Static-Single-Assignment

Implementations
LLVM

L

Conclusion

19/34

Converting to SSA-Form

1. Place O-function terms
2. Rename registers to achieve SSA-form

) o]

N X

2+ 0(z2)

Using the O-function after each branch for previous
registers is an unpractical solution.

Intermediate
Representaions

Malte Skambath

Static-Single-Assignment

20/34

Intermediate

Dominance Frontiers Representaions
Malte Skambath
Definition
We say x dominates y (x dom y) if on all paths to Y in the CFG
the program has to run over X.

Definition -
y is in the dominance frontier of x (DF(x)) iff not xdomy and sucsmersammen
y has a direct predecessor on all paths to y

1
1
B VY

cs & ¢ AN
\ 4 7 8
'4

AN s
0

\

s | DOM(5) = {5,6,7,8}
DF(5) = {4,9}

21/34

Intermediate

Domina nce Frontiers Representaions

Malte Skambath

Assume that node 3 defines variable x, DF(3) = {5}

x € Def(3)

A/K Static-Single-Assignment

Is 5 the only node we need to insert a ®-function for x?

22/34

Intermediate

Domina nce Frontiers Representaions

Malte Skambath

Assume that node 3 defines variable x, DF(3) = {5}

x € Def(3)

A/K Static-Single-Assignment

Is 5 the only node we need to insert a ®-function for x?
No, at node 6. Why?

22/34

Architecture of the LLVM-compiler process

C —~| clang

x86

Backend

llvm-
gcc

Fortran —

LLVM
Optimizer

ARM
Backend

Haskell - GHC

:

PowerPC
Backend

— x86

— ARM

- PPC

LLVM uses a special intermediate representation (LLVM-IR)
for a virtual register machine.

Intermediate
Representaions

Malte Skambath

LLVM

23/34

LLVM Compilation Strategy

Offline Reoptimizer

Profile

Libraries

Runtime Optimizer |

= = LLVM "
Static Compiler 1 Profile Optimized
& Trace Code
. exe Info
- llvm + q
Static Compiler N w Catve) Host Machine
LLVM

C. Lattner, The LLVM Instruction Set and Compilation Strategy, 2002

LLVM'I R Intermediate

Representaions

@.str = private unnamed_addr constant [11 x i8] c" Malte Skambath
.%d <=_%d_\00", align 1

We need Compilers!

Classical Compiler

; Function Attrs: nounwind uwtable Process

define void @minmax (i32 %a, 132 %b) #0 {
%1 = icmp sgt i32 %a, %b
br il %1, label %2, label %3

Machine Models

Static-Single-Assignment

; <label>:2 ; preds = 30 Implementations

br label %4 e
Conclusion

; <label>:3 ; preds = %0

br label %4

; <label>:4 ; preds = %3, %2

$max.0 = phi i32 [%a, %2], [%b, %3 1

$min.0 = phi i32 [%b, %2 1, [%a, %3 1

%5 = call i32 (i8x, ...) @printf (i8x
getelementptr inbounds ([11 x i8], [11 x i8]«
@.str, i32 0, i32 0), i32 %min.0, i32 %max.0)

ret void

25/34

LLVM-IR Represeniatons
» LLVM is register-based. Registers are written as Malte Skambath
%<registername>(eg.%R1 = ..J
e is used for global variables (e.g. function names)
» LLVM use types i1, i8, i32 for boolean, Byte and
32-Bit Integer values
» Reduced instruction-set

» Memory Access $ptr = alloca i32
» Comparing $res = icmp <opt> <type> %a, 3%b

LLVM

» Conditional Branches
br il %cond, label %$IflLabel, label %ElselLabel

» Function calls $res = call

» phi-Instruction for assignments depending on the
control flow
» Functions:
define <type> (@FctName (<type> %argl,...){...}
» Metadata

26/34

LLVM'I R Intermediate

Representaions

@.str = private unnamed_addr constant [11 x i8] Malte Skambath
c" sd <= %d \00", align 1

We need Compilers!

Classical Compiler

; Function Attrs: nounwind uwtable Process

define void (@minmax (i32 %a, i32 %b) #0 {
%1 = icmp sgt i32 %a, %b
br il %1, label %2, label %3

Machine Models

Static-Single-Assignment

; <label>:2 ; preds = 30 Implementations
br label %4 e

Cl

Conclusion
; <label>:3 ; preds = %0

br label %4

; <label>:4 ; preds = %3,
$max.0 = phi i32 [%a, %2], [%b, %
$min.0 = phi i32 [%b, %2], [%a, %
%5 = call i32 (i8x, ...) @printf (i8x
getelementptr inbounds ([11 x i8], [11 x i8]«
@.str, i32 0, i32 0), i32 %min.0, i32 %max.0)
ret void

}

oo
N

27/34

Intermediate

LLVM'I R Representaions

Another example Malte Skambath
define i32 @main() #0 { We need Compilers!
%$c = alloca [10 x i32], align 16 Classical Compiler
br label %1 Process
1: Machine Models
$sum.0 = phi i32 [0, %0 1, [%4, %7]
%$1.0 = phi i32 [1, %0 1, [%8, %7]
%2 = icmp sle i32 %i.0, 10 st anment
br il %2, label %3, label %9 Implementations
3: ; preds = %1 ﬁm
= add nsw i32 %$sum.0, %i.0 Conclusion

sext i32 %1.0 to i64

= getelementptr inbounds [10 x i32], [10 x
i32]* %c, i32 0, i64 %5

store i32 %4, i32+ %6, align 4

br label %7

o0 oo oo
o U1
Il

7: ; preds = $3
%8 = add nsw i32 %i.0, 1
br label %1

9: ; preds = %1
ret i32 0

} 28/34

Common Intermediate Language

C# F# VB.net

~ bV

Common Intermediate Language (CIL)

Executable-File containing CIL

¥
Common Language Runtime (CLR)

JIT-C Libraries

Common Language Infrastructure (CLI)

The CLR is the CLI-Implementation of Microsoft and part of
the .net-Framework. The CLI also speciefies a Type System
(CTS) and a basic set of class libraries.

aL

Intermediate
Representaions

Malte Skambath

29/34

CI L Intermediate
Representaions

Malte Skambath

» Stack based virtual machine.
» Each method has a header

» Typed instruction-set (e.g. 1dc.i4. 0 load constant 0
as 4-Byte int)

» Access to local variables 1d10c. <index>,
stloc.<index>

» Object oriented

» Load field values
1dfld string Program/Person: :prename
» Create new objects newobj instance void class
<CLASS>’ .ctor’ (...)

aL

30/34

CIL

An Example

.method public static hidebysig

default int32 sum (int32 a, int32 b) cil
managed {

.maxstack 2

.locals init (int32 V_0, int32 V_1)
IL_0000: 1ldec.i4.0 //

}

Intermediate
Representaions

Malte Skambath

We need Compilers!

Classical Compiler
Process

Machine Models

Stack Machines

Register Machines
Three-Address Code

Static-Single-Assignment

Implementations
LLVM
L

Conclusion

31/34

Intermediate
C I L Representaions

An Example Malte Skambath
IL_0000: 1dc.i4.0 // We need Compilers!
IL_0001: stloc.O // sum = 0 Classical Compiler
IL_0002: 1ldarg.0 // load a on the stack Process
IL_0003: stloc.1 // store a in first var Machine Models
(i=a) “
I1L_0004: br IL_0011 // —-—+
IL_0009: 1dloc.O // / <—=*

IL_000a: 1ldloc.1 // / / Implementations
IL_000b: add /o o
IL_000c: stloc.0 // / Conclusion
IL_000d: 1ldloc.1 // /

IL_000e: 1ldec.i4d.1 // /

IL_000f: add // /

IL_0010: stloc.1 // /

IL_0011: 1ldloc.1 /) <—+ .

IL_0012: 1ldarg.l // load b /

IL_0013: ble IL_0009 // i<=b —+

IL_0018: 1ldloc.O
IL_0019: ret

32/34

Conclusion

Intermediate Representations. . .

>

allow a clean and general
compiler-architecture/infrastructure

allow mixing different programming languages

programmer may loose control on the real
control-flow

program-flow can be optimized

adaption to different hardware configurations
(including GPU-support).

improve the development of new programming
languages

can realize translations between different languages

Intermediate
Representaions

Malte Skambath

Conclusion

33/34

Intermediate
Representaions

Malte Skambath

We need Compilers!

Classical Compiler
Process

Machine Models
Stack Machines
Register Machines

Three-Address Code

Any Questions?

Implementations
LLVM
qL

Conclusion

34/34

	We need Compilers!
	Classical Compiler Process
	Machine Models
	Implementations
	Conclusion

