
Concepts of Programming Languages:
Static vs. Dynamic Typing

Toni Schumacher

Institute for Software Engineering and Programming Languages

23. November 2015

T. Schumacher 23. November 2015 1/31



Table of Contents

Motivation

Typing
Static Typing
Dynamic Typing

Comparison
Static Typing

Advantages of Static Typing
Disadvantages of Static Typing

Dynamic Typing
Advantages of Dynamic Typing
Disadvantages of Dynamic Typing

Programming Concepts
Type Inference
Subtyping
Generics

Outlook and Conclusion
Hybrid Languages
Conclusion

T. Schumacher 23. November 2015 2/31



Motivation

Quote 1:
Once syntactic verbosity [...] is removed from statically typed
languages, there is absolutely no advantage in using a dynamically
typed language.

jooq.org/2014/12/11/the-inconvenient-truth-about-dynamic-vs-static-typing/

Quote 2:
With unit tests [...] the types will also get checked, so you may as
well go for dynamic typing and benefit from its advantages.

teamten.com/lawrence/writings/java-for-everything.html

T. Schumacher 23. November 2015 3/31

http://blog.jooq.org/2014/12/11/the-inconvenient-truth-about-dynamic-vs-static-typing/
http://www.teamten.com/lawrence/writings/java-for-everything.html


Motivation

I Widely discussed topic
I No exact/clear definitions

↪→ Which issues do we want to tackle?
I Distinguish statically and dynamically typed languages
I Knowing benefits and disadvatages of both
I When to use which technique

T. Schumacher 23. November 2015 4/31



Outline

Motivation

Typing
Static Typing
Dynamic Typing

Comparison
Static Typing

Advantages of Static Typing
Disadvantages of Static Typing

Dynamic Typing
Advantages of Dynamic Typing
Disadvantages of Dynamic Typing

Programming Concepts
Type Inference
Subtyping
Generics

Outlook and Conclusion
Hybrid Languages
Conclusion

T. Schumacher 23. November 2015 5/31



Typing

Definition: Type System
I Collection of type rules for a programming language
I Classifies expressions according to the kinds of values it compute
I Assigns type information to values

Definition: Type Checker
I Checks types of values for correctness
I Tracks type violation

Differentations:
I Strong / Weak
I Optional / Explicit
I Static / Dynamic

T. Schumacher 23. November 2015 6/31



Static Typing

Definition: Static Typing
The type checker tries to assign objects to their particular type during the
compile process.

T. Schumacher 23. November 2015 7/31



Static Typing

Definition: Static Typing
The type checker tries to assign objects to their particular type during the
compile process.

T. Schumacher 23. November 2015 7/31



Static Typing

I Failure: compile attempt of the program code is canceled
I Considered as the origin of dynamic typing
I E.g. Ada, C, C++, Java, Fortran, Haskell, ML, Pascal, Perl and Scala

T. Schumacher 23. November 2015 8/31



Dynamic Typing

Definition: Dynamic Typing
Variables are associated with their contained values during run-time by
tagging them with identifiers such as num, bool or fun.

T. Schumacher 23. November 2015 9/31



Dynamic Typing

Definition: Dynamic Typing
Variables are associated with their contained values during run-time by
tagging them with identifiers such as num, bool or fun.

T. Schumacher 23. November 2015 9/31



Dynamic Typing

↪→ Is inherently a restricted form of static typing with only a single type
during compile-time

I Failure: partial or complete failure running the program
I E.g. Groovy, JavaScript, Objective-C, Perl, PHP, Prolog, Python, Ruby

and Smalltalk

T. Schumacher 23. November 2015 10/31



Static - Dynamic

I No clear boundaries between both
I Programming languages can’t be equated with typing techniques

↪→ Can use both static and dynamic type checking
I E.g. in static languages the main focus is the static type-checker and the

dynamic typing (if existing) is not superficial

↪→ Leads to controverse discussions about the topic

T. Schumacher 23. November 2015 11/31



Outline

Motivation

Typing
Static Typing
Dynamic Typing

Comparison
Static Typing

Advantages of Static Typing
Disadvantages of Static Typing

Dynamic Typing
Advantages of Dynamic Typing
Disadvantages of Dynamic Typing

Programming Concepts
Type Inference
Subtyping
Generics

Outlook and Conclusion
Hybrid Languages
Conclusion

T. Schumacher 23. November 2015 12/31



Advantages of Static Typing

I Earlier detection of programming mistakes
I More opportunities for compiler optimizations

↪→ Increased runtime efficiency and reduced memory usage
I Better developing experience
I Better documentation in form of type annotations

T. Schumacher 23. November 2015 13/31



Disadvantages of Static Typing

I Too rigid
I Can’t handle changing requirements
I Code is less reusable
I Define some exceptions as dynamic errors (e.g. array-out-of-bound)
I Should be more complete

↪→ Complex and overly complicated concepts added
I Can’t handle a changing variable type

Example: Changing variable type

1 employeeName = 9;
2 employeeName = "Steve";

↪→ Type error

T. Schumacher 23. November 2015 14/31



Disadvantages of Static Typing

I Too rigid
I Can’t handle changing requirements
I Code is less reusable
I Define some exceptions as dynamic errors (e.g. array-out-of-bound)
I Should be more complete

↪→ Complex and overly complicated concepts added
I Can’t handle a changing variable type

Example: Changing variable type

1 employeeName = 9;
2 employeeName = "Steve";

↪→ Type error

T. Schumacher 23. November 2015 14/31



Disadvantages of Static Typing

I Too rigid
I Can’t handle changing requirements
I Code is less reusable
I Define some exceptions as dynamic errors (e.g. array-out-of-bound)
I Should be more complete

↪→ Complex and overly complicated concepts added
I Can’t handle a changing variable type

Example: Changing variable type

1 employeeName = 9;
2 employeeName = "Steve";

↪→ Type error

T. Schumacher 23. November 2015 14/31



Advantages of Dynamic Typing

I Better for prototyping systems with changing or unknown requirements
I Allows programs to generate types and functionality based on run-time

data

↪→ Much more flexible

Example: Eval function in dynamic languages

1 function example(str){
2 var x = 10;
3 var y = 20;
4 var a = eval("x * y");
5 var b = eval("2 + 2");
6 var c = eval("x + 17");
7 var d = eval(str);
8 }

T. Schumacher 23. November 2015 15/31



Advantages of Dynamic Typing

I Better for prototyping systems with changing or unknown requirements
I Allows programs to generate types and functionality based on run-time

data

↪→ Much more flexible

Example: Eval function in dynamic languages

1 function example(str){
2 var x = 10;
3 var y = 20;
4 var a = eval("x * y");
5 var b = eval("2 + 2");
6 var c = eval("x + 17");
7 var d = eval(str);
8 }

T. Schumacher 23. November 2015 15/31



Advantages of Dynamic Typing

I Better interaction with systems or modules with unpredictable changing
output

I Important for data intensive programming

↪→ Indispensable for dealing with truly dynamic program behavior

T. Schumacher 23. November 2015 16/31



Disadvantages of Dynamic Typing

I Significantly more runtime errors

↪→ More costs in development process
I More effort of writing exceptions
I Late detection of errors

↪→ Complex troubleshooting and error fixing
I Type checker must check all classes during run-time

↪→ Worse execution time

T. Schumacher 23. November 2015 17/31



Programming Concepts

I Advantages and disadvantage of both typing techniques applied on
important programming concepts:

1. Type Inference
2. Subtyping
3. Genercis

T. Schumacher 23. November 2015 18/31



Type Inference

Definition: Type Inference
I Process of finding a type for a program within a given type system

I Type inference 6= dynamic typing
I Allows you to omit type information when declaring a variable

Example: Type inference in SML

1 fun fak(n) = if (n = 0) then 1 else n * fak(n-1);

I Relies on the availability of static type information

↪→ Redundant for dynamic languages
I Only in statically typed languages like SML, Haskel, F# etc.

T. Schumacher 23. November 2015 19/31



Subtyping

Definition: Subtyping
I Reflexive and transitive relation over types
I Satisfies subsumption:

I If a term has type A, which is a subtype of a type B, then the term also has
type B

I Ability to override existing super types with a related datatype
I Static type-checker has the type information needed to automatically lift

inferred variables to required types

T. Schumacher 23. November 2015 20/31



Subtyping

Example: Subtyped addition on nullable integers in C#

1 int? a = null;
2 int? b = 1;
3 int? c = a + b;

I Dynamic type-checker associates values with classes

↪→ Exclude value types immediately
I Very inefficient with dynamic type checker
I Construct of dynamic typing needs to be rebuild to implement subtyping

T. Schumacher 23. November 2015 21/31



Generics

Definition: Generics
I Reference type that has one or more type parameters

↪→ Parameterized type
I Specifying a type argument to declare and instantiate a constructed type

I Help to avoid writing the same code multiple times

Dynamic type checking:
I Type informations are at first available at runtime

↪→ Any collection or method is automatically generic

↪→ Create highly reusable libraries

Example: Generics in dynamically typed languages

1 new Set<object.getClass()>(object);

T. Schumacher 23. November 2015 22/31



Generics

Static type checking:
I Write a new function for any element type and any kind of collection

Example: Generics in statically typed languages

1 class Set{
2 public Set(boolean b) { ... }
3 public Set(int i) { ... }
4 .. other constructors.
5 }
6 new Set<Object>(object);

↪→ Endless number of types

T. Schumacher 23. November 2015 23/31



Generics

Static type checking:
I Write a new function for any element type and any kind of collection

Example: Generics in statically typed languages

1 class Set{
2 public Set(boolean b) { ... }
3 public Set(int i) { ... }
4 .. other constructors.
5 }
6 new Set<Object>(object);

↪→ Endless number of types

T. Schumacher 23. November 2015 23/31



Generics

I Better: dynamically scoped variables like arbitrary type T

Example: Usage of Generics in C#

1 interface IEnumerator<T> {
2 T Current{get;}
3 }

↪→ Generics are not impossible in static typing

↪→ Much more easier to implement with dynamic type checking

T. Schumacher 23. November 2015 24/31



Outline

Motivation

Typing
Static Typing
Dynamic Typing

Comparison
Static Typing

Advantages of Static Typing
Disadvantages of Static Typing

Dynamic Typing
Advantages of Dynamic Typing
Disadvantages of Dynamic Typing

Programming Concepts
Type Inference
Subtyping
Generics

Outlook and Conclusion
Hybrid Languages
Conclusion

T. Schumacher 23. November 2015 25/31



Hybrid Languages

I Dynamic type checking and static type checking appear to be
incompatible

I Can coexist harmoniously
I Different techniques of solving this misery:

I Static type-checker verifies what it can and dynamic checks verify the rest
I Distinguish between statically typed and dynamically typed variables

T. Schumacher 23. November 2015 26/31



Hybrid Languages

Example: Static and dynamic variables in C#

1 class ExampleClass{
2 public ExampleClass() { }
3 public void exampleMethod1(int i) {}
4 }
5 static void Main(string[] args){
6 ExampleClass ec = new ExampleClass();
7 //would cause compiler error
8 ec.exampleMethod1(10, 4);
9

10 dynamic dynamic_ec = new ExampleClass();
11 // no compiler error, but cause run-time exception.
12 dynamic_ec.exampleMethod1(10, 4);
13 }

T. Schumacher 23. November 2015 27/31



Conclusion

Questions?

T. Schumacher 23. November 2015 28/31



Conclusion

Static or Dynamic type checking?

T. Schumacher 23. November 2015 29/31



Conclusion

My opinion:
I Dynamic typing for small programs and scripts (fast development, no

major safety requirements)
I Static typing mechanisms for applications relevant to security
I Fully expressive language supports the interplay between static and

dynamic techniques
I Static typing where possible and dynamic typing when needed

xkcd.com

T. Schumacher 23. November 2015 30/31

http://www.xkcd.com/


Conclusion

Thank you for your attention.

T. Schumacher 23. November 2015 31/31


	Motivation
	Typing
	Static Typing
	Dynamic Typing

	Comparison
	Static Typing
	Dynamic Typing
	Programming Concepts

	Outlook and Conclusion
	Hybrid Languages
	Conclusion


