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Motivation

Quote 1:
Once syntactic verbosity [...] is removed from statically typed
languages, there is absolutely no advantage in using a dynamically
typed language.

jooq.org/2014/12/11/the-inconvenient-truth-about-dynamic-vs-static-typing/

Quote 2:
With unit tests [...] the types will also get checked, so you may as
well go for dynamic typing and benefit from its advantages.

teamten.com/lawrence/writings/java-for-everything.html
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Motivation

I Widely discussed topic
I No exact/clear definitions

↪→ Which issues do we want to tackle?
I Distinguish statically and dynamically typed languages
I Knowing benefits and disadvatages of both
I When to use which technique
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Typing

Definition: Type System
I Collection of type rules for a programming language
I Classifies expressions according to the kinds of values it compute
I Assigns type information to values

Definition: Type Checker
I Checks types of values for correctness
I Tracks type violation

Differentations:
I Strong / Weak
I Optional / Explicit
I Static / Dynamic
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Static Typing

Definition: Static Typing
The type checker tries to assign objects to their particular type during the
compile process.
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Static Typing

I Failure: compile attempt of the program code is canceled
I Considered as the origin of dynamic typing
I E.g. Ada, C, C++, Java, Fortran, Haskell, ML, Pascal, Perl and Scala
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Dynamic Typing

Definition: Dynamic Typing
Variables are associated with their contained values during run-time by
tagging them with identifiers such as num, bool or fun.
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Dynamic Typing

↪→ Is inherently a restricted form of static typing with only a single type
during compile-time

I Failure: partial or complete failure running the program
I E.g. Groovy, JavaScript, Objective-C, Perl, PHP, Prolog, Python, Ruby

and Smalltalk
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Static - Dynamic

I No clear boundaries between both
I Programming languages can’t be equated with typing techniques

↪→ Can use both static and dynamic type checking
I E.g. in static languages the main focus is the static type-checker and the

dynamic typing (if existing) is not superficial

↪→ Leads to controverse discussions about the topic
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Advantages of Static Typing

I Earlier detection of programming mistakes
I More opportunities for compiler optimizations

↪→ Increased runtime efficiency and reduced memory usage
I Better developing experience
I Better documentation in form of type annotations
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Disadvantages of Static Typing

I Too rigid
I Can’t handle changing requirements
I Code is less reusable
I Define some exceptions as dynamic errors (e.g. array-out-of-bound)
I Should be more complete

↪→ Complex and overly complicated concepts added
I Can’t handle a changing variable type

Example: Changing variable type

1 employeeName = 9;
2 employeeName = "Steve";

↪→ Type error
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Advantages of Dynamic Typing

I Better for prototyping systems with changing or unknown requirements
I Allows programs to generate types and functionality based on run-time

data

↪→ Much more flexible

Example: Eval function in dynamic languages

1 function example(str){
2 var x = 10;
3 var y = 20;
4 var a = eval("x * y");
5 var b = eval("2 + 2");
6 var c = eval("x + 17");
7 var d = eval(str);
8 }
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Advantages of Dynamic Typing

I Better interaction with systems or modules with unpredictable changing
output

I Important for data intensive programming

↪→ Indispensable for dealing with truly dynamic program behavior
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Disadvantages of Dynamic Typing

I Significantly more runtime errors

↪→ More costs in development process
I More effort of writing exceptions
I Late detection of errors

↪→ Complex troubleshooting and error fixing
I Type checker must check all classes during run-time

↪→ Worse execution time
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Programming Concepts

I Advantages and disadvantage of both typing techniques applied on
important programming concepts:

1. Type Inference
2. Subtyping
3. Genercis
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Type Inference

Definition: Type Inference
I Process of finding a type for a program within a given type system

I Type inference 6= dynamic typing
I Allows you to omit type information when declaring a variable

Example: Type inference in SML

1 fun fak(n) = if (n = 0) then 1 else n * fak(n-1);

I Relies on the availability of static type information

↪→ Redundant for dynamic languages
I Only in statically typed languages like SML, Haskel, F# etc.
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Subtyping

Definition: Subtyping
I Reflexive and transitive relation over types
I Satisfies subsumption:

I If a term has type A, which is a subtype of a type B, then the term also has
type B

I Ability to override existing super types with a related datatype
I Static type-checker has the type information needed to automatically lift

inferred variables to required types
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Subtyping

Example: Subtyped addition on nullable integers in C#

1 int? a = null;
2 int? b = 1;
3 int? c = a + b;

I Dynamic type-checker associates values with classes

↪→ Exclude value types immediately
I Very inefficient with dynamic type checker
I Construct of dynamic typing needs to be rebuild to implement subtyping
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Generics

Definition: Generics
I Reference type that has one or more type parameters

↪→ Parameterized type
I Specifying a type argument to declare and instantiate a constructed type

I Help to avoid writing the same code multiple times

Dynamic type checking:
I Type informations are at first available at runtime

↪→ Any collection or method is automatically generic

↪→ Create highly reusable libraries

Example: Generics in dynamically typed languages

1 new Set<object.getClass()>(object);
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Generics

Static type checking:
I Write a new function for any element type and any kind of collection

Example: Generics in statically typed languages

1 class Set{
2 public Set(boolean b) { ... }
3 public Set(int i) { ... }
4 .. other constructors.
5 }
6 new Set<Object>(object);

↪→ Endless number of types
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Generics

I Better: dynamically scoped variables like arbitrary type T

Example: Usage of Generics in C#

1 interface IEnumerator<T> {
2 T Current{get;}
3 }

↪→ Generics are not impossible in static typing

↪→ Much more easier to implement with dynamic type checking
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Hybrid Languages

I Dynamic type checking and static type checking appear to be
incompatible

I Can coexist harmoniously
I Different techniques of solving this misery:

I Static type-checker verifies what it can and dynamic checks verify the rest
I Distinguish between statically typed and dynamically typed variables
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Hybrid Languages

Example: Static and dynamic variables in C#

1 class ExampleClass{
2 public ExampleClass() { }
3 public void exampleMethod1(int i) {}
4 }
5 static void Main(string[] args){
6 ExampleClass ec = new ExampleClass();
7 //would cause compiler error
8 ec.exampleMethod1(10, 4);
9

10 dynamic dynamic_ec = new ExampleClass();
11 // no compiler error, but cause run-time exception.
12 dynamic_ec.exampleMethod1(10, 4);
13 }
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Conclusion

Questions?
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Conclusion

Static or Dynamic type checking?
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Conclusion

My opinion:
I Dynamic typing for small programs and scripts (fast development, no

major safety requirements)
I Static typing mechanisms for applications relevant to security
I Fully expressive language supports the interplay between static and

dynamic techniques
I Static typing where possible and dynamic typing when needed

xkcd.com
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Conclusion

Thank you for your attention.
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