
Aspects of object orientation

Jan Niklas Rösch

Institute for Software Engineering and Programming Languages

01. February 2016

J.N. Rösch 01. February 2016 1/27

Table of contents

Introduction

Variance

Instantiation, Subtyping and Subclassing

Type systems

Conclusion

J.N. Rösch 01. February 2016 2/27

Introduction

I Many different aspects that make up a language
I Defining relationship between objects

I Fundamental facet of OOP

I These aspects contribute to an overall behaviour of the language

J.N. Rösch 01. February 2016 3/27

Variance - Overview

I Describes behaviour of complex structures
I Lists
I Arrays
I Functions
I ...

I Covariance and Contravariance
I Invariance and Bivariance

J.N. Rösch 01. February 2016 4/27

Variance - Definitions

Complex Structure
I〈A〉

Subtyping

A ≤ B , I〈A〉 ≤ I〈B〉

J.N. Rösch 01. February 2016 5/27

Variance - Covariance

Covariance
A ≤ B→ I〈A〉 ≤ I〈B〉

I Ordering of types is preserved
I Most common approach

Covariant Array

S t r i n g [] s t r = new S t r i n g [1] ;
Object [] ob j = s t r ;

J.N. Rösch 01. February 2016 6/27

Variance - Broken Array Covariance

Runtime Error

S t r i n g [] s t r = new S t r i n g [1] ;
Object [] ob j = s t r ;

ob j [0] = 2 ;

I safe to read but not safe to write
I not caught at compile time

J.N. Rösch 01. February 2016 7/27

Variance - Contravariance

Contravariance
A ≤ B→ I〈B〉 ≤ I〈A〉

I Ordering of types is reversed
I Unintuitive but comes with some benefits

J.N. Rösch 01. February 2016 8/27

Variance - Contravariance

Contravariant comparator

vo id CompareCats (IComparer<Cat> comparer) {
var cat1 = new Cat (" Mi t tens ") ;
var cat2 = new Cat (" O l i v e r ") ;
i f (comparer . Compare (cat1 , cat2) > 0)

Console . Wr i teL ine (" Mi t tens wins ! ") ;
}

IComparator <Animal > compAnimals =
new AnimalComparator () ;

CompareCats (compAnimals) ;

I Using a base class instead of a more derived one

J.N. Rösch 01. February 2016 9/27

Variance - Invariance

Invariance
A ≤ B→ I〈A〉 6≤ I〈B〉 ∧ I〈B〉 6≤ I〈A〉

I Prohibits variant behaviour of complex structures
I Regardless of underlying type hierarchy
I Used to prevent type errors

J.N. Rösch 01. February 2016 10/27

Variance - Invariance

Invariant list

void MammalReadWrite (I L i s t <Mammal> mammals) {
Mammal mammal = mammals [0] ;
mammals [0] = new Tiger () ;

}

I Covariance: List of giraffes
I Put a tiger in it

I Contravariance: List of animals
I Animals do not need to be mammals

J.N. Rösch 01. February 2016 11/27

Variance - Bivariance

Bivariance
I〈A〉 ≤ I〈B〉 , I〈B〉 ≤ I〈A〉

I Either impossible or not allowed
I Only listed for the sake of completeness

J.N. Rösch 01. February 2016 12/27

Instantiation, Subtyping and Subclassing

I Instantiation
I Creation of a new object

I Subtyping
I Describes relationship of objects
I Objects share a common interface
I ’Is-a’ relationship → Liskov substitution principle

I Subclassing
I Does not alter type hierarchy
I Reuse of code

I Class-based vs Prototype-based

J.N. Rösch 01. February 2016 13/27

Class-based Programming - Instantiation

I Classes as blueprints
I Can not change at runtime
I Easier to optimize compiler tasks

I Implicit/Explicit constructors
I Creates new instance of a class
I Allocates memory
I Initialize all fields

J.N. Rösch 01. February 2016 14/27

Class-based Programming - Instantiation

Class-based instantiation

class NumBox{
private i n t number ;

public numBox(i n t num) {
th is . number = num;

}
public i n t getNum () {

return th is . number ;
}

}

NumBox num3 = new NumBox (3) ;
p r i n t (num3 . getNum ()) ;

J.N. Rösch 01. February 2016 15/27

Class-based Programming - Subtyping

I Type hierarchy has to be explicitly declared

Class-based subtyping

class NumBox { . . . }

class PNatBox extends NumBox { . . . }

I No subclassing without subtyping
I Example: Square vs Rectangle

J.N. Rösch 01. February 2016 16/27

Prototype-based Programming - Instantiation

I No classes
I Constructor functions

I Explicitly declared

Constructor

f u n c t i o n ExampleObject () { . . . }

I Ex-nihilo
I Using object literals

Ex-nihilo

var cat = {
name : " Tardar_Sauce " ,
f o l l o w e r : 8403156

}

J.N. Rösch 01. February 2016 17/27

Prototype-based Programming - Subtyping

I Cloning
I Objects inherit from objects
I Copy fields into clone
I Add more specialized fields

I Ex-nihilo
I Root object

Cloning

f u n c t i o n ParentClass () { . . . }
f u n c t i o n Chi ldClass () { . . . }

Chi ldClass . p ro to type = new ParentClass () ;

J.N. Rösch 01. February 2016 18/27

Prototype-based Programming - Pure Prototyping

I Prototypes and objects can be changed at runtime
I Links between prototype and clones

I Change in prototype will update clones

I Pure prototyping
I No delegation but much more memory is used
I Different versions of same type

J.N. Rösch 01. February 2016 19/27

Type systems - Overview

I Ensure type safety
I Define equality and compatibility of types
I Can vary widely depending on the language
I Not exclusive to OOP

I Structural typing
I Nominal / nominative typing

J.N. Rösch 01. February 2016 20/27

Type systems - Structural Typing

I Elements with the same structure are compatible
I Attributes with their names
I Functions with their names and parameter/return types

I The name of the type does not matter
I Nor does the place of declaration

J.N. Rösch 01. February 2016 21/27

Type systems - Structural Typing

I Automatism of type compatibility
I Very flexible and convenient

I Type hierarchy does not need to be declared beforehand
I Programmer does not need to maintain the common interfaces himself

Implicit common interface

type A = { type B = {
foo () ; foo () ;
bar () ; baz () ;

} }

J.N. Rösch 01. February 2016 22/27

Type systems - Structural Typing

Problem with compatible types

record Dis tanceInInches {
double d i s t ;

} ;

record Dis tanceInCent imeters {
double d i s t ;

} ;

I Equivalent in structure
I Different in meaning

J.N. Rösch 01. February 2016 23/27

Type systems - Nominal Typing

I Subset of structural typing
I Much more type-safe
I No accidental inheritance
I Subtyping has to be explicitly declared

J.N. Rösch 01. February 2016 24/27

Type systems - Nominal Typing

Nominal subtyping

c lass Animal {
vo id feed () { . . . }

}

c lass Cat extends Animal {
i n t age = 5;

}

I Without ’extends’ these classes would be completely distinct from each
other

J.N. Rösch 01. February 2016 25/27

Conclusion

I Defining relationship between objects
I Based on many pieces
I All come together to make up the specific language

I Flexibility vs Safety
I Finding the right mix can be difficult
I Trade-offs are hard to make

I In the end it comes down to personal preference

J.N. Rösch 01. February 2016 26/27

Thank you for your attention!
QUESTIONS ?

J.N. Rösch 01. February 2016 27/27

	Introduction
	Variance
	Instantiation, Subtyping and Subclassing
	Type systems
	Conclusion

