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Introduction

programs rely on multiple constraints
especially concurrency and communication increase complexity

concurrency is largely explored
general programming paradigms can be used
multiple approaches exist
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Introduction—Communication

increases complexity largely

Example (Air Traffic Control System)
information is known beforehand

all tasks can run independently
low complexity

information and communication during execution
system needs to be capable of accepting and processing information
requires high amount of synchronized communication
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Introduction—Paradigms to Synchronize

blocking (scheduler-based): block task to use resources differently
blocked task ensures resuming of computation
specific synchronization condition required

busy-waiting: use of an evaluation loop
reevaluated specific condition till it becomes true
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Synchronous Programming

applies scheduler-based synchronization
blocks a task if it is necessary
resources can be used for a different task
if needed resources are available, computation continues

ensures correctness of the system
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Figure: Synchronous blocking model [1].
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Figure: Asynchronous model [1].
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Asynchronous Programming

uses busy-waiting
re-evaluation of a specific condition
if true, condition depends on an external system
actions to compute are specified before execution

main thread continues running
actions that depend on external system(s) are executed on different
thread
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Synchronous Approaches—LUSTRE

data-flow oriented language
focussed on temporal correctness
variables are treated as infinite sequences

(x0 = e0, x1 = e1, . . . , xn = en, . . . )
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LUSTRE—Operators

Let X = (x0, x1, . . . , xn, . . . ) and Y = (y0, y1, . . . , yn, . . . ).
pre(X) = (nil, x0, x1, . . . , xn−1, . . . )
X −> Y = (x0, y1, . . . , yn, . . . )

E =( e0 e1 e2 e3 e4 e5 . . . )
B =( tt ff tt tt ff ff . . . )

X = E when B =( x0 = e0 x1 = e2 x2 = e3 . . . )
Y = current(X) =( e0 e0 e2 e3 e3 e3 . . . )
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LUSTRE—Synchronization

when is used to create streams
streams allow synchronization of the program
to synchronize differently clocked streams, current is used

assertions generalize equations → facts to synchronize program

assert not (x and y)
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SIGNAL

concept similar to LUSTRE
allows explicit synchronization using synchro
merging of two signals with default
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ESTEREL

imperative language
variables are called signals
reaction: process of computing output based on input
fixed status and current value (initially �) in the same reaction
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ESTEREL—Synchronization

emit: sending output signals
watching: await specific signal
present: detects for presence of a signal

do
I 1 −> O1

watch ing I 2 ;
emit O2
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Asynchrony through Concurrency

multiple threads used to perform IO-bound tasks

Problem: Scalability is limited

requirement of different approaches
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Asynchronous Approaches—Event Loop

inversion of control
efficiency and scalability
control over switching between application activities
relies on notification facilities
application handles occurrence of events
commonly used: Node.js
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Continuations

Example
pub l i c i n t Div ide ( i n t top , i n t bottom )
{

i f ( bottom==0)
{

throw new Inva l i dOperat ionExcept ion ( ” d iv ␣by␣0” ) ;
}
e l s e
{

return top/bottom ;
}

}

pub l i c bool IsEven ( i n t aNumber)
{

var i sEven = (aNumber % 2 == 0 ) ;
return i sEven ;

}
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Continuations

Example
pub l i c T Divide<T>(i n t top , i n t bottom , Func<T> i fZe ro , Func<int ,T> i f S u c c e s s )
{

i f ( bottom==0)
{

return i f Z e r o ( ) ;
}
e l s e
{

return i f S u c c e s s ( top/bottom ) ;
}

}

pub l i c T IsEven<T>(i n t aNumber , Func<int ,T> ifOdd , Func<int ,T> i fEven )
{

i f (aNumber % 2 == 0)
{

return i fEven (aNumber ) ;
}
e l s e
{

return i fOdd (aNumber ) ;
}

}
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Asynchrony in F#

also implementing event-based paradigm
library with new syntactic category aexpr
use capability of language to handle different context
asynchronous operations are capable of binding core language results
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Asynchrony in F#—Task Generators

sometimes functions need task generators
can run asynchronous computations synchronously
can be run as a co-routine if it does not produce a result
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Example (Task Generators)

let sleepThenReturnResult =
async { printfn "before␣sleep"
do! Async.Sleep 5000
return 1000

}

let res = Async.RunSynchronously sleepThenReturnResult
printfn "result␣=␣%d" res
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Where is the callback run?

in .NET any computation has access to synchronization context
any callback is running “somewhere”

can be abused to run callbacks based on function closures
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Asynchronous Resource Clean-Up

language feature: use!
allows to directly dispose resources
cancellation of operations: implicit propagation of a token

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 25/ 30



Introduction Classification Approaches Conclusion

Synchronous Programming—Pro and Contra

ensures temporal and logical
correctness

blocking a thread might block
complete system
requires manual use of
synchronization mechanisms
may lie outside the control of
the programmer
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Asynchronous Programming—Pro and Contra

system stays responsive
outperforms synchronous
systems
main process is always
single-threaded
programmer is in control of
task suspension
multi-threading is not
forbidden
allows to reduce the syntax to
“computation expressions”
no need to explicitly ensure
temporal correctness

program needs to be
organized in smaller steps
no explicit use of
multi-threading
not all interprocess
communication can be
reduced to events
high complexity without
callbacks
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Conclusion

Asynchronous programming eliminates some issues from synchronous
programming
Asynchrony allows the programmer to take control
Asynchrony takes care of temporal correctness

Synchronous programming is required in some areas
Asynchronous programming can not be used at any operation
Complexity of Asynchrony can ensure unmaintainable code
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Thank You for Your attention.
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