
Synchronous vs. Asynchronous Programming

Jan Pascal Maas

Institute for Software Engineering and Programming Languages
University of Luebeck

25. January 2016
Seminar Concepts of Programming Languages

Introduction Classification Approaches Conclusion

Agenda

1 Introduction

2 Classification
Synchronous Programming
Asynchronous Programming

3 Approaches
Synchronous
Asynchronous

4 Conclusion

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 2/ 30

Introduction Classification Approaches Conclusion

Introduction

programs rely on multiple constraints
especially concurrency and communication increase complexity

concurrency is largely explored
general programming paradigms can be used
multiple approaches exist

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 3/ 30

Introduction Classification Approaches Conclusion

Introduction—Communication

increases complexity largely

Example (Air Traffic Control System)
information is known beforehand

all tasks can run independently
low complexity

information and communication during execution
system needs to be capable of accepting and processing information
requires high amount of synchronized communication

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 4/ 30

Introduction Classification Approaches Conclusion

Introduction—Communication

increases complexity largely

Example (Air Traffic Control System)
information is known beforehand

all tasks can run independently
low complexity

information and communication during execution
system needs to be capable of accepting and processing information
requires high amount of synchronized communication

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 4/ 30

Introduction Classification Approaches Conclusion

Introduction—Paradigms to Synchronize

blocking (scheduler-based): block task to use resources differently
blocked task ensures resuming of computation
specific synchronization condition required

busy-waiting: use of an evaluation loop
reevaluated specific condition till it becomes true

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 5/ 30

Introduction Classification Approaches Conclusion

Synchronous Programming

applies scheduler-based synchronization
blocks a task if it is necessary
resources can be used for a different task
if needed resources are available, computation continues

ensures correctness of the system

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 6/ 30

Introduction Classification Approaches Conclusion

Figure: Synchronous blocking model [1].

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 7/ 30

Introduction Classification Approaches Conclusion

Figure: Asynchronous model [1].

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 8/ 30

Introduction Classification Approaches Conclusion

Asynchronous Programming

uses busy-waiting
re-evaluation of a specific condition
if true, condition depends on an external system
actions to compute are specified before execution

main thread continues running
actions that depend on external system(s) are executed on different
thread

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 9/ 30

Introduction Classification Approaches Conclusion

Synchronous Approaches—LUSTRE

data-flow oriented language
focussed on temporal correctness
variables are treated as infinite sequences

(x0 = e0, x1 = e1, . . . , xn = en, . . .)

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 10/ 30

Introduction Classification Approaches Conclusion

LUSTRE—Operators

Let X = (x0, x1, . . . , xn, . . .) and Y = (y0, y1, . . . , yn, . . .).
pre(X) = (nil, x0, x1, . . . , xn−1, . . .)
X −> Y = (x0, y1, . . . , yn, . . .)

E =(e0 e1 e2 e3 e4 e5 . . .)
B =(tt ff tt tt ff ff . . .)

X = E when B =(x0 = e0 x1 = e2 x2 = e3 . . .)
Y = current(X) =(e0 e0 e2 e3 e3 e3 . . .)

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 11/ 30

Introduction Classification Approaches Conclusion

LUSTRE—Operators

Let X = (x0, x1, . . . , xn, . . .) and Y = (y0, y1, . . . , yn, . . .).
pre(X) = (nil, x0, x1, . . . , xn−1, . . .)
X −> Y = (x0, y1, . . . , yn, . . .)

E =(e0 e1 e2 e3 e4 e5 . . .)
B =(tt ff tt tt ff ff . . .)

X = E when B =(x0 = e0 x1 = e2 x2 = e3 . . .)
Y = current(X) =(e0 e0 e2 e3 e3 e3 . . .)

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 11/ 30

Introduction Classification Approaches Conclusion

LUSTRE—Synchronization

when is used to create streams
streams allow synchronization of the program
to synchronize differently clocked streams, current is used

assertions generalize equations → facts to synchronize program

assert not (x and y)

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 12/ 30

Introduction Classification Approaches Conclusion

LUSTRE—Synchronization

when is used to create streams
streams allow synchronization of the program
to synchronize differently clocked streams, current is used

assertions generalize equations → facts to synchronize program

assert not (x and y)

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 12/ 30

Introduction Classification Approaches Conclusion

SIGNAL

concept similar to LUSTRE
allows explicit synchronization using synchro
merging of two signals with default

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 13/ 30

Introduction Classification Approaches Conclusion

ESTEREL

imperative language
variables are called signals
reaction: process of computing output based on input
fixed status and current value (initially �) in the same reaction

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 14/ 30

Introduction Classification Approaches Conclusion

ESTEREL—Synchronization

emit: sending output signals
watching: await specific signal
present: detects for presence of a signal

do
I 1 −> O1

watch ing I 2 ;
emit O2

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 15/ 30

Introduction Classification Approaches Conclusion

ESTEREL—Synchronization

emit: sending output signals
watching: await specific signal
present: detects for presence of a signal

do
I 1 −> O1

watch ing I 2 ;
emit O2

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 15/ 30

Introduction Classification Approaches Conclusion

Asynchrony through Concurrency

multiple threads used to perform IO-bound tasks

Problem: Scalability is limited

requirement of different approaches

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 16/ 30

Introduction Classification Approaches Conclusion

Asynchrony through Concurrency

multiple threads used to perform IO-bound tasks
Problem: Scalability is limited

requirement of different approaches

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 16/ 30

Introduction Classification Approaches Conclusion

Asynchronous Approaches—Event Loop

inversion of control
efficiency and scalability
control over switching between application activities
relies on notification facilities
application handles occurrence of events
commonly used: Node.js

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 17/ 30

Introduction Classification Approaches Conclusion

Client 1

Client 2

⋮

Client n

Request 1Request 2. . .Request n

Request 1

Request 2

⋮

Request nRequest 1

Request 2

Request n

T1 T2 . . . Tm

Thread T1

Database

File System

handled by

Blocking IO?

Event Loop

Send Responses

non-blocking is
processed here

Event Queue Internal Thread Pool

Blocking IO handler

⇐Ô

Request-1

Request-2

Request-n

Response-1

Response-2

Response-n

Pick up Requests from Queue

no

no

yes

non-blocking IO

non-blocking IO

blocking IO

pickup one
Thread

Figure: Node.js processing model [2].

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 18/ 30

Introduction Classification Approaches Conclusion

Client 1

Client 2

⋮

Client n

Request 1Request 2. . .Request n

Request 1

Request 2

⋮

Request nRequest 1

Request 2

Request n

T1 T2 . . . Tm

Thread T1

Database

File System

handled by

Blocking IO?

Event Loop

Send Responses

non-blocking is
processed here

Event Queue Internal Thread Pool

Blocking IO handler

⇐Ô

Request-1

Request-2

Request-n

Response-1

Response-2

Response-n

Pick up Requests from Queue

no

no

yes

non-blocking IO

non-blocking IO

blocking IO

pickup one
Thread

Figure: Node.js processing model [2].

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 18/ 30

Introduction Classification Approaches Conclusion

Client 1

Client 2

⋮

Client n

Request 1Request 2. . .Request n

Request 1

Request 2

⋮

Request n

Request 1

Request 2

Request n

T1 T2 . . . Tm

Thread T1

Database

File System

handled by

Blocking IO?

Event Loop

Send Responses

non-blocking is
processed here

Event Queue Internal Thread Pool

Blocking IO handler

⇐Ô

Request-1

Request-2

Request-n

Response-1

Response-2

Response-n

Pick up Requests from Queue

no

no

yes

non-blocking IO

non-blocking IO

blocking IO

pickup one
Thread

Figure: Node.js processing model [2].

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 18/ 30

Introduction Classification Approaches Conclusion

Client 1

Client 2

⋮

Client n

Request 1Request 2. . .Request n

Request 1

Request 2

⋮

Request nRequest 1

Request 2

Request n

T1 T2 . . . Tm

Thread T1

Database

File System

handled by

Blocking IO?

Event Loop

Send Responses

non-blocking is
processed here

Event Queue Internal Thread Pool

Blocking IO handler

⇐Ô

Request-1

Request-2

Request-n

Response-1

Response-2

Response-n

Pick up Requests from Queue

no

no

yes

non-blocking IO

non-blocking IO

blocking IO

pickup one
Thread

Figure: Node.js processing model [2].

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 18/ 30

Introduction Classification Approaches Conclusion

Client 1

Client 2

⋮

Client n

Request 1Request 2. . .Request n

Request 1

Request 2

⋮

Request nRequest 1

Request 2

Request n

T1 T2 . . . Tm

Thread T1

Database

File System

handled by

Blocking IO?

Event Loop

Send Responses

non-blocking is
processed here

Event Queue Internal Thread Pool

Blocking IO handler

⇐Ô

Request-1

Request-2

Request-n

Response-1

Response-2

Response-n

Pick up Requests from Queue

no

no

yes

non-blocking IO

non-blocking IO

blocking IO

pickup one
Thread

Figure: Node.js processing model [2].

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 18/ 30

Introduction Classification Approaches Conclusion

Client 1

Client 2

⋮

Client n

Request 1Request 2. . .Request n

Request 1

Request 2

⋮

Request nRequest 1

Request 2

Request n

T1 T2 . . . Tm

Thread T1

Database

File System

handled by

Blocking IO?

Event Loop

Send Responses

non-blocking is
processed here

Event Queue Internal Thread Pool

Blocking IO handler

⇐Ô

Request-1

Request-2

Request-n

Response-1

Response-2

Response-n

Pick up Requests from Queue

no

no

yes

non-blocking IO

non-blocking IO

blocking IO

pickup one
Thread

Figure: Node.js processing model [2].

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 18/ 30

Introduction Classification Approaches Conclusion

Client 1

Client 2

⋮

Client n

Request 1Request 2. . .Request n

Request 1

Request 2

⋮

Request nRequest 1

Request 2

Request n

T1 T2 . . . Tm

Thread T1

Database

File System

handled by

Blocking IO?

Event Loop

Send Responses

non-blocking is
processed here

Event Queue Internal Thread Pool

Blocking IO handler

⇐Ô

Request-1

Request-2

Request-n

Response-1

Response-2

Response-n

Pick up Requests from Queue

no

no

yes

non-blocking IO

non-blocking IO

blocking IO

pickup one
Thread

Figure: Node.js processing model [2].

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 18/ 30

Introduction Classification Approaches Conclusion

Continuations

Example
pub l i c i n t Div ide (i n t top , i n t bottom)
{

i f (bottom==0)
{

throw new Inva l i dOperat ionExcept ion (” d iv ␣by␣0”) ;
}
e l s e
{

return top/bottom ;
}

}

pub l i c bool IsEven (i n t aNumber)
{

var i sEven = (aNumber % 2 == 0) ;
return i sEven ;

}

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 19/ 30

Introduction Classification Approaches Conclusion

Continuations

Example
pub l i c T Divide<T>(i n t top , i n t bottom , Func<T> i fZe ro , Func<int ,T> i f S u c c e s s)
{

i f (bottom==0)
{

return i f Z e r o () ;
}
e l s e
{

return i f S u c c e s s (top/bottom) ;
}

}

pub l i c T IsEven<T>(i n t aNumber , Func<int ,T> ifOdd , Func<int ,T> i fEven)
{

i f (aNumber % 2 == 0)
{

return i fEven (aNumber) ;
}
e l s e
{

return i fOdd (aNumber) ;
}

}

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 20/ 30

Introduction Classification Approaches Conclusion

Asynchrony in F#

also implementing event-based paradigm
library with new syntactic category aexpr
use capability of language to handle different context
asynchronous operations are capable of binding core language results

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 21/ 30

Introduction Classification Approaches Conclusion

Asynchrony in F#—Task Generators

sometimes functions need task generators
can run asynchronous computations synchronously
can be run as a co-routine if it does not produce a result

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 22/ 30

Introduction Classification Approaches Conclusion

Example (Task Generators)

let sleepThenReturnResult =
async { printfn "before␣sleep"
do! Async.Sleep 5000
return 1000

}

let res = Async.RunSynchronously sleepThenReturnResult
printfn "result␣=␣%d" res

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 23/ 30

Introduction Classification Approaches Conclusion

Where is the callback run?

in .NET any computation has access to synchronization context
any callback is running “somewhere”

can be abused to run callbacks based on function closures

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 24/ 30

Introduction Classification Approaches Conclusion

Where is the callback run?

in .NET any computation has access to synchronization context
any callback is running “somewhere”

can be abused to run callbacks based on function closures

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 24/ 30

Introduction Classification Approaches Conclusion

Asynchronous Resource Clean-Up

language feature: use!
allows to directly dispose resources
cancellation of operations: implicit propagation of a token

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 25/ 30

Introduction Classification Approaches Conclusion

Synchronous Programming—Pro and Contra

ensures temporal and logical
correctness

blocking a thread might block
complete system
requires manual use of
synchronization mechanisms
may lie outside the control of
the programmer

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 26/ 30

Introduction Classification Approaches Conclusion

Synchronous Programming—Pro and Contra

ensures temporal and logical
correctness

blocking a thread might block
complete system
requires manual use of
synchronization mechanisms
may lie outside the control of
the programmer

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 26/ 30

Introduction Classification Approaches Conclusion

Asynchronous Programming—Pro and Contra

system stays responsive
outperforms synchronous
systems
main process is always
single-threaded
programmer is in control of
task suspension
multi-threading is not
forbidden
allows to reduce the syntax to
“computation expressions”
no need to explicitly ensure
temporal correctness

program needs to be
organized in smaller steps
no explicit use of
multi-threading
not all interprocess
communication can be
reduced to events
high complexity without
callbacks

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 27/ 30

Introduction Classification Approaches Conclusion

Asynchronous Programming—Pro and Contra

system stays responsive
outperforms synchronous
systems
main process is always
single-threaded
programmer is in control of
task suspension
multi-threading is not
forbidden
allows to reduce the syntax to
“computation expressions”
no need to explicitly ensure
temporal correctness

program needs to be
organized in smaller steps
no explicit use of
multi-threading
not all interprocess
communication can be
reduced to events
high complexity without
callbacks

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 27/ 30

Introduction Classification Approaches Conclusion

Conclusion

Asynchronous programming eliminates some issues from synchronous
programming
Asynchrony allows the programmer to take control
Asynchrony takes care of temporal correctness

Synchronous programming is required in some areas
Asynchronous programming can not be used at any operation
Complexity of Asynchrony can ensure unmaintainable code

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 28/ 30

Introduction Classification Approaches Conclusion

Conclusion

Asynchronous programming eliminates some issues from synchronous
programming
Asynchrony allows the programmer to take control
Asynchrony takes care of temporal correctness

Synchronous programming is required in some areas
Asynchronous programming can not be used at any operation
Complexity of Asynchrony can ensure unmaintainable code

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 28/ 30

Introduction Classification Approaches Conclusion

Thank You for Your attention.

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 29/ 30

Introduction Classification Approaches Conclusion

Literature

Dave Peticolas.
An introduction to asynchronous programming and twisted.
http://krondo.com/?p=1209, 2009.
Accessed: 2015-11-07.
Rambabu Posa.
Node.js processing model – single threaded model with event loop
architecture.
https://tinyurl.com/jjc7btk, 2015.
Accessed: 2015-12-17.

J. P. Maas (University of Luebeck) Synchronous vs. Asynchronous Programming 30/ 30

http://krondo.com/?p=1209
https://tinyurl.com/jjc7btk

	Introduction
	Classification
	Synchronous Programming
	Asynchronous Programming

	Approaches
	Synchronous
	Asynchronous

	Conclusion

