
Sebastian Hungerecker • Malte Schmitz (Eds.)

Concepts of Programming
Languages – CoPL’15
CS 3702 Bachelor Seminar Informatics, CS 3703 Bachelor Seminar Medical Informatics,
CS 5480 Seminar Software Systems Engineering, CS 5840 Seminar in English
Lübeck, Germany, winter term 2015
Proceedings

Institute for Software Engineering and Programming Language
University of Lübeck

2 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

Preface
In this seminar we explored modern concepts of programming
language design and implementation. This encompasses se-
mantic aspects such as paradigms or type systems as well as
implementation aspects such as parsing, intermediate represen-
tations or optimization.

The aim of this seminar was to give an overview on a selection
of topics within the field of programming languages. This sem-
inar does not consist of tutorials for different programming lan-
guages, but tries to introduce at least some of the main concepts
used in programming languages. The participants could choose
a topic that appeared most interesting to them. As a result, there
is no clear focus on one specific aspect, but the seminar covers
a wide range of exciting topics.

Instead of pre-selected literature the students received at first
only a few keywords defining their topic. For example the sub-

ject evaluation strategies was described with these four key-
words:

– lazy, by need (Haskell, . . .)
– strict (most known)
– by name (Scala, . . .)
– usage and implementation

This open characterizations lead to much more research effort,
but the final contributions give a wider overview on the selected
topic and some of the results are quite impressive. The 13
contributions are altogether way above average students’ home-
work.

February 2016 Sebastian Hungerecker
Malte Schmitz

CONTENTS 3

Contents

Alexander Schramm
Metaprogramming 4

Merlin Laue
Basics of Garbage Collection 11

Malte Skambath
Intermediate Represantations 16

Toni Schumacher
Static vs. Dynamic Typing 22

Gunnar Bergmann
Memory models 27

Timo Luerweg
Stack based programming 33

Moritz Flucht
Evaluation Strategies 38

Gilian Henke
Logic programming 44

Larissa von Witte
Parser . 49

Alexander Harms
Array programming 54

Thiemo Bucciarelli
Just in time compilation 59

Jan Pascal Maas
Synchronous vs. asynchronous programming . . . 65

Jan Niklas Rösch
Aspects of object orientation 72

Metaprogramming
Alexander Schramm

Abstract—The automatic generation of programs has been a
research topic for many years in different Contexts. Metapro-
gramming is one way to write code that generates or manip-
ulates code. This paper will provide an overview of different
metaprogramming concepts and their implementation in differ-
ent programming languages.

For this purpose this paper will show examples of Reflections
in Java, Lisps S-Expression and Macros, Template Haskell, C++
Templates and Runtime Metaprogramming in Ruby.

I. INTRODUCTION

Automatic generation of programs and code has been a long
term research field, e.g. to generate test cases, generate soft-
ware from specifications (UML to Java Classes) or compiler
generation. There are different definitions of metaprogram-
ming, based on the language it is implemented in and what
should be examined, but for this paper we will use to the
following one based on [1]: Metaprogramming is a term de-
scribing different ways to write code that generates new code
or manipulates existing one. Metaprogramming can be used
for language virtualization, type providers, materialization of
type class instances, type-level programming, and embedding
of external DSLs [2]. While metaprogramming is often seen
as an academic approach to programming and is considered
bad style in many languages and communities, there are also
big projects leaveraging its powers and showing how it can be
put to great use. Examples we will glance at in this paper are
the JUnit test framework from Java and the JBuilder project
in Ruby In this Paper multiple implementations and concepts
of metaprogramming in different languages will be shown.

Outline: In Chapter II there will be an overview of
metaprogramming concepts in theory and an explanation of
the concept itself. In Chapter III we will look at a first,
small example of metaprogramming called Reflection in the
Java Programming Language. Chapter IV shows a technique
of compile time metaprogramming in the C++ language
using Templates and Chapter V will show compile time
metaprogramming in a purely functional and type safe man-
ner. Afterwards we will look at runtime metaprogramming
in Ruby in Chapter VI and its rich runtime object model.
With this knowledge we will look at the richest compile-time
metaprogramming model: Makros in Lisp in Chapter VII. In
Chapter VIII we will give an overview of further interesting
implementations of metaprogramming in other languages and
talk about when metaprogramming should or shouldn’t be
used.

II. WHAT IS METAPROGRAMMING

The term metaprogramming is used for different ways to
generate and manipulate Code. Two big, different approaches

are compile-time and runtime metaprogramming, which are
supported in different languages and allow different concepts
of code generation. General use cases of all kinds of metapro-
gramming are to support growth of a programming language
(add new syntax without the need to update the compiler/run-
time), support of external Domain Specific Languages (DSLs)
(e.g. SQL or JSON Fragments) and to write wrapper libraries
around other systems with changing interfaces. Furthermore
metaprogramming concepts can be used to write more concise
code and adapt the style of the language to a specific problem
domain [3], [4].

Another differentiation in metaprogramming is the domain-
or metalanguage and the host- or object-language [1], which
can be different languages or the same. The domain language
is the programming language, in which the metaprogram
is written, while the generated code is output in the host
language. In this paper we will only look at metaprogramming
systems, where the domain language is a part of the host
language, therefore metaprograms can be embedded in normal
programs of the language. An example, where the domain
language differs from the host, is Yet Another Compiler
Compiler (YACC)[5], which has a special kind of a Backus-
Nauer-Form (BNF) as the domain language and which outputs
a C++ program [1].

A. Compile-Time metaprogramming

Metaprogramming, which is happening at compilation time,
is supported in many languages like Scala ([2]), C++ ([6],
[1], [7]), Haskell ([8]) or maybe most idiomatic in nearly
all Lisp dialects in the form of Macros. Most known forms
of it are macros and templates, which offer different kind of
mechanisms to generate code based on defined patterns which
are used by normal code. This patterns can be used to generate
multiple, similar methods without writing them explicitly or
to transform parts of the program.

Compile time metaprogramming happens before the pro-
gram runs and therefore the generation of the code doesn’t has
an impact on runtime performance of the program. This can
be used to solve computationally intensive problems during
compilation – so only once: when the program is build – and
not every time the program is run and therefore to boost the
performance of a program.

Compile time metaprogramming gives the user of a pro-
gramming language a mechanism to interact with the Compiler
to allow the construction of arbitrary program fragments from
user code. [4] This interface to the compiler can be used to
modify the Abstract Syntax Tree (AST) of the compiled code,
and rearrange, manipulate, delete or generate new nodes in the
tree.

4 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

B. Runtime Metaprogramming

Runtime metaprogramming is all about modifying a pro-
gram while it is running. This can lead to a very dynamic
nature of programs written using these techniques: undefined
methods can be generated on the fly, so every user input
could be translated into a new method or a program can
adapt to changing interfaces of third party services without
the need to recompile it. To enable such behavior, the host
language has to provide a rich runtime object model. In many
classic programming languages, most meaning and structure
(read classes, inheritance, methods) of code gets lost, when
it is compiled and only sequential instructions to execute are
left. Languages which support Runtime metaprogramming like
Ruby or Java have to keep some information of the code, e.g.
the class hierarchy or where a method is defined, to present this
information towards the programmer at runtime. Generating
and using an object model produces overhead and slows
performance at runtime, but is necessary to provide runtime
metaprogramming Application Programming Interfaces (APIs)
which can boost performance of the programmers. So runtime
metaprogramming is a tradeoff between runtime performance
and developer productivity.

III. JAVA AND RUNTIME REFLECTION

The Java programming language is a compiled one, but
it’s not compiled into machine code but into a platform
independent bytecode, which then can be run in a Java Virtual
Machine (JVM) on different host platforms. While there is no
compile time metaprogramming API, some parts of the object
model are preserved in the compiled code and can be used
for runtime metaprogramming, mainly with the reflection API.
The entry point for Reflection is the class object, which can
be retrieved and used as shown in Listing 1.

Class<Date> c1 = java.util.Date.class;
// class java.util.Date
Class<?> c2 = new

java.util.Date().getClass();↪→

// class java.util.Date
Class<?> c3 =

Class.forName("java.util.Date");↪→

// class java.util.Date

Listing 1: Using the Java Reflection Api to get the class
object [9]

class objects can be used to retrieve information about
the class they represent or objects of that class. They provide
methods to get declared fields, methods, constructors and
annotations. Annotations are a Java specific way to add more
Metadata to language constructs. The popular Java testing
framework JUnit1 makes excessive use of annotations and
reflections to run testcases and manage testing environments.
Listing 2 shows, how a parser method could get all methods
of a class annotated with the @Test annotation and call them.

1http://junit.org

public void parse(Class<?> clazz) {
Method[] methods = clazz.getMethods();

for (Method m : methods) {
if (m.isAnnotationPresent(Test.class)) {

m.invoke(null);
}

}
}

Listing 2: A class parser to find and call methods in a class
annotated with a @Test annotation

An important distinction is that the class object of a
class is not the same thing as the declared class, like it is
the case in Ruby, shown in Chapter VI, but merely a proxy
objects which is used to collect metadata about that class.
Therefore it can’t be used to manipulate the underlying class
by adding new variables or methods. This behavior doesn’t
satisfy our definition of metaprogramming, nonetheless it’s a
showcase of a enhanced runtime object model, which provides
metaprogramming-like access to the running code.

IV. TEMPLATE METAPROGRAMMING IN C++

C++ is a compiled, strongly typed programming language,
which was developed as a superset of the C language. The
Template mechanism is a turing complete [10] subset of the
C++ Language. It can be used to generate all kinds of C++
Programms, hence it’s turing complete: for an example of a
complex implementation using this power see [6]

It’s intended purpose when introduced, was to provide a
mechanism to define functions (or classes) in a strictly type
checked language, which can work with instances of multiple
types. Listing 3 defines a template method, which can be called
with two values of the same type, but the type can be anything,
as long as it provides a comparison operator.

template <typename T>
T max(T x, T y)
{

x < y ? y : x
}

Listing 3: Usage of C++ Template mechanism to define a type
independent function

While the method mostly looks like a normal function,
which could be normally compiled without any metaprogram-
ming facilities, what actually happens is, that the compiler will
generate a function for each type it is called with. E.g. there
will be no compilation of the method, when it’s never called,
as soon as it is used with max("a", "b") a version of the
function with the type (string, string)→string will be
generated and compiled. When there is another usage of the
function like max(1,2) another version will be generated and
compiled with the type (int, int)→int. All this happens
before the program is run, by analyzing the source code
for invocations of template functions or classes, followed by
generation of the appropriately typed counterparts and finally
the compilation of them like normal classes wold be compiled.

SCHRAMM: METAPROGRAMMING 5

This differs drastically from the concept of Generics in the
Java language, where no code generation is happening at com-
pile time. Java Generics look quite simlar to templates, where
a method or a class can have arguments of an unspecified type,
but aren’t nearly as powerful as them. Rather than generating
the appropriately typed methods or classes during compilation,
every generic class or method is represented by one class or
method at runtime, where the generic parameter is given a type
based on what is know about it during compilation. A generic
method like public T result() ... would be compiled
similar as the function public Object result() In
conclusion, Java Generics are syntactic sugar for automatic
type casting and can’t be used to generate code.

The compile time part of C++ is often referred to as a
pure functional language [1] because of a property it shares
with languages such as Haskell: (meta) data is immutable and
(meta) functions can have no side effects [1], where (meta)
data and functions mean the data and functions invoked at
compile time to generate code as part of an template and
therefore are a part of the metaprogram. While we will come
back to a pure functional language, Haskell, we will look
more closely at some of the concepts in C++. Abrahams
shows an interesting effect of this functional paradigm in [1]:
Since you can’t write a (non-infinite) loop without examining
some mutable state in its termination condition, iteration is
simply beyond reach at compile time. Therefore, recursion is
idiomatic for C++ metaprograms.

To write recursive templates, one has to use something
called template specialization, which takes the role of the ter-
mination condition provided in loops. A classic example of this
is the computation of fibonacci numbers, where each number
is the sum from its two predecessors, so that fib(0)=1,

fib(1)=1, fib(n>1)=fib(n-1)+fib(n-2). The simple,
incremental implementation, solving the problem at runtime,
would have a complexity of O(n2) to generate the n’th
fibonacci number. This could be improved with a template
metaprogramming approach using partial template specializa-
tion: Because template functions only have to be generated
at their first invocation by the compiler, their calculated
value will be reused and doesn’t has to be computed again.
This could also be implemented without templates by using
memoization, but with templates we get the benefits without
needing to explicitly write the memoization. Listing 4 shows
how template structs can be used, where the first part is a
normal template and the second part is a specialized template.

template <unsigned n, bool done = (n < 2)>
struct fibonacci {
ˆˆIstatic unsigned const value =
ˆˆIˆˆIfibonacci<n-1>::value +
ˆˆIˆˆIfibonacci<n-2>::value;
}
template <unsigned n>
struct fibonacci<n, true> {
ˆˆIstatic unsigned const value =n;
}

Listing 4: C++ template used to calculate fibonacci numbers
with template specialization from [1]

The second, specialized struct definition is used by the
compiler, when the fibonacci algorithm has reached it’s termi-
nation point, namely when fibonacci<1> or fibonacci<0>
is called, in all other cases the first struct definition is used.
Obviously this approach is limited: Because the calls to
fibonacci<n> have to be fully specified during compilation,
also the value of n has to be known. Therefore one can’t use
this function to calculate the fibbonacci number of a value
computed during runtime, e.g. to write a calculator which
allows calling the method with user input.

As shown, C++ Templates are a very powerful tool, but
as stated in [11] they got this power merely by accident
and were never intended to be used as a functional language
on their own. This can be seen by looking at the solution
of the n-queens problem in [6]: Previous work solving the
same problem were compiler-dependent, used error messages
to print out the solutions or the solutions weren’t accessible
by non-template parts of the program. The implementation in
[6] fixes some of these issues, on the other hand it introduces
new issues and is complicated to compile or use.

In conclusion, templates can and should be used to design
clean code without unnecessary duplication or coupling, but
most of the times not to implement something that can be
solved at runtime by classic C++ code. This is a characteristic
of many metaprogramming techniques, which we will talk
about further in chapter VI.

V. TEMPLATE METAPROGRAMMING IN HASKELL

Templates are an extension to the strongly-typed, purely
functional programming language Haskell introduced in [8]
and included in the standard Haskell compiler. Similar to
C++ templates, templates in Haskell are a compile time
metaprogramming mechanism, where code is generated based
on given code snippets in a special syntax that is an integrated
part of the Haskell language. Different from C++ templates,
Haskell templates give the programmer direct access to the
AST to modify given code and to generate new one.

The basic syntax of code manipulation is the so called
splice operator $, which encapsulates a code fragment that
is manipulated at compile time. A basic use case for this is
the implementation of a printf method, which can be used
similar to the C method: It takes a string with special place-
holder symbols and a variable number of further arguments
of a type specified by the placeholder symbols, to interpolate

6 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

them into the given string. This can’t be done in basic Haskell
because of the strict type safety: The type of every argument
of a function has to be known at compile time. To solve this,
[8] shows a template implementation of the printf method,
which examines the given string for placeholder symbols and
generates a printf function with the needed arguments which
is inserted at the place of the splice. Listing 5 shows how a
splice is used to generate a printf function which takes a string
and an integer to generate a error message.

$(printf "Error: %s on line %d") msg line

Listing 5: Usage of a splice to generate a printf method
with the appropriate types as shown in [8]

When compiled, first the splice is evaluated, which gen-
erates the code (\ s0 -> \ n1 -> "Error: " ++ s0 ++

" on line " ++ integerToString n1) This code is in-
serted at the place of the splice, afterwards it will be compiled
with the two arguments msg and line passed to it. This
mechanism allows strict type checking of the arguments,
because the generated method uses the placeholders inside the
string to generate a method which only works with arguments
of a matching type for them. As an example one can’t use
the %s placeholder and pass an integer as the first argument,
because the generated method would need an argument of type
string.

To generate code, there has to be a mechanism to distinguish
between code that is executed during splicing, e.g. the parse

method for the printf macro in [8], and code that is inserted
and compiled later, namely the code that is returned by the
splicing. This distinguishing is achieved with the quasi-quote
symbols [| and |]. Code inside the quasi-quote characters is
not evaluated during splicing and can be inserted into the place
of the splice. It’s important to note, that inside quasi-quoted
expressions further splicing can happen, therefore splicing has
a recursive character: When a splice is encountered inside a
quasi quote it is expanded the same way splices are evaluated
outside of them, therefore a splice could generate some code
which contains another splice, which would be expanded
again.

The quasi-quoting mechanism shows an important char-
acteristic of AST manipulation, that is further explored and
used in chapter VII: Code as Data. Inside quasi-quotes, code
isn’t evaluated, basically it can be treated like any other data,
like a string or an integer. Especially data can be generated
and manipulated by a Haskell program without the need of a
special syntax, because data-manipulation is one of the main
use-cases of most programming languages, including Haskell.
Similar as one could write a function that return the length of
a string, it is also possibly to write a function that returns a
new function or manipulates a given one.

As noted in [8] it is a disadvantage, that the programmer
at the caller side has to use specific annotations (the splice
operator) to use templates, because this separates the host
from the domain language. Lisp macros in contrast require no

extra syntax on the caller side, a macro call looks exactly the
same as a method call. This removes complexity for beginners,
because they don’t have to understand the difference between
templates (or macros) and normal methods and don’t have to
learn about metaprogramming at all.

VI. RUNTIME METAPROGRAMMING IN RUBY

Ruby is a dynamic, interpreted language with a very rich set
of runtime metaprogramming APIs. Metaprogramming is such
an essential part of the Ruby language, that it blends in with
non-metaprogramming parts of it to such a degree, that often
times it can’t be distinguish whether it is used at all or not.
Many parts of Ruby, which look like language level syntax
constructs, are actually implemented using metaprogramming
techniques.

To allow this mixture of metaprogramming with normal
coding Ruby provides a very rich object model at runtime,
which can be seen as the counterpart to the AST, which
is manipulated by compile time metaprogramming. Basically
every part of the Ruby syntax has a runtime counterpart in the
object model. This rich object model is not just the API for a
programmer to write metaprograms, it is actually used by the
Ruby interpreter itself to evaluate code. For example whenever
a class is defined, at runtime there will be an actual object
that represents that specific class. Differently than the class
construct of Java we have talked about in chapter III, the class
object in Ruby is not just a wrapper around metadata belonging
to that class. Quite on the contrary, it is the defined class itself.
To understand this, let’s look how Ruby implements method
calls on objects of a class:

Lets say we have a class Person with an instance method
called name (normally refered to as Person#name),
and instantiated it with instantiated_person =

Person.new("martin"). At this point there will be
two objects in the object model interesting for us right
now: The one which is the instantiated Person and the
one that is the actual class Person. If somebody would
call instantiated_person.name the Ruby interpreter
would look at the object that represents the class of
instantiated_person and call the method on that class
object.

This object model is accessible to the programmer, so one
could change it at runtime, which can be used for many
metaprogramming techniques to generate or manipulate code.
In the next few examples we will see some of the techniques
made possible by this accessible, rich object model.

A. Defining methods dynamically

Ruby offers at least three ways to add a method to an
object, from which only one isn’t actual a metaprogramming
technique. All three methods can be seen in Listing 6.

SCHRAMM: METAPROGRAMMING 7

class Person

def name
"Hans"

end

define_method("greet") {"hola"}

def method_missing(method, *args, &block)
if method.to_s.match /ˆgo$/

"goodbye"
else

super
end

end
end

Listing 6: Different ways to define Methods in Ruby

The method name is defined in a normal way, using the
def syntax, greet is defined using define_method, which
is actually a method on it’s own which can be used to
define methods dynamically, and than a method named go is
defined by overwriting the method_missing method, which
is called on a Ruby object whenever a method can’t be found
elsewhere on it’s ancestor chain. These techniques are explored
further in [12] under the names of dynamic methods and ghost
methods. The define_method method can also be used to
define class methods and has multiple related methods like
remove_method and define_singleton_method.

B. Altering existing methods

As methods are another part of the object model and
therefore accessible by the programmer at runtime, they can
be manipulated in different ways. A very common use case
is to wrap methods inside other methods to add behavior, for
example logging. One technique to achieve this is referred
to as an around alias in [12]. Basically you rename a given
method, redefine it and call the old implementation from
within the new method. An important concept of Ruby which
are necessary for this technique are open classes, meaning
that one can expand classes with further methods and fields
after they have been defined. Listing 7 shows how this can
be implemented to wrap a function from the String class by
opening it again.

class String
alias_method :old_length, :length

def length
old_length > 5 ? "long" : "short"

end
end

Listing 7: Wrapping a given method in an around alias [12]

C. Defining Classes at runtime

Similar to methods, classes and modules can be generated at
runtime. The syntax for this is quite familiar when you think

about how an object is instantiated: obj = MyClass.new

To dynamically create a class you would write MyClass =

Class.new do ... end. This similarity is not by coinci-
dence: As previous stated, classes are actually objects, and as
an object they must have a class. This class is the class Class,
and therefore you can create a class by instantiating an object
of the type Class.

D. Usage examples

After diving into some of Rubys metaprogramming tech-
niques, lets look at an actual use cases of metaprogramming
in a Ruby library.

We will look at a library called Jbuilder2, which can be used
to generate JSON from Ruby code. In a more strict language,
this task could lead to very verbose code that can’t easily be
recognized as JSON generation, like in a Java implementation3

shown in Listing 8

generator
.writeStartObject()
.write("firstName", "John")
.write("lastName", "Smith")
.write("age", 25)

.writeEnd()

Listing 8: Usage of the Java JsonGenerator

JBuilder on the other hand relies heavy on ghost methods
to enable a very straightforward API that looks more similar
to the generated JSON as shown in Listing 9

json.firstName "John"
json.lastName "Smith"
json.age 25

Listing 9: Usage of the JBuilder JSON generator

Even in this small example, the Ruby syntax is more
readable and is closer bound to the problem domain. When
dealing with more complex JSON data like arrays or objects
this gets even more obvious.

As we have seen in this example, metaprogramming is an
existential part of the Ruby language and can’t be separated
from it, often one can’t even distinguish between code that
uses metaprogramming and that doesn’t. Or as it is stated in
[3]: ”There is no such thing as metaprogramming, It’s just
programming all the way down.”

VII. LISP MACROS

Lisp describes a family of programming languages with
many different implementations, most known are Common
Lisp, Scheme and Clojure. The name is an acronym for List
Processing, which is also a description of it’s purpose. Lisp
was first specified in 1958 at the MIT in [13]. Lisp has a very
simple syntax with a minimum of reserved symbols, where
every statement is a so called S-Expression. An S-Expressions

2https://github.com/rails/jbuilder
3http://docs.oracle.com/javaee/7/api/javax/json/stream/JsonGenerator.html

8 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

is formed recursively: Either it is an atom or in the form (a .

b), where a and b are S-Expressions themselves. The dot in
(a . b) is left out in most modern S-Expressions notations
so that only (a b) remains.

A Lisp program is now a series of S-Expressions, which can
also be interpreted as linked lists. Based on the S-Expressions
only a minimal set of operators are needed to provide a Lisp
system. These are: one to access the first element of the list,
one to access the rest of it, one to concatenate two lists, one to
prevent evaluation of a list, one to compare two lists, one for
conditional evaluation and a mechanism to define functions.

When encountering a list, Lisps treats the first element of it
as a function name and the remaining elements as arguments
for that function. Nested lists will be evaluated from the most
inner list towards the outermost. Based on the simple structure
of Lisps syntax, Lisp code also has a very simple structured
AST. This AST can be manipulated by Lisps macro system.

Macros are a special form of functions, that get compiled
in two steps: first their arguments get passed to them as
unevaluated S-Expressions, then their return value, called their
expansion, will get compiled like a normal function. When
a macro is encountered, Lisp won’t evaluate the, potentially
nested, arguments passed towards it, like they would be with
a function, but rather will pass them right towards the macro.
Let’s look at an example: (print (+ 4 3)) would first
evaluate the inner list and pass a 7 to the function print.
If print where a macro, the inner list wouldn’t be evaluated
but passed to the function as a list which contains data, namely
three atoms, and the macro could do with this list as it pleases,
for example evaluate it. This is another example of Code as
Data, which was already mentioned in Chapter VI: A List can
be a normal list of data, which can be manipulated, and it can
be legal code at the same time.

To define useful macros, two keywords have to be defined:
one to evaluate a list and one to prevent evaluation of a list.
For the rest of this Paper we will use ˜ to evaluate and ’ to
prevent evaluation. Listing 10 defines a macro which takes a
list as a parameter, which adds two numbers, and replaces the
addition by subtraction.

(defmacro toggle (x)
’(- (hd ˜(tl x)) (hd ˜(tl (tl x))))

)
(toggle (+ 3 4)) # -> -1
(toggle (+ (* 2 3) (3))) # -> 3

Listing 10: Defining and using a Lisp macro

The forced evaluation of the arguments of the addition are
needed, so that nested lists will be evaluated before their first
element is extracted by hd, like shown in the second call. After
the evaluation of the arguments, a quoted list is build with -

as the first symbol and the evaluated two arguments as the
second and third elements. This quoted list is returned from
the macro and will be compiled as a normal S-Expression

Using this macro facility, it is simple to add new function-
ality to the language in the language itself. As an example

Listing 11 shows a macro implementation of an unless

condition, which acts similar to an if statement.

(defmacro unless (condition x y)
’(if (not ˜condition) ˜x ˜y)

)
(unless (> 1 2) "everythings fine" "something

is wrong")↪→

Listing 11: Defining an unless condition using a macro

One couldn’t implement unless as a normal function,
because the arguments that should be evaluated based on the
condition, would be evaluated when the function is called and
their return value would be passed to the unless function.

VIII. CONCLUSION

We have seen many different techniques of metaprogram-
ming and methods of using them. It’s obvious that the term
can’t be used for only one thing but rather references a whole
family of programming paradigms. To complicate the matter
even more, there are many more ways of metaprogramming
and even more implementations of them.

The Groovy programming language4 offers runtime and
compile-time metaprogramming at the same time, which
makes it difficult to separate between those. For Scala5 there
has been a recent implementation of type-safe, Lisp like
macros [2], which introduces different types of macros for
different language constructs. The fairly new Elixir program-
ming language6 combines many concepts of Ruby with a Lisp
like macro system and an interesting Code as Data approach,
where every statement is represented by a tuple which can be
modified like lists in Lisp.

The question remains when to use metaprogramming. Pri-
marily it depends on the language, e.g. Java’s runtime re-
flections come at the cost of performance7 and the C++
template system is often a fragile and hard to understand
mechanism to implement complex algorithms. On the other
hand in languages like Ruby and Lisp, metaprogramming is
deeply entrenched and is often the goto approach. Specifically
compile-time metaprogramming can be used to get better run-
time performance without the need to write repetitive code. So
one should use offered metaprogramming techniques mostly
in the way they were intended: C++ templates shouldn’t be
used to solve complex algorithms but to write concise, type
independent code where possible. Java reflections can be used
whenever performance is no primary concern. In Ruby and
Lisp metaprogramming is an essential part of the language
and should be used whenever it offers an advantage over other
implementations.

Metaprogramming can be a dangerous tool and hard to
understand, therefore other ways of implementation should
be evaluated every time a metaprogramming approach is

4http://www.groovy-lang.org
5http://www.scala-lang.org
6http://elixir-lang.org
7http://docs.oracle.com/javase/tutorial/reflect/

SCHRAMM: METAPROGRAMMING 9

considered. But as different implementations should always
be considered, metaprogramming should just become another
tool for a programmer to use.

ACRONYMS

API Application Programming Interface. 2, 4, 5
AST Abstract Syntax Tree. 1, 3, 4, 6

BNF Backus-Nauer-Form. 1

DSL Domain Specific Language. 1

JVM Java Virtual Machine. 2

YACC Yet Another Compiler Compiler. 1

REFERENCES

[1] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming:
Concepts, Tools, and Techniques from Boost and Beyond, 2004.

[2] E. Burmako, “Scala Macros : Let Our Powers Combine ! On How Rich
Syntax and Static Types Work with Metaprogramming,” 2013.

[3] P. Perrotta, Metaprogramming Ruby: Program Like the Ruby Pros,
2010. [Online]. Available: http://book.douban.com/subject/4086938/

[4] L. Tratt, “Compile-time meta-programming in a dynamically typed OO
language.” 2005. [Online]. Available: http://eprints.mdx.ac.uk/5919/

[5] S. C. Johnson, “Yacc : Yet Another Compiler-Compiler,” in Computing
Science Technical Report No. 32, 1975, p. 33.

[6] D. V. Dubrov, “N Queens Problem : a Metaprogramming Stress Test for
the Compiler,” pp. 35–45.

[7] a. Alexandrescu, Modern C++ Design, 2001.
[8] T. Sheard and S. P. Jones, “Template Meta-programming for Haskell,”

2002.
[9] C. Ullenboom, Java ist auch eine Insel - 13 Einführung in Datenstruk-

turen und Algorithmen, 2011.
[10] T. L. Veldhuizen, “C++ Templates are Turing Complete,” pp. 1–3, 2003.
[11] A. D. Robison, “Impact of economics on compiler optimization,”

Proceedings of the 2001 joint ACM-ISCOPE conference on Java
Grande - JGI ’01, pp. 1–10, 2001. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=376656.376751

[12] G. Sebastian and M. Fischer, Metaprogramming in Ruby A Pattern
Catalog, 2010.

[13] J. McCarthy, “Recursive functions symbolic expressions and their com-
putation by machine, Part I,” Communications of the ACM, vol. 3, no. 4,
pp. 184–195, 1960.

10 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

Basics of Garbage Collection
Merlin Laue

Abstract—Garbage collection is a widely appreciated function-
ality which is delivered by a lot of modern programming lan-
guages and compilers. This paper will explore the mechanics be-
hind garbage collection and evaluate the pros and cons associated
with all of the named collectors. We not only evaluate the inherent
time space trade-offs which can decrease the performance of a
collector by 70%, but also reveal that the number of collection
cycles is not the most important reason to look at when trying to
figure out the performance. Further onwards the native problem
of fragmentation and determinism is presented. We analyse all
the details behind the mechanics of a garbage collection algorithm
and observe how each collector deals with these issues. Sometimes
simple solutions can result in massive increases in performance
reaching up to 800% over brute force, just by changing to a
Merlin-type tracing method. Even more specific issues like cycles
in the memory and locality of the mutator, have and can mostly be
dealt with in a quite simple fashion as well. The basic algorithms
we present include Semi-space, Reference counting, Mark-and-
Sweep, and Mark-and-Compact. Alongside, we will also present
a more advanced generational collector which is equivalent but
not exactly the same for each basic collector type. Lastly, vastly
different collectors which oppose the normal exact type collector
, the conservative collectors, will be introduced and analysed.
After reading this compilation one has the basic knowledge to
determine if the use of a garbage collector and which kind of
collector is appropriate.

I. INTRODUCTION

In modern times everything is made easier. Programming
follows this trend, as most programmers choose to use an
environment that supports automatic memory management
(Garbage collection). The previous free() and malloc()-methods
usually require quite alot of attention from the programmer,
lenghtening the development process considerably. They can
restrict the programmer from some modularity features and
have a tendency to create memory leaks if one is not careful
enough with allocation and freeing. With this in mind having the
means to automaticially collect dead objects is very convenient.
Despite the convincing features, the question whether you
should use a garbage collector is not a simple one to answer.
Garbage collectors tend to require alot of memory to do their
duty. Ranging from a decrease of 17% at three times relative
memory to a deacrease of 70% at two times relative memory [8],
an unoptimised algorithm can cause alot of trouble in memory
scarce environments. Performance is, against common believe,
not as much dependent on the amount of collection but more on
the locality of the mutator 1. Having a very compact space of
data to work with is very important. This leads to the next topic
of fragmentaion. Holes in the memory combined with a bad
allocation method lead to easily recognizable performance

1A mutator is part of a running program which executes application code.
Its name is based on the fact that from the collector’s point of view it mutates
the graph of objects.

drops. The most simple garbage collection algorithms are
Semi-space, Reference counting, Mark-and-Sweep. Using these
algorithms, said issues can be observed in a simple fashion.
Semi-space without compacting naturally causes fragmentation
because it only copies one space of memory to the other
and then switches the spaces. Reference counting only counts
references to each objects with a free-list and then sweeps zero
count objects. It does not compact the memory and thus leaves
holes in the memory which are then filled with a first fit strategy.
This are only some examples of causes for fragmentation.
To fix alot of these issues the generational collectors were
invented. They partition the memory in different ’age’-spaces
and follow the weak generational hypothesis [1]. Because the
young generation contains fast decaying objects it is collected
faster and surviving objects are then moved to the adult and later
permanent spaces. The spaces use one of the basic strategies
(MS,RC,Semi-space) to lazily collect dead objects.
Said algorithms are exact collectors requiring assistance by the
compiler and runtime. In contrast, there also exist less elaborate
conservative collectors. They examine the memory and most
notably the execution stack to check for every word that looks
like a reference to an object. In case such a word exists,
they then make the conservative assumption that it is indeed a
reference. The term for such a reference is ambiguous reference.
lastly, the algorithm proceeds to filter and pin them. Pinning
can create memory overhead because of excess retention.
Onwards this paper will explain all details behind the algorithms
and give a deeper insight into the complexity of garbage
collection and its performance.

II. PROBLEMS

Garbage collection frees programmers from memory man-
agement , prevents most memory leaks and adds improved
modularity. However this convenience comes with a fairly heavy
price to pay in most cases. This section will provide you with
reasons why, in memory scarce or specialized environments a
programmer is better off using manual memory management.

Time Efficiency Time efficiency relates to the amount of
time the garbage collector needs to record and collect all of the
unused data. Depending on the type of collection algorithm and
allocated memory size this can lead to a drastic performance
degradation. For example an appel-style generational collector
[1] with a noncopying mature space is just as fast as explicit
management when having five times its memory. At three times
this degrades to 83% and when only given twice the memory
this degrades to 30% on average. [8] This is because at low
heap sizes the collection frequency usually dominates the the
locality benefit of contiguous allocation. As heap size increases
the mutator locality advantage of contiguous allocation starts

LAUE: BASICS OF GARBAGE COLLECTION 11

to take effect resulting in faster execution time. [5] Contiguous
allocation also provides fewer misses at all levels of the cache
hierarchy.

Memory Usage As stated above garbage collection tends
to have a close affinity to the amount of memory allocated
towards it. When examining garbage collection algorithms you
come across some common major obstacles which bring up
the memory usage. If the algorithm uses a table or a list to
note the current references and/or time stamps then this has to
be stored in the memory. Furthermore some algorithms store
data about the state, location and size of the object by adding
additional overhead to each object. Having write barriers to
limit the collection sizes adds overhead to objects as well.
In some cases the overhead can be stored inside the actual
object but that is a very rare case. Lastly if you happen to use
a copying garbage collector then it needs space to copy the
current set of objects to. Equally important, but not as easily
observable, is the use of memory because of the timings the
garbage collector has preset. Late finalization will cause more
memory usage in comparison to an early finalization. This is
accommodated by the three terms SyncEarly , SyncLate, and
SyncMid. [6]

Fragmentation Alongside memory usage garbage collection
algorithms can become prone to fragmentation. If there is no
implemented compactor component, then just marking and
collecting loose objects in the memory leads to a lot of small
gaps inside the memory. Given the fact that these holes are
too small to be filled in again the effective memory you have
for the program to execute gets smaller by the time. Thus
garbage collectors have to collect more often resulting in up
to exponentially increasing execution times. More advanced
algorithms counter this problem by allocating objects into
generational areas which are then compacted as they are
promoted to move into the area.

Determinism Determinism refers to the topic of finalization.
To elaborate, finalization is a method which the garbage
collector calls when it wants to free an object. In contrast
to destructors, a finalization method has no implicit time stamp
on which it actually frees the object. Thus creating an unknown
factor in program execution making it possible for the program
to not be deterministic. This becomes an issue if the object
uses shared resources because it leads to unpredictable waiting
times in between the objects who use the resource.

III. ALGORITHMS

Before analysing the mechanics behind each algorithm
we have to define certain phrases which become necessary.
Firstly, there are 3 kinds of garbage collectors : Stop-the-world,
Incremental, and parallel (Realtime versions are also available).
Stop-the-world is the most naive type. To collect objects and
to trace the heap the algorithm needs the execution to stop
completely. This is to avoid mutations in the object graph. In
contrast to stop-the-world, an incremental type collector collects
garbage and analyses the heap bit by bit without having to
stop the program for too long making it potentially faster. The
probably most optimal type of collector works parallel with

the execution. The pros and cons of each type will become
relevant when further explaining the algorithms.

A. Semi Space

The semi space collectors use two equal sized copy spaces.
It contiguously allocates into one and reserves the other space
for copying into since, in the worst case, all objects could
survive. If one half happens to run out of memory it copies live
objects into the complementary half and proceeds to swap both
regions. Thus the collection time is proportional to the number
of survivors inhabiting the full copy space. The performance of
such an algorithms suffers due to the large amount of memory
required to set up the two spaces and the fact that semi space
collects the entire heap every time.
Copying tracing proceeds the transitive closure in the following
way. Firstly it enqueues the location of all root references and
then iterates along the roots. If the referent object is uncopied,
it copies it, leaves a forwarding address in the old object,
enqueues the copied object in another ’gray queue’ and then
adjusts the reference to point to the new object. [5] Semi space
does not use a write barrier to separate the 2 copy spaces.

B. Reference Counting - RC

RC algorithms use a free list to note the amount of references
pointing towards any given object. During mutation, the write
barrier ignores all operations that store into the roots and only
logs the mutated objects. Afterwards it consults the list and
periodically generates reference increases and decreases for
root referents. Objects with a zero count are being freed and all
the objects it references are being recursively decreased. The
collection time is proportional to the amount of dead objects.
Due to the mutator having to log all changes to the free list,
the burden on it is significantly higher then normally. Besides
the significantly increased workload, RC also has big problem
with reference cycles in the memory. The most simple example
of a cycle is A → B → C → A. In this scenario (and without
proper cycle detection) A could never be collected if it loses all
outside references because C always references A. Thus most
standard RC algorithms feature trial deletion as a common
method to detect cycles. [2]
RC only really records objects upon its first modification.
Afterwards it buffers the in- or decrements using the logs in
the list. When needed to collect dead objects it firstly generates
increments for all roots and referents, then secondly introduces
temporary increments [3] for roots and the objects referred to,
and lastly deletes objects with a reference count of zero. If an
object becomes a zero count during this process, its added to
the free list by setting a bit and decrementing recursively as
described above. These objects will be collected in the next
collection cycle.

C. Mark and Sweep - MS

There are a lot of different MS variants with a wide variety
of efficiencies. The following will only cover the basics.
In contrast to RC, MS uses a free list and a tracing collector.
Every time when the heap is full, it triggers a collection using

12 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

tracers to mark live objects with bitmaps. Allocation works
by simply finding slots with a first fit strategy. Tracing is
proportional to the number of live objects while reclamation is
proportional and scaling with allocation. The most basic tracing
works the same way as Semi Space. The only difference is that
instead of copying the object it sets a bit in a live object map.
For very efficient tracing, the Merlin algorithm is available. It
can increase the performance of tracing by a factor of 800 times
over brute-force tracing. [6] The downside of this collector is
it being a whole heap collector, meaning it will collect the
whole heap in every cycle. Another fairly big problem is the
speed in which the memory fragments itself.
The free-list uses slotted-fits with different size classes. The
basic classes are 1)4 Bytes apart 2)8 Bytes apart 3)16 Bytes
apart 4)32 Bytes apart 5)256 Bytes apart and 6) 1024 Bytes
apart (Classes may vary. These classes are for MMTk). A
possible optimisation is the use of a best fit strategy instead
of bump pointers to reduce fragmentation, but this will result
in a 10% degradation of speed. [5]

D. Mark and Compact

Essentially this is a mark and sweep algorithm but instead
of leaving the memory in a state of fragmentation, it compacts
the loose sections of memory in one localised strip. The first
step is always the marking of alive objects to add them to a
free-list. Just like a normal mark and sweep this triggers in
case of a full heap. In contrast to a normal sweeping phase the
compacting and second phase is vastly different. Instead of
just sweeping through the whole heap, each block of memory
gets moved to one side. First it computes the forwarding
addresses for each object, then it updates the pointers to point
to the new region which the referents are moved into and
finally relocates every object into its new space. [13] Mark
and compact has greatly decreased allocation times due to the
locality of all used objects, making it easy to just allocate in
the free memory zones. Additionally it does not need twice
the heap size like normal semi space algorithms and is freed
of fragmentation. Although this seems to be very efficient, the
disadvantages outweigh the advantages in most cases. The
overhead needed to store the forwarding pointers is far too
big. Adding the fact that it also needs 3 runs for each time
the algorithm tries to compact the memory, mark and compact
is uncompetitive against any optimised garbage collection
algorithm. [9]

E. Generational

The most basic idea of a generational garbage collector
is the partitioning of the memory in different ’age’ sectors
using write barriers. The young (or nursery) space contains
objects that were just created and have not been processed
so far. The nursery has different policies regarding its size.
A flexible-sized nursery consumes nearly all the usable heap
space and gets reduced by collecting dead objects. A fixed
nursery on the other hand will never expand beyond its fixed
sizes making the collection times very foreseeable. Lastly, a

bounded space uses an upper and a lower restriction. In case
of a full memory space, the collector reduces the nursery size
until the lower bound is reached. Only if the restriction is
reached and the heap is full, it will collect the whole heap.
Surviving objects are then promoted to an old (or mature) and
lastly into a permanent space. Assuming, the young generation
has to be collected quite often because young objects die very
quickly while the older generation have a much higher rate
of survival(Weak generational hypothesis [1]), one comes to
the conclusion that generational collectors have a much higher
efficiency than other collectors. Additionally this provides the
possibility to only collect the entire heap when the mature
region is full and enforces a collection. A basic generational
collector is always incremental.
Considering the partitioning of the memory a generational
collector is usually affiliated to one of the other algorithm
types depending on the collection strategy/-ies they include.
GenCopy is using a semi-space type algorithm to collect
objects in the different sectors. In contrast to normal semi-space,
Gencopy attains much better performance due to the increased
rate of collection in the young generation and decreased rate
of collection in the old generation. This yields a lot of free
memory for the allocation of new objects. Moreover it compacts
the other generations to improve the locality of the mutator.
Since the nursery is smaller then the entire heap the collection
time for it is also vastly reduced.
GenRC is a hybrid of bump pointer allocation and copying
collection in the nursery, while the mature generation uses a
free-list allocation and reference counting collector. This works
with all kinds of nursery size policies. The mechanics behind
the nursery handling (copying,write barriers etc.) are the same
as the GenCopy nursery mechanics. A collection is triggered
every time the nursery runs out of memory. The first phase
is root scanning, processing of modified objects, tracing the
nursery and then integrating nursery survivors into the RC
space. Afterwards the normal reference counting method is
applied to all objects. [10] As to be expected, the GenRC
is a lot more efficient compared to the normal RC. This is
based on fact that it is able to ignore a lot of the frequent
mutations of nursery objects. However GenRC still has the
same fragmentation problems, although in the generational
form it can negate this effect a little bit by lazily repetitive
collections in the mature space.
GenMS is , in the same way GenRC is a hybrid between
normal RC and a copying space, a hybrid between copying
nursery combined with a Mark and Sweep algorithm for the
mature generation. Policies regarding the nursery, write barriers
and all other aspects are equivalent to GenCopy and normal
Mark and Sweep. Theoretically, GenMS should have a better
performance than the normal MS, but this is heavily dependent
on the state of fragmentation of the memory caused by the
algorithms.

To compare and summarise all algorithms we want to
introduce figure 1. We can see that Semi Space starts off
with the worst execution time when combined with a very
small heap. This shows how the need for two big copy spaces

LAUE: BASICS OF GARBAGE COLLECTION 13

Figure 1. Comparison between all algorithms using a Pentium 4 system. Image
from Myths and Realities: The Performance Impact of Garbage Collection [5]

influences the execution time. RC and MS are a bit faster
because they do not require such a large copy space. The
generational algorithms are always faster than the normal
variants. Following the curves we can examine that normal
RC has by far the worst performance, even when increasing
the heapsize. This trend is caused by the heavy burden on the
mutator and the need to keep the free-list. The free list also
causes fragmentation and thus has bad locality. Moving along
this is also visible when examining GenRC. It inherently has
the worst performance of all generational collectors, although
the generational variant is very close to all other generational
algorithms. In contrast to RC, Semi-space becomes far more
efficient the more you increase the heap size. The larger the
copy spaces the less it has to collect and copy, making it even
more efficient than MS upon crossing the 2.5 times heap barrier.
Since GenMS is vastly improved by the fact that this GenMS
compacts its memory, its not only faster than normal MS but
also equally as fast as GenCopy.
At this stage we also have to point out the importance of the
type of processor that has been used. Garbage collection is also
dependent on cache misses and level of cache associativity. If
we were to observe this test on an equivalent athlon processor
we would see an 20% increase in performance due to the larger
L1 cache and the higher associativity at level 2. Although using
an athlon processor increases the performance, this does only
influence the way the curves look by a little bit. The graph for
an athlon processor is basically equivalent of the one presented
in figure 1. Only the curves have to be lowered to match the
faster execution times. [5]

IV. CONSERVATIVE VS. EXACT

So far we heard a lot about algorithms. All these belong to
the class of exact garbage collection. This method of collection
is defined as one which requires cooperation from the compiler
and language runtime. [11] The assistance from the compiler
does not have to be inherent though, creating a second class
of exact collection named uncooperative exact. Uncooperative
exact collectors can be found in strongly typed systems which

are mostly implemented with C as the designated language.
Using the stock C compiler means that the runtime has to create
a shadow stack. This is a separate data structure which identifies
the number of alive objects for each frame. Consequently
making it not directly compiler assisted, but semi (or forcibly)
assisted instead, hence its name uncooperative.

Conservative Collection

Conservative garbage collection is a less elaborate and early
variant of garbage collection. This does not mean conservative
collectors are very simple, but they wont require as much
assistance as normal exact collector would. This type of
collector works by ’guessing’ the references in the memory
(most notably the execution stack). It scans the whole storage
for words and if it finds a word fitting the style of a reference it
will make the conservative assumption that it is a valid address
referencing an object meaning it should not be collected. The
special term for these references is ambiguous reference. While
working under the assumption that it has found a valid reference
there are 3 major constraints the collector now has to work
with.

• Because the ambiguous reference might be a normal
value the collector cannot move or modify the referents,
exclusivly pinning them .

• To prevent corruption the collector needs some sort of
machanism to filter all references.

• In case the collector finds a valid reference it has to retain
all referents meaning it has to incur excess retention.

All three of the constraints lead to some sort of drawback
which burdens the collector and/or lead to extended memory
usage.
Pinning will incur fragmentation of memory since the algo-
rithm is not able to move referents. In some safe languages
without real manual memory management, the algorithm only
has to pin objects targeted by ambiguous roots. In unsafe
languages on the other hand, all references are ambiguous
regardless of whether in the runtime or heap and must be pinned.
This means in unsafe languages the performance decrease will
be quite significant.
Filtering means the algorithm will separate and delete all
references not referring to actual objects. The reasons why
such words exist in the stack are either just the sheer mishap
that a program value is identical to a memory address, the
existence of old temporary pointers the compiler once used,
or references remain in the stack for far beyond their lifetime.
Filtering mechanics depend on the type of conservative collector
in use.
Excess retention is a space overhead caused by the collector.
Since it is a possibility to mark some dead objects as alive
some objects cannot be collected. This means more memory
has to be used in order to store the false alive object. Even
though this seems to be a fairly big issue, remembering how
space effected exact garbage collectors, it only adds about
0.02% to 6% memory overhead in a Java. [11]

All conservative algorithms use one of the basic principles
that were mentioned earlier.

14 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

Semi space has a counterpart called MCC, a mostly copying
conservative collector. MCC 2 is very similar to normal semi
space in that it uses two copy spaces and all the other
basic mechanics III-A. The only differences exist in the
continuousness of the two copy spaces and the use of pages.
The two copy spaces are only logical spaces consisting of
linked-lists of discontinuous pages. Assuming, the pages are
alive and referenced by an ambiguous root, they are then
logically promoted into the other free list by unlinking them
from one list and linking them into the other.
Another big counterpart is the the Boehm-Demers-Weiser
(BDW) [7], which is the equivalent of an exact mark and sweep
algorithm. It uses a free-list allocator and mark-sweep method
to collect dead objects. When it comes across an ambiguous
reference it checks the free-list block the reference is pointing
towards and creates a size class for the cells in that block.
Then it checks if it is the start of an alive cell inside the block.
Only references pointing towards the start are actually treated
as valid. The rest of the algorithm then follows the standard
mark and sweep procedure III-C.

To compare and evaluate both methods we will now have
a look at the performance of conservative garbage collection.
When only observing the text, you could come to the conclusion
that conservative algorithms might be faster than other exact
algorithms of the same type. MCC for example only swaps
entries in free-lists after all. Sadly, the performance of such
conservative garbage collectors is usually worse than the
performance of exact garbage collectors. In case of a 2 times
minimum heap size MCC will be 9.3% slower than a normal
semi-space collector. This is mainly because of the pinning
which induces heavy fragmentation resulting in far more
collection cycles and bad mutator locality. MCC is genuinely
the worst out of all conservative collectors. Comparisons
between Mark-and-sweep and BDW result in a far better
outcome for the conservative collectors. The BDW is only
1% slower and even features a smaller overhead. The problems
are located in the object map and allocation time costs.
As a brief digression I want to mention the newest generation
of garbage collectors using Immix [9]. The conservative
Immix versions are usually only 0.02% slower than their exact
counterparts. Recent studies have also resulted in a collector
called RCImmix [12] which exceeds the previously fastest
Immix version, GenImmix. Surprisingly, the conservative
version of RCImmix, while slower than the exact version,
also exceeds GenImmix even if only by 0.01%. This shows
that conservative collectors gradually become faster and can
perform nearly as good as exact collectors.

V. CONCLUSION

Garbage collection offers a wide variety of solutions making
the life of a programmer easier, but also delivers some severe
problems. Complementary to the idea that number of collection
cycles is dominant, this paper shows that locality of the mutator

2We will be using a Bartlett style MCC [4] since it is one of the most
popular among the mostly copying collectors.

is a bigger factor. This results in the issues of fragmentation,
memory usage, and efficiency being very closely tied together.
Additionally, more elaborate problems like cycles in the
memory arise. All basic algorithms have some way to deal with
them. Simple modifications, e.g. with utilising a Merlin-style
algorithm, increase the performance drastically. Nevertheless,
there are limits to all the improvements. Generational garbage
collectors outperform their counterparts because of the mostly
fixed fragmentation and cycle intensity. Equally important are
the timings of garbage collectors. They may either stop the
program completely (Stop-the-world), optimise in collecting
partially (incremental), or run parallel to the execution. In
contrast to the exact compiler supported algorithms, the
conservative algorithms are presented. They run by guessing
the references (ambiguous references) in memory and execution
stack. In essentially the same way exact collection has problems,
this type of collector has to deal with pinning, filtering, and
excess retention. To conclude, the new generation Immix-type
collectors are presented as a way to show that more advanced
research creates algorithms which push the performance of
conservative and exact collectors to nearly the same values.

REFERENCES

[1] A. W. Appel. Simple generational garbage collection and fast allocation,
1998.

[2] D. F. Bacon, P. Cheng, and V. Rajan. A unified theory of garbage
collection, 2004.

[3] D. F. Bacon and V. Rajan. Concurrent cycle collection in reference
counted systems, 2001.

[4] J. F. Bartlett. Compacting garbage collection with ambiguous roots,
1988.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:
The performance impact of garbage collection, 2004.

[6] S. M. Blackburn, M. Hertz, J. E. B. Moss, K. S. McKinley, and
D. Stefanovic. Generating object lifetime traces with merlin, 2006.

[7] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment, 1988.

[8] M. Hertz and E. D. Berger. Quantifying the performance of garbage
collection vs. explicit memory management, 2005.

[9] K. S. McKinley and S. M. Blackburn. Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator performance,
1998.

[10] K. S. McKinley and S. M. Blackburn. Ulterior reference counting: Fast
garbage collection without a long wait, 2003.

[11] K. S. McKinley, S. M. Blackburn, and R. Shahriyar. Fast conservative
garbage collection, 2014.

[12] R. Shahriyar, S. M. Blackburn, X. Yang, and K. S. McKinley. Taking
off the gloves with reference counting immix, 2013.

[13] P. Thomas. Incremental parallel garbage collection, 2010.

LAUE: BASICS OF GARBAGE COLLECTION 15

Intermediate Representations
Malte Skambath

malte.skambath@student.uni-luebeck.de

I. INTRODUCTION

Developing software in general has the goal to use and run
it on real machines or share it with other people who want
to use this software on their hardware. As real machines only
understand one special machine code based on their hardware-
architecture (for example Intel’s IA64 CPU-Architecture) pro-
grams in a high-level language need to be translated into this
machine language.

Obviously we need such kind of compilers for this transla-
tion between programming languages and the hardware. But
whenever it is possible that our software has to run on different
architectures, this requires several compilers.

However developing a whole compiler for each combination
of a programming language and hardware-architecture would
require much effort and is unpleasant work as the single steps
are nearly always the same. Solutions for this problem have
already been developed and can be found in practical use.
Those solutions, like virtual machines, are abstracting parts
of the entire compilation process. For this we need hardware
or platform independent abstractions or data structures for
programs. Such data structure are called intermediate repre-
sentations (IR) and need to be powerful enough to describe the
semantics of a program but also need to be small and simple
to be easily translatable into machine code.

It is possible just to use simple programming languages
like C as an intermediate representation and use compiler
of this language. Nevertheless special languages have been
designed to be simpler and allowing more optimizations during
all compilation steps.

In this handout we give a short overview about the com-
mon types of intermediate representations. At the beginning
we give a short and simplified overview about the classical
process of compiling. After this we introduce into common
machine models and types of intermediate representations used
for abstraction in most applications. Finally we present two
different implementations of such intermediate representations
in section IV.

II. CLASSICAL COMPILE PROCESS

Most classical compilers use about three phases (see Fig. 1)
for generating the machine-code for certain hardware out of a
given program written in high-level programming language. At
the beginning, in the frontend-phase, a sequence of tokens, like
numbers, strings, or keywords get extracted from the source
code. Using this sequence a parse tree which represents the
syntactic structure of the code will be generated. When a parse
tree gets simplified or annotated with special informations
it is called an abstract syntax tree (AST). Figure 2 gives

Lexical Analysis (Scanner)

Syntax Analysis (Parser)

Semantic Analysis

Optimization

Code Generation

Tokens

AST

CFG

CFG

Frontend

Backend

Figure 1: The Architecture of a classical Three-Phase Com-
piler. In the frontend the control flow of the program will be
extracted without dependencies to the target architecture and
in the backend the machine-code will be generated for the
target architecture.

an example for such a tree. Those trees are often used in
the semantical analysis of the compiling process in which
syntactical informations like variable declarations are checked
and the control flow graph can be generated. Sometimes they
can be converted partially into directed acyclic graphs for
detecting redundant use of variables or computations.

The control flow graph (Fig. 3) is a directed graph rep-
resenting all possible paths a program can follow during its
execution. Each node contains instructions or is a condition
with two outgoing edges. It can be possible to optimize the
CFG and finally it can be translated directly into a given as-
sembly or machine language in the last phase of the compiling
process. It should be mentioned that already this data structure
is kind of an intermediate representation for internal use in a
compiler[5], [14].

III. MACHINE MODELS

As already mentioned most compilers and especially
platform-independent implementations use intermediate rep-
resentations to represent the control flow graph of a program.
Out of this flow they generate machine dependent code in

16 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

program

block

. . .

while

condition

. . .

body

assign

variable sum bin op: *

variable i

return

variable sum

Figure 2: An example for an abstract syntax tree representing
the structure of a simple program.

yes
no

i← 1, s← 0

i ≤ 10

i← i+ 1

s← s+ i

ret(s)

Figure 3: An example for a simple control flow graph to
compute the sum

∑10
i=1 i in a loop.

the backend-phase. Thus it is necessary to have a very low-
level machine abstraction for this purpose to keep this process
simple. This means we need an abstract or virtual machine
model to have the ability to use assembly-like representation
for the control flow which is still flexible enough to be
translatable into different real assembly codes. Such a human-
readable assembly-language is called intermediate language.
In real implementations equivalent byte-code-formats with a
one-to-one mapping to human-readable assembly languages
are used because this prevents additional needless parsing
processes between consecutive phases[14].

The differences between assembler codes and the interme-
diate representations are missing restrictions on hardware like
the size or number of available registers or that IR could
pass additional informations that may be important for later
executed machine-dependent optimizations. This means that
hardware-dependent optimization like register-allocation can
be separately implemented in the backend.

In practice there exists two different types of such machine
models: stack- and register-based machines. In the following
models memory or input-output will not be considered though
real implementations as we will see later in section IV need

sqrt

add

mul

x x

mul

y y

Figure 4: The abstract syntax tree for the expression√
x2 + y2.

to handle memory and input.output-access.

A. Stack Machines

A stack machine consists of a pushdown-stack and an
accumulator or arithmetic logic unit (ALU) which is connected
with the top elements of this stack. It can put on or remove
values from top of its stack and perform operations using the
accumulator.

When performing operations like addition or multiplication
the top values are taken from the stack, given to the accumu-
lator, and the result is pushed back as new value on top of the
stack. This means that for any computation on a stack machine
an operations that has to be computed follows pushing or
precomputing the values it depends on.

Programs for stack machines are sequences of instruc-
tions from a very reduced instruction-set including push and
pop operations, some arithmetical functions and also branch
instructions to allow non-sequential control flows. So for
computations a program has to be written down in reverse
polish notation.

While this might be an unfamiliar notation for humans this
is a big advantage evaluating expressions given the abstract
syntax tree. Because of the operation-nodes in a syntax tree
are mostly root nodes for the subtrees of their dependent values
the program for a stack machine can directly be generated by
traversing the syntax tree in post order. For example computing
the euclidean distance for which the expression is presented
by the tree in Fig. 4 we would get the following sequence of
instruction:

1 push x ; push the value x
push x ; push the value x
mul ; xˆ2

push y
6 push y ; push the value y
mul ; yˆ2

add ; compute xˆ2+yˆ2
sqrt

Here one can see an advantage of stack based machine
models. While register based models always need to reference
the involved registers an for stack machines only the operations
has to be referenced as the values are on top of the stack. So

SKAMBATH: INTERMEDIATE REPRESANTATIONS 17

for stack machines we can write shorter programs for the same
computation steps because we don’t have to reference target
addresses as results are automatically pushed on top of the
stack[13].

Programs for a stack machines could be extended with
subroutines. When we compute something on the stack with
the method we can see that the state of the stack only changes
on top where all used values are replaced with the result of
a subroutine and there is no reason why the rest of the stack
should be touched. This makes it easy to perform subroutines
on the same stack. Mostly the calling routine pushes the input
variables on the stack before the call.

A big disadvantage of the stack-based model is that most
real machines are register machines so the stack-based code
has to be translated into register based code and this could
mean that special optimization for register machines like
register-allocation has to be done in a different step. Some
implementations allow use temporal registers or operations on
more than the only top values in the stack for this problem or
also share special value like the maximum stack-size.

B. Register Machine

A register-based machine has an arbitrary number of mem-
ory cells called registers that can store values. Operations, like
addition, can be done on each (pair) of registers and the value
will be stored in another defined register and computations
only can be done using registers also if other memories as in
real implementations are possible. Each register is available
the whole runtime for operations. An Instruction for a register
machine can be

• an assignment (r1 := r2)
• an unconditional jump (L1: goto L21)
• a conditional branch (L21: if r1 >= 10 goto L42)
• an arithmetical expression with an assignment (t1 := 2

* r2)
1) Three-Address Code (3AC): Because arithmetical ex-

pressions can become complex it is a bad idea to allow any
complexity or use parenthesis for arithmetical expressions. To
prevent problems and simultaneously give the ability for an
unique and simple byte-code mapping only one operation with
at most two operands is allowed per assignment. Then this
register-based assembly language is called three-address code
(3AC or TAC) because each instruction can be related to at
most three registers.

This means we can represent each instruction for example
as quadruple like (opcode, regDest, regOp1, regOp2) in byte
code. There are much more possibilities for example using
triples like (opcode, regOp1, regOp2) where register-address
for the result is chosen implicitly by the line number. Note that
for such a case a register only may be assigned once which
is a strong restriction to the power of a TAC as we will see
later.

The following Listing gives us an example of a three-
address code for computing x = −b+

√
b2−4ac
2a :

t1 := b * b

a>b?

max:=a max:=b

(a)

a>b?

m1:=a m2:=b

max:=m?

(b)

Figure 5: A Branch in the control flow with assignments to
the same variable max (5a). Assignments in single pathes to
the same variable could be replaced to assign two different
variables but then the final assignment depends on the chosen
path in the CFG (5b)

t2 := 4 * a
t3 := t2 * c
t4 := t1 - t3

5 t5 := sqrt(t4)
t6 := 0 - b
t7 := t5 + t6
t8 := 2 * a
t9 := t7 / t8

10 x := t9

Generating the TAC for a given arithmetical expression is
also possible by traversing the abstract syntax tree. Obviously
we have to assume that every operation has at most two
operands. This means the AST has at most 2 children per node.
Now each time we reach a node with operation <opp> in
post-order we choose a new temporary register ti and append
ti := <opp> (t′`, t

′
r) to the program where t′r, t

′
` will be the

temporary registers which contain the result for the subtrees.
2) Static-Single-Assignment: Three-Address Code is good

for control flow analysis and other optimization techniques.
For example it is possible to compute dependencies or maybe
to detect constant propagation and prevent redundant computa-
tions. For these reasons it is useful to define another constraint.

A Three-Address Code is in static-single assignment-form
(SSA) if each register gets assigned only once[14]. This
can simplify optimizations for example for register allocation
because the life-time of a register and its assigned value during
runtime is the same and the dependencies of registers/their
values can directly be computed thus the definition-use pairs
are explicitly visible in the code.

Transforming general TAC into SSA-form is not trivial.
Obviously if there is a register in a sequence of instructions
which gets assigned twice we just use a different register since
the new assignment and replace each reference to the register
in the following part of the sequence until the SSA-condition
holds. For example the following sequence of assignments

A0:=5; B0:=2; A1:=B0 + A0; B1:=A1 + A1; C0:=B1

is semantically equal to
A0:=5; B0:=2; A0:=B0 + A0; B0:=A0 + A0; C0:=B0

.

18 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

and can be generated by just renaming some registers in some
statements.

Although this method works for sequences it is wrong in
general because the control flow of a program might have
branches and the result of a variable could depend on the
selected path as you can see this visualized in Fig. 5. We
could use two different registers for each branch, but the result
for max depends on the taken branch so it is impossible
to form this into SSA-form directly. One solution for this
case it would be store the value in memory (if supported
by the register-machine) at assignments in a branch and load
it back from the same address after the join. However this
could prevent optimizations so in general SSA-form allows a
special function φ, also called phony function[15]. φ is defined
for the register machine and choses the result value from
both operand-registers based on the branch from which this
instruction was reached. Our example computation can now
be rewritten in SSA-form like:

L1: if r_a < r_b then goto L3:
L2: t_1 := r_a

goto L4

5 L3: t_2 := r_b
goto L4

L4: max := phi t_1 [from L2], t_2 [from L3]

A temporary register for each branch gets assigned and finally
the result depends on the previous instruction of L4.

Note that real machines have no such functions like phi
and one has to choose how to abstract the variable selection
and what happens with multiple variables or multiple φ-
instructions. But this is no problem in general because we
can and need to transform back from SSA-form before final
code-generation. Methods for efficient optimization for SSA
are presented in [7].

IV. IMPLEMENTATIONS

There are several implementations of different kinds of
intermediate representations for several virtual machines or
compiler engines. In this section we will present two popular
implementations. One which use a register-based model and
one using a stack-machine.

A. LLVM

The Low Level Virtual Machine, known as LLVM, is an
infrastructure for compilers. It provides a powerful interme-
diate representation, such that it is possible to create different
frontends for any programming languages. One example for
such frontend is clang for C-like programming languages like
C, C++, Objective-C or Objective-C++[1].

Figure 6 shows the architecture of the LLVM
infrastructure[4]. For each programming language LLVM
only needs a frontend transforming the source code into
the LLVM-Intermediate representation (LLVM-IR), an SSA-
register based representation. With this representation LLVM
has the ability to optimize and pass the code also in LLVM-IR

LLVM
Optimizer

x86
Backend

ARM
Backend

PowerPC
Backend

clang

llvm-gcc

GHC

C

Fortran

Haskell

x86

PPC

ARM

Figure 6: The Three-Phase Architecture of LLVMinfrastructure
[10]

to the backend for the specified compiler. This use of IR
makes it easy and efficient to implement a new compiler for
a new programming language or support a new processor
architecture including GPUs[12], [4].

Different tools to perform different optimizations are avail-
able and also it is not necessary to directly generate the LLVM-
IR from scratch in the frontend as we can use IR-Builder
methods in the LLVM-library.

Given a c-program, we can use clang to generate LLVM code
in human readable format. Assume we have the following C-
Program:

#include <stdio.h>
2 void minmax(int a, int b){

int max = 0;int min = 0;

if(a>b)
{max = a;min = b;}

7 else
{max = b;min = a;}

printf(" %d <= %d ", min, max);
}
int main(){

12 minmax(5,10);
return 0;

}

Using clang with special options like
$ clang minmax.c -S -emit-llvm -o - | opt
-S -mem2reg -o -
one can get the human readable format of the LLVM
intermediate representation. Such that we recieve the
produced code for the register-machine:

1 define void @minmax(i32 %a, i32 %b) #0 {
%1 = icmp sgt i32 %a, %b
br i1 %1, label %2, label %3

; <label>:2 ; preds = %0
6 br label %4

; <label>:3 ; preds = %0
br label %4

11 ; <label>:4 ; preds = %3, %2
%max.0 = phi i32 [%a, %2], [%b, %3]
%min.0 = phi i32 [%b, %2], [%a, %3]

SKAMBATH: INTERMEDIATE REPRESANTATIONS 19

%5 = call i32 (i8*, ...) @printf(i8*
getelementptr inbounds ([11 x i8], [11 x
i8]* @.str, i32 0, i32 0), i32 %min.0,

i32 %max.0)
ret void

16 }

declare i32 @printf(i8*, ...) #1

; Function Attrs: nounwind uwtable
21 define i32 @main() #0 {

call void @minmax(i32 5, i32 10)
ret i32 0

}

Each register is given by a string with % as prefix followed
by the register-name. We can see, that clang uses the variable-
names from the C-file and generate new registers if required.
In line 12 and 13 we can see that φ-functions are support using
labels for the branches.

Unlike a real machine instruction set we can see that LLVM
uses a simple type system. i8* for example is a pointer to an
octet. Another difference to the general TAC is that the LLVM-
IR allows complex function calls and can pass special attributes
that could be used by the optimizer or later optimization
processes.

While some implementations like the Java virtual machine
or the Microsoft.net Framework use a runtime framework on
target systems also to provides additional libraries and just-in-
time-compilation LLVM does not use this way. But the goal is
to allow optimization in each layer of the compiling process
including runtime-optimization in the backend. The solution
for this is that the intermediate representation is used in each
step. So after compiling c-files to .o-files it seems that after
this we cannot use IR but generating a .o-file it just stores
the IR inside instead of pure machine instructions. And LLVM
gives has also the ability to optimize and pass IR-code after
linking. This means that a resulting executable file can still
contain intermediate which can be compiled and optimized
again when the application gets started [4].

However with this architecture it is also no problem just
implementing a backend for another high level programming
language instead of a low level machine-language and just use
LLVM to translate between different languages. This is done for
example in a in the emscripten project which uses JavaScript
as target language1.

B. Common Intermediate Language

While LLVM provides an infrastructure to develop compilers
efficiently by using the LLVM-IR and providing libraries for
optimization, code generation and backends for various target
systems there is a different way we can use intermediate
languages. It is possible to share the software in a non-
hardware-dependent format which contains an intermediate
representation and move the whole backend phase on target
machines. This method requires a special software often called

1Emscripten (http://kripken.github.io/emscripten-site/) is an LLVM-based
project allowing the compilation of C or C++ code into JavaScript

C# F# VB.net

Common Language Runtime (CLR)

Common Intermediate Language (CIL)
Executable-File containing CIL

JIT-C Libraries

Figure 7: Architecture of the Common Intermediate Infras-
tructure realised in the Microsoft .net-Framework. The CLR
is the implementation of the virtual machine which provides a
standard class-library and performs the last compilation-phase.

runtime environment or virtual machine and it is the way the
Java Virtual Machine (JVM) and Microsoft.net Framework
works.

In the Microsoft .net-Framework applications are created
and shared as PE-executable files (file-type: .exe). But those
files are no pure PE-files[11]. They contain only a reference
to load the main dll of the .net Runtime and payload data
which is the intermediate representation that will be compiled
just-in-time when the program runs.

The intermediate language for the Microsoft .net-
Framework is called Common Intermediate Language (CIL)
and is part of the ECMA-specification ECMA-335 for the
Common Language Infrastructure (CLI). This specifies an
infrastructure for a runtime environment allowing applications,
written in any language, to be executed without the need to
rewrite the application for the target platform. The Microsoft
.net Framework in this case is Microsoft’s implementation of
this specification as Common Language Runtime and a set of
special libraries. Figure 7 shows the basic architecture of the
.net-Framework which also contains class library[3], [8].

The CIL is a stack based intermediate language and has
much more features than a general stack machine including a
strict types and object orientation, and the fact that code can
contain meta-informations.

public static int sum(int a, int b){
int res=0;

for(int i = a; i <= b; i++)
4 res += i;

return res;
}

This C# program would be translated into the following CIL-
code:

.method public static hidebysig
default int32 sum (int32 a, int32 b) cil

managed
{

4 .maxstack 2

20 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

.locals init (int32 V_0, int32 V_1)
IL_0000: ldc.i4.0 //
IL_0001: stloc.0 // sum = 0
IL_0002: ldarg.0 // load a on the

stack
9 IL_0003: stloc.1 // store a in first

var (i=a)
IL_0004: br IL_0011 // --+
IL_0009: ldloc.0 // | <--+
IL_000a: ldloc.1 // | |
IL_000b: add // |

14 IL_000c: stloc.0 // |
IL_000d: ldloc.1 // |
IL_000e: ldc.i4.1 // |
IL_000f: add // | .
IL_0010: stloc.1 // | .

19 IL_0011: ldloc.1 // <-+ .
IL_0012: ldarg.1 // load b |
IL_0013: ble IL_0009 // i<=b -+
IL_0018: ldloc.0
IL_0019: ret

24 }

With each method-call the virtual execution engine (VES)
reserves part of the memory on top of an evaluation stack
for the arguments and all local visible variables declared at
the beginning of a method (see the .locals instruction in
the listing). ldloc.i and stloc.i load and store the value
of the i-th local variable (ldarg for argument) onto and from
the stack.

As we can see variables are typed. CIL provides a huge set
of instructions and also some for arrays, objects and structs.
For example using newobj creates a new object instance and
push its this-pointer on the stack. Then loading or storing fields
is possible with ldfld or stfld which requires also the
this-Pointer on the stack before.

DISCUSSION

We just described how and where intermediate representa-
tions are used and we can see that the use in general allow us to
have clean software-architecture for compilers with multiple
layers or steps for the compilation processes. This gives us
the possibility to build or extend good infrastructures for
developing and optimizing software like LLVM and without
the need to solve same problems for different environments.
Although this in general simplifies the development of applica-
tions the big advantage is that it is not necessary . because one
can develop software without regarding to the target system.
In addition to that it is also possible to combine modules
implemented in different programming languages. Designing
new programming or domain specific languages gets faster and
easier as developers only now need to implement a frontend
which can produce the intermediate representation for the a
virtual machine.

While this representations can be powerful we still need
to be careful when we implement applications with real-time
conditions. It might be difficult to estimate exact runtime
when we use optimization methods. In addition if we have
programs which should run on parallel systems we have to
now if the IR is able to pass special information (or native

code binding) or if the IR can handle required features. For
example there exists special projects to support OpenMP[2],
[6] or also solutions by GPU-producers[12] for LLVM. We can
also see the big advantage of the layer architecture as LLVM
has already been extended with a separate IR in a new layer
for the programming language Swift [9].

REFERENCES

[1] clang – language compatibility
http://clang.llvm.org/compatibility.html (oct. 2015).

[2] Openmp R©/clang
https://clang-omp.github.io/ (oct. 2015).

[3] Overview of the .net framework
https://msdn.microsoft.com/en-us/library/zw4w595w(v=vs.110).aspx
(nov. 2015).

[4] CHRIS LATTNER AND VIKRAM ADVE. The LLVM Instruction Set and
Compilation Strategy. Tech. Report UIUCDCS-R-2002-2292, CS Dept.,
Univ. of Illinois at Urbana-Champaign, Aug 2002.

[5] CLICK, C., AND PALECZNY, M. A simple graph-based intermediate
representation. In Papers from the 1995 ACM SIGPLAN Workshop
on Intermediate Representations (New York, NY, USA, 1995), IR ’95,
ACM, pp. 35–49.

[6] COWNIE, J. Openmp* support in clang/llvm
http://openmp.org/sc13/OpenMPBoF LLVM.pdf (oct. 2015).

[7] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND
ZADECK, F. K. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst.
13, 4 (Oct. 1991), 451–490.

[8] EUROPEAN COMPUTER MACHINERY ASSOCIATION. Standard ECMA-
335: Common Language Infrastructure, second ed., Dec. 2002.

[9] GROFF, J., AND LATTNER, C. Swift intermediate language - a high
level ir complement llvm
http://llvm.org/devmtg/2015-10/slides/GroffLattner-SILHighLevelIR.
pdf (nov 2015), 2015.

[10] LATTNER, C. The architecture of open source applications – llvm
http://aosabook.org/en/llvm.html (oct. 2015).

[11] MICROSOFT. Metadata and the pe file structure
https://msdn.microsoft.com/en-us/library/8dkk3ek4(v=vs.100).aspx
(nov. 2015).

[12] NVIDIA. Cuda llvm compiler
https://developer.nvidia.com/cuda-llvm-compiler (oct. 2015).

[13] SHI, Y., CASEY, K., ERTL, M. A., AND GREGG, D. Virtual machine
showdown: Stack versus registers. ACM Trans. Archit. Code Optim. 4,
4 (Jan. 2008), 2:1–2:36.

[14] STANIER, J., AND WATSON, D. Intermediate representations in im-
perative compilers: A survey. ACM Comput. Surv. 45, 3 (July 2013),
26:1–26:27.

[15] ZADECK, K. The development of static single assignment form
http://citi2.rice.edu/WS07/KennethZadeck.pdf (oct. 2015).

SKAMBATH: INTERMEDIATE REPRESANTATIONS 21

Static vs. Dynamic Typing
Toni Schumacher

Email: toni.schumacher@student.uni-luebeck.de

Abstract—The discord between static and dynamic typing
has always been a controversial issue. In order to put away
with the ambiguities and false arguments about this topic, this
paper gives an overview of both techniques and compares them
objectively. Supported by programming examples, and depending
on programming concepts both typing mechanisms are weighed
up against each other.

I. INTRODUCTION

When asked for static or dynamic typing, there are many
advocates of both camps. Most of these advocates answer
the question, whether they prefer dynamic or static typing,
reduced to their preferred known language [1]. The problem
therefore is, that most programmers only know a single or only
a small number of programming languages and thus only have
a limited view of the totality of typing. In addition, only a few
of these people know that widespread programming languages
often combine static and dynamic mechanisms. The outcome
of this is, that most people do not even exactly know what
typing means or even have an incorrect definition of the terms.
From this it follows, that these advocates then usually present
false arguments to convince others of their point of view. They
mostly only pronounce their known language and compare
them with a (consciously) poorly chosen language in order to
convince. To avoid this, we will objectively weigh up static and
dynamic typing independent of programming languages. Only
particular examples of implementations of certain languages
are presented, but these languages are generally representative
for all kinds of this typing.
But first we need to clarify what both terms stand for.
Consequently, in chapter II, there will be an overview of
the definitions of typing in general, followed by the precise
definitions of static and dynamic typing. In chapter III we
will then look at the advantages and disadvantages of static
followed by dynamic typing. Afterwards we will take a look
at advantages and disadvantages of both typing techniques
applied on programming concepts. In chapter IV we will give
a brief insight that static and dynamic typing also can coexist
harmoniously. Then we will weigh in my own opinion on this
topic. Finally, we will then draw a conclusion on the issue.

II. TYPING

A. What means typing?

Different values are interpreted by sequences of 0’s and 1’s
in the memory. Only through type information the sequences
are defined as a value, thus representing a certain variable.
Therefore a type system, containing a type-checker, is required
to classify phrases according to the kinds of values they
compute [2] and assign the type information. But there are

also untyped languages that don’t carry any tags for objects
and don’t distinguish different variables, such as Forth and
assembly code. The term typing is often perceived quite
differently. Generally accepted is, that a type-checker is built
into a programming language to check values of objects for
accuracy and to track type violation. Type-checkers can be
distinguished in

• strong / weak,
• optional / explicit and
• static / dynamic typing.

So dynamic and static typing mean completely different
techniques. However there are no clear boundaries between
both. The consequences are that many people mix up typing
and programming with languages and that it is often mixed
up in articles and discussions about the topic. Then they
assume that their used programming language, such as Java, is
dynamic. They mistakenly expect, that, whenever a language
contains dynamic elements, this language is a dynamically
typed language and that statically typed languages only contain
static type checking. But this assumption is wrong, since
static and dynamic checking are mechanisms of programming
languages and can not be equated with these. But let’s first
have a look in more detail what the terms mean.

B. What is static typing?

Static typing is a technique of programming languages in
which, during the compile process, the type checker tries
to assign objects to their particular type. So static checking
means that expressions and variables assigned to their values
are checked for their accuracy before the program can be
run. When doing this, type interferences occur or due to
lack of type information no fixed expression or variable can
be resolved, the compile attempt of the program code is
canceled. Unlike dynamic typing, static typing check types
at compile time and not at run-time. Although static and
dynamic typing was introduced around the same time in
programming languages, static typing is usually considered
as the origin of dynamic typing. Because dynamically typed
languages have finally come of age with Python and Ruby,
while statically typed languages have been used much longer.
Statically typed languages, for example are Ada, C, C++, Java,
Fortran, Haskell, Meta Language (ML), Pascal, Perl and Scala.

C. What is dynamic typing?

However dynamic typing means that the objects are checked
for their types only during the execution of the program. More-
over classes, not types, are associated with their contained
values and not with variables by tagging them with identifiers

22 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

such as num, bool or fun during run-time. The resulting
runtime errors can then lead to partial or complete failure
of the program. Therefore dynamic checking is inherently
a restricted form of static typing with only a single type
during compile-time, which also entails benefits. So dynamic
typing is a special case of static typing. More than ever
before dynamically typed languages are used to build large,
widely used systems, but increasingly for domains that were
previously the sole preserve of statically typed languages
[3]. Dynamically typed languages, for example are Groovy,
JavaScript, Objective-C, Perl, PHP, Prolog, Python, Ruby and
Smalltalk.
In summary it turns out that static typing doesn’t mean static
language and dynamic vice versa. Unlike in most articles
and discussions about this topic a static language uses static
typing but can also use dynamic typing. Exactly the same
applies for dynamic languages. However, the difference is
that in static languages the main focus is the static type-
checker and the dynamic typing (if existing) is not superficial.
Conversely, this applies to dynamic languages. As we have
seen, dynamic languages do perform class checks at run-time,
but also static languages can do. Consequently, the already
mentioned programming languages are not languages with the
pure typing type. E.g. Haskell is called a static language,
but Haskell also uses dynamic typing [4]. It is the point of
different definitions that leads to most discussions about static
vs dynamic typing.

III. COMPARISION

Due to the fact that dynamic and static checking are almost
opposite mechanisms as well as the huge technical and cultural
gap between the respective typing communities, they can be
compared very good. Most disadvantages of one typing are
therefore benefits for the other one. Therefore we will deal
with general advantages and disadvantages of both, static and
dynamic typing. And for a general comparison we will depict
the strength of both typing techniques in some programming
concepts, independently of programming languages. Since we
cannot evaluate static and dynamic typing for all program-
ming concepts and important techniques for programming
languages, we will take a look at significant mechanisms, that
clearly favor a typing style. So far that some concepts are
nearly impossible to implement with a certain type.

A. Advantages and Disadvantages of static typing

The greatest benefit static typing has, compared to dynamic
typing, is the earlier detection of programming mistakes,
because in software development process, the earlier you catch
an error, the less expensive it is to fix the error. Advocates of
static typing also prefer the increased runtime efficiency, which
follows - among other things - from the more opportunities for
compiler optimizations. This results in faster running statically
typed programs than dynamic programs, because the compiler
can optimize the choice of algorithms for operations on a
specific value. For example many C compiler can use faster
floating-point-specific microprocessor operations on a 32 bit

float data type [5]. But the C compiler must know that the
specific value is a float and therefore it needs to be statically
type checked. With static type-checking, programs can also
be optimized by reducing their used memory. Because when
the compiler knows the type of a value, it can optimize the
storage it needs during runtime. Advocates of static typing
also argue, that the benefits of static typing include better
developing experience, because of the Integrated Development
Environment (IDE) auto complete and name recognition. They
also prefer the better documentation of statically type checked
languages in form of type annotations, like in the well-known
Java technical documentation from Oracle [6].
Often advocates also argue that ’well-typed programs cannot
go wrong’ which was coined by type theorist Robin Milner
[7]. But it means something specific, it means that you can
not exhibit undefined behavior from static typing and not that
you can not imply that well typed programs do not contain
bugs. Furthermore it only applies to a certain programming
language, so it does not apply to all static typing languages.
Because of properties that are not tracked by the type-checker
of a static language, statically typed programs can still go
wrong. Another disadvantage is, that statically typed program-
ming languages are too rigid and can not handle changing
requirements. Statically typed languages also can not handle
a changing type of a variable. Following example would be
illegal in a statically typed language:

employeeName = 9
employeeName = ” S t e v e Ferg ”

Listing 1. Statically illegal checked code [8]

This is illegal, because, first, the variable employeeName
would be an integer variable, containing 9 an integer. But
in the second line employeeName is binded to a string and in
statically checked languages variables can not change types. In
a dynamically typed language this example would be perfectly
fine and would not cause an error during compile-time nor
run-time. Another drawback is, that statically typed code is
less reusable than dynamically typed code and a programmer
needs to write methods for every input the method could
get. Advocates of dynamically typed languages also argue
that statically typed languages are more verbose, but this is
a fallacy and more dependent on the comparing programming
languages than dynamic or static typing. Due to the fact
that static typing should be more complete leads to complex
and overly complicated concepts such as phantom types and
wobbly types [9]. In order to be useful most statically typed
languages compromise and define some exceptions as dynamic
errors. An example for this is an array-out-of-bounds excep-
tion. In a programming language with statically checked array
borders there must exist an array of length 1, an array of
length 2, etc. Only thus it would be possible to check that
all array accesses were in bounds. The drawback of such a
system is, that it would not be possible to write functions over
arrays of unknown size and this is not acceptable for practical
programming. The original version of Pascal had array types

SCHUMACHER: STATIC VS. DYNAMIC TYPING 23

that fixed the size and this was probably one of the reasons
that programmers rejected the language and Pascal version 1.1
introduced dynamic array length [10]. Nowadays all statically
typed languages allow dynamic array size polymorphism, and
check array bounds dynamically.

B. Advantages and Disadvantages of dynamic typing

Advocates of dynamic typing argue that dynamic typing is
better than static typing for prototyping systems with changing
or unknown requirements, because you do not have to specify
values and can handle different inputs. In addition dynamic
typing allows programs to generate types and functionality
based on run-time data, so it is much more flexible. For
example, eval functions, which execute arbitrary data as code,
become possible. An eval function is possible with static typ-
ing too, but requires advanced uses of complex algebraic data
types. Furthermore dynamic typing is better for programs that
interact with systems or modules with unpredictable changing
output. It is widely accepted that more than 80% of all data
is unstructured data [11]. Therefore it is a major advantage
for dynamic typing towards static typing that it can manage
with unpredictable generic data objects. Therefrom you can
realise that dynamic typing is indispensable for dealing with
truly dynamic program behavior. So on the one hand dynamic
typing is more important for data intensive programming than
static typing.
But on the other hand software development with dynamically
typed languages leads to significantly more runtime errors and
therefore to more costs in the development process. Because if
no errors in the program should occur, much more tests need to
be written to test all possible values of data the program needs
to handle with. Unlike static typing, dynamic typing allows
constructs that some static type checking would rule out as
ill-typed. But this can also be seen as a disadvantage, because
errors that could be rejected at compile time by static type
checking are not found by dynamic type-checker until they
run into this particular run-time error. To not crash the whole
program you need to write exceptions, which causes much
more effort to implement than in statically typed languages.
Another big disadvantage of dynamic typing is, that errors
can only be detected very late in the development process
and consequently lead to complex troubleshooting and fixing
errors. Usually these bugs are very difficult to locate, because
they may occur long time after place where a programming
mistake was made and a wrong type of data was passed into
a variable it should not have. Often advocates of dynamically
typed languages argue that dynamically typed program code
is only interpreted and not compiled and therefore can be
changed during runtime. However it depends on which pro-
gramming language you use and is therefore no advantage of
dynamic languages. The biggest advantage of dynamic typing
is also one of the greatest disadvantage the type checking
during runtime. It has many advantages but goes hand in hand
with worse execution time, because the compiler must check
all classes and associate their contained values by tagging them

with identifiers during run-time. Of course this is much slower
than sign the objects to their particular type beforehand.

C. Refactoring

Refactoring is the process of restructuring already written
program source code while maintaining the observable pro-
gram behavior. But that is the point why it is very complicated
to implement with dynamically typed languages, because a
benefit of dynamic languages is their flexibility and that is
actually what makes the code very hard to maintain. However
statically typed code is well structured code, every variable
is known at compile-time and IDE’s offer all sorts of options
to semantically restructure the code. Thus it is much easier
to refactor statically typed code than dynamically. Of course
it can also be done with dynamic type checking but it makes
considerably more work to write unnecessary tests and refactor
your code by hand.

D. Type inference

Most people mix up type inference and dynamic typing and
think that you need to write static types like in Java, C , C++,
Pascal etc. or even worse that you must write double type
expressions like in Java:

Bu t ton b = new Bu t ton () ;
S t r i n g s = ”Doh ! ” ;

Listing 2. Usage of double typed expressions in Java [12]

But type inference and dynamic typing is something totally
different, because type inference allows you to omit type
information when declaring a variable and it can be used
to determine which constructors to call when creating object
graphs [12]. First implemented in ML and with completeness
[13] type inference exist for more than 40 years only in
statically typed languages like Standard ML (SML), Haskel,
F# etc.

fun f a k (n) = i f n=0 t h e n 1
e l s e n∗ f a k (n−1);

Listing 3. SML function without any type specifications

This is an example from SML to calculate the factorial and it
shows that even without any type specifications the compiler
infers the correct type, in this example int int. In other words,
static type checking allows programs to be more concise than
dynamically typed ones, because this economy of notation
effectively relies on the availability of static type information
and thus is redundant for dynamic languages.

E. Subtyping

With subtyping the programer has the ability to override
existing super types with a related datatype. Subtypes can also
extend and/or specialize their super types with the overrid-
den type. Overriding a super member sometimes completely
changes the kind of that member. Thereby you can actually
pass a value of any subtype into an object. Subtyping, or
also called subtype polymorphism, is another technique that

24 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

facilitates that any term of a type can be safely used in a
context where a term of the super type is expected. Subtyping
should not be confused with the concept of inheritance from
object-oriented languages, because subtyping is a relation
between types whereas inheritance is a relation between im-
plementations. With subtyping polymophism the compiler can
insert coercions to connect inferred and required types.
A static type-checker has the type information needed to
automatically lift inferred to required types. E.g. C# has a
type int? that donates nullable integers. In C# nullable integer
extend normal integer and consequently enable subtyping
polymorphism. Therefore in C# it is possible to subtype
addition on normal integers to addition on nullable integers
without throwing an exception, like in the following example:

i n t ? a = n u l l ;
i n t ? b = 1 ;
i n t ? c = a + b ;

Listing 4. Usage of subtyping in C#

With a dynamic checker it would also be possible to do
automatic subtyping, but it would be very inefficient.
It would immediately exclude value types, since a dynamic
type-checker does not produce type information during run-
time, since it tries so associate values with classes. In conclu-
sion, to add subtyping to a dynamic type checker you must
rebuild the whole construct of dynamic typing.

F. Generics

Generics, or also called parameterized types, help avoid
writing the same code multiple times and you just need to
write a single function that handles arbitrary element types.
To achieve that you create variables, methods, classes or
interfaces (if existing). In dynamically typed programming
languages any collection or method is automatically generic,
since the type of the variable is at first available at runtime.
Therefore it can be easily used to implement different behav-
iors for different types and it becomes possible to create highly
reusable libraries. In statically typed languages generics are a
lot harder to implement. In some statically typed programming
languages without generics and subtype polymorphism you
need to write a new function for any element type and any
kind of collection.

new Set<o b j e c t . g e t C l a s s () > (o b j e c t) ;

Listing 5. Generics in dynamically typed languages

This example of a Set of all possible variables needs to be
replaced with following shortened code:

c l a s s S e t {
p u b l i c S e t (boolean b) { . . . }
p u b l i c S e t (i n t i) { . . . }
. . o t h e r c o n s t r u c t o r s .

}
new Set<Objec t >(o b j e c t) ;

Listing 6. Generics in static typed languages

It is evident that in this variant it is impossible to define the
new Set of all types since there are endless types.
With dynamically scoped variables it is also possible to create
generics in statically type-checked code [14]. It is much
more complicated than in purely dynamically typed languages,
but easier than in the example above. E.g. C# uses more
complicated generic type definitions. So we can define classes
of arbitrary type T as follows:

i n t e r f a c e IEnumera to r<T> {
T C u r r e n t { g e t ; }

}
Listing 7. Usage of Generics in C# [15]

So on the one hand generics are not impossible in static typing.
But on the other hand they are much more easier to implement
in dynamically typed languages.

IV. OUTLOOK AND OWN OPINION

A. Hybrid languages

Static type checking focuses on complete checking of
restricted specifications. Dynamic checking focuses on incom-
plete checking of expressive specifications. Thus, the goals of
dynamic type checking and static type checking appear to be
incompatible[16]. But there are different techniques of solving
this misery. One possibility is to distinguish between statically
typed and dynamically typed variables. E.g. C# uses this
method, by checking all static variables during compile-time
and all dynamic variables during run-time. In the following
example you can see a Class Example and the Main method
creating a dynamic and static instance of example without and
with creating a compiler error:

c l a s s ExampleClass {
p u b l i c ExampleClass () { }
p u b l i c vo id exampleMethod1 (i n t i) {}

}
s t a t i c vo id Main (s t r i n g [] a r g s){

ExampleClass ec = new ExampleClass () ;
/ / would cause c o m p i l e r e r r o r
ec . exampleMethod1 (1 0 , 4) ;
dynamic dynamic ec = new ExampleClass () ;
/ / no c o m p i l e r e r r o r ,
/ / b u t run−t i m e e x c e p t i o n .
dynamic ec . exampleMethod1 (1 0 , 4) ;

}
Listing 8. Different ways so define variables in C# [17]

This shows that static and dynamic types are not opposed to
one another and may coexist harmoniously.

B. Own opinion

My own opinion is, that both dynamic and static typing
are useful, but in different circumstances. Dynamic typing
should be used for small programs and scripts, that must be
developed very fast and on which no major safety require-
ments are placed. On the other side static typing mechanisms

SCHUMACHER: STATIC VS. DYNAMIC TYPING 25

should be used for applications relevant to security. Therefore
both should be implemented in an high level programming
language, because a fully expressive language is one that
supports the delicate interplay between static and dynamic
techniques. Some languages already exist that have both static
and dynamic type-checking. The static type-checker verifies
what it can, and dynamic checks verify the rest.
My point of view is, that all programming languages should
implement such a type-checker. And not like now, where
languages with static type-checking exist that provide a way to
bypass the type checker. Because that is not the right solution
of solving the problem. So my opinion about this discussion
is that programming languages should use both static typing
where possible and dynamic typing when needed.

V. CONCLUSION

Static typing and dynamic typing is a topic of programming
language design that is not always clearly defined and, as
a result, is not very well understood. This article has given
you an insight into the concepts of static and dynamic typing
and we have considered several different advantages and
disadvantages of static and dynamic typing. To complicate the
matter even more, there are more ways, like mentioned before,
of typing mechanisms, such as strong and weak typing, which
would inflate this paper.
The question remains, if static typing is better than dynamic
typing or vice versa. In this paper we had taken a look at
both, advantages and disadvantages, and when to use them. It
is obvious that both, static and dynamic typing, have more
benefits than downsides and therefore both are better than
no type checking. Now everyone should weigh the benefits
only for their preferences and then decide which typing
mechanisms, or maybe both techniques, he or she prefers.

ACRONYMS
IDE Integrated Development Environment
PHP PHP: Hypertext Preprocessor
ML Meta Language
SML Standard Meta Language

REFERENCES

[1] stackoverflow.com/questions/125367/dynamic-type-languages-versus-
static-type-languages (November 2015)
stackoverflow.com/questions/1517582/what-is-the-difference-between-
statically-typed-and-dynamically-typed-languages (November 2015)

[2] Benjamin C. Pierce, Types and Programming Languages, ACM SIGACT
News, Volume 37 Issue 4, December 2006 Pages 29 - 34

[3] Laurence Tratt, Dynamically Typed Languages, Advances in Computers,
Volume 77, 2009, Pages 149-184

[4] John Peterson, Dynamic typing in Haskell, Technical Report
YALEU/DCS/RR-1022, Yale University, 1993, Available:
cs.yale.edu/publications/techreports/tr1022.pdf (November 2015)

[5] en.wikipedia.org/wiki/TypeSystem (November 2015)
[6] docs.oracle.com/javase/8/ (November 2015)
[7] Robin Milner, A Theory of Type Polymorphism in Programming, Journal

of Computer and System Sciences, Volume 17, Number 3, December
1978, Pages 348-375

[8] pythonconquerstheuniverse.wordpress.com/2009/10/03/static-vs-
dynamic-typing-of-programming-languages/ (November 2015)

[9] Vincent Driessen, The Power of Wobbly Types, Radboud
University Nijmegen, The Netherlands, 2006, Available:
cs.ru.nl/bachelorscripties/2006/ThePowerOfWobblyTypes.pdf
(November 2015)

[10] freepascal.org/docs-html/ref/refsu18.html (November 2015)
[11] Seth Grimes, July 2005, Available:

informationweek.com/software/information-management/structure-
models-and-meaning/d/d-id/1030187 (November 2015)
Seth Grimes, August 2008, Available:
breakthroughanalysis.com/2008/08/01/unstructured-data-and-the-80-
percent-rule/ (November 2015)

[12] Erik Meijer and Peter Drayton , Static Typing Where Possible,
Dynamic Typing When Needed: The End of the Cold War Be-
tween Programming Languages, Microsoft Corporation, 2004, Avail-
able: ics.uci.edu/ lopes/teaching/inf212W12/readings/rdl04meijer.pdf
(November 2015)

[13] Luis Damas, Type Assignment in Programming Languages, PhD thesis,
University of Edinburg, 1985

[14] J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields, Implicit
Parameters: Dynamic Scoping with Static Types, 27. POPL 2000,Boston,
Massachusetts, USA , Pages 108-118

[15] msdn.microsoft.com/de-de/library/58e146b7.aspx (November 2015)
[16] Cormac Flanagan and Kenneth Knowles, Hybrid type checking, Univer-

sity of California at Santa Cruz, ACM Transactions on Programming
Languages and Systems (TOPLAS), Volume 32, Number 2, January
2010

[17] msdn.microsoft.com/de-de/library/dd264736.aspx (November 2015)

26 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

Memory models
Gunnar Bergmann

Abstract—Resource handling is an important aspect of pro-
gramming languages and related errors are still a common
problem in today’s software. Managing it manually is hard and
error prone, so safer alternatives are required. Garbage collection
protects against most problems with memory handling but is not
usable in programs with strict memory and time constraints nor
can it handle other type of resources.

This paper presents alternatives to manual resource manage-
ment that are safer to use but do not impose severe performance
degradation. First it explores the concept of RAII and shows how
it can be implemented, how typical classes look and then presents
and solves limitations of RAII. Afterwards Rust’s ownership
model will be explored. It helps preventing typical security
issues currently present in C++ by applying additional checks
at compile time.

I. INTRODUCTION

In some languages, most notably C, the programmer needs
to manage the memory by explicitly calling free whenever
it is no longer needed. This leads to many problems:

• memory leaks when memory is never released
• use after free when a reference to an already freed

location is accessed
• double delete when memory is deallocated twice
• repeated code because the memory needs to be released

on every code path. As usual copied code often leads to
other problems, especially when it is changed later.

• unreadable code when many nested if -statements are used
to prevent repeated code.

• separation of allocation and release
• Adding exceptions is problematic because there needs to

be a finalizer for every allocation.

Detecting and debugging memory related errors is hard.
Leaked memory accumulates slowly and needs a certain
amount before causing problems. In C Use after free and
double delete lead to undefined behavior. It is possible that ev-
erything works as expected and just under rare circumstances
cause crashes or security issues. There are programs for the
detection of potential errors but they are rarely used and can
not detect all issues.

Garbage collection solves memory management by tracing
references and detecting which objects can be safely removed.
It is not usable in software with strict memory constraints
and the unpredictable frequency of collection cycles limits
the benefit for software with real time requirements. Garbage
collectors also can not handle other resources than memory
because these are often unique, lack additional reserves and
require a deterministic order of resource release.

Except for use after free all these problems can be solved by
different classes using RAII [7]. Still use after free remains an

important issue that causes lots of problems that the ownership
model introduced with Rust [4] solves.

The alternatives presented by this paper will also be able
to create file handles or network sockets, that automatically
close, as well as mutex locks that can unlock when no longer
needed [7].

II. LOCAL VARIABLES

The easiest form of automated memory management are
local variables. Local variables can not outlive their scope and
the memory is automatically reclaimed by the program [1].
They can be returned from functions by copying their values
but pointers to the variables become invalid. It is easy for
compilers to save them on the stack or hold them in registers,
making local variables the fastest form of memory allocation,
because deallocation takes places by decreasing the stack size
at the end of each function and the locality of reference avoids
cache misses. It is not possible to increase the capacity of stack
allocated memory once it is no longer on the top of the stack
and a stack allocated variable can not outlive the function call.

These limits make exclusive local variable impractical for
most cases.

III. RAII

When C++ added object oriented programming to C, it also
provided a way to encapsulate initialization and release of
member variables. Classes provide a better encapsulation of
their data and thus may have a constructor for the initialization
and a destructor for the resource release. [7]

BERGMANN: MEMORY MODELS 27

A minimal string class may look like

c l a s s S t r i n g {
p r i v a t e :

char∗ d a t a ; / / p o i n t e r t o a c h a r a c t e r
p u b l i c :

/ / C o n s t r u c t o r
S t r i n g (c o n s t char∗ s) {

d a t a = new char [s t r l e n (s) + 1] ;
s t r c p y (da t a , s) ;

}

/ / d i s a b l e c o p y i n g
S t r i n g (c o n s t S t r i n g &) = d e l e t e ;

/ / D e s t r u c t o r
˜ S t r i n g () {

d e l e t e [] d a t a ;
}

} ;

This concept is known by the name Resource Acquisition Is
Initialization abbreviated as RAII, because the resource used
by the object is allocated on its construction.

Instances of these classes can act as an extension of normal
local variables. They can also be stack-allocated but unlike the
primitive ones their destructor is run at the end of the scope.

The string class from above can be simply extended to allow
dynamically growing strings. It just needs to allocate a new
chunk of memory and copy the old data and the extension into
a single array.

c o n c a t (c o n s t char∗ s) {
char∗ o l d = d a t a ;
i n t l e n = s t r l e n (o l d)+ s t r l e n (s) + 1 ;
d a t a = new char [l e n] ; / / more memory
s t r c p y (da t a , o l d) ;
s t r c a t (da t a , s) ;
d e l e t e [] o l d ; / / f r e e o l d memory

}

The memory can now grow dynamically in a completely
safe way but is still bound to a scope and automatically
deallocated by the destructor. Like other scoped variables the
values can be passed out of the scope by creating a new object
with the same content. Depending on programming language
and implementation the content is either copied or transferred
to the new object, leaving an empty one behind.

When an object is destroyed, members and base classes
destructors are also called [1]. This allows safe composition
of multiple classes, where each one uses RAII. Typically some
or all of the operations are generated by the compiler, so that
except for writing some basic data structures and wrappers
around imported code from other languages it is not necessary
to provide these for each class.

RAII can be used for many types of resources. Some
examples from C++ are the classes fstream for files and

vector for dynamic growable arrays. The prime example is
the usage of RAII for automatically releasing mutex locks:

{
l o ck gua rd<mutex> guard (some mutex) ;
/ / . . . code i n s i d e t h e mutex

} / / some mutex a u t o m a t i c a l l y u n l o c k e d

A. Destruction order

An object is destroyed at the end of its lifetime, which can
be automatically done for temporary objects and local ones
when they leave the scope, in many languages visible as the
closing brace }.

Member variables are destroyed by their parent’s destructor
from the last to the first and afterwards the base classes’
destructors are called if existent [1].

In all the automatic destructor calls the variables are destruc-
ted in reverse of their creation order and independent from the
code path [1]. RAII’s destruction order is deterministic. The
reverse order ensures that no object is destroyed while others
depending on it are still alive.

There are additional ways of creating and destroying objects
manually, which is needed for implementing some basic types
that itself use RAII but need to manage their internal memory
manually. For a simplified example the C++ type vector
allocates a chunk of raw memory and constructs the objects
internally. When elements are removed or the vector is
destroyed, then all of the elements destructors are called before
the object itself gets destroyed. You rarely have to do the
management yourself unless you need some specialized and
efficient datastructures that are not part of the standard library.

When an exception is thrown, the runtime library performs
stack unwinding by going back all function calls and de-
stroying every object until the according catch-statement has
been reached. Destructors should not throw exceptions because
throwing in a stack rewind would lead to two simultaneous
active exception which most languages can not handle and
immediately abort. [1]

B. Solved Problems

Under the assumption that the implementation of classes is
correct, RAII solves some of the problems of manual memory
management. RAII improves the code structure by reducing
code duplication. It pulls both acquisition and release from the
code using it into one class, that keeps the related code close
together. By removing the need for calling new and delete
outside of the class it solves double deletes and memory leaks.
It does not solve use after free because there may still be
references to memory after the owning object has released it.
Also data structures require strict hierarchies so that there is
a order for the destructors. Cyclic references are not possible
although the section about smart pointers shows ways to relax
these constraint.

28 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

C. Containers

The most important building block for programs are con-
tainers [7]. These are generic classes that allocate memory
for holding multiple objects and vary in their performance
characteristics and usable operations. On destruction they call
the destructors of all the elements in them and free the
memory. The most important container is vector for storing
a dynamically growable array and map or unordered_map
for associative containers.

Some operations can remove, add or internally move ele-
ments, causing pointers to individual elements or iterators to
dangle. In modern C++ this is a common error because it is
often not visible from the outside that elements may move
and under which circumstances, although some containers
guarantee stable references.

D. Smart Pointer

Unlike using objects directly, a pointer can be moved but
the memory it refers to is not invalidated, so all other pointers
remain valid. We use the term owning pointers to refer to those
types of pointers that need to free the memory on release.
Later we will explore the ownership in the Rust programming
language that uses the same concept in a way the compiler
can verify to prevent common sources of errors.

In addition to owning pointers there are other types
of pointers that just refer to a memory location without ever
acquiring or freeing the memory themselves. The pointers
present in C are called raw pointers here.

Since raw pointers need to call the appropriate function to
release the memory, it is safer to provide a wrapper class that
uses RAII to release the memory automatically. These are
called smart pointers. As a general rule owning raw pointers
should be avoided and either replaced by using the object
without indirection or with a smart pointer. There are typically
three types of smart pointers [3]:

• unique_ptr (C++), Box (Rust) is the most simple
type. It holds a reference and frees the memory on dele-
tion. It can not be copied. It models exclusive ownership
[3].

• shared_ptr (C++), Rc (Rust) provides shared own-
ership. It lets multiple smart pointers refer to the same
memory location. When the last one is destroyed it frees
up the memory. shared_ptr is implemented with ref-
erence counting. When creating a new object it allocates
additional space for another integer and stores a counter
there. When a shared_ptr is copied, it increases the
counter and the destructor decreases it. When the counter
drops to zero the inner object is destroyed. This smart
pointer allows multiple references but the programmer
needs to be careful to not create a cyclic dependency
because that prevents the counter from reaching zero and
may leak the whole cycle [3].

• weak_ptr(C++), Weak (Rust) refers to an object man-
aged by shared pointers. It allows the pointer to dangle
but that can be safely detected. It does not own the
resource nor can be used directly but can grant temporary

ownership by beeing upgraded to a shared_ptr, which
may fail if no associated object exists. The weak pointer
can be used to break cycles [3].
For example in a tree structure each node has a list of
shared pointers to child nodes and a weak pointer to
its parent. It forms a hierarchy because when the last
reference to the root node is dropped the whole tree will
recursively be released. It is still possible for a node to
safely access its parent.
Weak pointers are implemented by adding another
counter to the one used by shared pointer. When the
reference counter drops to zero the object is destroyed.
The counter object is released on destruction of the last
weak pointer [3].

Both containers and smart pointers store memory but they
are used differently. Containers organize multiple objects
of the same type, whereas smart pointers contain a single
element, but vary in the access to it, and when inheritance
is used, they allow downcasting to a base class.

IV. RAII IN GARBAGE COLLECTED LANGUAGES

A garbage collector is an easily usable protection against
memory-related issues but lacks support of other resources.
Classes often have finalizers that can close leaked resources
but many of them, including file handles and network sockets,
need to be closed as soon as possible so that other programs
can use them. Often the release order matters or it takes
an unpredictable time span to the next collection cycle so it
sometimes takes too long and may cause nearly undetectable
errors. Relying on finalizers therefore is strongly discouraged.

Traditionally garbage collected languages use finally to
run specific code for resource release at the end of the scope,
although that requires the discipline to surround every resource
usage with a finally block and as a consequence is rarely used.
Also resource handling occures more often than defining a
class containing a closable resource, so RAII reduces code
duplication in comparison to finally [6].

Some languages like D support a garbage collector for
memory and RAII for other resources [2]. Other languages
were extended with special keywords that enable RAII-like
behavior. For example Python 2.5 [5] introduced the methods
__enter__ and __exit__ that can be used with the new
keyword with to support automatic closing of objects:

w i th open (” t e s t . f i l e ”) a s f :
c o n t e n t = f . r e a d ()

V. RUST

Rust is a new language that aims at memory safety, abstrac-
tions without overhead and multithreading. [4]

Traditional RAII can resolve some common errors but it
does not prevent against dangling references. Modern pro-
grams heavily rely on iterators and modifying a container
while iterating over it may cause the iterator to point to
now invalid memory similar to a dangling reference or skip
elements or visit them twice.

BERGMANN: MEMORY MODELS 29

Accessing the same memory location from to different
threads may easily lead to data races. Even when a RAII
ensures safety for a variable, another thread may access in
an intermediate state that is not safe to use.

Rust uses the concepts of ownership, borrowing and life-
times to eliminate these bugs without introducing additional
overhead.

A. Ownership

Ownership means that there is always a single variable that
can access the value and return it. The ownership can be
transferred to other variables but not shared. [4]

The strict semantics of ownership ensure that RAII is used
correctly and that no variable can be shared across threads.

Variables have ownership over the resources they access.
You can create a heap-allocated array with three elements with

l e t a = vec ! [1 , 2 , 3] ;

The variable a has ownership over the content of the array.
When a goes out of scope it automatically reclaims the
memory by using RAII. You can transfer ownership to another
value.

l e t b = a ;

The array is moved to b. Accessing it afterwards is a compiler
error.

a . push (4) ; / / append 4

will not compile because the content of a has been moved to
b and is no longer accessible.

When multiple control paths exist and a value has been
moved in one, it is no longer accessible afterwards until a new
value has been assigned. Functions can take a value by move,
which makes the code more efficient than copying values and
also prevents accidental modifications.

Some types are an exception from the ownership rule and
are copied instead of moved, because move and copy are equal
for them.

B. Borrowing

Ownership alone is not useful because just a single source
can access a value and you can not even pass it to a function
without losing the ownership. [4] Instead you can temporarily
borrow the value. It is technically just a reference like in C++
but with additional checks at compile time.

Rust employs a concept similar to a read-write-lock: Only
one mutable reference at a time is allowed but multiple
immutable ones. Borrowing makes it impossible to transfer
ownership or modify a container while a reference or an
iterator to it exists.

Having multiple read-only references is save because no one
can change anything.

fn foo () −> &i 3 2 {
l e t a = 1 2 ;
r e t u r n &a ;

}

will not compile because the local variable a goes out of scope
at the end of foo and invalidates the returned reference.

l e t x = vec ! [1 , 2 , 3] ;
l e t r e f e r e n c e = &mut x ;
p r i n t l n ! (” { } ” , x) ;

will not compile because x can not be used by the print
function while there is still a mutable reference to it.

This is not an actual lock and does not make the types
thread-safe. Sending a reference to another thread is not
allowed. It just prevents creation of dangling references. Still
the same mechanism is also used for thread-safety to prevent
unlocking a mutex while still holding a reference to its content:

{
l e t gua rd = mutex . l o c k () . unwrap () ;
m o d i f y v a l u e (&mut gua rd) ;

}

C. Lifetimes

The compiler enforces and validates the borrowing and
ownership rules with lifetimes. These are bound to the scope
and every type has an implicit lifetime on it. [4] References
are represented by a leading single quote: ’lifetime. There
is a special lifetime ’static for items that life as long as
the process exists.

s t r u c t Foo {
x : i32 ,

}

/ / t h e l i f e t i m e ’ a i s a g e n e r i c p a r a m e t e r
/ / i t r e t u r n s a r e f e r e n c e wi th t h e same
/ / l i v e t i m e as t h e i n p u t
fn f i r s t x <’a>(

f i r s t : &’a Foo ,
second : &Foo)
−> &’a i 3 2 {

& f i r s t . x
}

In this example the parameter first and the returned refer-
ence are annoteted with the generic livetime parameter ’a. It is
not possible for the caller to let the reference outlive the object
or modify it while the reference still exists. Taking immutable
references is still possible, but mutable ones are forbidden.

Although the compiler generates and checks the lifetime for
every object, they can be automatically generated based on the
context except for some ambiguous cases.

D. Anonymous functions

Like most modern languages Rust supports the creation of
anonymous functions, also called lambda functions. These are
created locally and can access the local variables. To obey the
safety rules without introducing additional overhead there are
three basic types of anonymous functions.

30 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

The simplest type accesses the local variables by reference.
Explained in the terms of ownership it borrows its environ-
ment. It can not be returned from the function because then
references could no longer access the data.

The second type takes the variables by move and forbids
the access after the function definition, which means it takes
the ownership of the variables. For taking copies of the value
first store a copy and then use the copy inside of the function.

The last type can be called only once. This allows the
function to consume the inner data instead of leaving it in a
valid state. To build similar behaviors for own types these can
take the self-reference by move. self accesses the object
on which the method is called, similar to the this by other
types. Rust’s ownership ensures that the object is moved inside
a method and then destroyed at the end of the call. [4]

fn do someth ing (s e l f) {
/ / . . .

} / / s e l f i s d e s t r o y e d

C++ in comparison lets the programmer decide for each
value. There are two default capture modes which take all
variable by value or by reference. There are also individual
choices for each variable. The C++14 standard also added
generalized captures that can bind any expression to a name.
[3]

[x , / / by v a l u e
&r , / / by r e f e r e n c e
p = make unique<i n t >(0)

/ / g e n e r a l i z e d c a p t u r e
] (auto p a r a m e t e r 1) {

/ / t h e code i n t h e f u n c t i o n
}

There is no mode that supports moving values inside a function
but generalized capture can be used for that.

The C++ lambdas are more flexible, but also more danger-
ous because no checks occur. Accidentally using the wrong
capture mode, especially when the default ones are used, can
easily lead to dangling references. They are also more verbose
and you can not build the self-destructing ones.

E. Limits of ownership

It is not possible to protect against all kinds of bugs even
with the strict ownership rules. Especially the value inside of
a shared smart pointer has an unpredictable lifetime. While
it can be guaranteed that the value has at least the pointers
lifetime, aliasing mutable references are needed for many
programs. There are some types in Rusts standard library that
allow safe access e.g. by falling back to runtime checks.

F. Ownership in C++

Ownership is nothing that was invented for Rust. As
mentioned in the smart pointer section it is often useful to
think about owning references for structuring a program [3].
Only the application of additional checks to enforce correct
ownership semantics is new.

At CppCon 2015 a new programming guide and a tool, that
can check for rules similar to the rust compiler, although less
strict, were announced. Some of Rust’s rules for example those
that protect against data races in multithreaded programs are
also not covered. [8]

VI. CONCLUSION

This paper has shown how RAII can create a safer and
simpler alternative to manual memory management and how
some internally unsafe classes can provide useful building
blocks for creating quite safe programs. Afterwards it has
presented the ownership concept of Rust that prevents common
problems of RAII.

In comparison to garbage collection RAII can not handle
cyclic references. The programmer always needs to use an
adequate container or smart pointer, structure the code and
break cyclic references manually. On the other hand this forces
a good structure for the program and allows a deterministic
and immediate destruction which enables the use of RAII for
other types of resources.

Whereas garbage collection is a general solution for all
kinds of memory related issues, RAII is one for all kinds of
resources except those ordered in cyclic dependencies.

Ownership can eliminate many issues at compile time and
provides a fine grained control over the destruction of objects.
Other languages have to detect problems at runtime or don’t
protect against them at all. This does not just prevent some
sources of memory issues but also other classes of problems
that need to by found by extensive testing otherwise.

On the other hand it is a lot to write. Simply passing a
reference around is not possible because you need to ensure
that no invalidated variable can be used and sometimes extra
lifetime annotations are required so that the borrow checker
can verify the code. Even when you sacrifice performance and
make extensive use of copying objects or just use reference
counting, there is still a lot work involved in manually creating
copies every time and you loose the ability to use mutable
objects, which need other verbose workarounds.

It remains open if the compile time checks and improved
code structure will benefit the creation of large scale and
reliable software or if the amount of work and the costs are
too high for productive software development.

REFERENCES

[1] Working Draft, Standard for Programming Language C++. Technical
report, 2015. N4296.

[2] Ali Cehreli. Programming in D: Tutorial and Reference. CreateSpace
Independent Publishing Platform, 1 edition, 8 2015.

[3] Scott Meyers. Effective modern C++ : 42 specific ways to improve your
use of C++11 and C++14. O’Reilly Media, Sebastopol, CA, 2014.

[4] The Rust Project. The Rust Programming Language. https://doc.rust-lang.
org/stable/book/, 2015. [Online; accessed 12-November-2015].

[5] Python Software Foundation. Python 2.7.10 Documentation. docs.python.
org/2/, 2015. [Online; accessed 12-November-2015].

[6] Bjarne Stroustrup. FAQ. https://isocpp.org/faq. [Online; accessed 15-
November-2015].

[7] Bjarne Stroustrup. Foundations of c++. In Helmut Seidl, editor,
Programming Languages and Systems, volume 7211 of Lecture Notes
in Computer Science, pages 1–25. Springer Berlin Heidelberg, 2012.

BERGMANN: MEMORY MODELS 31

[8] Herb Sutter. Writing good C++14 ... by Default. https:
//github.com/isocpp/CppCoreGuidelines/blob/master/talks/Sutter%
20-%20CppCon%202015%20day%202%20plenary%20.pdf. [Online;
accessed 12-November-2015].

32 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

Stack Based Programming Paradigms
Timo Luerweg

Abstract—Within the field of Programming Languages, Stack
based ones are allot less noticed than most other. Stack based
Systems are commonly used, be it as intermediated Language
for virtual machines, or as a foundation for meta programming.
Within this paper, I will give an overview of the topic of stack
based programming. It discusses the most important Paradigms
such as variable elimination . Afterwards there will be a
short overview of some languages implementing the presented
Paradigms and individual characteristics.

I. INTRODUCTION

Stack based languages are widely used, yet mostly unnoticed.
The reasons behind this could be the uncommon still efficient
syntax, the implicit passing of parameters or the fact most
languages of this type are highly specialized. However within
the filed of their respective usage they are highly used. The
first part of the paper will deal with this topic in more detail.
Afterwards I’ll discuss paradigms implemented by most of the
languages, beginning with the special syntax(postfix) and the
conversion to this syntax. Then I will pay special attention
towards variable elimination. The reason behind this, is it works
totally different form comparable mechanism in commonly used
‘modern’ languages. This part will be split in two main parts:
the local and the global variable elimination. Afterwards there
will be a small overview of some frequently used or conceptual
interesting languages.

II. CONCEPTS

A. Syntax

Nearly all stack based languages use the Reverse Polish
Notation(RPN). This is a mathematical notation where the
operator is placed behind its arguments, in contrast to the
commonly used infix notation where a operator is placed
between its operands. This notation provides advantages for
stack based languages, due to the fact that it’s similar to their
way of operating. Furthermore this notation provides a faster
way to calculate, because it passes on using parenthesise on
the given term. To transform from one to another an algorithm
called ‘Shunting-yard algorithm’ exists. It uses a stack to store
the operators (like +/ − ·) and emit them to the expression,
when needed. lets look at an example:

4 + 5 · 8 · (3 + 6) + 2

Is in commonly known infix notation. The next line would
represent the same function in RPN:

4 5 8 · 36 + ·+ 2+

The above would be the way, you would calculate the
function, in e.g. Forth. Of cause this can be done, not only with
mathematical operations, but with all kind of operations(even
self-written ones). There for stack programs are written as a
sequence of values and instructions.

III. FIELDS OF USE

Stack based languages are not falling short in terms of usabil-
ity in contrast to ‘modern’ languages. However they are mostly
used in field where they possess a natural advantage over the
last. This would be the area hardware-close implementations(
e.g. Forth is frequently used here) or as software for postfix
using calculators.

A. Intermediate Language

An Intermediate Language describes on an abstract level,
hardware or platform independent, data structures for programs.
This is done, to later translate this abstract code to a hardware
specific code, without the need to compile the code for each
individual pair of hardware and compiler. However this topic
was covered earlier within this seminar, by Malte Skambath
so if you need to refresh your knowledge regarding the topic I
recommend to reread his paper.
In addition to his coverage of the topic, Stack based languages
are frequently used as intermediate languages. Two examples
would be EM, Java Byte code or Elisp byte-code. The reason
behind this is, the characteristic, to be condensed to very
compact binary code in addition to the reduced set of operand,
which will speed up the syntactical analyse, leading to a faster
execution.

B. Meta Programming

Meta programming is the topic of automatic code generation
and manipulation. Again this topic was already covered within
our seminar, by Alexander Schramm.
Stack based languages (he took Java and Java byte code as
an example) can be used within runtime meta programming,
because they are able to build and execute programs at run-time.
[2].

IV. IMPLEMENTATIONS

A. Forth

Forth is a imperative stack based programming language. It
originated from Charles Moores work in the beginning of 1960.
Forth possesses two stacks: one stack where data is stored
and manipulated(data stack) and another one where return
addresses are stored(return stack). While the data stack is used
to pass data between the words of a program, the return stack
is used to keep an overview of where to return to(in case of

LUERWEG: STACK BASED PROGRAMMING 33

executing a subroutine) and stores local variables which would
otherwise cause problems. Although Forth is not specialized,
today it’s mostly used in the field of embedded systems and
micro controllers. One reason for this could be, the possibility
to generate and optimize and compile code before transferring
it to the specific machine. ‘Forths are often characterised by
the size of an item on the data stack, which is usually 32 bits
or 16 bits. Several 64 and 8 bit Forths also exist, as well as 4,
20 and 24 bit systems. Forth is an untyped language, so there
is nothing to stop you adding a character to a number. No
casts are necessary. The amount of memory needed to store a
stack item is called a cell.’ ([5])
If you are further interested in this Language you can take a
look at [5] for further details and an introduction to the topic.

B. Joy

Joy is a functional language. Other than most other functional
languages, Joy is not based on the lambda calculus. It is rather
based on the composition of functions. All functions take a
stack as argument and produce a stack as value. This however
allows a Joy program to be significantly more powerful than e.g.
a Forth program due to the possibility of passing whole data
structures(or program structures) instead of a limited amount
of cells. Furthermore a Joy program, in theory, can take and
returns an unlimited amount of parameters. E.g. a ‘5’ would
not be interpreted as the integer 5, rather it is interpreted as an
program, that pushes the ‘5’ onto the stack. It was designed
and developed by Manfred von Thun, currently working at the
La Trobe University in Melbourne, Australia. if you are more
interested in the details of this language, you can download the
current version and all papers about this language here [11].

C. PostScript

PostScript is a programming language used to generate
(vector) graphics. Printers often use PostScript to generate their
documents. PostScript can be considered as an intermediate
language, because a majority of the code, is generated by
programs to convert text files e.g. .doc to a postscript file
which then can be used by a printer.

V. OPTIMIZATIONS

A. Variable elimination

The concept of variable elimination is to eliminate as many
variables(and with this memory accesses) used in an program
as possible. This is ultimately done, to speed up the execution
of programs. To accomplish this goal with variable elimination,
there are some requirements to be met. First of all the (register-
based) program needs to be split-able in (equally large)basic
code blocks. In addition blocks of different branches (IF-THEN-
ELSE) ‘the IF and ELSE clauses must both leave the same
temporary variables in the same locations on the stack when
control transfers’ ([3]). Another (in some cases optional)
requirement for those blocks would be, after the execution of
each basic block the Stack its preformed on, needs to be empty.
With this conditions in Mind, there are two possible ways to

perform variable elimination: local(intra-block) or global(inter-
block). While there exist algorithms to perform local variable
elimination [3] [1], there aren’t any algorithms for global
elimination so far, mostly because its very hard to eliminate
variables with a lifetime longer than a basic block(atleast with
an algorithm), but it can be applied manually after the local
elimination took place. Note this two concepts are discussed
in the context of Forth and while most parts discussed stay
available for other Languages, there are steps which need
modification in order to work in those languages.

1) Local variable elimination: The first step is called Raw
input processing. Within this step either the intermediate
code structures or the source code itself(again it depends on
the language) is transferred to a list of stack-based instructions.
However this transformation is only happening on a basic
level and the result is later used for further elimination and
processing and is not executable(naive processing).
The second step is Code clear up. At this point, the
transformation to stack-code is completed. This includes the
modification of subroutines, so they take their input from
the stack and return it back to the stack, instead of using
registers. Also condition code is modified to use stack-based
comparison, instead of register-based.
Next an initial phase of Peephole optimization is performed.
This leads to a more consistent code.
This step is the key of the whole algorithm the Stack
scheduling. The purpose is instead of using local variables
in the code, the needed values are on top of the stack(or
atleast reachable) when they are needed. In detail the code
is optimized so the number of fetch and load operations is
minimized. This is accomplished by firstly searching for local
pairs of fetches and stores of the same variable, ranking them
by distance and secondly try to eliminate these pairs in order
of their distance. Stack scheduling can be performed, if the
local variable is used more than once(example below).
The next step is another round of Peephole optimization.
This time however after the elimination took place the code
the code is cleared form complex stack operation, which can
be simplified e.g.:

DUP SWAP becomes DUP
(DEAD) LOCAL! becomes NOP

The last step Code generation converts the so far generated
stack code to the individual machine code. Within this process
non-standard words used by the algorithm are also translated
to normal Forth words.

Example of a local variable elimination: First let me explain
the notation: the brackets represent the Stack we would preform
our operations on, while everything on the left side of the
delimiter – represents the stack before we perform the operation,
the right side represents the stack after we performed the
operation(to simplify the code this part is excluded form the
example).

34 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

The LOCAL@ represents a (non-standard)load in Forth1, so
e.g. in the first line, the variable b is loaded from the local
register 76 and pushed on the stack.
Along with this definition, the LOCAL! represents a store in
Forth2, as seen in line four, where the top item of the stack is
saved at the local variable 75, in our case a.
The line with the comment (DEAD) at the end, identifies this
load statement as useless and is a remainder of step 1 and will
be eliminated in step 5.
Now to the example. Lets assume this is a part of the source
code we want to optimize with stack scheduling.

1 a = b ∗ c ;
2 b = a / 8 ;
3 c = a − b ;

This would be the naive translation to forth-like code(step 1).

1 (−−) 76 LOCAL@ \ b @
2 (76 −−) 77 LOCAL@ \ c @
3 (76 77 −−) ∗
4 (75 −−) 75 LOCAL! \ a !
5 (−−) 75 LOCAL@ \ a @
6 (75 −−) 8 \ l i t e r a l 8
7 (75 88 −−) /
8 (76 −−) 76 LOCAL! \ b !
9 (−−) 75 LOCAL@ \ a @ (DEAD)

10 (75 −−) 76 LOCAL@ \ b @
11 (75 76 −−) −
12 (77 −−) 77 LOCAL! \ c !

Afterwards the distance between pairs of fetches and the nearest
use of the variable on the stack is measured. In our example
this would be in the following lines:
In the lines 4 and 5 the variable a is loaded, immediately after
it is saved. So the distance is 1. It then is used again in line 7
and loaded in line 9. in this case the distance is 2.
The variable b is stored in line 10 and reloaded in line 12. The
distance again is 2.
After all distances are measured the pairs are ranked by their
distance, beginning with the lowest.
For each of the pairs, its evaluated if the variable of interest
can be copied to the bottom of the stack using a single stack
word3, otherwise the pair is ignored and the next is evaluated.
If the condition is met and the Stack depth at the point if
reuse is 2 or lower (so the variable at the bottom of the stack
can be changed on top if needed). If both conditions are met,
depending on the status of the stack, a word to duplicate is
added in front of the ‘use’ case and a word to place the result
instead of the ‘reuse’ case is added instead of the ‘reuse’.

1to be more specific, a @ fetches and returns the cell at the memory address,
however in this case a numeric input is added and can be interpreted as the
‘name’ of the variable.

2the ! Stores the cell on top of the stack at memory address.
3like DUP(Duplicates the top stack item) or TUCK(Insert a copy of the top

stack item underneath the current second item. Further details at the end of
this section.)

After we perform this on our first found pair the code would
look like this:

1 (−−) 76 LOCAL@
2 (76 −−) 77 LOCAL@
3 (76 77 −−) ∗
4 (75 −−) DUP \ copy of 75
5 (75 75 −−) 75 LOCAL!
6 (75 −−) NOP \ 75 LOCAL@
7 (75 −−) 8
8 (75 88 −−) /
9 (76 −−) 76 LOCAL!

10 (−−) 75 LOCAL@
11 (75 −−) 76 LOCAL@
12 (75 76 −−) −
13 (77 −−) 77 LOCAL!

Now the first of the pairs with a distance of 2 is evaluated.
Note there doesn’t seem to be a great change in performance
or result by choosing one over the other.

1 (−−) 76 LOCAL@
2 (76 −−) 77 LOCAL@
3 (76 77 −−) ∗
4 (75 −−) DUP
5 (75 75 −−) 75 LOCAL! (DEAD) \ s .

below
6 (75 −−) NOP
7 (75 −−) 8
8 (75 88 −−) UNDER
9 (75 75 88 −−) /

10 (75 76 −−) 76 LOCAL!
11 (75 −−) NOP \ 75

LOCAL@
12 (75 −−) 76 LOCAL@
13 (75 76 −−) −
14 (77 −−) 77 LOCAL!

becomes DEAD, because its never used afterwards.

The UNDER is a non standard word and defined as
following:
>R DUP R>
the >R pushes the top element of the data stack onto the
return stack.4 The R< pushes the top element of the return
stack onto the return stack.
Finally our last pair is evaluated:

1 (−−) 76 LOCAL@
2 (76 −−) 77 LOCAL@
3 (76 77 −−) ∗
4 (75 −−) DUP
5 (75 75 −−) 75 LOCAL! (DEAD) \ ∗
4Forth uses two stacks,other than most other stack based languages. The

stack used so far is the data stack and all programs are performed on it. The
return stack is used for storing return addresses and temporary data which
would get in the way if cept on the stack [5].

LUERWEG: STACK BASED PROGRAMMING 35

6 (75 −−) NOP
7 (75 −−) 8
8 (75 88 −−) UNDER
9 (75 75 88 −−) /

10 (75 76 −−) TUCK \ copy of 76
11 (76 75 76 −−) 76 LOCAL!
12 (76 75 −−) NOP
13 (76 75 −−) SWAP \ 76 LOCAL@
14 (75 76 −−) −
15 (77 −−) 77 LOCAL!

This would be our result after step 4 of the algorithm. However
this code still can be optimized. As you can see lines 4 and
5 are not needed for the algorithm to work in its intended
way. This is because the value of a use in the next step of
computation is already located on the step, instead of being
stored and loaded again from a register. Lines 11 and 12 can
be optimized from TUCK LOCAL! to DUP LOCAL!. The
reason behind this, is the following operation is a subtraction,
which is associative. For the same reason the SWAP can
be eliminated. The last optimization is to delete all NOP
operations still left in the code. The resulting code would look
like this:

1 (−−) 76 LOCAL@
2 (76 −−) 77 LOCAL@
3 (76 77 −−) ∗
4 (75 −−) 8
5 (75 88 −−) UNDER
6 (75 75 88 −−) /
7 (75 76 −−) DUP
8 (76 75 76 −−) 76 LOCAL!
9 (75 76 −−) −

10 (77 −−) 77 LOCAL!

As you can see, the new code only contains 4 variable
references instead of 8 in the beginning and overall is two
lines shorter.
Figure 1 shows the results of this algorithm on some example
programs. As you can see the efficiency is around 90%.
To this point we implicit assumed the accessibility of the stack
to be one or two. What is meant by this is not the actual depth
of the stack, rather the depth of variables available for the
algorithm to copy to the bottom of the stack. Earlier in this
example we set the instruction to check, if a variable could be
copied with a single word5, to make it available when needed.
Furthermore, because we are in a stack based language we can
define our own words, to accomplish even deeper access to the
stack. However if the depth greater than three, the algorithm
tents to produce suboptimal code with many unnecessary stack
operations. For the purpose of comprehensibleness the example
above only shows stack manipulation with a depth of one.

2) Gloabl variable elimination: In contrast to local variable
elimination, we now try to eliminate variables throughout

5a word in Forth is equivalent to a function in e.g. C

all given program blocks. To achieve this with an algorithm,
one would need to analyse the whole program to find global
variables matching each other throughout the code. Other than
one would think, this is not a trivial task. Meanwhile this still
can be accomplished manually and the results can be seen in
figure 2. As you can see, not all algorithms presented in the
example can be optimized to their fullest, this however can be
reasoned with the usage of many frequently changing variables
in loops, or repeated usage of recursive function calls.

36 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

Figure 1. Intra-block stack scheduling removes most redundant accesses to
local variables. [3]

Figure 2. The number of local variable instructions in the compiled code
reduces dramatically with stack scheduling. [3]

VI. CONCLUSION

Stack based languages provide advantages, not covered by
other types of programming languages. As they are concep-
tually simple, automatic code-generation(meta-programming)
becomes rather easy. Further more because of the simplicity
they are also easy extendible, which is another reason they
are frequently used as intermediate languages or as inter-
preters.Furthermore Stack based programs can be compactly
saved in byte code format. However they aren’t used as
frequently as other languages. The reasons for this could be
their exclusive use of RPL(postfix syntax). Further they possess
implicit parameter passing. This reduces the readability of
programs, not written with good style, by a lot. Also most of the
languages are specified to a certain field e.g. PostScript to vector
graphics. This limits their attractiveness to new programmers,
but those working within the respective field of use.

REFERENCES

[1] C. BAILEY, R. SOTUDEH, and M. OULD-KHAOUA. The effects of
local variable optimisation in a c-based stack processor environment. In
Proceedings of the 1994 EuroForth Conference.

[2] M. A. Ertl. Implementation of Stack-Based Languages on Register
Machines(1996). PhD thesis, Technische Universität Wien, Technisch-
naturwissenschaftliche Fakultat.

[3] P. K. Jr. A preliminary exploration of optimized stack code generation.
Journal of Forth Applications and Research, 6, 1992.

[4] O. Patashnik. Designing BIBTEX Styles, 1988.
[5] S. Pelc. Programming forth, 2003.

[6] T. Shpeisman and M. Tikir. Gerating efficient stack code for java.
Technical report, University of Maryland Department of Computer
Science, 1999.

[7] M. von Thun. Mathematical foundations of Joy. Available from the
author, 1994.

[8] M. von Thun. The algebra of Joy. Available from the author, 1995.
[9] M. von Thun. Joy compared with other functional languages. Available

from the author, 1996.
[10] M. von Thun. Lambda calculus vs. combinatory logic vs. Joy — a very

very gentle introduction. Available from the author, 1997.
[11] M. von Thun. http://www.latrobe.edu.au/humanities/research/research-

projects/past-projects/joy-programming-language, 2015.

LUERWEG: STACK BASED PROGRAMMING 37

Evaluation Strategies
Moritz Flucht

Email: moritz.flucht@student.uni-luebeck.de

Abstract—Strict vs non-strict, applicative-order vs. normal-
order, lazy vs eager—terms commonly used in debate about the
evaluation behavior of programming languages. In this paper,
the differences and similarities are presented, use cases are
named and respective examples are provided. The possibility of
improving the efficiency of inherently eager languages by using
lazy traits is discussed, as well as optimistic evaluation as a further
improvement on lazy evaluation.

I. INTRODUCTION

“At a conference on programming languages you
might hear someone say, ‘The normal-order language
Hassle has certain strict primitives. Other procedures
take their arguments by lazy evaluation.’”

(H. Abelson)

Given this quote from Abelson’s classic The Structure and
Interpretation of Computer Programs [1], also known as the
wizard book, you quickly realize there exists an abundance of
terms and phrases surrounding the field of evaluation strategies.
Some of these are more commonly used than others and while
some are synonymous, others differ in nuances depending on
who you ask.

This paper seeks to do away with some of the confusion
caused by conflicting and inconsistent definitions. For that
purpose, in section II, the most commonly used terms are
explained and contrasted with each other.

To give an insight into the inner workings of the various
evaluation strategies and outline some of their use cases, lazy
and eager evaluation techniques are presented in section III
and section IV. Their implementations are discussed, their
benefits and drawbacks in certain applications are clarified and
mitigating strategies illustrated. Also, some practical examples
are given that motivate usage in real life software.

As a proposed improvement to the sometimes resource-
hogging lazy evaluation, optimistic evaluation is introduced as
an alternative approach the the benefits of lazy evaluation in
section V.

II. TAXONOMY

In a field with as broad and rich a spectrum programming
languages, researchers seldom reach a mutual consensus regard-
ing common nomenclature. Add to that the rapid progression
in the last decades and you are guaranteed to end up with a
variety of definitions and interpretations of similar concepts.
To mitigate the multiplicity of such interpretations, a hopefully
sane and approachable compromised definition of the most
common terms is given.

A. Semantics vs. Evaluators

If you were to begin reading up on the topic of evaluation
strategies, you would quickly encounter the terms applicative-
order and normal-order.

As to what the difference between those terms is, one has to
look at the parameters of a function and the way in which they
are evaluated. Using applicative-order, all function parameters
are evaluated before the procedure’s body is entered, whereas
normal-order languages defer the evaluation until the moment
the value is actually required and used [1][2].

Consider, for example, the following definition of a try

function in listing 1. In Scheme, fully parenthesized prefix
syntax is used for all function applications and operators (as
for example the boolean =). To globally bind a function to a
name we use define which takes two parameters; the function’s
signature and its body.

(define (try a b) (if (= a 0) 1 b))

Listing 1: Applicative-order and normal-order in Scheme

Running (try 0 (/ 42 0)) would yield a division-by-zero
error in an applicative-order language because the parameters
are evaluated before the function is applied. Using normal-
order evaluation, the second parameter b is never evaluated
because of the conditional statement and, thus, the function
returns 1.

The terms of applicative-order and normal-order are closely
related to eager and lazy evaluation strategies. They are often,
though not always, used synonymously. Nevertheless, it is
possible to make a distinction, as is done in [1]. It is suggested
that applicative/normal-order be used to describe the semantics
of a programming language, whereas eager/lazy would refer
to a specific evaluation strategy—the former thus being more
or less independent from the latter. We will see, for example,
that while Haskell is an inherently normal-order language, it
can both be evaluated lazily (section III) and optimistically
(section V) without changing its semantics. Another illustration
would be an evaluator for a normal-order language which
evaluates subexpressions eagerly on another thread and throws
away the result if it is not needed.

B. Strict vs. non-strict

Having a second glance at listing 1, it becomes obvious that
the if-clause very much behaves like a function evaluated in
normal-order. That is to say, it is non-strict in its arguments.
Similarly, a procedure is said to be strict in its parameters, if
they are evaluated before the body of the functions is entered.

38 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

So, the terms strict and non-strict are used when referring
to parameters and procedures, whereas applicative-order and
normal-order are used when referring to languages.

Now, knowing this, have another look at the quote in the
introduction (section I) and see whether it makes any more
sense.

III. LAZY EVALUATION

According to [1], lazy evaluation refers to a class of
evaluation strategies that will delay the evaluation of an
expression that is being passed to a function as a parameter
until the last possible moment. That time has typically come
when the value of the given expression is actually needed, e.g.,
the respective variable is used in a primitive operation. Notably,
a parameter might thus never be evaluated, if it is not used in
the function’s body (as seen in section II-A).

A common example of an advantage is the possibility of
defining a conditional function yourself (see listing 2) [1].

(define (unless condition _then _else)
(if condition _else _then))

Listing 2: Defining unless in Scheme

This is only viable because the procedure is non-strict in
its arguments, so the function’s body is entered before the
parameters have been evaluated. This way, the code given
in _then and _else is only executed, if the premise of the
corresponding condition holds.

A. Call-by-name vs. call-by-need

As mentioned previously, the definitions for terms regarding
evaluation strategies are, at best, used fuzzily. In the wizard
book1 call-by-name refers to a lazy evaluation strategy, where
a value is computed only when it is needed. In contrast to
call-by-need, that computation is done every time a value is
called for. Intuitively, this is similar to code rewriting macros
as found, for example, in C. Apart from the difference in
underlying compiler mechanisms (see section III-D), there is
also a distinction to be made in semantics. Consider a (not
very useful) macro for multiplication (see listing 3).

#define mult(x, y) x*y

Listing 3: Multiplication macro in C

Calling a = mult(2+3,1+4) would of course yield a = 9

because of the operator precedence of * over +, whereas true
call-by-name would result in the more intuitive a = 25. So,
with correct use of parentheses, call-by-name can be simulated.

To circumvent the repeated evaluation seen in call-by-name
and the thereby caused computational overhead, with call-by-
need the initially computed value is stored and referred to
instead—if the value is required a second time. Thus, call-by-
need can be thought of as a memoized version of call-by-name.
This is, of course, only practical when pure functions are used,

1Colloquial pseudonym for SICP [1] because of the wizard used on the
front cover.

where a call to a function with the same parameters yields the
same output and does not result in any side effects. In that
case, however, it is likely to cause a considerable speedup,
which is why call-by-need is used by default in most of purely
functional languages like Haskell, Miranda and Clean.

Why use the less efficient call-by-name, if you can use the
memoized version? Often the use case is an application where
side effects are a wanted feature of repeated evaluation or
immutability cannot be guaranteed (see section IV-B).

B. Motivation

Quoting the most cited paper in the field yields the most
general motivation for lazy evaluation:

Lazy evaluation makes it practical to modularize a
program as a generator that constructs a large number
of possible answers, and a selector that chooses the
appropriate one [3].

Because of the deferred nature of the evaluation, lazy
evaluation is mostly used in contexts of functional programming
languages. That is to say, in languages which respect the
paradigm of pure functions—functions that don’t destructively
update an entity, i.e. execute without causing side effects. In
this context, variables refer to immutable values and, because of
this, the program usually does not deal with mutable states. This
way, the order of evaluation is not essential to the computed
result, which is important for lazy evaluation, since, of course,
the execution is inherently not in order of code but in order of
usage.

C. Working on infinite structures

One of the most often mentioned advantages of lazy
evaluation is the fact that, because of the non-strict nature,
the programmer can work with infinite data structures.

magic :: Int -> Int -> [Int]
magic m n = m : (magic n (m+n))

Listing 4: Infinite lists in Haskell

Consider listing 4 where we define a function magic that
recursively computes an (infinite) list of the Fibonacci numbers.
Of course, calling (magic 0 1) in an eager evaluation context
would yield no result at all, as the recursive computation would
continue until the system runs out of memory, i.e. causing a
stack overflow. However, with lazy evaluation the above piece
of code can be executed without further ado, since the call
would return something like a promise that a value will be
produced if it is actually needed. In that, we receive a reference
to a deferred evaluation (see section III-D).

doubleList :: [Integer] -> [Integer]
doubleList [] = []
doubleList (n:ns) = (2 * n) : doubleList ns

Listing 5: Operations on infinite lists in Haskell

Naturally, we cannot expect an operation that requires all
the values in the list to terminate. That means, we cannot

FLUCHT: EVALUATION STRATEGIES 39

print or sort an infinite list, but we are able to run operations
like doubleList on them (see listing 5) [4]. The result
of doubleList (magic 0 1) can then be passed to another
function that only does its work on the elements it requires.

In functional programming, it is quite common to work with
the aforementioned generate-and-filter paradigm, while hoping
lazy evaluation will avoid an overly large intermediate list.

D. Implementation

A group working on Algol 60 coined the term “thunk”
[5], which is one of the main concepts of any laziness
implementation. Arriving at a parameter expression, as stated
before, that expression is not immediately evaluated and passed
(see section IV), but delayed instead. For that purpose, it is
safely tucked away in a thunk which contains all the information
necessary to compute an actual value, if need be. Therefore,
the thunk has to contain not only the expression but also the
environment in which the call is evaluated (namely bound
variables). It is conceptually similar to a closure with the
addition of the ability to save the returned value.

If the time finally comes and the value is needed, the thunk
is forced and the value computed. In listing 6 an example thunk
wrapper for Python is presented [2].

class Thunk:
def init (self, expr, env):

self._expr = expr
self._env = env
self._evaluated = False

def value(self):
if not self._evaluated:
self._value = force_eval(self._expr,

self._env)
self._evaluated = True

return self._value

Listing 6: Building thunks in Python

Upon creation, it receives the expression whose evaluation
is to be deferred, which, at this point, can be thought of as
in form of an abstract syntax tree. The thunk also receives
the environment in which the passed expression should be
evaluated in. It is initialized with its evaluation state set to
False. The class exposes a value method which will produce
the value of the expression, either by forcing the thunk or
returning an already computed value.

Forcing can stem from three situations:
• Passing a value to a primitive function. If a primitive

operation is being evaluated, it requires the operands to
be fully evaluated, i.e., it is strict, and therefore forces
any associated thunks.

doubleMe x = x + x
let y = 40 in (doubleMe 1) + y

Listing 7: Haskell: Forcing primitive Operations

In listing 7 the (doubleMe 1) call is forced immediately
when the outer let is forced.

• Using a value in a condition. In order for the program to
correctly determine its control path, the boolean expression

used in a conditional statement needs to be evaluated and
its value made known to the runtime component. Though,
depending on the language and the actual condition, not
all operands are necessarily evaluated to make a decision
on branching (see section IV-B1).

• Using a value as an operation. In functional languages
where functions are “first class citizens” [6], they can be
passed as parameters and assigned to variables. Should
such a variable then be applied as a function, its value is
needed and the respective thunk is therefore forced.

E. Handling Exceptions

Because the order of evaluation cannot always said to be
transparent, comprehending how and when an error was caused
can become a problem. In Haskell exceptions can only be
caught inside of the I/O monad part of code, so that the
evaluation order is well-defined. Consider, for instance, a
pure function that was able to catch and distinguish different
exceptions. If this were the case, its result would be dependent
on the order of execution—which is up to the runtime
component and is due to change, possibly between different
executions of the same system. Because a pure function’s result
should only be affected by its arguments, catching exceptions
is not allowed in the pure segment of the code. You are
encouraged to leave throwing and catching exceptions to the
impure portion of your code instead and use the optional types
Either and Maybe.

The implementation of exceptions on the other hand, is
relatively straight-forward [7] and only differing from that com-
monly found in eager evaluation by specific optimizations (see
section VI-A). When sighting a catchException-statement, an
“exception handler frame” is pushed onto the stack. Should an
error be encountered, frames are torn off the stack until the
first such handler is found, whereafter the associated callback
is executed.

F. Optimization

A significant amount of research has been dedicated to the
efficiency drawbacks that come with lazy evaluation techniques.
Acceptable execution time is achieved by means of static
analysis. The idea is to look for expressions that are save to
evaluate immediately and, thereby, refrain from allocating a
thunk. This resulted in a mean speedup of factor two [8] for a
given set of test programs.

In some cases, strictness analysis can expose more locations,
where such optimization is viable, e.g., for lazy lists [9]. This
is done by analyzing how often an expression is likely to be
evaluated by its environment [10].

Another approach is cheap eagerness where expressions that
are probably cheap in computation time and safe to execute are
evaluated before their value is needed [11]. So while strictness
analysis attempts to find sub-expressions that were going to be
evaluated anyway, cheap eagerness looks for those expressions
that would not cause any serious cost, even if they were
not evaluated using pure call-by-need. The inner workings of
these optimizations are complex and implemented differently

40 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

depending on the programming language and the compiler
[12]. All use data and control flow analysis to determine, for
example, whether or not all variables needed for evaluating a
given expression were already computed—in which case the
expression can be speculatively evaluated (see section V). For
further information and materials see section VI-A.

IV. EAGER EVALUATION

As one might imagine as this point, eager evaluation (a
term probably first used in [13]) describes a class of evaluation
strategies, where a parameter expression’s value is known
before the function’s body is entered. In particular, it is
computed as soon as it is assigned to a variable. This technique
is commonly used by conventional programming languages
like C, Java, Scala and Python—to name only a few. This
way, the programmer can be sure at which point his code
will be evaluated and plan accordingly. Anticipating how
other expressions are affected when evaluating a specific sub-
expression is essential when dealing with side effects.

A. Call-by-value and call-by-sharing

Again, inconsistent use of terminology across different
programming communities hinders understanding what is
actually meant. Usually call-by-value refers to any evaluation
strategy where a sub-expression is fully evaluated before its
value is bound to its respective variable. In the context of
method parameters, this is usually done by copying the value
and thereby allocating new memory. By that reasoning, any
changes made to the variable from within an applied function,
are not visible from outside that function (as they were done
to the copy). This is the case, for example, for primitive data
types in Java (see listing 8).

class Operation {
void change(int data) {

data=data+42; }

public static void main(String args[]){
Operation op = new Operation();
int x = 0;
System.out.println("before "+x);
op.change(x);
System.out.println("after "+x); } }

Listing 8: Call-by-value in Java.

Of course, both times x will yield zero. Unfortunately, some
will argue that Java uses call-by-value for object references,
too. While this may be technically true (if you assign a new
object to a passed reference variable, the variable outside of the
current scope will not be subject to the change), it is reasonable
to make a semantic distinction. A mechanism where changes
to a passed parameter are observable from outside the applied

function, are called call-by-sharing [14]. This requires the
passed object to be mutable to make a difference.2

B. Lazy Evaluation in applicative-order languages

In most applicative-order languages, there already exist
constructs that mimic non-strict behavior, namely if-clauses.
Not only are the arguments (code blocks) evaluated after the
premise is evaluated (see section III), but the evaluation of the
condition itself is dependent upon being evaluated lazily.

1) Short circuit evaluation: This is what is commonly
referred to as short circuit evaluation. The evaluation of boolean
operators is done in left-to-right order and yields a result as
soon as the premises value can be determined. Arguments that
have not been visited up to that point are not evaluated at
all. This can sometimes lead to unintended behavior, if the
programmer is not aware that such mechanisms are in place
and depends on an argument to produce a side effect.3

2) Picking the goods: Lets have a look at another example
to see how an applicative-order language like JavaScript can
still benefit from lazy concepts. Consider a list of values (see
listing 9) that needs to be filtered according to some given
function and limited to a number of results thereafter. With
the JS framework Lodash [15] this can be accurately modeled
with the provided pipelining functions, where the actual result
is computed only when the value() function is called.

function ageLt(x) {
return function(person) {

return person.age < x; }; }
var people = [

{ name: ’Anders’, age: 40 },
{ name: ’Binca’, age: 150 },
{ name: ’Conrad’, age: 200 },
{ name: ’Dieta’, age: 70 },
{ name: ’Finnja’, age: 30 },
{ name: ’Geras’, age: 130 },
{ name: ’Hastig’, age: 20 },
{ name: ’Ickey’, age: 200 }];

var alive = _(people)
.filter(ageLt(100)).take(3).value();

Listing 9: Lazy pipelining in JavaScript with Lodash

If you were to use eager concepts for pipelining, filter()
would have to loop through all eight objects in people when,
in the end, only three are really needed. This is, of course,
because filter() is completely oblivious to the chained
take() method, since its value is fully evaluated before passing
it on. Taking advantage of lazy evaluation, the execution can
be delayed until all pipelined functions are registered and can
be applied to each element individually, stopping when the
third filtered element is received. This way only five elements
need to be processed.

2It is worth mentioning that there exists another term called call-by-reference
which is not listed here because its meaning varies even more greatly in diverse
communities. This is to be expected, as reference is not dogmatically defined.
While, for example, a Java user would refer to the mechanics of passing an
object reference, in a C world, reference is often used as a synonym for a
pointer and would therefore allow to change the way variables are dereferenced
outside of the current scope.

3This type of programmer is, of course, frowned upon.

FLUCHT: EVALUATION STRATEGIES 41

Python developers also recently discovered lazy evaluation
as a means to saving computation time. In Python 2.x, for
instance, the range() function would return a fully evaluated
list, whereas in Python 3.x a special range object is returned. If
a value of that range is actually needed, it is only computed at
that moment, therefore avoiding computation of unused values.

3) Scala: Scala is another applicative-order language that
offers some lazy features for convenience. Both call-by-name
and call-by-need mechanics can be exploited [16]. A def can
be used to define a variable as a parameterless method. This
way, that def is then only evaluated when it is used (call-by-
name) and not at the time the variable would be initialized
normally using a simple val. Additionally, val-expressions
can also be made to behave lazily by prepending the keyword
lazy. In contrast, though, these are evaluated at most once,
whereafter their computed value is stored and reused. This
makes sense, as a val is immutable in Scala.

V. OPTIMISTIC EVALUATION

As we have previously established, lazy programs can make
a programmer’s life easier. But, as often is the case in computer
science, the trade-off for concise and intuitive code, sadly, is
performance in both time and space. A speculative evaluation
strategy, titled optimistic evaluation [17], attempts to partially
alleviate this drawback. It was implemented as an extension
to the Glasgow Haskell Compiler but was not, as of this
writing, merged into to the main branch, “due to its significant
complexity, and the fact that performance improvements tended
to be inconsistent.” [18]

A. Motivation & Idea

When using lazy evaluation (see section II.A), for every
function’s argument a thunk is allocated in the heap. We’ve
already seen some compiler counter measures to overcome
this performance overhead (see section III-F). However, these
approaches have to be conservative in nature, meaning thunks
that might never be evaluated have to be kept because they
are not automatically “provably unnecessary”. Given a handful
of realistic test programs, in most cases, the generated thunks
are either “always used” or “cheap and usually used” [17].
It is therefore evident, that a lot of thunk overhead can be
avoided, if thunks that are “always used” were to be evaluated
eagerly, with the rest remaining lazy. In order to achieve this,
a run-time component is introduced that decides which chunks
should be evaluated using call-by-value. It also contributes an
abortion mechanism that can suspend a speculative execution
of a thunk, in case of too long a computation.

B. Compiler modifications

In order to provide the afore mentioned aspects, the back end
of the compiler has to be slightly modified. When compiling
a program’s code, the compiler will run its course as usual,
applying analyses, optimizations and transformations as it goes
along. It’s only after this process, that the modifications come
in. [17] also supplies an operational semantics that works
with a boiled down version of the Haskell language. This

simplified rendition still possesses the same expressiveness, but
allows for much easier demonstration of the evaluation strategy.
The program is therefore transformed in such a way, that all
thunks are allocated by let expressions and the following
modifications are less complicated to implement. In effect, this
component works as a code generator for the intermediate
language.

1) Let expressions: For every let expression
let x = <rhs> in <body> the compiler will insert a
code snippet that is essentially a switch (see listing 10).

if (LET42 != 0) {
x = value of <rhs>

} else {
x = lazy thunk to compute <rhs>

when needed
} evaluate <body>

Listing 10: Code generated let switches

Now, by setting LET42 accordingly, either a thunk is
allocated or the right-hand side of the let expression is
evaluated speculatively. In order to circumvent code bloat, the
right-hand side is extracted into a new function. The behavior
of the switches are adjustable during run-time, starting in a
configuration in which all lets are speculated.

2) Abortion: This evaluation strategy is called optimistic
because it will initially assume a given thunk should be
speculated, in any case. Of course, if that thunk turns out
to be too expensive, a change in strategy is needed. With the
abortion mechanism, a speculative evaluation can be suspended
and, if needed, continued when the thunk is actually forced.
To do so, a suspension which contains the started computation
is allocated in the heap. This implementation is equivalent to
that used for dealing with asynchronous exceptions, where a
thunk is “frozen” [19].

if (SPECDEPTH < LIMIT42){
SPECDEPTH = SPECDEPTH + 1
x = value of <rhs>
SPECDEPTH = SPECDEPTH - 1

} else {
x = lazy thunk for <rhs> }

evaluate <body>

Listing 11: Recursion counters extension for let switches

3) Chunky evaluation: Considering self-referencing or recur-
sive data structures, an abortion would quickly occur because of
too much computation time spent in a particular let expression
and, therefore, not make use of the often more efficient
speculative evaluation. To circumvent this, a chunky evaluation
technique is used. The idea is to switch over to lazy evaluation
after a given number of recursions and, thus, gaining the speed-
up of speculative evaluation while still retaining the ability to
work with infinite data structures. This is implemented with the
means of a simple recursion counter (see listing 11) that keeps
track of the current nested speculation depth. This snippet is
an extension of the let switch shown previously.

Again, the allowed speculation depth can be fine-tuned
for each let during run-time. Arguably, the deeper nested a

42 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

speculation is already, the less probable is a useful computation
during the next speculative evaluation.

4) Dealing with errors: Because code is evaluated spec-
ulatively and, most probably, not in any meaningful order,
it is unacceptable to halt the execution, should an error (or
exception) occur during that evaluation. Instead, the error is
caught and prevented from escaping at that point. The variable
of the corresponding let expression is then bound to a thunk
that will re-raise the caught exception, given that the initial
expression that caused the thunk allocation in the first place is
even forced.

5) Dealing with I/O: Certain I/O operations are marked
unsafe in the otherwise pure language Haskell, i.e. their
evaluation may produce side effects. Were, for example, an
expression speculatively evaluated that wrote out a character to
stdout, that character would be visible to the user, whether or
not the expression would actually be reached. Obviously this
is no tolerable behavior, which is why speculative evaluation
is not allowed for these functions.

C. Run-time component

The configuration for the let switches has to be set in such
a way that an expression is speculated only if the amount of
work that could possibly be wasted on the evaluation outweighs
the cost of a lazy thunk allocation. This is implemented by
the means of an online profiling component. A so-called
wastage quotient is computed, which is the amount of work
wasted divided by the times an expression has already been
speculated. These, of course, are really just heuristical means
and will always return mixed results, depending on the practical
application.

Optimistic evaluation was able to produce a mean spead-up
of 15%, with no tested program slowing down by more than
15%. These are encouraging figures, considering the maturity
of the GHC.

VI. CONCLUSION

We have seen that both lazy and eager evaluation come
with benefits and drawbacks. While eager evaluation is likely
to evaluate expressions that are never actually used, the lazy
approach produces a considerable computational overhead by
the additional bookkeeping necessary to keep track of what has
already been evaluated. The terminology presented and used in
this paper is listed again in table I. Although research in this
field has come a long way, optimizations that make mixing
the two strategies viable are still a topic of recent discussion.
In fact, we saw an example (see listing 9) where using lazy
strategies in the context of an applicative-order language would
lead to a significant speed-up.

Therefore, we may conclude that both strategies can enhance
the programmers experience and the program’s efficiency if
used symbiotically.

A. Further reading

Concerning the semantics and the implementation of lazy
evaluation strategies, not all relevant aspects could be discussed.

TABLE I
TERMINOLOGY OVERVIEW

Evaluator Language Procedures Strategies

eager applicative-order strict call-by-value,
call-by-sharing

lazy normal-order non-strict call-by-name,
call-by-need

Especially, the commonly used technique of graph-reduction
(as used in the GHC with the STG-machine) would have went
well beyond the scope of this paper [20].

REFERENCES

[1] H. Abelson, G. J. Sussman, and J. Sussman, The Structure and
Interpretation of Computer Programs. Cambridge, Mass., USA: MIT
Press, 1985, vol. 9, no. 3.

[2] D. Evans, “Introduction to computing,” 2011.
[3] J. Hughes, “Why functional programming matters,” The computer journal,

vol. 32, no. April 1989, pp. 98–107, 1989.
[4] Duplode, “Haskell/Lists II,” 2015. [Online]. Available: https://en.

wikibooks.org/wiki/Haskell/Lists II#Infinite Lists
[5] P. Z. Ingerman, “Thunks: a way of compiling procedure statements with

some comments on procedure declarations,” Communications of the ACM,
vol. 4, pp. 55–58, 1961.

[6] R. Burstall, “Christopher Strachey—Understanding Programming Lan-
guages,” Higher-Order and Symbolic Computation, vol. 13, no. 1-2, pp.
51–55, 2000.

[7] A. Reid, “Handling exceptions in haskell,” submitted to Practial
Applications of Declarative Languages (PADL’99), 1998.

[8] J. Fairbairn and S. C. Wray, “Code generation techniques for functional
languages,” in Proceedings of the 1986 ACM Conference on LISP and
Functional Programming, ser. LFP ’86. New York, NY, USA: ACM,
1986, pp. 94–104.

[9] P. Wadler and R. J. M. Hughes, “Projections for strictness analysis,” Proc.
of a conference on Functional programming languages and computer
architecture, no. September, pp. 385–407, 1987.

[10] P. Wadler, “Strictness analysis on non-flat domains,” in Abstract interpre-
tation of declarative languages. Ellis Horwood Chichester, UK, 1987,
pp. 266–275.

[11] K.-f. Fax, “Cheap Eagerness : Speculative Evaluation in a Lazy Functional
Language,” in ACM Sigplan Notices, vol. 35, no. 9. ACM, 2000, pp.
150–161.

[12] A. L. D. M. Santos, “Compilation by Transformation in Non-Strict
Functional Languages,” Ph.D. dissertation, 1995.

[13] R. Bubenik and W. Zwaenepoel, “Performance of Optimistic Make,”
Proceedings of the International Conference on Measurement and
Modeling of Computer Systems (Sigmetrics ’89), vol. 17, pp. 39–48,
1989.

[14] B. Liskov, E. Moss, A. Snyder, R. Atkinson, J. C. Schaffert, T. Bloom,
and R. Scheifler, CLU reference manual. Springer-Verlag New York,
Inc., 1984.

[15] J.-D. Dalton, “lodash,” 2015. [Online]. Available: https://lodash.com/
[16] M. Odersky, L. Spoon, and B. Venners, Programming in Scala: A

Comprehensive Step-by-Step Guide, 2nd Edition, 2nd ed. Artima Inc, 1
2011.

[17] R. Ennals and S. P. Jones, “Optimistic evaluation: An adaptive evaluation
strategy for non-strict programs,” in Proceedings of the Eighth ACM
SIGPLAN International Conference on Functional Programming, ser.
ICFP ’03. New York, NY, USA: ACM, 2003, pp. 287–298.

[18] “The 2005 GHC survey.” [Online]. Available: https://www.haskell.org/
ghc/survey2005-summary

[19] S. Marlow, S. P. Jones, A. Moran, and J. Reppy, “Asynchronous
exceptions in haskell,” in Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation, ser.
PLDI ’01. New York, NY, USA: ACM, 2001, pp. 274–285.

[20] S. L. P. Jones, “Implementing lazy functional languages on stock
hardware: the Spineless Tagless G-machine,” Journal of Functional
Programming, vol. 2, no. 02, p. 127, 1992.

FLUCHT: EVALUATION STRATEGIES 43

Logic Programming
Gilian Henke

Abstract—The idea to use the concepts of logic in the program-
ming language is an interesting concept, which today has just a
small specialised usage. This paper describes the foundations for
logic programming for itself, which includes basic definitions,
unification and SLD-Resolution. Also we will discuss some of the
problems which exist in the implementation of logic programming
languages. To further enlarge upon this theme examples in the
most common logical language Prolog are given.

I. INTRODUCTION

Logic Programming is based on the idea to have a fully
declarative programming language, where the programmer just
has to write what the program should do, without him caring
about in which way the program will be realised. Therefore
this program will also have no side effects. And also everything
is written in a clear logical way, with a clear reference
to the mathematical principles of logic. Also this language
shall be expressive, the programmer should be protected from
common mistakes, a high enough abstraction and the program
itself is efficient through its implementation. In the logic
programming languages many of this are tried to be used in,
but to make things easier for the programmer, in nearly every
logic programming language there are some procedures which
subvert these goals. To fully apprehend the logic programming
languages the basics of the logic programming are explained.
And to better understand these abstract concepts examples in
the most relevant language Prolog are also presented.

II. HISTORY

The concept of logic programming is based on the lambda
calculus, developed in the 1930s. In these years the idea to
use the clausal form of logic to represent programs came up.
But the usage in these times was vastly different then the
usage today. The logic programming known evolved from
the automation of theorem proving by Herbrand and from
the usage in the artificial intelligence. In the programming of
artificial intelligence was a conflict between declarative and
procedural procedures. On the procedural side the language
Planner was developed. In the 1970s Kowalski tried to rebase
this in pure logic. He developed SLD resolutions and together
with Colmerauer he developed the most important logic
programming language Prolog, which until today is the most
important logic programming language. [1]

III. PRINCIPLES

The algorithm of a logic program can always be seen as two
parts: logic and control. The logic part determines the solution,
which can be derived from it. This is the part for which the
programmer is responsible. The control part is about in which
way this solution can be found. This part is not changing for

a given Prolog compiler. But the logic part alone determines
the solutions. A change of the control part will not change the
solution. But you can use different compiler on the same logic
program to optimize the solution process. [9]

IV. LOGIC

Logic Programming is based on First Order Predicate Logic.
In a logic program every line has to be a so called Horn Clause.
A Horn Clause is clause, i.e. a disjunction of literals, which
contains at most one positive literal. These can be further
divided into definite clause with exactly one positive literal,
unit clause with just one positive literal and no negative ones
and goal clauses with no positive literals. In logic programming
these are written as seen in table ??. Hereby A is called head,
B = B1∧B2 is called body and the Gi are called subgoals. A
rule can also be read in the following way: To show that A holds
true, show that all B1, ..., Bn hold true. The rules and Facts are
written in a database, the program. On this database a query can
be applied to get an answer from the program. Going by the
definition above this answer can just be yes or no. But above
we have not used predicate logic to describe our program.
In the predicate logic a literal is an atomic formula. The
atomic formula consists of a predicate symbol P and terms ti,
P (t1, t2, ..., tn). Every term can either be a constant, a variable
or a compound term. Constants are particular individuals,
which can be for example integer or strings. Variables are a
single individual but none in particular. There can be multiple
instances of the same variable in one clause. A compound term
consists of a functor and its arguments. If we would write the
Horn Clauses as a First Order Predicate Logic Formula we
also would have to add the quantifiers. In the case of a rule
with an variable we would have to write an universal quantifier
with this variable in front of it. If we then have a Query with
a variable in it, this means that we want a instantiation of this
variable, so that the Query evaluates to true. [3], [8], [9]

V. CONTROL

The easiest to understand implementation of the control part
is done with Proof-Trees, which are also called Search-Trees or
Execution-Trees. A Search-Tree displays the solution as a tree,
where the root is the goal, and its children are the subgoals.
Each subgoal can in the same way have children which then
are calculated with the rules. When a leaf is reached and this
leaf is a fact of the program this path leads to a result. The
search in this tree can be implemented with backtracking, but
also every other search strategy can be used.

A. Substitution
Let X be a variable and t be a term. For a given set of

tuples (X ,t) the substitution θ denotes that if θ is applied to a

44 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

Normal name Normal logic Logic programming Logic programming name
Definite clause A ∨ ¬B1 ∨ ¬B2 ∨ ... ∨Bn A← B1 ∧B2 ∧ ... ∧ ¬Bn Rule

Unit clause A A← Fact
Goal clause ¬G1 ∨ ¬G2 ∨ ... ∨Gn ← G1 ∧G2 ∧ ... ∧ ¬Gn Query

term s every Xi is replaced by its corresponding ti. Then sθ
is called an instance of s.
A Substitution is basically the mapping from variables to
terms. Terms can as described earlier be constants, variables
or compound terms. It is possible to substitute a variable to
itself. Also multiple substitutions can composed, so that the
substitution θ = θ1θ2.

B. Unification

Let s and t be terms. If there exists a Substitution θ so that
sθ = tθ, then θ is called the unifier of s and t. This is also
called that t and s unify.
For a given s and a given t it is always possible to calculate θ
if it exists. But a θ does not always exist. In the case of logic
programs, if the unifier applied to the term evaluates to true,
then the unifier is called the solution for the term. And if there
exists no unifier for two terms then there exists no solution.
The most common used algorithm do compute the unifier is
the Herbrand Unification Algorithm. [5]

C. Resolution

The resolution in logic programs is based on the modus
ponens from the traditional logic. For given rules A← B and
B ← C it is possible to derive A← C from this. Therefore
to show that A holds true it is no longer necessary to show
that B is true, it has just to be shown that C holds true.

D. SLD-Resolution

The combination of unification and resolution results in the
SLD-Resolution. SLD stands for selecting a literal, using a
linear strategy, restricted to a definite clause. This is the formal
correct way of building Search-Trees. Given a goal clause,
which contains the literal ¬Bi and a rule which contains A.
When B unifies with A the SLD-Resolution gives another goal
clause where ¬Bi is replaced by every negative literal from
the rule. After that the unifying substitution is applied to the
output. The complete way for a trivial way to compute this is
shown in Algorithm 1.
In this algorithm we have a query Q which has to be resolved
and the substitution σ which in the end is the solution for
the query. The query can be split in subgoals, and we try to
eliminate the subgoals one after another. In the beginning a
subgoal has to be chosen, the order in which these are chosen
does not matter for the correctness of the solution, but in the
case of multiple solutions this determines which is chosen
first, and it can in some instances prevent problems, which are
shown later. If the chosen goal is a fact it can be eliminated. If
there exist no possible unification for Gi then the Resolution
fails. If there are multiple substitution possible than this trivial
algorithm expects that a correct one is chosen or it would output
a failure. This problem would in more complex Resolutions

be resolved with the usage of recursions. When a substitution
is found, Gi will be replaced. Afterwards the substitution will
be applied to the Resolvent and to the substitution σ. This
continues until we get a failure or the Resolvent is empty,
which means we have found a substitution σ which applied to
Q evaluates to true. [1]

Data: Q=G1, G2...Gn

Result: substitution σ and failure
Resolvent = Q;
σ={};
failure=false;
while Resolvent ! = {} do

select Gi ∈ Resolvent;
if Gi=true then

delete Gi;
continue;

end
select rule A← B1...Bm where A and Gi unify with
θ if A does not exists then

failure = true;
break;

end
replace Gi with B1...Bm;
apply θ to Resolvent;
σ = θσ;

end
return σ, failure;

Algorithm 1: SLD-Resolution

VI. PROBLEMS

With this definitions there are some problems which persists
while using a fully declarative logic programming language. In
Prolog for example these where averted with the addition of
some procedural strategies. An always persisting problem is the
non-determination of Prolog-programs. If a program has more
than one solution it is never determined which solution will
be selected. This is further complicated with a high reliance
on the order of rules and facts in the database. If this order is
changed the complete run of a program can be changed.

A. Negation as failure

In the standard definition of logic programs the negation is
not implemented. For normal usage a not can be build in the
way, that this goal succeeds if every path fails. This for itself
would not be a problem but combined with completeness and
termination, this leads to problems. But the hereby constructed
not is not the same as the negation of a variable in logic. For
most cases this can be ignored, but there are some cases in
which this makes a difference. It is possible to build a not,

HENKE: LOGIC PROGRAMMING 45

which is equivalent to the negation, as long as the negative
formula is ground, i.e. the formula does not contains variables.
[6]

B. Completeness

A given number of rules is complete, if they are consistent,
i.e. it is not possible to derive a contradiction, and extensions
of it are not consistent. For example there has not been found a
way to implement the negation in such a way that it is complete
and efficient. [7]

C. Termination

It is easily possible to program a program which does not
terminate even if the answer could be easily computed. Just
the change of some lines in the code, which on the logical side
do not change anything can trap the program in an endless
loop. In this case we would have a search tree with its left
side infinite and a never reached right side, which is finite.
An example for this is mentioned later. In general problems
with the termination exist then when the body of a rule uses
a variable which has not been used in the head of the rule.
Programs which frequently use this rule are often of the form
"‘Divide and Conquer "’ or "‘Generate and Test"’. Also it
is really difficult to prove that a logic program terminates
for every given input. For nearly every program there exist
a certain way to attain this. Even the programs which are
included in a standard Prolog application can be manipulated
to not terminate for a given input. [2]

VII. PROLOG

The by far most common used logic Programming language
is Prolog. Before we look on some examples we have to get
to know the syntax used in Prolog. For the most part it is the
same as the definition above. The small changes are : − instead
of ← and . instead of ∧. Constants are written beginning with
a small letter and variables are beginning with a capital. The
Query is written in the form ? − G1, ..., G2, where Gi are
terms.
Below are two Hello World programs in Prolog. The first
example in Listing VII is the more generalised Version of the
second one, which with minimal adjustments can run in any
logical language. The second one is using predefined methods
which are Prolog exclusive. If we look on the first program
we see that the first line is a fact and the second line is the
query to get its solution as a solution on the console.

hw(helloworld).
?−hw(X).

Listing 1: Hello World

?− write(’Hello world!’).

Listing 2: Hello World in Prolog
Next in Listing2 an extended database which not only contains
facts but also rules. This will be database used for the
following examples. Now too look further on the database.

This database represents a basic family structure, where the
fact parent(sophie,frank) mean that the first person, sophie, is a
parent of the second one, frank. The rules are defined analogue.
For example the rule grandparent(X,Z) means that X is the
grandparent of Z. This then holds true if there exists an Y, so
that X is the parent of Y and Y is the parent Z.
Some queries which could be used on this database would
be ?-parent(steve,ben) which is true, or ?-parent(ben,steve),
which would be false. The addition of a variable would lead
to Queries like ?-parent(claire,X), which would lead to X=ben
and as an alternative solution X=sophie.

parent(sophie,frank).
parent(sophie,gary).
parent(steve,ben).
parent(steve,sophie).
parent(claire,ben).
parent(claire,sophie).
parent(alice,carl).
parent(ben,carl).
parent(tom,frank).
parent(tom,gary).
grandparent(X,Z):−parent(X,Y),parent(Y,Z).
ancestor(X,Y):−parent(X,Y).
ancestor(X,Y):−parent(Z,Y),ancestor(X,Z).

Listing 3: Example Database

A. Search Tree

For the listing 2 and the query ?-grandparent(X,carl) we
get with a trivial search the search tree in Figure 1. Trivial
search because, we conduct a depth-first traversal, with no
optimization. The root of the search tree is the goal. The
Nodes are the subgoals. There exists an edge between two
Nodes if they unify. Leaves are success nodes, if a fact has
been reached or failure nodes if the selected goal can not be
reached anymore.
In this example the goal grandparent(X,carl) is first redefined to
the subgoals parent(X,Y) and parent(Y,carl), with the usage of
the resolution. Then the substitution with X=sophie is applied.
This guess is arbitrary, any other guess for X could have been
done here. It is done because the first line of the database is
parent(sophie,frank). And this is also the way in which most
Compiler would evaluate this. With the same argumentation
the second substitution is applied. Because parent(frank,carl)
can not be fulfilled this branch leads to failure. Therefore we
backtrack and try another substitution for Y, but this also leads
to failure. Now all possible substitutions for Y have lead to
failure, therefore we try another substitution for X. With this
substitution we come to a solution where all subgoals are
fulfilled. We get the solution X=steve. It is possible for extend
the search to get other possible solutions. It is also possible to
use another search strategy to get another solution first. [9]

B. Example

1) Non-Determination: The Query ?-grandparent(X,gary)
would give for database 2 the solution steve. If you change

46 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

grandparent(X,carl)

parent(X,Y),parent(Y,carl)

parent(sophie,Y),
parent(Y,carl)

parent(sophie,frank),
parent(frank,carl)

fail

Y=frank
parent(sophie,gary),

parent(gary,carl)

fail

Y=gary

X=sophie

parent(steve,Y),
parent(Y,carl)

parent(steve,ben),
parent(ben,carl)

true

Y=ben

X=steve

Figure 1: Search Tree

the order, so that parent(claire,sophie) stands on top then the
solution would be claire. In Prolog if multiple substitutions
can be made, will always choose the one on top of he database.
The other solution can in the next step be calculated, but for the
same query, come just with a different order different solutions.
This should not be possible, because in logic the order does
not matter.
2) Non-Termination: The Query ?-ancestor(sophie,frank)
would on the database 2 give the correct solution and the
program will terminate. If you would change some lines to
VII-B2 than the same Query would lead to an non ending loop.
This happens because ancestor(sophie,frank) is replaced with
ancestor(sophie,Z),parent(Z,frank). Then the first guess for Z
would be frank. Then the same would go on and on, and the
loop will never end.

ancestor(X,Y):−ancestor(X,Z),parent(Z,Y).
ancestor(X,Y):−parent(X,Y).

Listing 4: Non-Terminating Database
3) Recursion: It is also possible to use recursions in Prolog.
One of the possible most simple recursions are the natural
numbers. Hereby 0 is defined as a natural number and every
number, which is the successor of a natural number is also a
natural number. The succ function which is true if the second
integer is the successor of the first one, is implemented in most
Prolog compilers and can therefore be used.

nat(0).
nat(X):−succ(Y,X),nat(Y).

Listing 5: Natural Numbers
Next a bit more complex program in Prolog. This is the
common known Quicksort in Prolog. Hereby is new the
possibility to use lists in Prolog. A List can be either in the form
[a,b,c], where a,b and c are elements of the list, or it can be in
the form [a|b] where a is an element and b is another list. This

program is called with a query ?-quicksort([4,6,8,34,63,2,1],X)
to get the sorted list as an output.

quicksort([X|Xs],Ys) :−
partition(Xs,X,Left,Right),
quicksort(Left,Ls),
quicksort(Right,Rs),
append(Ls,[X|Rs],Ys).

quicksort([],[]).

partition([X|Xs],Y,[X|Ls],Rs) :−
X < Y, partition(Xs,Y,Ls,Rs).

partition([X|Xs],Y,[X|Ls],Rs) :−
X = Y, partition(Xs,Y,Ls,Rs).

partition([X|Xs],Y,Ls,[X|Rs]) :−
X > Y, partition(Xs,Y,Ls,Rs).

partition([],Y,[],[]).

append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :− append(Xs,Ys,Zs).

Listing 6: Quicksort

C. Non-Uniformity

A problem specific for the language Prolog is the non-
uniformity of Prolog-Compiler. There exist a lot of different
Prolog-Compiler but they are all different. They all use different
solving-schemes, have different built-in-functions, so that a
given Prolog-Program even if it is very basic and runs on one
Prolog Compiler, there is no guaranty that it will be able to
run on another Prolog-Compiler the same way as on the first.
There does in fact exist an ISO-standard for Prolog Compilers,
but many Prolog implementations do no use this. There are
intentions to create a common compatibility framework with
YAP and SWI-Prolog, but there still exists many other different
Compilers. [10]

HENKE: LOGIC PROGRAMMING 47

VIII. VARIANTS

Even if Prolog is the most common logic programming
language there exist a lot of derivatives. There are for example
Parlog, which is Prolog for parallel computers and Datalog,
which is a truly declarative programming language. It is a subset
of Prolog, but has many restrictions, to example a restriction
of the recursion and that every Variable which appears in the
body has to appear in the head of a clause.
In concurrent logic programming the Horn Clauses are extended
to guarded Horn Clauses. The rules then are of the form
A ← B1 ∧ B2|B3 ∧ B4 where B1 and B2 would be the
guards. This is done to reduce the non-determinism of the
program, because there will be the rule chosen which guards
evaluates to true. For example the quicksort algorithm would
be more determined if the body of the partition rules would
contain guards, which for example would be X > Y . With this
there would be more determination which resolution should
be performed for a given instance. In this case the guards can
be interpreted as cases.
Then there is also constraint logic programming where the
Horn Clauses are in the form A← B1 ∧B2 �B3 ∧B4 where
B1 and B2 would be the constraints. This constraints can be
of any kind which constrains some term, e.g. an integer is only
allowed in a specific interval.

IX. USAGE

The usage of logic programming is in automated theorem
proving and mostly various usages in artificial intelligence.
Datalog for example also has usage in cloud computing and
databases. There are also applications to use logic programs
for logic-programming-based model checking. [4]

X. SUMMARY

The idea to have a programming language build upon logic is an
interesting idea. There are many advantages of using a logical
language, which mostly come from its declarative upbringings.
Therefore its relatively easy to write a working code, which
solves problems which derives from the logic with relative
ease. But the implementations of the control structures have
some negative influences on the behaviour of the program. For
example we have seen that for a bit more complex programs
it will be difficult to handle problems like non-termination
and non-determination. Even for small programs there can
be big problems, which consists of different solving schemes,
which are used in different Prolog Compilers. Therefore it can
be said that logic programming has its definite uses in some
specialized fields, but for the general usage for every problem,
there are often easier to use methods.

REFERENCES

[1] An introduction to prolog. In An Introduction to Language Processing
with Perl and Prolog, Cognitive Technologies, pages 433–486. Springer
Berlin Heidelberg, 2006.

[2] K. Apt and D. Pedreschi. Studies in pure prolog: Termination. In
J. Lloyd, editor, Computational Logic, ESPRIT Basic Research Series,
pages 150–176. Springer Berlin Heidelberg, 1990.

[3] W. Clocksin and C. Mellish. The relation of prolog to logic. In
Programming in Prolog, pages 221–242. Springer Berlin Heidelberg,
1987.

[4] B. Cui, Y. Dong, X. Du, K. Kumar, C. Ramakrishnan, I. Ramakrishnan,
A. Roychoudhury, S. Smolka, and D. Warren. Logic programming and
model checking. In C. Palamidessi, H. Glaser, and K. Meinke, editors,
Principles of Declarative Programming, volume 1490 of Lecture Notes
in Computer Science, pages 1–20. Springer Berlin Heidelberg, 1998.

[5] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog unification. In Prolog:
The Standard, pages 11–17. Springer Berlin Heidelberg, 1996.

[6] T. Ling. The prolog not-predicate and negation as failure rule. New
Generation Computing, 8(1):5–31, 1990.

[7] J. Moreno-Navarro and S. Muñoz-Hernández. Soundness and complete-
ness of an “efficient” negation for prolog. In J. Alferes and J. Leite,
editors, Logics in Artificial Intelligence, volume 3229 of Lecture Notes
in Computer Science, pages 279–293. Springer Berlin Heidelberg, 2004.

[8] A. Nerode and R. Shore. Prolog. In Logic for Applications, Graduate
Texts in Computer Science, pages 159–220. Springer New York, 1997.

[9] L. Sterling and E. Shapiro. The Art of Prolog. 1999.
[10] J. Wielemaker and V. Costa. On the portability of prolog applications.

In R. Rocha and J. Launchbury, editors, Practical Aspects of Declarative
Languages, volume 6539 of Lecture Notes in Computer Science, pages
69–83. Springer Berlin Heidelberg, 2011.

48 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

Parser
Larissa von Witte

Email: larissa.vonwitte@student.uni-luebeck.de

Abstract—Parsers are essential for the compiling process by
checking the syntax of the input. They also build the foundation
of the semantic analysis. This paper will explore the basics behind
the modern parsers. At first we will have a closer look at the
recursive descent parsers which are commonly used to create a
parser by hand. Afterwards we will focus on the shift reduce
parser. Since those are rather complex we will explore them on
the basis of an example. Later on we will have a short look at
parser generators and parse trees, which are essential for the
semantic analysis.

I. INTRODUCTION

Parser are not only used in conjunction with program-
ming languages, but everywhere where grammar and language
checks are important (e.g Calculator).

Due to the fact that users can always make syntax errors, it
is necessary to check the correctness of the input. In case of
an error, the user expects a meaningful error message in order
to comprehend and correct it. This leads to more complex
parsers.

Furthermore the syntax analysis is relevant in the field
of compiler construction. The parse tree, which is produced
during the syntax analysis, is fundamental to perform the
successive steps.

Since there are different scopes of application for parsers,
many different parser types exist. Some of them are so
complex that parser generators are necessary to reduce the
effort for the developers. Nowadays the development of a
compiler is much easier and faster, because in the past parser
generation posed a huge part of the compiler development
process.

II. TAXONOMY

Before we can have a closer look at the topic, we need to
define some terms in order to understand the basics behind the
parsers.

A. Parser

A parser analyses the syntax of an input text with a given
grammar or regular expression and returns a parse tree. A
compiler could use the resulting parse tree to perform the
semantic analysis. The parser is not to be confused with the
scanner, which only checks every word of the input for it’s
lexical correctness and groups the input symbols to tokens.
[1]

B. Lookahead

In the following definitions we’re going to need the term
”lookahead”. The lookahead k are the following k tokens of
the text, that are provided by the scanner.

Subsequently we will define a notation for the grammars we
are using.

C. Formal Grammars

A formal grammar [2] is a tuple G = (T,N, S, P), with:

• T as a finite set of terminal symbols
• N as a finite set of nonterminal symbols and N ∩T = ∅
• S as a start symbol and S ∈ N
• P as a finite set of production rules of the form l → r

with l, r ∈ (N ∪ T)∗

D. Context-free Grammars

A grammar G = (N,T, S, P) is called context-free [2] if
every rule l→ r holds the condition:
l is a single nonterminal symbol, so l ∈ N .

LL(k) Grammar

One type of context-free grammars is known as the LL(k)
grammar. To establish the understanding of LL(k) grammars
we will first have a look at the special case k = 1. LL(1) gram-
mars are defined by means of the following two expressions
[6]:

First(A) = {t|A⇒∗ tα} ∪ {ε|A⇒∗ ε}

Follow(A) = {t|S ⇒∗ αAtβ}

with S,A ∈ N, t ∈ T and α, β ∈ (N ∪ T).
A context-free grammar is called LL(1) grammar if it
holds the following conditions for every rule A →
α1|α2| . . . |αn with i 6= j

First(αi) ∩ First(αj) = ∅ (1)
ε ∈ First(αi)→ Follow(A) ∩ First(αj) = ∅ (2)

Condition 1 indicates that it has to be clear which rule
was used to create the text only by looking at the next
token (lookahead = 1). The second condition indicates that
if the rules contain A → ε it has to be distuingishable with
the lookahead whether it was created by A or by another
nonterminal that can occur after A in the word. Since ε-
productions are often used, it would be a too strong restriction
to forbid ε-productions [3]. The k in LL(k) grammar represents
the size of the lookahead.

VON WITTE: PARSER 49

III. RECURSIVE DESCENT PARSER

A recursive descent parser is the most straightforward
form of a parser. It is a top-down parser, which means
that the parser attempts to verify the syntax of the input
stream by starting with the startsymbol S and then matching
the observed lookahead terminal to one of the expected
nonterminals.
The basic idea of a recursive descent parser is to create an
own parser parseA for every nonterminal A [6]. All these
parseX with X ∈ N compose the recursive descent parser.
The parser begins with parseS and decides based on the
lookahead which parser needs to be called next. In order to do
this parseS checks which terminal symbols can be produced
by the start symbol S and compares them to the lookahead.
This comparison needs to be distinct, which is the reason
why a recursive descent parser can only be used for LL(k)
grammars. To reduce the complexity of the parser an LL(1)
grammar is usually used. It must not be left recursive because
otherwise the recursive descent parser might not terminate
when it always calls itself without parsing any other symbols
[4].
The parseA parser is basically a method which consists
of case-by-case analysis where it compares the lookahead
with the expected symbol of the current case. If none of the
cases match the parsing fails and the parser should throw an
exception.
The example in Fig. 1 is based on the following LL(1)
grammar.

expression → number | ”(” expression operator expression
”)”
operator → ” + ”|”− ”|” ∗ ”|”/”

IV. SHIFT REDUCE PARSER

A shift reduce parser uses a push-down automaton to
analyse the syntax of the input [7].
In the following we will use the notation α • au to represent
the state of the parser [6]. In this notation α stands for the
tokens which are already read and partially processed. These
tokens are placed on a stack. au stands for the tokens which
are not yet analysed by the parser. The parser has to choose
between two different operations:
• shift: read the next token in the input and switch to the

state αa • u
• reduce: detect the tail α2 of α as the right side of the

production rule A → α2, remove α2 from the top of
the stack and put A on the stack. This way α1α2 • au
is transformed into α1A • au with the production rule
A→ α2.

The parser performs a rightmost derivation since the reduce
operation always tries to reduce the top of the stack. This
and the fact that the parser reads from the left side of the
input to the right side leads to the name LR(k) grammar. L
stands for left-to-right and R for rightmost derivation. Every

b o o l e a n p a r s e O p e r a t o r () {
c h a r op = Text . ge tLookahead () ;
i f (op == ’+ ’ | | op == ’− ’ | | op == ’∗ ’ | | op == ’

/ ’) {
Text . removeChar () ; / / removes t h e o p e r a t o r from

t h e i n p u t
r e t u r n t r u e ;

} e l s e {
t h r o w E x c e p t i o n () ;

}

b o o l e a n p a r s e E x p r e s s i o n () {
i f (Text . ge tLookahead () . i s D i g i t ()) {

r e t u r n parseNumber () ;
} e l s e i f (Tex t . ge tLookahead () == ’ (’) {

b o o l e a n check = t r u e ;
Text . removeChar () ;
check &= p a r s e E x p r e s s i o n () && p a r s e O p e r a t o r ()
&& p a r s e E x p r e s s i o n () ;
i f (Text . ge tLookahead () != ’) ’) {

t h r o w E x c e p t i o n () ;
} e l s e {

r e t u r n check ;
}

} e l s e {
t h r o w E x c e p t i o n () ;

}
}

Fig. 1. Part of a recursive descent parser for the used grammar [5]

grammar that produces a definite shift reduce parser is a
LR(k) grammar.
Shift reduce parsers are often better for modern programming
languages because the grammar of many programming
languages is usually already in LR(1) form. In contrary
creating a recursive descent parser often requires to change
the grammar into LL(1) form. This is a very important
advantage of the shift reduce parser in comparison to the
recursive descent parser.
The shift reduce parser is a bottom up parser. A bottom up
parser starts with the input text and tries to match the tokens
and found nonterminal symbols to nonterminals until it is at
the end of the input [8]. If the last remaining nonterminal is
the startsymbol S and there are no terminal symbols left the
input is accepted.

To determine which operation needs to be used the shift
reduce parser uses a parser table. The parser gets the upper
state of the stack and the lookahead as input and returns the
operation that has to be used.
To create the parser table it is necessary to first create a
non-deterministic automaton. Therefore we need to add the
production rule S′ → S eof with S′ as the new start symbol.
The states of the non-deterministic automaton consist of
items, which are productions of the grammar where the right
side has the mark •. This is necessary to point out at which
position on the right side of the rule the parser is. In the
following we will use an example to ease the understanding

50 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

S′ → •S eof

start

S → •(S)

S → (•S)

S → (S•)

S → (S)•

S′ → S • eof

S′ → S eof•

S → •[S]

S → [•S]

S → [S•]

S → [S]•

S → •id

S → id•

S

eof(

S

)

[

S

]

id

Fig. 2. Non-deterministic automaton for the used grammar

of the transition from a grammar to a parser table.

S′ → S eof (1)
S → (S) (2)

| [S] (3)
| id (4)

In this example we have the following items:

S′ → • S eof S′ → S • eof S′ → S eof •
S → • (S) S → (• S) S → (S •) S → (S) •
S → • [S] S → [• S] S → [S •] S → [S] •
S → • id S → id •

The non-deterministic automaton has the transitions

[A→ α • κγ]→ [A→ ακ • γ]

with κ ∈ T ∪N and

[A→ α •Bγ]→ [B → •β]

for every production rule B → β.
The second type of transition is called ε-transition. The
resulting non-deterministic automaton for the example can be
seen in Fig. 2.

The dashed lines represent the ε-transitions and the states
with a bullet as the last symbol are reduce items. The reduce
items correspond to the detecting of a nonterminal symbol.
The next step to create the parser table is to transform the
non-deterministic automaton into a deterministic automaton
because the choice of the operations to be executed must be
definite.
The first state A of the deterministic automaton is formed
by A = δ(S′, ε), with δ as the transition function of the
non-deterministic automaton. The other states are formed

A

start B

CD

E

FG

HI

OK

([

id

S
eof

S

id
)

id

S

]

[

(

Fig. 3. Deterministic automaton for the used grammar

by δ(X,α) with X as an already existing state of the
deterministic automaton and α ∈ N ∪ T . The resulting table
of new states is called a goto-table and the deterministic
automaton is also called the deterministic goto-automaton.
The same state can contain both shift and reduce items, but
only if the lookaheads of both operations do not overlap.
The resulting states in the example are:

A = {S′ → • S eof, S → • (S), S → • [S],
S → • id}

B = {S′ → S • eof}
C = {S → (• S)}
D = {S → [• S]}
E = {S → id •}
F = {S → (S •), S → • (S), S → • [S],

S → • id}
G = {S → [S •], S → • (S), S → • [S],

S → • id}
H = {S → (S) •}
I = {S → [S] •}
OK = {S′ → S eof •}

We form an automaton out of the states from above. The
transitions are adopted from the non-deterministic automaton.
So for instance A has every transition which a production rule
α ∈ A had in the non-deterministic automaton.
For our example this leads to the automaton that can be seen
in Fig. 3. Every missing transition in the automaton leads to
an error state, which represents a wrong syntax. H, I, E and
OK contain reduce items.
Two possible types of conflicts can occur. The first one is
the shift-reduce conflict. It occurs when one state contains a
shift item A → α • tγ and a reduce item B → β • and it
holds that t ∈ Follow(B). The second conflict is the reduce-
reduce conflict. It appears when one state contains at least
two reduce-items A → α • and B → β • and it holds t ∈
Follow(A) ∩ Follow(B).

After creating the deterministic automaton it is possible to

VON WITTE: PARSER 51

() [] id S eof
A C D E B
B OK
C D E F
D C E G
E r(4) r(4) r(4)
F H
G I
H r(2) r(2) r(2)
I r(3) r(3) r(3)

Fig. 4. Parser table for the used grammar

create the parser table. The rows of the parser table correspond
to the states of the automaton and the columns to the terminal
and nonterminal symbols. In row X and column κ is the
subsequent state δ(X, κ) if X contains a shift item of the
form A → • κγ. If X contains a reduce item of the form
A → α • and κ ∈ Follow(A) we write r(x) with x as the
number of the production rule that can be used to reduce the
previous token or tokens.
This results in the parser table that can be seen in Fig. 4.

The empty fields in the parser table represent error states
where the parser detected wrong syntax.

Usually shift reduce parsers are created by parser generators
because it is too complex for big grammars to produce them
by hand. The example grammar has only 3 production rules
in the beginning but the parser table already has 9 rows and
7 columns. So the size of the parser table is relatively big in
comparison to the small grammar. This is the reason why it
is advised to develop a parser as a recursive descent parser if
one wants to create it by hand.

V. PARSER GENERATORS

Parser generators automatically generate parsers for a gram-
mar or a regular expression. These parsers are often LR or
LALR parsers, which are like LR parsers but they merge the
states thar are similar and only differ in the lookahead [6].
Two famous parser generators are Yacc and Bison. Yacc
(“yet another compiler compiler”) and Bison are LALR-parser
generators [9]. They require an input file which consists of
three parts that are separated with %%. The first part contains
the declarations of the tokens, the second part holds the
production rules and the third part could contain a C-function
that executes the parser.
For the example grammar from the shift reduce parser the
file may look like Fig. 5 for both parser generators. Bison
can produce a file which contains the grammar where it adds
the rule $accept → S $end, the occurence of the terminal
and nonterminal symbols and the formed parser table. For our
example input it produces the file that is shown in Fig 6. As
you can see the produced parser table conforms with the parser
table of Fig. 4. The other output file of the parser generator
is executable code, which is often in C.

% t o k e n ID
%%

S : ’ (’ S ’) ’
| ’ [’ S ’] ’
| ID
;

%%

Fig. 5. Example input file for yacc

Grammar
0 $ a c c e p t : S $end
1 S : ’ (’ S ’) ’
2 | ’ [’ S ’] ’
3 | ID

[. . .]

S t a t e 0
0 $ a c c e p t : . S $end
ID s h i f t , and go t o s t a t e 1
’ (’ s h i f t , and go t o s t a t e 2
’ [’ s h i f t , and go t o s t a t e 3
S go t o s t a t e 4

S t a t e 1
3 S : ID .
$ d e f a u l t r e d u c e u s i n g r u l e 3 (S)

S t a t e 2
1 S : ’ (’ . S ’) ’
ID s h i f t , and go t o s t a t e 1
’ (’ s h i f t , and go t o s t a t e 2
’ [’ s h i f t , and go t o s t a t e 3
S go t o s t a t e 5

S t a t e 3
2 S : ’ [’ . S ’] ’
ID s h i f t , and go t o s t a t e 1
’ (’ s h i f t , and go t o s t a t e 2
’ [’ s h i f t , and go t o s t a t e 3
S go t o s t a t e 6

S t a t e 4
0 $ a c c e p t : S . $end
$end s h i f t , and go t o s t a t e 7

S t a t e 5
1 S : ’ (’ S . ’) ’
’) ’ s h i f t , and go t o s t a t e 8

S t a t e 6
2 S : ’ [’ S . ’] ’
’] ’ s h i f t , and go t o s t a t e 9

S t a t e 7
0 $ a c c e p t : S $end .
$ d e f a u l t a c c e p t

S t a t e 8
1 S : ’ (’ S ’) ’ .
$ d e f a u l t r e d u c e u s i n g r u l e 1 (S)

S t a t e 9
2 S : ’ [’ S ’] ’ .
$ d e f a u l t r e d u c e u s i n g r u l e 2 (S)

Fig. 6. Example Output file from yacc

52 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

id + (id - id)

S S

S S

S

Fig. 7. Parse tree of the term id + (id -id)

VI. PARSER COMBINATORS

Parser combinators basically combine two parsers into one
new parser. There are two common types of parser combina-
tors [10].
The first one is the sequential combinator. It takes two parsers
and creates a new one which matches the first and the second
in order. It fails if one of the transferred parsers fail. This
combinator represents the logical AND operation between two
parsers.
The second type is the disjunctive combinator which corre-
sponds to the OR operation. If the first parser fails the result
of the second parser represents the final result, otherwise the
final result is a success.

VII. PARSE TREE

The parse tree is a tree that describes the syntax of the
input. It is the output of the parser and can be used during the
further compiling process. In the following the structure [3]
of the parse tree will be presented.
The root of the parse tree will be the start symbol S. The
interior nodes are the nonterminal symbols of the grammar
and the leafs are the terminal symbols. Concatenating the
leafs from the left to the right side results in exactly the
same sequence of tokens as in the input. The children of a
node correspond to the symbols of the right hand side of a
production rule.
Fig. 7 illustrates a parse tree for the expression id+ (id− id)
and the grammar:

S → S + S | (S − S) | id

The tree in Fig. 7 belongs to an unambiguous grammar
because there is only one way to illustrate it. If one would
change the production rule S → (S − S) to S → S − S, the
grammar would become ambiguous and so does the tree. This
would result in two possible trees for one single expression.
Those are represented in Fig. 8.

VIII. CONCLUSION

Parser theory is complex, since the implementation aswell
as the transformations of the grammars are extensive. There
are multiple different approaches to solve the issues of parser
construction. The recursive descent parser is comprehensible

id + id - id

S S

S S

S

id + id - id

S S

S S

S

Fig. 8. Parse trees of the term id + id - id

and simple to create, which faciliates the work of the devel-
oper. The disadvantage of it is its lack of efficiency and the
massive restrictions of the grammar, which enforces consider-
able transformations of the grammar. In contrast, shift reduce
parsers are rather complex, but they provide more efficiency
and don’t require extensive grammar transformations. Their
complexity leads to the need of parser generators, which have
multiple different generation strategies. A big drawback of
parser generators is their rigidity, which conducts to problems
considering their usage in combination with experimental
features. In addition, the developer has to learn to handle the
mostly unintuitive functioning of parser generators in order to
use it.

REFERENCES

[1] Dr. C. Herrmann, Universität Passau, http://www.infosun.fim.uni-
passau.de/cl/lehre/funcprog05/folien/s09.pdf, 2005 (Abruf 14.12.2015)

[2] T. Tantau, Universität zu Lübeck, Vorlesungsskript Theoretische Infor-
matik Wintersemester 2009, 2010

[3] Dr. R. Wilhelm and Dr. D. Maurer, Übersetzerbau Theorie, Konstruk-
tion, Generierung, p. 317-323, 2nd ed. Springer Verlag, 1997

[4] Dr. R. Völler, Hochschule für angewandte Wissenschaften Hamburg,
http://users.informatik.haw-hamburg.de/ṽoeller/fc/comp/node16.html
(Abruf 14.12.2015)

[5] D. J. Eck, Introduction to Programming Using Java, Chapter 9, 7th ed.
Hobart and William Smith Colleges, 2014

[6] H. P. Gumm and M. Sommer, Einführung in die Informatik, p. 710-735,
9th ed. Oldenbourg Verlag München, 2011.

[7] R. Wilhelm, H. Seidl and S. Hack, Übersetzerbau Syntaktische und
semantische Analyse, p. 114-115 Springer Vieweg, 2012

[8] N. Wirth, Grundlagen und Techniken des Compilerbaus, p. 26-29, 2nd ed.
Oldenbourg Verlag München Wien, 2008

[9] A. V. Aho, R. Sethi and J. D. Ullmann, Compilerbau Teil 1, p. 313-318,
2nd ed. Oldenbourg Verlag München Wien, 1999.

[10] D. Spiewak, http://www.codecommit.com/blog/scala/the-magic-behind-
parser-combinators (Abruf 20.12.2015), 2009

VON WITTE: PARSER 53

Array programming languages

Alexander Harms

Abstract—Array programming languages are an important

research topic for science or engineering purposes of numerical

mathematics and simulations, data analysis and evaluation. This

paper provides an overview of different array programming

languages and their major use.

Besides it will clarify the main concepts of array programming

languages with examples based on MATLAB, APL and QUBE.

I. INTRODUCTION

The term array programming, also known as vector or

multidimensional languages, is used for different

programming languages with array oriented programming

paradigms and multidimensional arrays as their primary data

structures[1]. Those arrays could be vectors, matrices, tensors

or scalar values, which are isomorphic to arrays without any

axes. The main purpose is the use in science, university or

engineering for numerical simulations, collection of data, data

analysis as well as evaluation. Although, there are concepts

such as classes, packages or inheritance. It is not uncommon,

that array programming language one-liners would require

more than a couple of pages in other programming languages.

The main idea of array programming languages is; that

operations can apply to an entire set of data values without

resorting to explicit loops of individual scalar operations [2].

Therefore, array programming languages are not very similar

to better known programming languages like C++, Java or

Phyton.

 Outline: In chapter II it is provided an overview of what

array programming languages are for and the idea behind it. In

Chapter III it will be explained the array programming

language MATLAB with the help of a brief introduction in its

concepts and main field of application. In Chapter IV an

introduction of APL which is a very old and still used array

programming language will be given. Chapter V is about

QUBE, a language developed at the institute of software

engineering and programming languages at the University of

Lübeck.

Chapter VI discusses the conclusion with a short outlook on

the future of array programming languages.

II. WHAT IS THE REASON FOR ARRAY PROGRAMMING?

Using array programming languages, it is easier and faster

to solve technical computing problems than with traditional

programming languages, such as C, C++, and Java. Their

powerful function libraries allow them to avoid loops. The

progress at multicore processors combined to implicit

parallelization provides a fast and efficient way of solving

numerical problems.

Array programming languages is a powerful and specialized

tool, mostly used by research laboratories, universities,

enterprises and engineering settings. A big advantage of array

programming languages is that they can be used mostly

without having a broad knowledge about computer

architecture. Many array programing languages handle type

declaration and memory management by their own and are

very similar to common known math notation. The

programmer can think and operate on the data, without

thinking about how to handle loops of individual operations.

Dr. Iverson described array programming (here referring to

APL) as follows [2]:

 Most programming languages are decidedly inferior

to mathematical notation and are little used as tools of

thought in ways that would be considered significant by,

say, an applied mathematician. [...]

The thesis [...] is that the advantages of excitability and

universality found in programming languages can be

effectively combined, in a single coherent language, with

the advantages offered by mathematical notation. [...] it is

important to distinguish the difficulty of describing and of

learning a piece of notation from the difficulty of

mastering its implications. For example, learning the rules

for computing a matrix product is easy, but a mastery of

its implications (such as its associativity, its distributivity

over addition, and its ability to represent linear functions

and geometric operations) is a different and much more

difficult matter.

Indeed, the very suggestiveness of a notation may make

it seems harder to learn due to the many properties it

suggests for explorations.

[...] Users of computers and programming languages

are often concerned primarily with the efficiency of

execution of algorithms, and might, therefore, summarily

dismiss many of the algorithms presented here. Such

dismissal would be short-sighted, since a clear statement

of an algorithm can usually be used as a basis from which

one may easily derive more efficient algorithm.

54 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

III. MATLAB

MATLAB (MATrix LABoratory) is a multi-paradigm,

numerical computing environment, which was developed by

MathWorks. Its main features are matrix manipulations,

plotting of functions and data, implementation of algorithms

and interfacing with programs written in other languages like

C++, JAVA or Phyton). MATLABs initial release, was in

1984, published by the commercial enterprise MathWorks [2].

The MATLAB system consists of five parts. First, there is the

language. Then there is the MATLAB working environment,

the graphics system, the mathematical function library and the

application program interface.

Common usage of MATLAB involves the usage of the

command window, characterized by the command prompt

'>>'. Here it can be coded all commands like interactive

calculations or executing text files, which are containing

MATLAB Code in m-files. MATLAB code contains of a

sequence of commands, which can be interactively coded in

the command window.

The fundamental data type in MATLAB is an n-dimensional

array of double precision. Variables are defined by the

assignment operator '=' and are case sensitive. Often, it is not

aimed to get the printed result of a calculation. Therefore, it is

necessary to use a semicolon at the end of the command.

In most of the cases, it is not necessary to think about data

types or array and matrices dimensions because MATLAB sets

them itself [7].

% variable declaration

>> x= 3

x =

 3

% suppressed output

>>string = 'Hello';

Listing 1: MATLAB code example of declaring variables

 Simple arrays are defined using the syntax

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡: 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑜𝑟 (initialization value,

increment value, terminator value). As an exception, the

increment value can be left out.

% standard notation of array declaration

>>array = 1:5:21

array =

 1 5 10 15 20

% array from 0 to pi in 7 steps

>>array = linspace(0 , pi , 7)

array =

1 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416

Listing 2: MATLAB code example of declaring arrays

Matrices can be defined by using the syntax

[𝑣𝑎𝑙11 𝑣𝑎𝑙21; 𝑣𝑎𝑙12 𝑣𝑎𝑙22; 𝑣𝑎𝑙13 𝑣𝑎𝑙23]. There are also

abbreviations to shorten code up.

% standard matrices declaration

>>A = [1 1 1; 2 2 2; 3 3 3]

A =

 1 1 1

 2 2 2

 3 3 3

>>A(3,2)

ans =

 3

% declaration of m x n matrices

% additionally instead of ‘zeros’: ‘ones’, ‘eye’, ‘rand’

>>B = zeros(3:3);

>>B(2,:)

ans =

 0 0 0

%Matrix multiplication

>>A*B

ans =

 3 3 3

 6 6 6

 9 9 9

>>A.*B

ans =

 1 1 1

 2 2 2

 3 3 3

Listing 3: MATLAB code example of working with matrices

 As it can be seen in Listing 3, with MATLABs powerful

function library, there is no need for loops in MATLAB.

Matrices can be multiplied and read out easily with given

commands [4]. This prevents off-by-one mistakes, caused by

wrong loop notation. MATLAB can handle graphics. It

includes commands for two- and three dimensional data

visualization. Furthermore, it is possible to create graphical

user interfaces on your MATLAB applications.

>> x = [1;2;3;4;5];

>> y = [0;0.25;3;1.5;2];

>> figure % opens new figure window

>> plot(x,y)

Listing 4: MATLAB code example of creating plots

All in MATLAB created programs are saved as ‘m-files ‘,

HARMS: ARRAY PROGRAMMING 55

characterized by the ending ‘𝑛𝑎𝑚𝑒.m’. If they are located in

the current workspace, they can be called by writing the name

in the command window. There are two types of MATLAB-

files, namely scripts and functions. Scripts contain a collection

of commands like in the command window. Thus, scripts can

call and save variables in the workspace. Functions mostly

handle parameters, given by the user, run calculations as well

as return the result. Besides there are various other file

extensions to fit a large range of different requirements [4].

MATLAB commands are easy to handle. The functions are

typically named by their use, so reading and understanding

MATLAB code is very easy. The programs are typically very

short, which allows to get a quick overview about unknown

projects. The included documentation allows it to find the

needed commands and demonstrate how they are used. All in

one, handling arrays and matrices is very easy, since most of

the functions are specialized for them. Thus MATLAB is one

of the easiest to use and most successful array programming

languages.

IV. APL

APL was named after the in 1964 published book called ‘A

Programming Language’ by Dr Kenneth E. Iverson(1920-

2004). In the beginning the function of APL was a notation for

expressing mathematical procedures.

 Dr. Iverson was a mathematician and had special interest

in mathematical notation. He disliked the standard notation

and developed a new system in 1957. He began to work for

IBM in 1960, where he wrote an extended version and made it

possible to be used for the description of systems and

algorithms. The result was known as ’Iverson’s Better Math’.

IBM disliked this name, thus Dr. Iverson named it ‘A

Programming Language’ (APL). It allows certain data

manipulations such as matrix manipulation as well as

recursion functions with a special non-ASCII set of symbols.

There are different ways to use those symbols with a

QWERTY keyboard. The most common is to use a keyboard

mapping file.

Source [5]

Each key of a QWERTY keyboard with APL-symbols

overlay has up to 4 symbols. As an usual keyboard, alphabetic

characters are lower case character and, when pressed with

‘Shift’, upper case character. To type APL-symbols of the

lower right of a key, it is necessary to use the ‘AltGr’ instead

of ‘Shift’.

‘AltGr’ combined with ‘Shift’ are printing the upper right

symbols.

APL code is evaluated from right to left without hierarchy

of function precedence. So 3𝑥4 + 5 is 27 using APL, not 17 as

one might think. There are just a few rules like parentheses to

group subexpressions for changing evaluation order. APL is

an interactive language. As datatypes, APL can handle

𝑐ℎ𝑎𝑟, 𝑏𝑜𝑜𝑙, 𝑖𝑛𝑡 and 𝑓𝑙𝑜𝑎𝑡. As in MATLAB, there is no need to

declare variables, the interpreter changes the datatypes

whenever it is needed. A 𝑓𝑙𝑜𝑎𝑡-variable can be changed it to a

𝑠𝑡𝑟𝑖𝑛g without any special commands. The basic data

structure of APL is the vector. Instead of using loops, APL

transforms everything into a vector/matrix whenever it is

possible. Since 1986 it is possible to build ‘Nested Arrays’.

Every Index of a nested array can consist of any datatype.

Thus a single array can be built with strings, integers and even

new arrays at once. There is no prompt or at APL. The input is

indented, the output is not.

 ⍝ Code is interpreted from right to left
 3x4+5

27

 (3x4)+5

17

 ⍝ Creating the vector 1 2 3, add the scalar 5,

 ⍝ add this to the variable A

 A ← 5 + 1 2 3

6 7 8
Listing 5: APL code example

APL is very powerful and code can be incredible short. To

calculate the sum of all integers from one to five, a simple C-

solution would be:

Include <stdio.h>

Int main()

{

 int I = 0;

 int sum = 0;

 for (I = 1; i<=5; sum += i++);

 printf(“Sum: %d/n”, sum);

 return 0;

 }

Listing 6: C-solution example

The APL solution would be:

+/ι5

In this APL-example, the ‘𝜄 5’ stands for every natural

number from one to five. The command ‘/’ means to put the

command left between every number of an array right of it [9].

A popular example of an APL “one-liner” is John Conway’s

“Game of Life”:

𝑙𝑖𝑓𝑒←{↑1 ⍵∨.^3 4=+/,¯1 0 1∘.⊖¯1 0 1∘.⌽⊂⍵}

56 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

APL is interpreted, thus its performance is low, if it has to

handle ‘key pressed events’. On the other hand, APL has a

high amount of specialized functions for array programming

thus large datasets can be executed very fast. APL works best

on multicore processor machines combined with implicit

parallelization.

APL is also criticized because the amount of unusual

symbols, leads to a cryptic code, which is hard to decode.

Often, even the author of a code has trouble to understand his

own code later. The challenge to write an APL ‘one-liner’ is

hard to resist. Later on, Dr. Iverson created the programming

language J, which is similar to APL, but uses exclusive ASCII-

symbols. Some call this a great advantage, others criticize, that

the self-explanatory of the APL-symbols got lost. Unlike other

programming languages, APL was not designed to work like a

computer internally, instead it should help the user define

procedures for solving problems [11].

Nowadays, APL is mostly used in small projects of

specialized software producer, universities and research

institutes and has its own wiki.

V. QUBE

QUBE is an array programing language, developed at the

Institute for software engineering and programming languages

of the University of Lübeck, the inaugural dissertation of Kai

Trojahner in the year 2011. Usually, rank-generic operations

require that the arguments of the ranks, shapes and elements

fits in certain constrains. As an example, the element wise

addition A + B in MATLAB dynamically checks that both

arrays have the same shape, otherwise the entire program

aborts with an error message. The advantage of QUBE is the

use of dependent array types to check programs at compile

time[6]. QUBEs dependent array types can separate between

arrays of different shapes [6]. This allows array operations to

precisely specify the allowed arguments and how the type of

the result is affected on them. QUBE uses a combination of

type checking and automatic theorem proving to statically rule

out large classes of program errors like ‘array out-of-bound’

violations. Multidimensional arrays are characterized by two

essential characteristics: their rank and shape vector. The rank

of a multidimensional array is a natural number that denotes

its number of axes. The shape vector is a vector of natural

numbers that describe the extent of each axis. Scalars such as

five are rank zero arrays with an empty shape vector.

Source [6]

In the following paragraph, it is given a short impression of

QUBEcore. QUBE extends QUBEcore with a richer expression

of syntax, more base types and others like an I/O.

QUBEcore comprises three layers, QUBEλ (applied λ-

calculus with dependent types), QUBE→ (integer vectors) and

QUBE[] (multidimensional arrays) [6].

The language fragment QUBEλ (QUBE fun) forms the basis

of QUBE. As most significant feature, QUBEλ provides

dependent types and refinement types. A refinement type

{𝑥: 𝑇|𝑒} describes the subset of values 𝑥 of type 𝑇 that satisfy

the boolean expression 𝑒. As an example the type nat are all

integers with an integer value bigger than 0

𝑡𝑦𝑝𝑒 𝑛𝑎𝑡 = {𝑥: 𝑖𝑛𝑡 |0 <= 𝑥}

Since the expression 𝑒 is true by any 𝑥, the type {𝑥: 𝑇|𝑡𝑟𝑢𝑒}

is equivalent to 𝑇. The dependent function type 𝑥: 𝑇1 →
𝑇2 binds the variable 𝑥 of the domain type 𝑇1 in the codomain

type 𝑇2. This allows the result type of a function to vary

according to the supplied argument [6]. As an example, the

code shows an addition of two integer numbers

𝑣𝑎𝑙+∶ 𝑥: 𝑖𝑛𝑡 → 𝑦: 𝑖𝑛𝑡 → {𝑣: 𝑖𝑛𝑡 |𝑣 = 𝑥 + 𝑦}

QUBE→ (QUBE vector) adds support for integer vectors.

These vectors are important as array shapes and as index

vectors into multidimensional arrays. QUBE→ includes syntax

for defining, accessing and manipulating integer vectors.

‘𝑖𝑛𝑡𝑣𝑒𝑐 𝑒’ is a new type, where the expression 𝑒, a natural

number, describes the length of the vector. The vector

constructor [𝑒̅] defines a vector with elements 𝑒̅. If all

elements evaluate to integers, the resulting vector is a value.

The vector selection 𝑒. (𝑒i) selects the element at index ei from

the vector 𝑒. The vector modification 𝑒. (𝑒i) ← 𝑒e yields a

modified version of the vector 𝑒 in which the element at the

index 𝑒i is replaced with the new element 𝑒e.

let a = [1,2,3] in

let b = a.(2) <- a.(0) in (* b = [1,2,1]*)

a.(2) =>* 3
Listing 7: QUBE vector code example

Vector 𝑏 is defined as a modification of vector 𝑎. The

element of a stays unchanged, while 𝑏. (2) is replaced.

Unlike the vector constructor [𝑒̅] which creates a vector of

fixed length with distinct elements, the constant-value vector

expression 𝑣𝑒𝑐 𝑒n 𝑒e defines a vector of non-constant length en

that only contains copies of the element 𝑒e. If the length

evaluates to a non-negative integer 𝑛 and the element

evaluates to a value 𝑣, the entire expression evaluates to a

vector that contains 𝑛 copies of 𝑣.

let n = 1 + 3 in

vec n 0 =>*[0,0,0,0]
Listing 8: QUBE vector code example

The third language layer QUBE[] (QUBE array) adds

support for multidimensional arrays and rank-generic

HARMS: ARRAY PROGRAMMING 57

programing.

QUBEs array type system classifies arrays with types of the

form [𝑇|𝑒̅]. 𝑇 describes the array elements. 𝑒̅ is an integer

vector, representing the array shape. As an example, a 2 x 3

integer matrix has type [𝑖𝑛𝑡|[2,3]], but also type [𝑖𝑛𝑡|[2], [2 +

1]], because it evaluates to [𝑖𝑛𝑡|[2,3]] [6]. The array

constructor [𝑒̅: 𝑇|[𝑛̅]] defines a multidimensional array with

elements 𝑒̅ of the element type 𝑇 and shape 𝑛̅ (and thus rank

|𝑛̅|). As a data type invariant, the array shape has to be a

natural number and the number of array elements must equal

to the product of the shape vector. Since these restrictions go

beyond mere syntax, they are enforced by the type checker.

Source [6]

The following example shows two equivalent selections

into a matrix of shape [2,2], one uses a single vector, the other

a structured vector.

[1,2,3,4 :int |[2,2]].[[0,1]] =>2

[1,2,3,4 :int |[2,2]].[[0],[1]] =>2
Listing 8: QUBE array code example

The array modification 𝑒a. [𝑒̅] ← 𝑒e modifies the array 𝑒a by

replacing the element indexed by the index vector 𝑒̅ with the

new element𝑒e.

[1,2,3,4 :int |[2,2]].[[0,1]] ← 0 => [1,0,3,4 :int|[2,2]]
Listing 9: QUBE array code example

QUBEcore also supports type checking. QUBEcore is type-

safe. This means, that no well-typed program can go wrong.

VI. Conclusion

To sum it up an overview about different array

programming languages have been provided.

Array programming languages are powerful for solving

numerical problems and working with big matrices and

datasets. So MATLAB and APL are providing a large set of

functions for array and matrices manipulation. Thus, program

code consists mainly of combinations of those functions. The

use of loops, which are very error-prone, is not needed

anymore. Array programming code is typically very short.

This allows the developer to focus on the numerical problem

without spending too much time at checking the program code

for mistakes or implementing difficult formula.

Especially MATLAB provides a large set of specialized

commands with a high number of external libraries for nearly

every situation, whereas APL focuses on its clearness. Also

APL code is optimized to write the shortest code possible but

in exchange for its comprehensibleness. QUBE code is not

this short and self-explanatory than the other. It mainly

focuses on ruling out as many mistakes of array and matrices

manipulation at compile time as possible.

It has to be clarified, that those languages do not fit for

every problem and programmer. Often it is needed to invest a

lot of time to learn and master those. Also the possibility of

coding programs with a fitting and user friendly graphic

interface is not always given. For those specific requirements,

array programming languages are best choice to use for.

Paired with the great technological progress of multicore

processors and implicit parallelization, array programming

languages can show their power. In the future, array

programming languages can have a bigger influence on daily

work as well as research life. Combined with other

programming languages, even faster and more efficient

programs are possible than nowadays it is. It is a possible

research field for imaging processing. Since images are large

datasets of matrices, calculations operated on them, could be

speed up significant.

All in all, array programming languages are an interesting

field of research.

REFERENCES

[1] Trojahner K., Clemens Grelck “Dependently Typed Array Programs Don’t

Go Wrong”
https://staff.fnwi.uva.nl/c.u.grelck/publications/2009_JLAP_qube.pdf [online]

2015

[2] MathWorks https://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf

[online] 2015

[3]Iverson, K. E. (1980). "Notations as a Tool of Thought."

[4]Houcque D., “Introduction to Matlab for engineering students”
https://www.mccormick.northwestern.edu/documents/students/undergraduate/i

ntroduction-to-matlab.pdf [online] 2015

[5] http://microapl.com/images/aplx_keyboard.jpg

[6]Trojahner K. (2011) “QUBE – Array Programming with Dependent
Types“ http://www.zhb.uni-luebeck.de/epubs/ediss1099.pdf

[7]MathWorks, “Language Fundamentals”
http://de.mathworks.com/help/matlab/language-fundamentals.html [online]

2015

[8]Iverson K.E., ”A programming language”

http://www.jsoftware.com/papers/APL.htm [online] 2015

[9] Iverson K. E., “ A personal view of APL”

http://web.archive.org/web/20080227012149/http://www.research.ibm.com/jo

urnal/sj/304/ibmsj3004O.pdf

[10] MathWorks “Matlab The Language of Technical Computing”

https://web.stanford.edu/class/ee262/software/getstart.pdf [online] 2015

[11] MicroAPL Ltd “Introduction to APL”

http://microapl.com/apl/introduction_chapter1.html [online] 2016

58 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

Just-In-Time Compilation
Thiemo Bucciarelli

thiemo.bucciarelli@student.uni-luebeck.de

Abstract—In this paper the Just-In-Time compilation tech-
nique is examined and compared to interpreters and Ahead-
Of-Time compilers. It comprises possible profiling methods and
representations, as well as a look at the Java Virtual Machine,
its structure and their optimization techniques, based on the
HotSpot JVM and JRockit JVM.

I. INTRODUCTION

Nowadays, software is mostly written in so-called high-level
programming languages in order to faciliate the work of the
programmer. These languages can’t directly be executed by the
system, therefore compilers or interpreters are needed. The
different types of compilers have evolved through the years
and are highly optimized. One sort of compilers are the Just-
In-Time Compilers, below often abbreviated as JIT, which we
will take a closer look at.

II. DEFINITIONS

To improve the basic understanding of the topic, the fol-
lowing terms have to be defined.

A. Compiler

The main task of the compiler is the translation of source
code from one programming language to another. Generally,
the purpose of the compilation is to translate the code into
a code which is either directly executable by the underlying
processor, or causes less overhead during the further process-
ing (for example the translation of Java Sourcecode to Java
Bytecode). The resulting code does not necessarily have to be
directly executable machine code. A typical compiler includes
the following steps [13] to translate the code:

1) Lexical Analysis The lexical analysis is done by a
part of the compiler called scanner. The scanner splits
the input into atomic units (called tokens) in order to
faciliate the following analysis. Every token is a part of
the language (for instance the keyword if).

2) Syntax Analysis The syntax analysis involves the parser.
The parser uses the list of tokens generated by the
scanner and checks if it represents an instance of the
given grammar. In general, the result of the syntax
analysis is an abstract syntax tree.

3) Semantic Analysis After the syntactical analysis, the
compiler checks the semantics of the program. This
includes for instance the type checking, using the syntax
tree. This typically results in an intermediate represen-
tation of the code.

4) Optimization The optimization aims to increase the
effectivity of the code without affecting the logical

meaning of it. One simple part of the optimization would
be the dead code elimination.

5) Code Generation In the last step, the compiler creates
the resulting code from the optimized intermediate rep-
resentation.

B. Ahead-Of-Time Compiler

One common implementation of compilers is the Ahead-of-
Time compiler (abbreviated AOT). The AOT compiler does
not compile on runtime, but is called by the programmer.
It often produces native code which can then be distributed
by the developer and be directly executed on the machine.
The generation of native code usually makes these compilers
strictly platform dependent.

C. Interpreter

An interpreter does - in opposition to a compiler - not create
a translated or executable output file. It performs the analysis
at runtime, and then directly executes the given code on the
processor. The advantage of interpreters over AOT compilers is
their platform independence, since the interpreted program can
run on every system which is compatible with the interpreter.

III. JUST-IN-TIME COMPILATION

A JIT compiler [11] tries to fill the gap between AOT
compilers and interpreters, by providing the platform
independence of interpreters and combining it with the
efficiency of compilers. It performs the compilation on the
user’s system during runtime. In a first attempt, one would
doubt the benefit of this method, since it is implying more
work during runtime. The main advantage of JIT compilers
is their platform independence. The system generally just has
to be compatible with the compiler, which then is able to
compile the code for execution on this machine. In most of
the cases, the JIT compilation is used in virtual machines.
These virtual machines can then make advantage of the JIT
compilation, providing platform independence, and giving
the possibility to perform a dynamic analysis and further
optimization of the program during runtime.
There exist two main types of JIT compiler techniques: trace-
based [12] and method-based. A method-based JIT compiler
performs the compilation method by method. This proceeding
is similar to static compilers, with the difference that the
methods are only compiled when needed. So the compiler
will not analyse the internal paths inside the methods, but
only their calls.
A more sophisticated and time-consuming method is the
trace-based JIT compilation. This sort of compiler is usually

BUCCIARELLI: JUST IN TIME COMPILATION 59

used in combination with an interpreter. In a first attempt,
the code will be interpreted and analysed during runtime.
This analysis allows then to identify which paths (traces) of
the program are often executed. This makes it possible to
determine which parts of the code should be compiled and
where to focus during the optimization. The most important
property of JIT compilers is their performance. They have
to be as time-efficient as possible, since everytime when the
compiler works, the program is constrained in its execution.
In order to improve the time-efficiency of a JIT compiler,
there are multiple possibilities given through the fact that it
performs during runtime. A JIT compiler does not have to
create localizable code or write the compiled code in a file.
Also, the JIT compiler can use runtime analysis to allow
better optimizations of the code. Another advantage of a
good JIT compiler is that it knows exactly what hardware
it is running on. This allows it to create highly optimized
machine code which is tailored to the given processor.

IV. COMPARING INTERPRETERS, JIT AND AOT
COMPILERS

One advantage of AOT over JIT compilers is their perfor-
mance during execution. JIT-Compilers have some additional
work to do during runtime, which makes the execution of
JIT compiled code slower than AOT compiled code. Another
advantage of AOT compilation is the compile time needed.
Regarding AOT compilers, one could say that the compilation
speed can be arbitrary slow, since it is only performed once.
JIT compilers don’t have that privilege, and so they can’t spend
too much time on compilation, analysis or optimization.
On the other hand, the JIT compilation permits to generate
highly platform independent code. Since the code is compiled
on runtime on the same system where it is also executed,
the compiler can generate code which is highly optimized
for the given processor, which is an optimization method
the AOT compilers can’t use. Basically every system which
is able to handle the compiler can run the code. There are
some optimization techniques for JIT compilers to improve
their speed. For instance, a JIT compiler usually analyses
the execution of the program in order to optimize it, which
increases the effectivity of the program during longer runtimes.
Interpreters have the advantage that they don’t have to generate
any output, and thereby they are faster than the compilers.
The advantage of compilers is that they usually have to
compile the code only once, which results in a faster execution
afterwards. Compilers also have more optimization techniques
at their disposition, which improves the efficiency of the
generated code. Generally, interpreters are only useful for code
parts which are not often executed, because in this case the
compilation would eventually need more time than it gains.

V. PROFILING

To make the optimization techniques possible, it is neces-
sary to use profiling. Profiling means analysing the program
and collecting as much relevant information as possible. A

tool which with the ability to perform profiling is then called
profiler. This part is crucial for the effectivity of the opti-
mizations, since a bad profiling leads to weak optimizations.
Basically, there are two types of profilers: static and dynamic.
Static profiling is performed by analysing the program code,
while dynamic profiling analyses the program during runtime.
Dynamic profiling provides more information and thus permits
better optimization possibilities. A very well-known software
performing profiling is open-source project gprof, which uses
a sample-based profiling and can be used for any language
supported by gcc.
Profiling the program dynamically during its runtime is time-
consuming. For that reason there exist multiple strategies to
accomplish effective profiling. Especially for JIT compilation,
it is important to have a profiler which does not produce too
much overhead, since the compilation and optimization are
also performed during runtime. Below are explained some
methods [6] how a profiler could be implemented.

Sampling-based profiling

This method uses statistical approaches to reduce the over-
head produced by the profiling. Instead of constantly profiling
the execution of the program, this profiler activates at specified
intervals to check the state of the program. This results in
less precise profiles, but in return it is very efficient. Another
advantage of statistical profiling is their independence from
the program and their sporadic activity. For this reason, they
don’t affect memory management, caching or performance
very much. This causes them to produce less adulterate results
than other profilings.
A drawback of the sample-based profiling is that it is possible
for a method to coincidentally execute always during the
inactive phases of the profiler.

Event-based profiling

This type of profiling focuses on important events which
occured during runtime. This profiling method stays inactive
during runtime until one of the specified events is triggered.
If a trigger is activated, the profiler starts its analysis. This is
a very specified form of profiling, which can deliver tailored
profiles accorded to the users needs.

Instrumentation

Instrumentation describes the modification of the code by
directly inserting code to gather information during runtime.
This gives the program the ability to profile itself during
runtime. This is more time-efficient than permanent profiling
by a parallel running profiling software. The code can directly
be injected in the given source code, but it is also possible
to add it during a later state of compilation, for instance in
the intermediate representation or in the machine code. The
instrumentation can also take place during runtime, which then
gives a dynamic aspect to the code injections, since they can
be adapted to the needs during the execution of the program.

The output of the profilers, the profiles, can have several
different formats, according to the needs of the user. In the

60 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

% cumulative self self total

time seconds seconds calls ms/call ms/call name

33.34 0.02 0.02 7208 0.00 0.00 open

16.67 0.03 0.01 244 0.04 0.12 offtime

16.67 0.04 0.01 8 1.25 1.25 memccpy

Fig. 1. Example flat profile resulting from gprof

index % time self children called name

<spontaneous>

[1] 100.0 0.00 0.05 start [1]

0.00 0.05 1/1 main [2]

0.00 0.00 1/2 on_exit [28]

0.00 0.00 1/1 exit [59]

0.00 0.05 1/1 start [1]

[2] 100.0 0.00 0.05 1 main [2]

0.00 0.05 1/1 report [3]

Fig. 2. Part of a call graph from gprof

following will be listed some profiles used by gprof [7],
differing in the amount of information provided.

Flat Profile

This profile illustrates how much time every function of the
program consumed during runtime, formatted as a list. Every
element of the list contains information like the name of the
function, the amount of calls, and the needed time. The exact
structure of the flat profile of gprof is illustrated in Fig.1.

Call Graph

This format gives more information on the order of the calls
and how much time was used for specific functions. The call
graph in gprof has a textual form where every element contains
a list, separated by dashed lines. The exact representation can
be seen in Fig.2. Every of those elements can be interpreted
as a node of a graph, with the calls as the edges and the
amount of calls as weights. It gives more detailed information
about spent time, caller/callee-dependence and recursive calls.
This simplifies the decision which sub-methods should be
optimized.

Execution trace

The execution trace is a profile with a very vast information
content for the optimization. It basically contains the com-
plete execution in chronological order, including timestamps.
Thereby it builds a representation of the program. If the
collected informations include control flow, value, address and
dependence histories, it is called whole execution trace [2],
since that provides a complete representation of the execution
of the program. So it can be exactly detected which method
was called at which time, and which methods were called
before or after it. This basic trace can be expanded with
additional information like for instance values of variables,
memory addresses or the control flow. This type of profile
takes a lot of time to generate, and can also consume a
significant amount of memory. Especially for JIT compilation,
this profile is often not the best to be used.

VI. OPTIMIZATION

Optimization aims to improve the performance of the ap-
plication. Compared to static compilers, JIT compilers have a
major diversity of optimization techniques at its disposal. But
as already stated before, the optimization phase of JIT com-
pilers has to be fast, which excludes some techniques. In the
next section we will get a short glimpse at static optimization
techniques which can also be used in JIT compilers because
of their time efficiency. Afterwards, we will take a closer look
at the adaptive or dynamic optimization.

1) Dead code elimination [9] checks for code which will
obviously never be executed, for instance a code part in
an else case where the if case always returns true.

2) Constant folding and constant propagation [8] Constant
folding evaluates constant terms on compile time, e.g.
x = 3 ∗ 7 + 5 can directly be substituted by x = 26.
Constant folding takes it further and propagates these
constants through the code, substituting every appear-
ance of constants whose value is known by the value
itself.

3) Loop-invariant code motion [10] This is one of several
loop optimization techniques. It checks the loop for code
which is not affected by the loop itself, and therefore can
be moved outside the loop.

Adaptive optimization describes optimization and recompila-
tion techniques which are performed during runtime, based
on the profiling and its analysis. We will take a closer look to
the adaptive optimization techniques using the example of the
Java Virtual Machine (JVM), which will be analysed in the
following chapter.

VII. THE JAVA VIRTUAL MACHINE

In this part, we are going to examine the structure of the
Java compiling process and its optimization methods, using
the HotSpot JVM and JRockit JVM. Both of those JVM
implementations are owned by Oracle.
When using Java, the developer compiles its Java code to a
bytecode which is stored in a .class file. This step aims to
improve the performance of the JVM during runtime. The
bytecode is an assembly-like code, which is easier to process
in the subsequent steps. The compilation to bytecode is static,
so the static optimization methods can already be applied
here, which leaves the dynamic optimization to the JVM. An
example to show how Java bytecode looks like can be seen in
Fig.3.

A. The JVM architecture

This bytecode can then be run by the JVM. The JVM spec-
ification does not include the use of Just-In-Time compilation,
for this reason the first JVMs were pure interpreters, but that
lead to a very bad performance. The HotSpot and JRockit
JVMs both make use of Just-In-Time compilation to improve
their performance.
Fig.4 represents the structure of the JRockit JVM. In a very

BUCCIARELLI: JUST IN TIME COMPILATION 61

1 Compiled from ” t e s t . j a v a ”
2 p u b l i c c l a s s t e s t {
3 p u b l i c t e s t () ;
4 Code :
5 0 : a l o a d 0
6 1 : i n v o k e s p e c i a l #1 / /

Method j a v a / l a n g / O b j e c t .”< i n i t >” : ()V
7 4 : r e t u r n
8

9 p u b l i c s t a t i c vo id main (j a v a . l a n g . S t r i n g []) ;
10 Code :
11 0 : i c o n s t 5
12 1 : i s t o r e 1
13 2 : r e t u r n
14 }

Fig. 3. Example of Java-Bytecode, generated with the javap-command

Fig. 4. The illustrated structure of JRockit [1]

first step, the given bytecode is compiled to executable ma-
chine code. [1] This step is relatively time consuming, which
leads to a rather slow startup of the application. During run-
time, the JRockit uses a background thread which periodically
activated and checks for often used methods. These methods
are favorable to be optimized and marked by the thread. In the
last step, several optimization techniques are used to improve
the previously generated code. The decision if a code part
should be optimized is necessary, since the optimization does
also cost time and the time saving of the optimized code does
not always equalise the costs.
The HotSpot JVM uses a slightly different approach compared
to the JRockit JVM. Instead of always using Just-In-Time
compilation, it choses between JIT and interpreting, based
on heuristic approaches. The idea is that nearly unused code
parts consume less time being interpreted than being compiled
and then directly executed. This results in a faster startup
compared to JRockit, but as drawback, HotSpot is usally
somewhat slower regarding longer runtimes. Furthermore,
HotSpot consumes less memory, since it does not need to
compile everything.

B. Optimizations of the HotSpot JVM

The HotSpot JVM uses several optimization methods to
improve the application’s performance. [4] They are listed and
explained below.

Hot Spot Detection

The HotSpot JVM is trace-based, so it does not compile
method by method, which allows to compile only parts of a
method and interpreting the rest. HotSpot uses the approach
of selective optimization, which is based on the assumption
that the execution mostly resides in a small part of the code.
This is also known as 80/20 rule, which means that 80%
of the execution time is covered by only 20% of the code.
Since compilers have a lot more overhead than interpreters,
interpreting is probably better for the major part of the code.
The HotSpot JVM starts the application without compiling
anything, and analyses the execution during runtime. With this
method, it can detect the so-called hot spots, which then are
JIT compiled to native code and further optimized. This hot
spot detection is running as a background thread during the
whole execution, which makes it possible to adapt hot spots to
the users behavior and to increase efficiency during runtime.
This method usually comes with a great improvement of
performance, but since it is based on an assumption, that is
not always the case. If the methods of the code are more or
less equal distributed, there are no hot spots, which results in
a bad performance.

Method Inlining

After collecting further information during runtime, HotSpot
also checks the frequency of method invocations. Method invo-
cations are time-consuming since they require some overhead,
like the usage of the stack to be able to jump back to the
invoking code section. If a method is often called by another
method, its code can be copied inside that method instead
of always using the invocation. This reduces the overhead of
calling the methods repeatedly, and it does result in bigger
code blocks, which eventually open new possibilities for other
optimizing methods.
Method inlining causes problems in combination with recur-
sive calls. Obviously, inlining a recursive call would be an
never ending loop. The most common way to solve this is to
inline only a certain amount of calls of the recursive methods.

Dynamic Deoptimization

A big problem of method inlining is that not every method
can be inlined. In Java, non-static methods are virtual by
default unless they are final, which means that they are
overridable and that their behavior is dependent on their
context. In addition, Java uses dynamic loading, which means
that classes could be loaded during runtime, and thus also
override existing methods. [5] This causes problems for the
optimization, since it could be that previously inlined code is
going to be overriden during runtime. However, HotSpot is
able to check if a method is overriden at a certain moment
during runtime. This makes it possible to speculatively inline
methods which are not final, but it could be that a later loaded
class overrides the method, which then requires the inlining
to be undone. This is called dynamic deoptimization. Without
this speculative approach, inlining for Java applications would
only be possible for final methods.

62 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

As a logical conclusion, the use of the keyword final in Java
faciliates the optimization for the JVM.

Range check elimination

Other than e.g. C, Java requires a strict check of array
indices before accessing the array. Furthermore, if the appli-
cation reads, modifies and then saves a value of the array, this
would cause two range checks. During runtime, the JVM can
check if it is possible for an index to leave the bounds of the
array - for example between a read and a write operation -
and eventually remove some of the range checks.

Fast reflection

Reflection describes the ability of an object to analyse and
modify the structure of the code (including itself) during
runtime. Java provides APIs to use reflection on methods
and constructors, using Object as default type. This makes it
possible to make use of instances and their methods without
knowing their exact type. To reduce the overhead of reflec-
tions, the APIs use bytecode stubs for the often used reflective
objects. Using these stubs, the reflections can be processed by
the compiler which improves their performance.

I/O Optimization

I/O operations have vast time costs. For this reason, optimiz-
ing I/O operations gets a greater focus, by producing highly-
optimized machine code which is tailored to the hardware it is
running on. This results in a remarkable yield of performance,
especially for I/O-intensive applications.

The Server Compiler

The HotSpot Server Compiler is a tuned-up version of the
client compiler. It focuses more on performance optimizations,
which causes the startup to be slower, but usually pays back
with a better performance during runtime. It does use more
aggressive optimization strategies, by using extensive analysis
during interpretation. Some of those resulting optimizations
also rely on assumptions based on the given analysis, which
could force the JVM to deoptimize it later on.

C. When to use JIT?

As already stated before, the HotSpot JVM does not always
use JIT compilation. Analogous to the optimization technique,
it bases its decision whether to compile or to interpret on
the runtime analysis. [3] The idea is that methods which are
hardly or never used will produce way too much overhead
when being compiled. Instead of compiling, JVM will interpret
these methods by running a semantic equivalent directly on
the machine, which is less time consuming then compiling
the code part. The effectiveness of this method is of course
directly dependent of the constraints used for the decision.
The interpretation / optimization will be performed method by
method, so this decision is not based on traces or hot paths.
This heuristic decision mostly delivers a better performance
than always JIT or always interpret does. However in certain
special cases - for instance if the executed methods deliver
no useful pattern for the analysis - the performance will not

don’t compile

compile

JIT MIN SIZE

JIT MIN TIMES

amount of executions

m
et

ho
d

si
ze

Fig. 5. Plot of the heuristic approach, based on amount of executions and
size of the method

improve. For such a decision, one should consider that inter-
preting a method repeatedly is much more time consuming
than compiling a method which will nearly never be used
again. So the heuristics should favorize JIT and rather compile
too much than too little.
The very basic metrics which could be used are the size of
the method and the execution count. The size of the method
is relevant because a method consisting of only a few lines
will cost a respectively large amount of time for compiling,
compared to the resulting time saving. A method which is
often executed should also be compiled, since that will lower
the time costs on this method. So the conclusion is that the
worst method to compile is small and rarely used, while the
best method to compile is large and often used. An example
for the heuristic decision whether to compile or not can be
seen in Fig.5, based on two parameters JIT MIN SIZE and
JIT MIN TIMES.

VIII. CONCLUSION

JIT compilation provides compilers with the ability to be
highly independent, and to optimize its code in a very efficient
way. But the implementation of JIT compilers is a difficult
task. Planned optimization methods could result in a slower
execution, by needing too much time to generate the related
profiles or optimizing the code. The adaptive optimization
methods is based on the execution of the program, which
leads to the fact that the optimization techniques vary in their
effectivity. Therefore, one has to decide which optimization
methods are most probable to be profitable and should be used.
Furthermore, one should consider the fact that interpreting
is in some cases better than JIT compilation, which again
aggravates the construction.

REFERENCES

[1] Oracle Corporation, Oracle JRockit JVM Diagnostics Guide pp.29-31,
April 2009.

BUCCIARELLI: JUST IN TIME COMPILATION 63

[2] X. Zhang and R. Gupta, Whole Execution Traces In Proceedings of the
37th annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 37). IEEE Computer Society, Washington, DC, USA, 105-116.
, 2004.

[3] J. L. Schilling, The Simplest Heuristics May Be the Best in Java JIT
Compilers SIGPLAN Not. 38, 2 (February 2003), 36-46, 2003.

[4] Oracle Technology Network, The Java HotSpot Performance Engine Ar-
chitecture, http://www.oracle.com/technetwork/java/whitepaper-135217.
html#3

[5] M. Paleczny et al., The Java HotSpot Server Compiler In Proceedings
of the 2001 Symposium on JavaTM Virtual Machine Research and Tech-
nology Symposium - Volume 1 (JVM’01), Vol. 1. USENIX Association,
Berkeley, CA, USA, 2001.

[6] S. Banerjee, Performance Tuning of Computer Systems pp.12-13,
University of Ottawa, Computer Architecture Research Group.

[7] GNU gprof documentation https://sourceware.org/binutils/docs/gprof/
[8] R. Gupta, Lecture 6: Code Optimizations: Constant Propagation & Fold-

ing http://www.cs.ucr.edu/∼gupta/teaching/201-09/My6.pdf, University
of California Riverside, 2009.

[9] R. Gupta, Lecture 8: Code Optimizations: Partial Dead Code Elimina-
tion http://www.cs.ucr.edu/∼gupta/teaching/201-09/My8.pdf, University
of California Riverside, 2009.

[10] P. Colea, Generalizing Loop-Invariant Code Motion In a Real-World
Compiler Imperial College London, Department of Computing, pp.20,
June 2009.

[11] M. Ide, Study on method-based and trace-based just-in-time compilation
for scripting languages Graduate School of Engineering, Yokohama
National University, pp.3-8, September 2015.

[12] M. Bebenita et al., Trace Based Compilation in Interpreter-less Execu-
tion Environments In Proceedings of the 8th International Conference
on the Principles and Practice of Programming in Java (PPPJ ’10). ACM,
New York, NY, USA, 59-68, 2010.

[13] D. Kästner, Compiler Structure http://www.rw.cdl.uni-saarland.de/
∼kaestner/es0203/lectdk08.pdf, Universität des Saarlandes, 2002.

64 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

Synchronous vs. Asynchronous Programming
Jan Pascal Maas

Abstract—The contrast of synchronous and asynchronous pro-
gramming has become more important in the last couple of years
as especially many web-based applications rely on the latter. This
paper shall characterize both approaches with an overview about
their concepts and application areas. This will also be supported
by the discussion of sample implementations of each concept.

Additionally, this paper will discuss the importance of concur-
rency for these concepts, especially regarding the synchronization
of a system.

I. INTRODUCTION

When implementing various tasks in software, many con-
straints can alter the way a programmer works. Two im-
portant restrictions involve concurrency and communication
between various parts of an implementation. The requirement
of concurrency is especially important when the handling of
multiple tasks at once is crucial. In particular, this requirement
is used by current web-based applications. In general, this
ensures that comparatively fast operations do not wait for
slow operations [1]. To implement such a system can be a
difficult task in comparison with imperative programs [1], [2].
But still, general programming paradigms can be applied as
concurrency is a largely explored field [3]–[6]. Additionally,
many approaches for concurrent applications exist [3], [6].

If the need of communication is an issue, the complexity
of a system grows largely as the possibly concurrent tasks
require information exchange between each other [1]. One
example for this would be a system for air traffic control. If
all information about the environment is known beforehand,
the system can run several tasks successively to control the
traffic in an easy way. Also, the system can run concurrently
as all tasks are independent of each other. If the traffic is not
known beforehand, the control happens while executing the
system. With this in mind, it is important to have a system
which is both, capable of accepting inputs and managing the
air traffic, at the same time. In general, real-time, reactive
and interactive systems require a high amount of synchronized
communication while also being capable of interacting with
the environment or the user [7], [8].

In imperative programs the use of shared-memory or mes-
sage passing may solve most communication problems. In
concurrency, those paradigms can also be used. But for a
working implementation of communication, the approaches
require synchronization. While this is implicit in message-
passing models, where a message can only be received if
it was sent before, a shared-memory model needs additional
mechanisms to ensure synchrony [1].

To ensure synchrony in any of the discussed concurrent
environments, two implementation methods can be used: spin-
ning, also known as busy-waiting, or by blocking. While in

busy-wait synchronization a thread runs a loop to reevaluate
a specific condition until it becomes true, the blocking (also
called scheduler-based) allows a processor to use the resources
of a blocked thread for different operations. Before blocking,
the corresponding thread leaves a note to ensure the resuming
of computation if a specific synchronization condition is
required [1].

These two synchronization models can be assigned to two
programming paradigms. The synchronous approach applies
the scheduler-based synchronization in combination with sim-
ple implementation methods. On the other hand, the asyn-
chronous approach mainly relies on the busy-waiting synchro-
nization. This allows systems to interact with the environment
while—asynchronously—computing different results of the
system [8]. For real-time, reactive and interactive systems,
those approaches allow to easily create working implementa-
tions. Even though their main goal is to allow synchronization
of programs, the approaches of synchronous and asynchronous
programming vary in multiple aspects that should be discussed
in this report.

The next section will discuss the two paradigms and delimit
them from each other. This also build the basis for the detailed
discussion of two asynchronous implementation approaches
in the languages Node.js and F#. In the following, imple-
mentation issues in concurrent programming will discussed
before section V will discuss the implementation of synchrony
in the three languages LUSTRE, SIGNAL and ESTEREL
which all follow the Synchrony Hypothesis [7]. The report
will end up concluding the approaches and an evaluation about
the practicability of both programming paradigms in various
scenarios.

II. DELIMITATION OF THE PARADIGMS

In many implementations, the delimitation of synchronous
and asynchronous approaches is of no importance as necessary
requirements are not fulfilled. These premises contain various
architectural aspects like the use of multi-threaded systems.
Also, the use of communication and especially its necessity
of synchronization is crucial [1]. These three requirements
describe if the use of synchronous or asynchronous approaches
is necessary. If not, most imperative techniques are enough to
solve a problem with an implementation. If at least some of
these requirements are part of the issue, any of the approaches
can solve it in their respective way. Still, synchronous and
asynchronous programming techniques deliver various solu-
tions.

MAAS: SYNCHRONOUS VS. ASYNCHRONOUS PROGRAMMING 65

(a) Asynchronous model [8]. (b) Synchronous blocking model [8].

Fig. 1. Comparison of the single-threaded synchronous blocking and asyn-
chronous model [8].

A. Synchronous Programming

In synchronous programming, the scheduler-based synchro-
nization is used [8]. By this, a thread of a program is blocked
to ensure the correct computation in the end. Additionally,
the thread may continue if the resources which are necessary
for correct computation are available [1]. Even though this
ensures correctness of a system, this approach delivers some
major issues which should be avoided widely.

First of all, the blockage of a thread might block the
complete system. As an example, a client which requires data
from a given database server may be considered. If one thread
acts as a client and issues the request for data synchronously
to an other thread that may act as a server, the client-side
application waits for the response. This response can take some
time as the server has to check its database for corresponding
entries. During this time, the client is not capable of sending
new requests or change the view as its thread is blocked. This
can cause multiple issues starting from violating a deadline
over frustrated users to client time outs as the requested data
is not available soon enough [8].

Except for long execution times, this paradigm also requires
the correct and especially manual use of synchronization
mechanisms in a concurrent computing environment. This
leads to issues ensuring the correctness of a system. This may
be discussed wider in section IV.

B. Asynchronous Programming

The main difference between synchronous and asyn-
chronous approaches is shown in figure 1. It shows that the
synchronous approach used blocking to synchronize different
tasks while the asynchronous is interleaving the execution
which is also called non-blocking.

In an asynchronous approach, busy-waiting synchronization
is used to synchronize a program. This means that a specific
condition—like the occurrence of an event—is reevaluated
over time. If it becomes true, which means that the evaluated
condition depends on an external system like a database,
some actions which were specified beforehand take place. This
allows a system which is implemented asynchronously to keep
working without getting blocked. Instead, the main thread of
the system is still running while the operation which would
block the system is executed by a different thread. This allows

the asynchronous system to react to varying inputs which
means that the user is capable of interacting with it [1].

Additionally, an asynchronous program will outperform a
synchronous single-threaded one in this case. As shown in
figure 1b, a synchronous program would wait for correspond-
ing external information as long as necessary and block the
executing task. An asynchronous program on the other hand
would work as discussed before and shown in figure 1a [2].

Furthermore, the main process of the asynchronous system
stays single threaded. This leads to a process execution scheme
like in figure 1a. It shows that processes can be interleaved in
a single thread if the current executing process is blocked be-
cause it depends on an external system. Hence, a programmer
is capable to determine that if a single process is executing,
another is not. One more difference is that the programmer is
in control of the decision to suspend a task. In the synchronous
model on the other hand, this decision is largely dependent on
the operating systems (OS) scheduling. Also, an asynchronous
task will continue to run until it explicitly transfers control to
an other one [2].

It is also important that the asynchronous programming ap-
proach allows the programmer to implement a system without
thinking about different synchronization operations. This re-
sults from the fact that it is necessary to organize each task as a
smaller sequence of steps that may be executed intermittently.
In this way, the programmer is especially not responsible for
ensuring the temporal correctness of a program as this task
is handled by the asynchronous model [2]. Still, asynchrony
does not forbid the combination with multi-threading and the
usage of both in the same system [8].

To realize the asynchronous programming approach, differ-
ent models can be used. A model which is frequently used
strongly depends on the usage of events. This so called inver-
sion of control or Hollywood principle [9] offers efficiency
and scalability combined with the control over switching
between application activities. The implementation relies on
event notification facilities like subscribers, publishers and
event emitters. If an application has interest in certain events,
it registers and is able to read the data corresponding to
this event type. When an a priori registered event occurs,
the application is notified by using the notification facilities.
Afterwards, the application has to handle the occurrence in its
own environment [2].

Another paradigm to implement asynchronous program-
ming is using concurrency. In such systems, the I/O processing
is the most important one. When using concurrency, it is
possible to use multiple threads to perform I/O bound tasks. A
major issue for this model is that its scalability is limited. This
is caused through the context switching overhead of threads
which can not be eliminated easily [2], [10].

Even though asynchronous programming simplifies many
issues the multi-threaded model is having, it is not com-
pletely perfect. Still, its problems are different in comparison
with single- or multi-threaded models in general. As many
implementations—for some examples see sections III-A and
following—rely on the event based paradigm, it is an issue that

66 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

not all interprocess-communication can be reduced to an event
notification. This means that developers have to fall back to
alternatives like writing some other event-capable mechanism
[2].

Also, the sheer complexity of asynchrony in certain pro-
gramming languages is a big issue—especially in terms of
events. Mostly, event handling for different events and their
corresponding contexts is possible with the use of vary-
ing callback functions. If a programming language lacks of
anonymous functions and closures, such as C, developers
need to specify an individual function for each event and its
corresponding context. To ensure every function has access
to the data they need is a challenging task and can be very
complex. Also, the code can be very unmaintainable or just a
little more than impenetrable [2].

III. ASYNCHRONOUS APPROACHES

As described in the last section, different models to imple-
ment asynchrony exist. The two most important ones—event-
oriented and by the use of continuations—will be discussed in
this section on the basis of two widespread languages. While
Node.js is completely built around event-orientation and is
extensively using its options to synchronize the system [2],
the functional language F# from Microsoft’s .NET framework
uses continuations instead of multiple OS threads to implement
asynchrony and concurrency [9]. The outdated approach of C#
that uses concurrent operations to achieve asynchrony should
not be considered in deep here as its use of multiple OS threads
to perform I/O operations is expensive and does not scale well,
especially because of the overhead of context switching [10].
A future version of C# will use the proposed approach of F#
for asynchronous behaviour [9].

A. Node.js—Event Loop Approach

When talking about asynchronous programming, the use
of events is very important. On the basis of JavaScript’s
event and callback mechanisms, the runtime Node.js im-
plements a non-blocking I/O model that is lightweight and
efficient [11]. The main concept behind this implementation
is–in contrast to traditional web applications which follow
a request/response multi-threaded stateless model [12]—a
single-threaded event loop model. This allows Node.js to
handle multiple concurrent clients in a simple manner. The
event loop can be described with the following pseudo code
[12]:

loop
if Event Queue receives a JavaScript Function Call then

ClientRequest = EventQueue.getClientRequest();
if request requires Blocking I/O or takes more compu-
tation time then

Assign request to Thread T1
else

Process and Prepare response
end if

end if
end loop

The process is always the same. At first, the incoming client
request is placed into the event queue. This is important as
the event loop checks periodically if pending requests exist.
In the next step, one request is taken from the event queue. If
the demanded actions for this request do not require the use
of blocking I/O operations like accessing a database or the
file system, execute the operations and return the computed
response to the corresponding client. If blocking I/O or compu-
tational intensive operations are required, the demanded action
is transferred to a different thread. This thread is taken from
an internal pool that is managed by Node.js. If a thread has
finished its operation(s), it returns a response to the event loop
which will forward it to the corresponding client. Note that the
thread pool is limited and might not be capable of serving the
complete amount of incoming requests at a specific moment
in time. Still, this allows the main event loop to continue
scheduling multiple requests until all threads are in use.

This model has some major advantages. First of all, it is
easy to handle a huge number of concurrent client’s requests
particularly easy. Also, this model does not require the creation
of multiple OS threads to handle those requests as Node.js is
handling these with an internal thread pool. Furthermore, the
amount of resources used is less than with multiple OS threads
[12].

B. F#—Continuations

In F#, asynchrony is achieved mostly over the use of
continuations. This allows the programmer to decide what
a function is supposed to do in multiple situations instead
of returning. While the return of a function is only in its
control, the use of continuations transfers it to the power of
the programmer. For asynchrony in F#, three different cases
of continuations should be considered: success, exception and
cancellation. Each contiuation can be transferred to a function
using parameters [9].

Syntactically, the use of asynchrony differs from the stan-
dard language in F#. The use of asynchrony is achieved by
the use of new expressions given by a new syntactic category
aexpr:

expr := async { aexpr }

The full grammar of this syntactic category is shown in
listing 1. To use an asynchronous computation, the type
Async<T> is mandatory. It will produce a value of type T and
deliver it to a continuation. When using the expression let!
v = expr in aexpr, asynchronous computations form

a monad and can bind a result from another asynchronous
computation. A monad is an abstract type that is capable of
transferring values with the generic operations return and bind:

Return: ’a -> M<’a>
Bind: M<’a> -> (’a -> M<’b>) -> M<’b>

This also means that asynchronous operations are capable
of binding the results of core language expressions using the
standard let v = expr in aexpr. Note that this also

MAAS: SYNCHRONOUS VS. ASYNCHRONOUS PROGRAMMING 67

Listing 1. Full grammar of the async library [9].
aexpr :=

| do! expr // execute async
| let! pat = expr in aexpr // execute & bind async
| let pat = expr in aexpr // execute & bind expression
| return! expr // tailcall to async
| return expr // return result of async expression
| aexpr; aexpr // sequential composition
| if expr then aexpr else aexpr // conditional on expression
| match expr with pat -> aexpr // match expression
| while expr do aexpr // asynchronous loop on synchronous

guard
| for pat in expr do aexpr // asynchronous loop on synchronous

list
| use val = expr in aexpr // execute & bind & dispose

expression
| use! val = expr in aexpr // execute & bind & dispose async
| try aexpr with pat -> aexpr // asynchronous exception handling
| try aexpr finally expr // asynchronous compensation
| expr execute // expression for side effects

implies that asynchronous calls may have side effects as F# is
an impure and strict functional language [9].

Additionally, the library sometimes needs task generators.
In the following example, a function is declared but does not
run:

let sleepThenReturnResult =
async { printfn "before sleep"

do! Async.Sleep 5000
return 1000

}

This declaration does neither start a task nor has side
effects. This requires to run a task generator Async<_>
to observe side effects at every run. Note that task gener-
ators are capable of running synchronously using Async.
RunSynchronously sleepThenReturnResult. This
runs the operation sleepThenReturnResult in the back-
ground and prints “before sleep”. Afterwards, it does a non-
blocking sleep for 5 seconds and then delivers the result to the
blocking operation. This allows the computation multiple tasks
in parallel using a synchronization operation. Additionally, the
choice to have asyncs be task generators allows elimination
state in contrast to futures or tasks that always need to
be started explicitly and can only be run once. Also, an
asynchronous computation can be run synchronously until the
first point that it yields as a co-routine if it does not produce
a result [9].

Especially the last named feature is interesting as it requires
to answer where a callback is run. In the .NET framework each
running computation implicitly has access to a synchronization
context that implies that the callback is running “somewhere”.
This can be abused to run asynchronous callbacks on the basis
of function closures [9].

Most features delivered by the asynchronous library use
the capability of the language to handle different contexts.
This allows the delivery of operations for non-blocking I/O
primitives that schedule the continuation of an asynchronous
computation as a callback in response to an event. Also, loops
can be achieved by using asynchronous tailcalls in general.
Additionally, F# offers direct support of for and while
loops.

The issue of asynchronous resource clean up is also taken
care of by using the language feature use: The usage of use
! allows the programmer to directly dispose resources. Note
that this does happen whether the corresponding tasks succeed,
fail or are cancelled, even though callbacks and asynchronous
responses are implied. Finally, cancellation of tasks is also
in asynchrony as it happens on the primitive operational level
and not on arbitrary machine code. This is achieved by implicit
propagation of a cancellation token through the execution [9].

In conclusion, the given asynchronous implementation al-
lows the compiler to reduce the syntax of such tasks to
“computation expressions”. This means that any Async<T> is
represented as a function with three continuations for success,
exception and cancellation. Also, this implementation avoids
the direct use of extra OS threads to ensure high scalability.
Furthermore, this implementation is a nicer way of writing
event based code.

IV. CONCURRENT PROGRAMMING

As discussed earlier, the implementation of a concurrent
system is not an easy task. In general, a programmer is
handling a single thread which executes different tasks one
after an other. When implementing a new task, this property
allows the assumption that all earlier tasks have finished
without errors with all their output available for use [8].

68 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

(a) Single-threaded synchronous
model [8].

(b) Concurrent synchronous model [8].

Fig. 2. Comparison of the single- and multi-threaded synchronous model [8].

To implement a single-threaded synchronous algorithm in a
concurrent manner, a programmer needs to change his view
on a system. Due to the fact that a system depends on hardware
and software, the view might change if different software is
used on an identical hardware basis. This property leads to the
creation of different models to define hardware-independent
classes of systems [3].

A programmer does only need the most abstract view of
a system as this is the view of a programming environment.
It defines, how a programmer can address the system. This
programming view is not only defined by the hardware of
a system, but especially by the operating system, compiler
or runtime library. Still, most of the models are based on a
process or thread concept [3]. This model emphasizes truly
concurrent execution of all implemented tasks. Even if the
program is executed on a single processor, the view should still
be a parallel execution of all tasks as the operating system is
taking care of a concurrent execution scheme like interleaving
the various tasks [8]. The contrast between the synchronous
single-thread and concurrent model is illustrated in figure 2.

Although the model for concurrent programming seems
simple, a threaded program can be complex in practice. In
particular, a programmer needs to think in the parallel model
no matter what hardware should be used in the system. To
change the model, programs may work correctly on single-
threaded systems while they do work incorrectly on multi-
threaded ones [8]. This issue is also supported by the sheer
complexity of synchronization which is discussed in section
II. While this is no big issue in asynchronous approaches,
the use of synchronization requires different rudiments in the
corresponding programming languages.

V. SYNCHRONOUS APPROACHES

A. LUSTRE

The language LUSTRE is data-flow oriented and mainly
used for automatic control and signal processing systems. The
application area indicates that the language is focussed on
temporal correctness—especially according to the input and
output behaviour. To structure the code of a program, variables,
streams, nodes and assertions can be used. One key feature is
the treatment of variables as infinite sequences:

(x0 = e0, x1 = e1, . . . , xn = en, . . .)

On variables, any common arithmetic, boolean and conditional
operators—called data operators—can be used to combine
multiple instances. Note that the definition of a variable is

only possible on the basis of equations which are considered
in the mathematical sense [13].

Furthermore, the language consists of four more operators.
While the operator pre(X) returns the previous sequence of
X, the initialization can happen using an operator “followed
by” ->. To allow more complex programs in which some
values of variables do only make sense under some specific
condition, two extra operators need to be defined as it is
necessary to define variables that are not computed in every
cycle or clock step. To do so, the sampling operator when
can be used. It allows the definition a sequence X on the basis
of expressions E and boolean values B as shown in Table I.
Still, this implies on the other hand that E when B does not
have the same notion in time as E and B as the new sequence
is computed on the basis of E on a kind of “clock” which is
represented by B. This leads to the issue that two variables
may describe the same sequence without being equal. This
new structure based on the couple formed by a sequence of
values and another of boolean expressions is called stream.
The use of streams enables synchronization of the program,
especially when modelling timing constraints [14].

Since the use of when alone is not sufficient to enable
operations on differently clocked streams, another operator is
needed to project instances to the same clock. This can be
done by using the current operator. This operator takes
the last clocked value and for each new cycle it fills the gap
between two clock steps. This allows operations over variables
of different clocks [14].

As declarative language, LUSTRE also supports a function
like syntax called nodes. When declaring and instantiating
multiple nodes, the emerged structure is called a net. Finally,
another optimization feature are assertions. These generalize
equations and consist of boolean expressions that should
always be true. They indicate to the compiler where code could
be optimized. Also, it can help the programmer to synchronize
the program as these statements are facts that apply to the
whole program [13].

B. SIGNAL

The synchronization concept of the—also data-oriented—
language SIGNAL is similar to the concept in LUSTRE. The
main difference is the direct modelling of variables as signals
which allows better adaptations to signal processing systems.
These basic notions are ordered sequences of its possibly
typed values. Additionally, a clock is supplied on each signal
which indicates if a value is available. Note that the clock is
not absolute but relative and does not describe a real timing
relation. Still, it enables to characterize the difference between
distinct signals [15].

As the model of SIGNAL starts on the direct basis of
signal processing systems, it allows the application of common
operations for such applications. This includes delaying, un-
dersampling and composing of signals. Additionally, it allows
an explicit synchronization using the command synchro. In
the following example, a and v are signals, c is a boolean
signal and the operator $1 indicates a delay of one step.

MAAS: SYNCHRONOUS VS. ASYNCHRONOUS PROGRAMMING 69

TABLE I
EXAMPLE OF THE OPERATORS WHEN AND CURRENT IN LUSTRE [14].

E =(e0 e1 e2 e3 e4 e5 . . .)
B =(tt ff tt tt ff ff . . .)

X = E when B =(x0 = e0 x1 = e2 x2 = e3 . . .)
y = current(X) =(e0 e0 e2 e3 e3 e3 . . .)

Note that the composition of multiple processes on signals
is indicated by (| . . . | . . . |):
(| a := true when c |

synchro a,v |
v := zv + 1 |
zv := v $1

|) .

Additionally, the language is capable of merging two signals
with possibly distinct clocks using default. Note that this
enables the programmer to synchronize the code and create
signals with a higher clock that both of the input signals.
This last capability is based on the merging “algorithm”: a
default b means that the signals a and b are merged such
that the values of a are taken if available. If a value from a is
not available at a certain step of the clock, the corresponding
value from b is taken if available [15].

C. ESTEREL

In contrast to SIGNAL and LUSTRE, the language ES-
TEREL is an imperative language. One important notion
in ESTEREL is the reaction. It describes the process of
computing the output signals based on an input event. Those
reactions are completely encapsulated which means that every
signal has a fixed status and a current value in each reaction.
The status of a signal can be present or absent. The value
depends on this status. If the signal is absent, its value is
inherited from the previous reaction and initially ⊥. In a
present state, the current value is adopted from the input or
output value if the signal is input or either output or local
respectively [16].

Its main features for implementing synchrony—except for
following the Synchrony Hypothesis which means that any
output is computed instantly from a given input [7]—are
dealing uniformly with input, output or locally declared sig-
nals. Specifically, the features are named emit, present and
watching. The use of emit describes the act of sending output
signals to the environment. This implements a communication
paradigm based on the sender-receiver pattern [1]. To react on
the reception of a signal, the watching statement can be used.
It implements a watchdog which is waiting for a corresponding
signal:

do
I1 -> O1

watching I2;
emit O2

In this example, the output O2 is emitted on every immediate
input I1 until the input I2 is received. Afterwards, the output

O2 is emitted and any further occurrence of I1 is ignored. This
means that the watching statement can be used as a timing
constraint. Note that if the two inputs occur at the same time,
the watchdog is not triggered. The third important statement
in ESTEREL is present. It detects for the presence of a signal
in the current reaction. It works like the watching statement
except for the important notion that it does not imply a time
limit to the execution [16].

VI. CONCLUSION

This report discussed the concept of both, synchronous and
asynchronous programming. While the first concept is mainly
blocking the execution of multiple parts of the program to
ensure correctness, the latter is outsourcing the execution of
potentially blocking executions to a different thread. This
allows the program to stay responsive and enables a better
interaction possibility.

These characteristics are also shown in the respective
fields of application. While applications based on synchronous
programming languages have a huge impact in real-time,
automation and signal processing systems, the asynchronous
field is larger. It can be used in modern web applications
using Node.js, in the common Windows environment using
F# or even in reactive systems using asynchronous libraries
for corresponding languages. Also, the asynchronous program-
ming approach outperforms the synchronous one in some cases
and is at least as fast as the latter. Overall, the asynchronous
approach is powerful and in many cases a better choice than
the synchronous, even though its justification for existence is
given by certain applications.

REFERENCES

[1] M. L. Scott, Programming Language Pragmatics, Third Edition, 3rd ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009.

[2] S. Tilkov and S. Vinoski, “Node.js: Using javascript to build high-
performance network programs,” IEEE Internet Computing, vol. 14,
no. 6, pp. 80–83, 2010.

[3] T. Rauber and G. Rnger, Parallele Programmierung, 3rd ed. Springer-
Verlag Berlin Heidelberg, 2012.

[4] G. S. Almasi and A. Gottlieb, Highly Parallel Computing. Redwood
City, CA, USA: Benjamin-Cummings Publishing Co., Inc., 1989.

[5] S. G. Akl, Parallel Computation: Models and Methods. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1997.

[6] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1989.

[7] A. Benveniste and G. Berry, “The synchronous approach to reactive
and real-time systems,” Proceedings of the IEEE, vol. 79, no. 9, pp.
1270–1282, Sep 1991.

[8] D. Peticolas, “An introduction to asynchronous programming and
twisted,” http://krondo.com/?p=1209, 2009, accessed: 2015-11-07.

70 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

[9] D. Syme, T. Petricek, and D. Lomov, “The f# asynchronous
programming model,” in In Proceedings of Principles and
Applications of Declarative Languages, 2011. ACM SIGPLAN,
2011. [Online]. Available: http://research.microsoft.com/apps/pubs/
default.aspx?id=147194

[10] S. Edouard, “Asynchronous vs concurrent – what it
means in plain english,” http://blog.stevenedouard.com/
asynchronousness-vs-concurrency/, 2014, accessed: 2015-11-22.

[11] Node.js Foundation, “Node.js,” https://nodejs.org/, 2015, accessed:
2015-12-17.

[12] R. Posa, “Node.js processing model – single threaded model
with event loop architecture,” http://www.journaldev.com/7462/
node-js-processing-model-single-threaded-model-with-event-loop-architecture,
2015, accessed: 2015-12-17.

[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language lustre,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, Sep 1991.

[14] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “Lustre: A
declarative language for real-time programming,” in Proceedings of the
14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL ’87. New York, NY, USA: ACM, 1987, pp.
178–188. [Online]. Available: http://doi.acm.org/10.1145/41625.41641

[15] P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier, “Signal–a
data flow-oriented language for signal processing,” Acoustics, Speech
and Signal Processing, IEEE Transactions on, vol. 34, no. 2, pp. 362–
374, Apr 1986.

[16] G. Berry and G. Gonthier, “The esterel synchronous programming
language: Design, semantics, implementation,” Sci. Comput. Program.,
vol. 19, no. 2, pp. 87–152, Nov. 1992. [Online]. Available:
http://dx.doi.org/10.1016/0167-6423(92)90005-V

MAAS: SYNCHRONOUS VS. ASYNCHRONOUS PROGRAMMING 71

Aspects of Object Orientation
Jan Niklas Rösch

Email: jan.roesch@student.uni-luebeck.de

Abstract—Object-oriented programming (OOP) consists of a
wide variety of aspects. All of them play an important part
in defining how an object-oriented system works. This paper
gives a brief overview of the most relevant aspects of OOP and
their varying implementations and differences. This paper tackles
many of the fundamental features and facets of OOP by focusing
on Variance, Type systems, Subtyping and Subclassing.

I. INTRODUCTION

While Simula is widely accepted as the first programming
language to use object-oriented ideas, Smalltalk is the most
relevant when it comes to defining the logic and the paradigms
behind most modern object-oriented languages. Since OOP oc-
curred in the 1970s there have been many different definitions
and methods to implement an object-like behaviour.

When it comes to discussing different aspects of object-
oriented programming there are many things worth to consider.
Most notable about a language that handles different objects
is the way it deals with them and how these are related to
each other.

The facets described in this paper play a crucial role in
defining how this interaction is designed. These aspects like
variance, subtyping or the used type system do not stand
on their own but contribute to the overall behaviour of the
language. It is important to understand each of them in order
to make an informed decision when choosing a programming
language to work with.

We are going to have a look at variance first. Therefore
section II will be split into the different types of variance. Each
type will be explained with its weaknesses and strengths. Sec-
tion III gives an overview of the differences and similarities of
class-based and prototype-based programming. On that topic
we will discuss implementations of subtyping and subclassing
mechanisms used in modern programming languages. Section
IV explains the two most commonly used type systems.
Structural and nominal typing make up the basis for the
general behaviour of objects and their relationship.

At the end we give a conclusion to sum up the importance
of these topics in modern object-oriented programming lan-
guages.

II. VARIANCE

Variance is a fundamental aspect of object-oriented pro-
gramming and is widely discussed. It describes the behaviour
of complex structures based on the subtyping of the associated
classes.

Given a class called Animal and a class called Cat which is
a subtype of this particular Animal class, rules of subtyping
imply that a cat is also an animal. While this is rather obvious,

subtyping does not give any information on whether a more
complex structure like a list behaves the same. This is where
variance comes into play. It describes for example whether this
list of cats can also be treated as a list of animals or not. There
are four different types of variance that will be explained in the
following sections. All of them are equally useful and although
often being mixed up, they ”can (and should) be integrated in
a type-safe manner in object-oriented languages.” [1]

In order to declare a type to use variance we can use
specific keywords. In Scala for example generic types do
not use variance by default. A Stack is simply defined as
classStack[A]{...} with A being the generic type. In Scala
we would add a + or − in front of the generic type to declare
the type of variance we want to use [2]. C# supports the in/out
annotation.

In order to give a formal definition, we use some terms of
the boolean algebra. For that matter we use the term A ≤ B
to describe that A is a subtype of B. The term A ≥ B implies
that A is a supertype of B. Also I〈A〉 stands for any complex
structure using type A.

With these definitions we can now look into the different
types of variance.

A. Covariance

Covariance is the most common approach in OOP when
it comes to subtyping of complex structures. It states that
the ordering of types is preserved, meaning that the structure
of subtyping will be the same when transferred into other
structures like lists or arrays. The following term represents
this behaviour.

A ≤ B → I〈A〉 ≤ I〈B〉
This also implies that it is possible to use an object of the

derived-class wherever an object ob the base-class would be
applicable. In our example a Cat can be used instead of an
Animal.

Many programming languages use this approach to define
the behaviour of the most common structures. Arrays in Java
for example are covariant.

S t r i n g [] s t r = new S t r i n g [1] ;
O b j e c t [] o b j = s t r ;

Fig. 1. Arrays in Java

Since arrays are implemented as covariant and String is
a derived class from Object, this piece of code will work

72 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

completely fine. However this leaves room for unwanted
behaviour since it is still possible to add any object to the
array although it should only contain strings. Consider the
following code-snippet:

S t r i n g [] s t r = new S t r i n g [1] ;
O b j e c t [] o b j = s t r ;

o b j [0] = 2 ;

Fig. 2. Broken array covariance

This code will compile without any errors but will cause
a runtime-exception as we try to put an integer-value into
an array of strings. So this array is safe to read but not
safe to write. This behaviour is sometimes also referred to as
”broken array covariance”. Using a stricter type system could
have caught this exception at compile-time but would also
have a negative effect on the general subtyping rules of the
programming language.

With the introduction of generics, many languages now
feature a way of implementing these parametrized structures
without needing to rely on covariance.

B. Contravariance
Contravariance is the opposite of covariance as it reverses

the ordering of types represented in the term below.

A ≤ B → I〈B〉 ≤ I〈A〉
Although this seems to be pretty unintuitive for many

developers, it does come with some benefits.
As demonstrated in the C#-code below it is possible to

have an Action-type, which is used to pass a method without
explicitly declaring a custom delegate, accept a method that
has a more general type than the one that is expected. [3]

p u b l i c c l a s s Animal {}
p u b l i c c l a s s Cat : Animal {}

c l a s s Program
{

s t a t i c vo id Feed (Animal an im a l){}

s t a t i c vo id T e s t ()
{

Act ion<Animal> feedAnimal = Feed ;

Act ion<Cat> f e e d C a t = Feed ;

feedAnimal = f e e d C a t ;
}
}

Fig. 3. Contravariant implementation in C#

Here the first Action expects a Function that takes an An-
imal as parameter. Therefore we can easily pass the function
”Feed” without any problems and without relying on variance
at all. However it would not be possible to pass it any other
function that takes a more derived type, such as Cat.

Using a contravariant approach solves this issue. With the
second Action we can safely use a more general type although
it would usually expect a more specialized type. We can also
pass it the more general Action since Cat is a subclass of
Animal. Now we could have different subclasses of Animal
using the same ”Feed” Function without the need of altering
any of the classes themselves.

C. Invariance

Invariance is used to avoid any kind of type errors. It
expresses that neither of the more complex structures is
a subtype of the other, regardless of the type-hierarchy of
the underlying types. This behaviour could be expressed as
follows:

A ≤ B → I〈A〉 6≤ I〈B〉 ∧ I〈B〉 6≤ I〈A〉

This can be used whenever neither covariant nor contravari-
ant behaviour can be used safely. To make this clear we will
look at the example from the beginning with an array of
animals and an array of cats.

We have already explained that it is not safe to use a
covariant approach where an array of cats can be stored in
an array of animals as we would be able to put a Dog in
there. So this could only be used in an read-only array.

Contravariance would suggest to treat an array of animals
as an array of cats. However this is not safe either because
a reader would expect a cat as outcome but in this array of
animals other subtypes could be stored as well.

The following example gives another example on how to
use invariance.

vo id MammalReadWrite (I L i s t <Mammal> mammals){
Mammal mammal = mammals [0] ;
mammals [0] = new T i g e r () ;

}

Fig. 4. Importance of invariant behaviour

We can not pass this function a list of giraffes because we
are going to write a tiger into it. So an IList〈T〉 can not be
covariant. We also are not allowed to put a list of animals in
there because we are going to read a mammal out of it but
our animal does not necessarily has to be of any subtype of
mammal. Therefore IList〈T〉 can not be contravariant either.
[4]

So in order to make this structure completely type-safe it
can be useful to use an invariant constructor.

RÖSCH: ASPECTS OF OBJECT ORIENTATION 73

D. Bivariance

Bivariance means that both structures have to be a subtype
of each other. Therefore both following terms have to be true.

I〈A〉 ≤ I〈B〉

I〈B〉 ≤ I〈A〉

This is either impossible or not allowed in most program-
ming languages. Because of this we will not discuss bivariance
any further but solely name it for the sake of completeness.

III. SUBTYPING AND SUBCLASSING

In object-oriented programming everything revolves around
objects and how they relate to each other. We will discuss this
topic using the two most relevant methods when it comes to
subtyping and subclassing in order to understand how objects
are treated in general. In the course of this we are going to
look into the differences of class-based and prototype-based
programming.

It is important to understand that there is a decisive dif-
ference between subtyping and subclassing [5]. Subtyping on
the one hand, often called interface-inheritance, refers to the
act of declaring a type as a subtype of another one. So they
share a common interface with all the shared methods and
fields. The resulting relationship is called a ”is-a”-connection,
hence a subtype can be used when a type of the base-type
would be required. This statement is known as the Liskov
substitution principle and is the elemental aspect of subtyping
[6]. Subclassing on the other hand only describes the reuse
of code. A subclass uses the code of the base-class but is not
necessarily a subtype. Therefore subclassing does not alter the
type-hierarchy but is a convenient way for the programmer to
reuse existing code.

A. Class-based

Class-based languages like Smalltalk and Java use classes
as blueprints in order to create objects off of it with the exact
same structure. Every class has a constructor, being implicitly
invoked or explicitly declared, that allocates memory and
initializes all fields in the object when instantiated. The new
object will inherit all methods and attributes from the class.

The following code demonstrates how we can access the
methods in an object that was created according to a class
blueprint. In this case a constructor is explicitly defined in
order to initialize the attribute of the new object.

c l a s s numBox{
p r i v a t e i n t number ;

p u b l i c numBox (i n t num){
t h i s . number = num ;

}

p u b l i c i n t getNum () {
r e t u r n t h i s . number ;

}
}

numBox num3 = new numBox (3) ;
p r i n t (num3 . getNum ()) ; / / 3

Fig. 5. Typical implementation of a class

Classes can not change at runtime and therefore the structure
of a class and its instantiated objects can not change either.
This makes class-based programming very well structured.
Besides being easy for the programmer to understand since
he does not need to track different versions of the same type,
this comes also with many benefits when it comes to complier
behaviour. It is easier to optimize compiler tasks in comparison
to prototype-based languages since all class information are
available at compile-time and efficient method checks as well
as instance-variable lookups can be implemented much more
efficiently.

However class-based programming has one major draw-
back. In these languages, subclassing can not stand on its own
and implies subtyping even if it should not be allowed in the
present instance. Consider two classes rectangle and square
which is a subtype of rectangle, assuming getter and setter
methods exist for both width and height. A square has an equal
width and height which are dependent on each other. But if
a square is used covariantly where a rectangle is expected,
unexpected behaviour may occur since the dimensions of the
expected rectangle could be changed independently which
would violate the square’s invariants.

B. Prototype-based

Objects inherit from objects. What could be more
object oriented than that? [7]

This famous quote captures the key feature of prototype-
based programming. While it renounces the use of classes of
any kind, it only relies on objects as the main powerhouse.

The main difference when compared to class-based pro-
gramming is how objects get instantiated. Since there are
no classes present that could act as a template, prototype-
based programming relies on two different ways of managing
objects.

The first is called cloning. This means that an object which
serves as the prototype gets cloned to another object. There
can be more specific fields added to the clone in order to
make it a more specialized version of the prototype. Consider

74 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

the following code in JavaScript-like syntax. There are two
constructor-functions present, assuming both do have some
implemented properties like values or functions attached. We
can set the prototype of the ChildClass to match an object of
the ParentClass in order to inherit its properties. Every Child-
Class object that would be created would now be considered
an instance of both classes.

f u n c t i o n P a r e n t C l a s s () { . . . }
f u n c t i o n C h i l d C l a s s () { . . . }

C h i l d C l a s s . p r o t o t p y e = new P a r e n t C l a s s () ;

Fig. 6. Using the prototype property to use inheritance

The second way is called ex-nihilo instantiation. Most
languages support some kind of root object to clone from in
the first place. This object comes predefined with some of the
most important methods such as toString() and can be used
to declare the most relevant objects. Using object literals we
can define new objects that inherit from the default object [8].
The following code gives an example on how to use object
literals to create new objects based on the default prototype.

v a r empty Objec t = {} ;

v a r f l i g h t = {
a i r l i n e : ” Ocean ic ” ,
number : 815 ,
d e p a r t u r e : {

c i t y : ” Sydney ” ,
d a t e : ”2004−9−22”

}
}

Fig. 7. Using ex-nihilo instantiation to create a new object

Many languages feature links between the prototype and the
associated clones, meaning that when the prototypes properties
are changed the clones will update as well. However this is
not supported or even wanted in some languages. If it is not
supported we call it pure prototyping or concatenative pro-
totyping. This can improve performance since no delegation
takes place during method-lookups although it is much more
expensive when it comes to memory management because
each property has to be copied for every clone instead of
solely maintaining references. Also it makes it possible to
change a prototype without altering the clones and therefore
have different versions of the same prototype.

This is the point that makes people argue about prototype-
based programming a lot. In contrast to class-based lan-
guages, prototype-based programming encourages the change
of prototypes at runtime. It is possible for example to add or
remove functions to an object or -although not recommended-

to change an object’s prototype as a whole. This makes
programming much more flexible but also has a huge potential
for errors.

IV. TYPE SYSTEMS

Type Systems ensure type-safety by defining rules about
how they are treated in general and when two types can be seen
as equal or compatible. This compatibility aspect is specific
to each programming language and varies widely depending
on different factors, such as support for subtyping or how the
underlying equation theories are implemented.

These typing rules are not exclusive to OOP but are needed
in every kind of programming. Still they make up one of the
essential parts to object orientation since the typing of objects
is essential to it.

Because this is a very huge topic we will focus on two of
the most common terms, namely nominal vs structural typing,
in order to get a basic understanding of the differences as well
as advantages and disadvantages of each of them.

A. Structural Typing

In structural typing two elements are compatible when they
both have the same structure. By structure we mean the fields
and methods with their parameters and return values that are
present in the element. Most programming languages that
feature structural typing do not take the name of the object
into account although the name of its fields and methods are
relevant to its compatibility. Also it is independent of the place
of declaration.

This automatism leaves room for unwanted behaviour be-
cause it would be possible to have two equivalent types
in structure but very different in meaning. In a structural-
typed environment these would be seen as compatible and the
programmer would have to track this error on his own.

The following code-snippet is an example for how two
elements are structurally equivalent but have two very different
meanings.

r e c o r d D i s t a n c e I n I n c h e s
{

do ub l e d i s t ;
} ;

r e c o r d D i s t a n c e I n C e n t i m e t e r s
{

do ub l e d i s t ;
} ;

Fig. 8. An example of structural equivalence

An unwanted type-compatibility like this made a NASA
operation fail by bringing a Mars orbiter too close to the planet
causing it to disintegrate. [9]

When it comes to structural subtyping interfaces of the
available elements will be automatically created and edited

RÖSCH: ASPECTS OF OBJECT ORIENTATION 75

when needed without the programmer having to maintain these
himself. Consider two Elements A and B with A having two
methods foo() and bar() while B has methods foo() and baz().
They will automatically share an implicit common interface
with the function foo() which the programmer can use. If an
element C is added later with the same function or one of the
existing elements has been changed, the interface will update
accordingly.

This makes structural typing much more expressive and
intrinsic [10] as it allows the programmer to declare types
without having to define a complete subtyping hierarchy
beforehand.

There are differences on how the subtype relationship
is defined, depending on the programming language. Most
languages relying on a structural typed system take a very
simple approach. A type is a subtype of another if and only
if it contains all fields of the base type. The subtype may
contain additional fields as well. In the following example
there are two different types. The animal type only has one
field declared as a boolean to it. The dog type also has the
exact same definition and is therefore considered a subtype of
animal. It also has an additional field of type int which has
no effect on the implicit subtyping.

t y p e an im a l = {
mammal : boo l ;

}

t y p e dog = {
mammal : boo l ;
age : i n t ;

}

Fig. 9. Subtyping in a structural typed environment

B. Nominal Typing

Sometimes referred to as ”nominative typing”, it is used
in many of the most common programming languages today,
such as C++, C# and Java. Often a combination of both
systems is possible in these languages. Nominal is a subset of
structural typed systems and considered to be much more type-
safe. However this safety comes at a cost of reduced flexibility.

In nominally typed systems it is no longer possible to acci-
dentally make an object a subtype of another one only because
they share the same structure. Therefore the programmer has
to explicitly declare it to be a subtype via inheritance. This
can be very beneficial and is likely the most important reason
why nominal typing became so popular. In most cases there
is no real reason to use nominal typing since it does not
really add useful features but there are many where it is
not possible to use structural typing and nominal typing is
the only fitting alternative. As seen in the previous example
having two types accidentally be compatible can cause various
problems. These errors would simply not be possible with

nominal typing. Another standard example when it comes
to describing nominal typing is that there should be a clear
difference between cowboy.draw() and circle.draw() and we
certainly do not want them to have a common interface [10].

In nominally typed systems the programmer has to explicitly
declare the subtyping hierarchy on his own. In the following
example a Cat is a subtype of Animal and therefore inherits its
fields and methods. Without the extendsAnimal annotation,
a cat would be completely distinct from all animals.

c l a s s Animal{
vo id f e e d (){}

}

c l a s s Cat e x t e n d s Animal{
i n t age = 5 ;

}

Fig. 10. Explicitly declared subtyping hierarchy

V. CONCLUSION

To conclude this paper it is safe to say that object-oriented
programming is a very huge topic that provide many different
interesting topics to discuss. This brief overview of some
important aspects of OOP is supposed to give a insight into
how different implementations or approaches to certain topics
can have a critical effect on the strengths and weaknesses of
a specific language.

Things like the use of variance, type systems and ways of
subtyping all make up the key elements of a language and
therefore one should have a closer look at these when choosing
a language to work with or when designing a new one. The
topics we considered in this paper are not standing alone on
their own but come together like pieces of a bigger puzzle
and when used correctly they can have a huge impact on the
program or software they are used in.

Most modern languages feature these aspects in one way or
the other, sometimes supporting a mixture of them in order to
create an even more powerful tool.

Since its first appearance, OOP has evolved a lot and many
new features were introduced to it. Nowadays OOP is the most
used concept in programming and presumably will always be.

REFERENCES

[1] G. Castagna, “Covariance and contravariance: Conflict without a cause,”
ACM Trans. Program. Lang. Syst., vol. 17, no. 3, pp. 431–447, 1995.

[2] M. Odersky, L. Spoon, and B. Venners, Programming in scala. Artima
Inc, 2008.

[3] https://msdn.microsoft.com/en-us/library/dd465122.aspx/, [Online; ac-
cessed 2015].

[4] http://stackoverflow.com/questions/4669858/
simple-examples-of-co-and-contravariance/, [Online; accessed 2015].

[5] W. R. Cook, W. L. Hill, and P. S. Canning, “Inheritance is not subtyp-
ing,” in Conference Record of the Seventeenth Annual ACM Symposium
on Principles of Programming Languages, San Francisco, California,
USA, January 1990, 1990, pp. 125–135.

76 CONCEPTS OF PROGRAMMING LANGUAGES – COPL’15

[6] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 16, no. 6, pp. 1811–1841, 1994.

[7] http://javascript.crockford.com/prototypal.html/, [Online; accessed
2015].

[8] D. Crockford, JavaScript - the good parts: unearthing the excellence in
JavaScript. O’Reilly, 2008.

[9] A. G. Stephenson, D. R. Mulville, F. H. Bauer, G. A. Dukeman,
P. Norvig, L. LaPiana, P. Rutledge, D. Folta, and R. Sackheim, “Mars
climate orbiter mishap investigation board phase i report, 44 pp,” NASA,
Washington, DC, 1999.

[10] D. Malayeri and J. Aldrich, “Integrating nominal and structural subtyp-
ing,” in ECOOP 2008 - Object-Oriented Programming, 22nd European
Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings, 2008, pp.
260–284.

RÖSCH: ASPECTS OF OBJECT ORIENTATION 77

	Preface
	Contents
	Schramm: Metaprogramming
	Laue: Basics of Garbage Collection
	Skambath: Intermediate Represantations
	Schumacher: Static vs. Dynamic Typing
	Bergmann: Memory models
	Luerweg: Stack based programming
	Flucht: Evaluation Strategies
	Henke: Logic programming
	von Witte: Parser
	Harms: Array programming
	Bucciarelli: Just in time compilation
	Maas: Synchronous vs. asynchronous programming
	Rösch: Aspects of object orientation

