S UNIVERSITAT ZU LUBECK | S p

Just-In-Time Compilation

Thiemo Bucciarelli

Institute for Software Engineering and Programming Languages

18. Januar 2016

T. Bucciarelli 18. Januar 2016

1/25



NIVERSITAT ZU LUBECK | S
INSTITUTE FOR SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Definitions

Just-In-Time Compilation

Comparing JIT, AOT and Interpreters
Profiling

Optimization

The Java Virtual Machine

Conclusion

T. Bucciarelli 18. Januar 2016 2/25



UNIVERSITAT ZU LUBECK | S p

Definitions: Compiler

Definition: Compiler
Translation of source code from one programming language to another.

» Lexical Analysis
Split the input into atomic units.

» Syntax Analysis
Check if the syntax is correct (parser).

» Semantic Analysis
E.g. type checking. Typically results in an intermediate representation.

» Optimization
Increase the effectivity of the code without changing the semantics.

T. Bucciarelli 18. Januar 2016

3/25



:::,’; UNIVERSITAT ZU LUBECK i S p
Definitions: AOT Compiler

Definition: Ahead-of-Time (AOT) Compiler
» Compilation before runtime
» Typically called by the programmer
» Often produces native code for direct execution
» Mostly platform dependent!

T. Bucciarelli 18. Januar 2016

4/25



UNIVERSITAT ZU LUBECK

Definitions: Interpreters

Definition: Interpreter

T. Bucciarelli

>

>

v

v

Does not create any output
Processes at runtime

Directly executes the code on the processor (=interpreting)

Mostly platform independent!

18. Januar 2016

Isp

5/25



UNIVERSITAT ZU LUBECK | S p

Just-In-Time Compilation

Goals:
» Tries to fill the gap between Interpreter and AOT compilers
» Efficiency and platform independency

Structure:
» Performs compilation during runtime

Trace-based or method-based

Has to be as fast as possible

Can use additional information for better optimizations

\4

v

v

v

Knows the underlying hardware

T. Bucciarelli 18. Januar 2016

6/25



UNIVERSITAT ZU LUBECK | S p

Just-In-Time Compilation

Method-based:
» Only analyses the calls, no further analysis
» Similar to static AOT compilers
» Less efficient, but less overhead
Trace-based:

» Analyses what paths (fraces) are often used, and to which methods they
belong

» Can effectively be combined with an interpreter
» Allows targeted optimizations
» More efficient, more overhead

T. Bucciarelli 18. Januar 2016 7/25



1: UNIVERSITAT ZU LUBECK i S p
Comparing JIT, AOT and Interpreters

AOT-Compilers:
+ Can be arbitrary slow and thus perform time-consuming optimizations
+ No overhead at runtime
— Little platform independence
Interpreters:
+ Platform independence
=+ Little overhead at runtime

Inefficient for repetitive executions

Little optimization possibilities
JIT-Compilers:
+ Platform independence
+ Highly optimized and efficient code
+ Runtime optimizations
— High overhead at runtime

T. Bucciarelli 18. Januar 2016

8/25



UNIVERSITAT ZU LUBECK | S p

Profiling

» Necessary for the optimization
Analysis of the execution and collection of information

v

v

A good profiling is crucial for efficient optimizations

v

static or dynamic
Has to produce as less overhead as possible (especially for JIT)

v

Next slides:
» How could a profiler be implemented?
» What information could be collected?

T. Bucciarelli 18. Januar 2016

9/25



UNIVERSITAT ZU LUBECK | S p

Profiling: How?

Sampling-based:
Statistical approach: Take samples of the execution state

v

» Less precise, but very efficient

v

Does not affect memory management much

v

Drawback: A method could be completely undetected
Event-based:

» Profiler is triggered by certain events

» Very specified

T. Bucciarelli 18. Januar 2016 10/25



UNIVERSITAT ZU LUBECK | S p

Profiling: How?

Instrumentation:
» Injection of profiling code
» Very flexible, better performance than profiling by another thread

T. Bucciarelli 18. Januar 2016 11/25



UNIVERSITAT ZU LUBECK

Profiling: What?

Call graph:
» Graph showing the call-dependencies of the methods
» Edges contain the amount of times this call was performed
Execution Trace:
» A trace representing the execution, including timestamps.
» Most precise profile

T. Bucciarelli 18. Januar 2016

Isp

12/25



UNIVERSITAT ZU LUBECK | S p

Optimization

Optimization:
» Static or dynamic/adaptive

» JIT compilers can use both types (but not every technique, because of
their overhead)

Examples for static optimization:
» Dead code elimination
» Constant folding and propagation
» Loop-invariant code motion
Dynamic optimization on the basis of the Java Virtual Machine

T. Bucciarelli 18. Januar 2016 13/25



UNIVERSITAT ZU LUBECK

JVM: Introduction

v

Here: HotSpot and JRockit

AOT compilation of Java source-code to Java bytecode
JRockit uses JIT and HotSpot uses JIT& Interpreter

Bytecode is assembly-like, and easy to process during runtime

v

v

v

T. Bucciarelli 18. Januar 2016

Isp

14/25



] NIVERSIT}(T zZu LUBFCK i S p
JVM: Java Bytecode

What Java bytecode looks like

1 Compiled from "test.java"

2 public class test {

3 public test();

4 Code:

5 0: aload_0

6 1: invokespecial #1 // Method java/lang/Object."<
init >":()V

7 4: return

8

9 public static void main(java.lang.String[]);

10 Code:

1 0: iconst_5

12 1: istore_1

13 2: return

14}

T. Bucciarelli 18. Januar 2016 15/25



S UNIVERSITAT ZU LUBECK | S p

JRockit structure

Java application

+
1. JRockit runs JIT 2. JRockit monitors 3. JRockit runs
compilation i threads optimization

JRockit runs optimization

JIT-compiled Highly optimized
machine code machine code

T. Bucciarelli 18. Januar 2016 16/25



1; UNIVERSITAT ZU LUBECK i S p
JVM: HotSpot Optimizations

Hotspot Detection:
» Selective optimization: Only optimize parts of the code

» Assumption: the execution mostly resides in a small part of the code
(80/20 rule)

For 80% of the code , interpreting is probably more efficient than
compiling

v

v

Detect hot spots and focus on these for compilation and optimization

T. Bucciarelli 18. Januar 2016 17/25



UNIVERSITAT ZU LUBECK | S p

JVM: HotSpot Optimizations

Method Inlining:
» Method invokations are time consuming
» Copy the code of frequently invokated methods inside their
caller-methods
» Reduces overhead, allows more optimization
Problems:
» Recursive calls (infinite inlining, the optimizer has to set a maximum for
the inlining of recursive calls)
» Overriding (see next slide)

T. Bucciarelli 18. Januar 2016 18/25



1; UNIVERSITAT ZU LUBECK i S p
JVM: HotSpot Optimizations

Dynamic deoptimization:

Not every method can be inlined

If a method is not final, it could possibly be overridden at runtime
HotSpot speculatively inline methods which are not final (but not
overridden at this moment)

In certain cases, the inlining has to be undone, this is called dynamic
deoptimization

v

v

v

v

T. Bucciarelli 18. Januar 2016

19/25



1; UNIVERSITAT ZU LUBECK i S p
JVM: Hotspot Optimizations

Range check elimination:
» Java requires strict array bounding checks
» Reading, changing and overwriting a value would need two checks

the JVM can check if it is possible for the index value to change between
operations

v

v

Reduces the range check amount

T. Bucciarelli 18. Januar 2016 20/25



1: UNIVERSITAT ZU LUBECK i S p
JVM: When to use JIT?

» As stated in HotSpot Detection, interpreting is in some cases better than
JIT

» But: How to decide whether a method should be JIT-compiled or
interpreted?

» HotSpot uses heuristic approaches

T. Bucciarelli 18. Januar 2016 21/25



: UNIVERSITAT ZU LUBECK i S p
JVM: When to use JIT?

The simple heuristics
» Often executed methods should be compiled

» Large methods should also be compiled, even when they are rarely
executed

» Decision is based on the amount of executions and size of the methods

T. Bucciarelli 18. Januar 2016 22/25



NIVERSITAT ZU LUBECK

Example

Example for a simple decision graph:

T. Bucciarelli

method size

JIT_MIN_SIZE

compile

don’t compile

JIT_MIN_TIMES

amount of executions

18. Januar 2016

Isp

23/25



UNIVERSITAT ZU LUBECK | S p

Conclusion

» JIT compilation gives compilers the ability to be highly platform
independent

» Optimizations mostly based on assumptions, which could also have
negative effects

» |Important decisions: Optimize? JIT or interpret?

T. Bucciarelli 18. Januar 2016 24/25



Questions?

Thank you for your attention.
Questions?

Isp

25/25



	Definitions
	Just-In-Time Compilation
	Comparing JIT, AOT and Interpreters
	Profiling
	Optimization
	The Java Virtual Machine
	Conclusion

