
Just-In-Time Compilation

Thiemo Bucciarelli

Institute for Software Engineering and Programming Languages

18. Januar 2016

T. Bucciarelli 18. Januar 2016 1/25

Agenda

Definitions

Just-In-Time Compilation

Comparing JIT, AOT and Interpreters

Profiling

Optimization

The Java Virtual Machine

Conclusion

T. Bucciarelli 18. Januar 2016 2/25

Definitions: Compiler

Definition: Compiler
Translation of source code from one programming language to another.

I Lexical Analysis
Split the input into atomic units.

I Syntax Analysis
Check if the syntax is correct (parser).

I Semantic Analysis
E.g. type checking. Typically results in an intermediate representation.

I Optimization
Increase the effectivity of the code without changing the semantics.

T. Bucciarelli 18. Januar 2016 3/25

Definitions: AOT Compiler

Definition: Ahead-of-Time (AOT) Compiler
I Compilation before runtime
I Typically called by the programmer
I Often produces native code for direct execution
I Mostly platform dependent!

T. Bucciarelli 18. Januar 2016 4/25

Definitions: Interpreters

Definition: Interpreter
I Does not create any output
I Processes at runtime
I Directly executes the code on the processor (=interpreting)
I Mostly platform independent!

T. Bucciarelli 18. Januar 2016 5/25

Just-In-Time Compilation

Goals:
I Tries to fill the gap between Interpreter and AOT compilers
I Efficiency and platform independency

Structure:
I Performs compilation during runtime
I Trace-based or method-based
I Has to be as fast as possible
I Can use additional information for better optimizations
I Knows the underlying hardware

T. Bucciarelli 18. Januar 2016 6/25

Just-In-Time Compilation

Method-based:
I Only analyses the calls, no further analysis
I Similar to static AOT compilers
I Less efficient, but less overhead

Trace-based:
I Analyses what paths (traces) are often used, and to which methods they

belong
I Can effectively be combined with an interpreter
I Allows targeted optimizations
I More efficient, more overhead

T. Bucciarelli 18. Januar 2016 7/25

Comparing JIT, AOT and Interpreters

AOT-Compilers:

+ Can be arbitrary slow and thus perform time-consuming optimizations

+ No overhead at runtime

− Little platform independence

Interpreters:

+ Platform independence

± Little overhead at runtime

− Inefficient for repetitive executions

− Little optimization possibilities

JIT-Compilers:

+ Platform independence

+ Highly optimized and efficient code

+ Runtime optimizations

− High overhead at runtime

T. Bucciarelli 18. Januar 2016 8/25

Profiling

I Necessary for the optimization
I Analysis of the execution and collection of information
I A good profiling is crucial for efficient optimizations
I static or dynamic
I Has to produce as less overhead as possible (especially for JIT)

Next slides:
I How could a profiler be implemented?
I What information could be collected?

T. Bucciarelli 18. Januar 2016 9/25

Profiling: How?

Sampling-based :
I Statistical approach: Take samples of the execution state
I Less precise, but very efficient
I Does not affect memory management much
I Drawback: A method could be completely undetected

Event-based :
I Profiler is triggered by certain events
I Very specified

T. Bucciarelli 18. Januar 2016 10/25

Profiling: How?

Instrumentation:
I Injection of profiling code
I Very flexible, better performance than profiling by another thread

T. Bucciarelli 18. Januar 2016 11/25

Profiling: What?

Call graph:
I Graph showing the call-dependencies of the methods
I Edges contain the amount of times this call was performed

Execution Trace:
I A trace representing the execution, including timestamps.
I Most precise profile

T. Bucciarelli 18. Januar 2016 12/25

Optimization

Optimization:
I Static or dynamic/adaptive
I JIT compilers can use both types (but not every technique, because of

their overhead)

Examples for static optimization:
I Dead code elimination
I Constant folding and propagation
I Loop-invariant code motion

Dynamic optimization on the basis of the Java Virtual Machine

T. Bucciarelli 18. Januar 2016 13/25

JVM: Introduction

I Here: HotSpot and JRockit
I AOT compilation of Java source-code to Java bytecode
I JRockit uses JIT and HotSpot uses JIT& Interpreter
I Bytecode is assembly-like, and easy to process during runtime

T. Bucciarelli 18. Januar 2016 14/25

JVM: Java Bytecode

What Java bytecode looks like

1 Compiled from " t e s t . java "
2 p u b l i c c lass t e s t {
3 p u b l i c t e s t () ;
4 Code :
5 0: aload_0
6 1: invokespec ia l #1 / / Method java / lang / Object . " <

i n i t > " : () V
7 4: r e t u r n
8

9 p u b l i c s t a t i c vo id main (java . lang . S t r i n g []) ;
10 Code :
11 0: icons t_5
12 1: i s t o re_1
13 2: r e t u r n
14 }

T. Bucciarelli 18. Januar 2016 15/25

JRockit structure

T. Bucciarelli 18. Januar 2016 16/25

JVM: HotSpot Optimizations

Hotspot Detection:
I Selective optimization: Only optimize parts of the code
I Assumption: the execution mostly resides in a small part of the code

(80/20 rule)
I For 80% of the code , interpreting is probably more efficient than

compiling
I Detect hot spots and focus on these for compilation and optimization

T. Bucciarelli 18. Januar 2016 17/25

JVM: HotSpot Optimizations

Method Inlining:
I Method invokations are time consuming
I Copy the code of frequently invokated methods inside their

caller-methods
I Reduces overhead, allows more optimization

Problems:
I Recursive calls (infinite inlining, the optimizer has to set a maximum for

the inlining of recursive calls)
I Overriding (see next slide)

T. Bucciarelli 18. Januar 2016 18/25

JVM: HotSpot Optimizations

Dynamic deoptimization:
I Not every method can be inlined
I If a method is not final, it could possibly be overridden at runtime
I HotSpot speculatively inline methods which are not final (but not

overridden at this moment)
I In certain cases, the inlining has to be undone, this is called dynamic

deoptimization

T. Bucciarelli 18. Januar 2016 19/25

JVM: Hotspot Optimizations

Range check elimination:
I Java requires strict array bounding checks
I Reading, changing and overwriting a value would need two checks
I the JVM can check if it is possible for the index value to change between

operations
I Reduces the range check amount

T. Bucciarelli 18. Januar 2016 20/25

JVM: When to use JIT?

I As stated in HotSpot Detection, interpreting is in some cases better than
JIT

I But: How to decide whether a method should be JIT-compiled or
interpreted?

I HotSpot uses heuristic approaches

T. Bucciarelli 18. Januar 2016 21/25

JVM: When to use JIT?

The simple heuristics
I Often executed methods should be compiled
I Large methods should also be compiled, even when they are rarely

executed
I Decision is based on the amount of executions and size of the methods

T. Bucciarelli 18. Januar 2016 22/25

Example

Example for a simple decision graph:

don’t compile

compile

JIT_MIN_SIZE

JIT_MIN_TIMES

amount of executions

m
et

ho
d

si
ze

T. Bucciarelli 18. Januar 2016 23/25

Conclusion

I JIT compilation gives compilers the ability to be highly platform
independent

I Optimizations mostly based on assumptions, which could also have
negative effects

I Important decisions: Optimize? JIT or interpret?

T. Bucciarelli 18. Januar 2016 24/25

Questions?

Thank you for your attention.
Questions?

T. Bucciarelli 18. Januar 2016 25/25

	Definitions
	Just-In-Time Compilation
	Comparing JIT, AOT and Interpreters
	Profiling
	Optimization
	The Java Virtual Machine
	Conclusion

