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1896 1910 1912 1990 2003 2015

oil crisis

• growing environmental awareness

• government involvement

• new batteries and innovations

• more reloading opportunities

many new models

(Tesla, Mitsubishi, Nissan, Renault,

VW, BMW, Apple?)

?
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The Shortest Path Problem Revisited:

Optimal Routing for Electric Vehicles

[Andreas Artmeier, Julian Haselmayr, Martin Leucker, Martin Sachenbacher] @KI
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ROUTE PLANNING FOR EVs

• battery-powered
→limited cruising range

• time-intensive reloading

• sparse loading stations

Goal
computing energy-optimal routes



ROUTE PLANNING FOR EVs

Conventional Route Planning
given a road network G(V,E) and edge costs (e.g. distance or travel time)
c : E → R+ , compute the minimum cost path from s ∈ V to t ∈ V .

Basic Algorithm
Dijkstra, runtime O(n log n +m) with
n = |V |,m = |E|
query time: seconds on Germany

Speed-Up Techniques
Contraction Hierarchies, Reach, Transit Nodes,
· · ·
query time: milli/microseconds

Conditions
edge costs constant and non-negative!
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Problem

• partly negative edge costs due to regenerative breaking

• battery should not overload

• battery should not run empty
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Problem

• partly negative edge costs due to regenerative breaking

• battery should not overload

• battery should not run empty

ts
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M=20

Dijkstra

battery constraints
bv ∈ [0,M ]

[Artmeier et al. 2010]

extended version of Bellman-Ford solves the problem

• check for every path prefix whether constraints are satisfied

• runtime O(nm) impractical for large networks! minutes to hours on Germany...

Bellman-Ford O(nm)
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Energy costs depend on charge status
→ can be modelled as edge cost functions

A) c(e) ≥ 0

f (bv) =

{
∞ bv < c(e)

c(e) otherwise

f
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FIFO costs

⇒ Bellman-Ford can be applied directly
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Dealing with negative edge costs

THEOREM [Johnson 1977]

There exists a potential function φ : V → R, such that
∀e = (v, w) ∈ E yields: c′(e) = c(e) + φ(v)− φ(w) ≥ 0 and the
structure of shortest paths remains the same under the new costs.

Assumption: G has no negative cost cycles

Generalisation to edge cost functions

f ′(bv) = f (bv − φ(v)) + φ(v)− φ(w)

⇒ Dijkstra applicable after preprocessing phase

query times in the order of seconds on Germany!
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Acceleration with Contraction Hierarchies

[Geisberger et al. 2008]
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24 x2 + 2x

3x2 + x+ 5

3x4 + 18x3 + 29x2 + 6x+ 5

[Batz et al. 2009]

applicable for edge cost functions

BUT complexity increases with chaining

THEOREM

The descriptive complexity of energy cost
functions is bounded.

l...minimum charge to use the path
u...maximum charge to use the path without overcharging
c...summed path costs
d...final charge when initial charge ≥ u

f (bv) =


∞ bv < l

c bv ∈ [l, u]

bv − d bv > u
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Acceleration with Contraction Hierarchies

[Geisberger et al. 2008]

57

4

3

5

24 x2 + 2x

3x2 + x+ 5

3x4 + 18x3 + 29x2 + 6x+ 5

[Batz et al. 2009]

applicable for edge cost functions

BUT complexity increases with chaining

THEOREM

The descriptive complexity of energy cost
functions is bounded.

l...minimum charge to use the path
u...maximum charge to use the path without overcharging
c...summed path costs
d...final charge when initial charge ≥ u

f (bv) =


∞ bv < l

c bv ∈ [l, u]

bv − d bv > u

⇒ CH applicable

query times in the order of milliseconds on Germany!



ROUTE PLANNING FOR EVs

Optimal Route Planning for Electric Vehicles in Large Networks
Jochen Eisner, Stefan Funke, Sabine Storandt
AAAI, 2011

Efficient Energy-Optimal Routing for Electric Vehicles
Martin Sachenbacher, Martin Leucker, Andreas Artmeier, Julian Haselmayr
AAAI, 2011

A* framework for dynamically changing energy costs

Energy-Optimal Routes for Electric Vehicles
Moritz Baum, Julian Dibbelt, Thomas Pajor, Dorotha Wagner
SIGSPATIAL, 2013

Customizable route planning for EVs
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TAKING DISTANCE/TRAVEL TIME INTO ACCOUNT

quickest path

energy-optimal path

quickest path without running out of energy

energy-optimal path with bounded detour

Quick and Energy-Efficient Routes - Computing Constrained Shortest Paths for Electric Vehicles
Sabine Storandt
IWCTS, 2012

Constrained Shortest Path problems ⇒ NP-hard

Acceleration schemes to still achieve query times in the order milliseconds



TAKING DISTANCE/TRAVEL TIME INTO ACCOUNT

quickest path

energy-optimal path

quickest path without running out of energy

energy-optimal path with bounded detour

Constrained Shortest Path problems ⇒ NP-hard

Taking into account that speed influences energy consumption

Speed-Consumption Tradeoff for Electric Vehicle Route Planning
Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, Dorothea Wagner
ATMOS, 2014

Energy-Efficient Routing: Taking Speed into Account
Frederik Hartmann, Stefan Funke
KI, 2014
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quickest path

energy-optimal path

quickest path without running out of energy

energy-optimal path with bounded detour

Constrained Shortest Path problems ⇒ NP-hard

Many, many, many more...



TAKING DISTANCE/TRAVEL TIME INTO ACCOUNT

quickest path

energy-optimal path

quickest path without running out of energy

energy-optimal path with bounded detour

Constrained Shortest Path problems ⇒ NP-hard

Two-phase bicriterion search for finding fast and efficient electric vehicle routes
Michael T. Goodrich, Pawe Pszona
SIGSPATIAL, 2014

quickest path energy-optimal path

s t
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WHERE TO RELOAD

How often do I have to recharge?

What is the quickest feasible path with recharging?

What is the quickest feasible path whith at most k recharging events?



WHERE TO RELOAD

Build reachability graph

RG(L,E) : e = (l, l′) ∈ E iff it exists path from l to l′ without recharging

c(e) equals travel time on the quickest feasible path from l to l′

l1 l2
6(+3)

5(+3)
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WHERE TO RELOAD

Build reachability graph

RG(L,E) : e = (l, l′) ∈ E iff it exists path from l to l′ without recharging

c(e) equals travel time on the quickest feasible path from l to l′

l1 l2

4

118(+3)

2(+3)

6(+3)

5(+3)

run Dijkstra

on query time augment RG with edges from s and to t

possibly with reloading penalties

s t



WHERE TO RELOAD

Cruising with a Battery-Powered Vehicle and not getting Stranded
Sabine Storandt, Stefan Funke
AAAI, 2012

Quick and Energy-Efficient Routes - Computing Constrained Shortest Paths for Electric Vehicles
Sabine Storandt
IWCTS, 2012



WHERE TO RELOAD

Cruising with a Battery-Powered Vehicle and not getting Stranded
Sabine Storandt, Stefan Funke
AAAI, 2012

Quick and Energy-Efficient Routes - Computing Constrained Shortest Paths for Electric Vehicles
Sabine Storandt
IWCTS, 2012

Many papers on more complicated settings...

... incomplete reloading allowed

... different kind of loading stations
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LOADING STATION PLACEMENT

?

Natural Goals place loading stations such that...

... one can drive from anywhere to anywhere (and back)

... one can always drive on shortest paths

... one can drive on shortest paths allowing small detours
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⇒ NP-hard and hard to approximate!

R(v ∈ V)... set of all ev-reachable nodes from v

C(v ∈ V)... set of all ev-connected nodes of v

v

w

v
w

GOAL select L ⊆ V
1) ∀v ∈ V : RL(v) = V
2) ∀v ∈ V : CL(v) = V
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Choose L ⊆ V such that ∀v ∈ V : CL(v) = V .

Alternative Formulation
1. ∀v ∈ V ∃l, l′ ∈ L : l, · · · , v, · · · , l′ feasible

2. ∀l ∈ L : CL(l) ⊇ L

v
l

l′

c

≤M − c
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Choose L ⊆ V such that ∀v ∈ V : CL(v) = V .

Alternative Formulation
1. ∀v ∈ V ∃l, l′ ∈ L : l, · · · , v, · · · , l′ feasible

2. ∀l ∈ L : CL(l) ⊇ L

v
l

l′

c

≤M − c

s

t

Greedy Algorithm

Minimum Spanning Tree
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avg. cruising lower reachability connectivity
range bound
75 km 105 339 812
100 km 49 147 379
125 km 37 103 268
150 km 22 61 187
175 km 14 46 138

number of loading stations
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⇒ hit all (almost) shortest paths

avg. cruising lower reachability connectivity shortest paths
range bound
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150 km 22 61 187
175 km 14 46 138

number of loading stations
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s t

Problem

⇒ hit all (almost) shortest paths

avg. cruising lower reachability connectivity shortest paths
range bound
75 km 105 339 812
100 km 49 147 379
125 km 37 103 268 728
150 km 22 61 187
175 km 14 46 138

number of loading stations



LOADING STATION PLACEMENT

Enabling E-Mobility: Facility Location for Battery Loading Stations
Sabine Storandt, Stefan Funke
National Conference of the American Association for Artificial Intelligence (AAAI, 2013)

Placement of Loading Stations for Electric Vehicles: No Detours Necessary!
Stefan Funke, Andre Nusser, Sabine Storandt
National Conference of the American Association for Artificial Intelligence (AAAI, 2014)

considering different kinds of charching stations

higher demand in cities

traffic planning
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the developed algorithms superfluous
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the developed algorithms superfluous

or require novel ones



WHAT NEXT

new battery and recharging technologies might make most of
the developed algorithms superfluous

new challenges to the power grid
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for your attention!
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Questions?

bv
0

∞

Mc(e)

c(e)

l


