UNIVERSITAT ZU LUBECK
INSTITUTE FOR SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Modified Condition/Decision Coverage
based on jumps

Sprungbasierte Messung von
Modified Condition/Decision Coverage

Masterarbeit

im Rahmen des Studiengangs
Informatik
der Universitat zu Liibeck

vorgelegt von
Felix Dino Lange

ausgegeben und betreut von
Prof. Dr. Martin Leucker

mit Unterstiitzung von
Malte Schmitz

Liibeck, den 14. Februar 2018

Erklarung

Hiermit erklare ich an Eides statt, dass ich die vorliegende Arbeit ohne unzuléssige
Hilfe Dritter und ohne die Benutzung anderer als der angegebenen Hilfsmittel selb-
standig verfasst habe; die aus anderen Quellen direkt oder indirekt iibernommenen
Daten und Konzepte sind unter Angabe des Literaturzitats gekennzeichnet.

(Felix Dino Lange)
Liibeck, den 14. Februar 2018

Abstract Modified condition/decision coverage (MC/DC) is a coverage criterion,
that is required for the certification of safety-critical software-systems used in the
avionics industry.

Measuring MC/DC is usually done by instrumenting the code, which is intrusive and
especially problematic in resource-limited systems. This thesis introduces a novel
approach, that makes it possible to measure MC/DC without instrumentations. The
basic idea is that every condition in the source code is translated to a conditional
jump in the object code. This makes it possible to reconstruct the assignments of the
conditions by analyzing program traces and to evaluate the coverage afterwards.

One possibility is to record the program trace and afterwards analyze the trace to
find out which conditional jumps were executed. This approach is limited, because
the size of traces becomes unfeasible very quickly.

To overcome these limitations an online approach is introduced, that combines cur-
rent research on online trace reconstruction with online monitoring of trace infor-
mation.

Kurzfassung Modified condition/decision coverage (MC/DC, auch zu deutsch Mod-
ifizierte Bedingungs-/Entscheidungsiiberdeckung) ist ein Coverage-Kriterium, das

fiir die Zulassung von sicherheitskritischen Softwaresystemen in der Luftfahrtindus-

trie vorgeschrieben ist.

Die Messung von MC/DC wird tiblicherweise durch Codeinstrumentierung realisiert,
was eine Veranderung des Codes mit sich bringt und insbesondere bei Systemen mit
limitierten Resourcen zu Problemen fiihren kann. Diese Thesis stellt einen neuar-
tigen Ansatz vor, der es erméglicht MC/DC ohne Eingriff in den Code zu messen.
Die Grundidee ist dabei, dass jede Bedingung im Quellcode zu einem bedingten
Sprung im Objektcode tibersetzt wird. Dies ermoglicht es die Belegung von Bedin-
gungen durch eine Analyse von Programmtraces zu rekonstruieren und anschlieend
die Coverage zu evaluieren.

Es ist moglich den Trace aufzuzeichnen und anschlieBend zu analysieren, um her-
auszufinden welche bedingte Spriinge ausgefithrt worden sind. Dieser Ansatz ist
jedoch limitiert, da das Ausmafl der Traces sehr schnell sehr grof§ werden kann.

Um diese Limitierung zu umgehen, wird ein Online-Ansatz vorgestellt, der aktuelle
Forschung an Online-Trace-Rekonstruierung mit Online-Monitoring verbindet.

vii

Contents

Introduction
1.1 Outline s,

Structural Coverage Analysis & DO-178C

2.1 Verification of Safety-Critical Software

2.2 Structural Coverage Analysis
2.2.1 Statement Coverage
2.2.2 Decision Coverageo
2.2.3 Multiple Condition Coverage
2.2.4 Modified Condition/Decision Coverage

Technical Details of Modified Condition/Decision Coverage

3.1 Multiple Interpretation of MC/DC
3.2 MC/DC with Short-Circuit Logic
3.3 Definition of a Decision
3.4 Relation to Object Branch Coverage
3.5 Coverage Analysis at the Object Code Level

Watchpoint Declaration by Static Analysis

4.1 Static Analysis of Source Code
4.1.1 If Statements
4.1.2 Assignment Statementso L

4.2 Static Analysis of Object Code

4.3 Assignment Reconstruction 0L

Offline MC/DC Measurement
5.1 Evaluation of Independence
5.2 Limits of the Offline Approach

Online MC/DC Measurement

6.1 Online Trace Monitoring

6.2 Assignment Reconstruction L.

6.3 Generate Online Monitors for MC/DC
6.3.1 Determining all possible Cases
6.3.2 MC/DC Monitors o

Contents

7 Implementations 35
7.1 Trace Generation 35
7.2 Static Analysis 35

7.2.1 LibClang 36
7.2.2 LibTooling/LibASTMatchers 36
7.2.3 Reading Debugging Symbols 37
7.3 Tterative MC/DC Evaluation 38
7.4 Online Monitors 42
74.1 TeSSLa 42
7.4.2 Assignment Reconstruction 43
7.4.3 Test Case Reconstruction 43
7.4.4 Monitoringo 44

8 Conclusion 47
8.1 Limits 47
8.2 Outlook 48

1 Introduction

We trust our lives on software-based systems on a daily basis in aviation, automo-
tive, medicine or other safety-critical systems. Malfunction of this kind of software
can potentially lead to accidents, including tremendous damage and potential loss
of lives. In order to prevent disastrous events certification standards, for example
the DO-178C in the domain of aerospace software systems, are used by certification
authorities, like the Federal Aviation Administration (FAA) and the European Avi-
ation Safety Agency (EASA), to approve safety-critical software and ensure that the
software used in the systems follows certain software engineering standards.

The verification process is an important part of the software life cycle and is there
to find errors that were introduced during the software development. The verifica-
tion guidance provided by the DO-178C includes a combination of reviews, analyses
and tests. While reviews and analyses assess the accuracy, completeness and veri-
fiability of the outputs of each phase in the software life cycle, testing verifies that
the behavior of a system or a system component satisfies specified requirements.
Detecting an error is equivalent to a behavior of the system that does not meet the
requirements.

DO-178C requires that structural coverage analysis is performed during the verifica-
tion process mainly as a completion criterion for the testing effort and to find dead
code. There are multiple coverage criteria, that can be fulfilled during the structural
coverage analysis and the level of code coverage depends on the safety level, which
is determined by the damage that malfunction of the software can cause. Modified
condition/decision coverage (MC/DC) is the coverage criterion that is required for
software with the highest safety level A. In order to fulfill MC/DC the indepen-
dent effect of all conditions that can influence the outcome of a decision has to be
shown. MC/DC is a complex criterion and the definition of the independent effect
has lead to wide discussions about the applicability and usefulness as a criterion.
Supporter of the criterion praise that the decisions are guaranteed to be thoroughly
tested and that the minimum numbers of test cases grow linearly with the number
of conditions. On the other hand critics question the high costs, that are consumed
in generating the needed number of test cases, and the ability of the criterion to
find errors [Bha07].

Structural coverage analysis is usually done by instrumenting the source code to
observe information about the taken paths, executed statements and evaluated con-

1 Introduction

ditions. Instrumenting, i.e. software logging output, decreases the performance of
the code significantly and is highly intrusive. After the verification process is com-
pleted, the developers have to decide if they either can leave the instrumentations
inside the finished code or remove the instrumentations. The first option is especially
problematic in resource limited embedded systems, because the instrumentation uses
valuable memory and processing power. For the second option, it has to be shown
that the instrumentation did not modify the behavior and that removing the instru-
mentation does not affect the measured coverage. Automatic code instrumentation
and breakpoint-based debugging features of modern CPUs provide faster solutions
but they are intrusive nonetheless and especially problematic for multi-core CPUs
as they can introduce or hide errors for example due to race conditions[DGH*17].

Modern microprocessors feature embedded trace units (ETU), that deliver runtime
information to debug ports of the processor. Because the information contains all
executed instructions, it is delivered in a highly compressed format, which has to be
reconstructed in order to gather the sequence of instructions and jumps executed
by the processor. ARM CoresSight is one example if this technology and is avail-
able in most current ARM processors (Cortex M, R and A)[ARM13]. Usually the
information by the ETU has to be recorded and reconstructed offline after the exe-
cution, but there are novel approaches how this can be done online during runtime,
which makes it possible to monitor an execution for a basically unlimited amount of

time. Online reconstruction of trace data is a challenging task and currently under
research and described in [DGH*17].

The goal of this thesis is to show under what conditions MC/DC can be measured
with no or minimal instrumentation. Static analysis of the source and object code
is used to find out the interesting conditional jumps that correspond to conditions
in the source code. This information can be used to analyze recorded traces that
can be gathered with modern technology like IntelPT[Reil3] and ARM DSTREAM
[ARM17]. This offline approach has the disadvantage that it is only possible to
record a few seconds of trace data, because of enormously high data rates.

In a second approach MC/DC is evaluated how traces can be analyzed with online
monitors based on the temporal stream based language TeSSLa. They can be build
for the evaluation of MC/DC by analyzing the decision’s structures. This approach
is promising to allow long term observation of a system’s behavior without temporal
limitations.

1.1 Outline

1.1 Outline

The remainder of this thesis is structured as follows:

Chapter 2 describes the context of MC/DC and it’s part in the structural coverage
analysis and the verification of avionics software.

Chapter 3 discusses the technical details of MC/DC in particular with short-circuit

logic and shows why object branch coverage is generally not sufficient to show
MC/DC.

Chapter 4 describes how static analysis can be used to find conditional jumps that
correspond to conditions. The addresses of these and the addresses that are the
target of these jumps are then declared as watchpoints. With these information
the assignments of the conditions during the execution of the code can be
reconstructed by analyzing the trace.

Chapter 5 explains how MC/DC can be measured non-intrusively by analyzing
traces offline. The limitations of this approach lead to the online approach.

Chapter 6 contains a concept how MC/DC can be measured non-intrusively online
and describes how online monitors for MC/DC can be specified in a stream-
based language.

Chapter 7 contains details about the used technologies and how before introduced
ideas have been implemented.

2 Structural Coverage Analysis & DO-178C

2.1 Verification of Safety-Critical Software

The DO-178C/ED-12C, Software Considerations in Airborne Systems and Equip-
ment Certification is a document published by the RTCA, Inc. (Radio Technical
Commission for Aeronautics), which is used by certification authorities to approve
commercial software-based aerospace systems. Software verification, an integral
part of the DO-178C-compliant certification process, is essential for the develop-
ment of safety-critical software. DO-178C defines verification as "The evaluation
of the outputs of a process to ensure correctness and consistency with respect to
the inputs and standards provided to that process”. One important part of the ver-
ification process is testing, which is described as “the process exercising a system
or system component to verify that it satisfies specified requirements and to detect
errors”[Riel3].

DO-178C defines an error as “with respect to software, a mistake in requirements,
design, or code”[Riel3]. Because errors are defined with respect to requirements
and code, the DO-178C focuses on requirements-based testing to in order to detect
errors before they can become faults or failuresfHVCRO1]. The purpose of software
testing is to uncover errors that were made during the development phases. During
requirements-based testing all tests should be derived from the requirements and
their execution should show that the requirement, it is derived from, is met and
ensure that there is no unintended functionality. Software testing can only find
errors, but can never be used to prove that no error exists, because the domain of
possible inputs is too large to test and there are too many possible paths through the
program[KF99]. Therefore an exit criterion is needed that helps to verify that the
testing effort is completed, for example of the DO-178C that is structural coverage
analysis.

2 Structural Coverage Analysis & DO-178C

Requirements

Unimplemented
Function

Correct
Function

A

Incorrect
Function

Unspecified

- .
Function

Implementation

Figure 2.1: Requirements and Implementation Overlap[CKO07]

2.2 Structural Coverage Analysis

Table A-7 in DO-178C is entitled “Verification of Verification Process Results” and
requires evaluation of the adequacy and completeness of the requirements-based
testing process by performing requirements coverage analysis and structural cov-
erage analysis. While requirements coverage analysis determines which require-
ments have and have not been tested, structural coverage analysis has the following
purposes|Riel3]:

e Ensures that all code has been executed at least once and that there is no dead
code.

e Finds unintended and untested functionalities and helps identify incorrect
logic.

o Serves as an objective completion criterion for the testing effort.

Figure 2.1 shows what kind of errors can be detected in the requirements-based test-
ing process. Structural coverage analysis is generally capable of finding the functions
in the code that were not specified in the requirements (unspecified function) and
can help to find incorrect functions. To find the unimplemented function it is nec-
essary to perform requirements coverage analysis, because they are described in the
requirements but they are not implemented yet.

2.2 Structural Coverage Analysis

DO-178C requires different structural coverage criteria depending on the safety level
of the software that is under verification. Depending on the effect that a failure of the
software can have, it can be classified into five Software Levels or Design Assurance
Level:

e Level A: catastrophic effect
Level B: hazardous effect
Level C: major effect

Level D: minor effect

Level E: no effect

In order to understand how MC/DC compares to other coverage criteria, the most
common used criteria are introduced in the following. Generally speaking, the higher
the software level, the more complicated the required coverage criteria become and
the more test cases are needed to satisfy the criterion. The following brief definitions
and explanations are based on the DO-178C or on references that are based on the
DO-178C[Riel3].

2.2.1 Statement Coverage

Statement coverage is required for software levels A, B, and C. Achieving statement
coverage shows that all code statements are reachable based on the test cases de-
veloped from the requirements. Due to the lack of detecting logical errors and the

insensitivity to some control structures statement coverage is considered a relatively
weak criterion[HVCRO1].

Definition 2.1 (statement coverage). DO-178C Table A-7 Objective 7 defines[Riel3]:

o “Statement coverage:
— “Every statement in the program has been invoked at least one”

2.2.2 Decision Coverage

Decision coverage is required for software levels A and B. In context of the DO-
178-C it must be noted that the commonly used definition that equals decision
coverage with branch or path coverage must be extended with the literal definition
of a decision in the DO-178C (see section 3.3 for details).

Definition 2.2 (decision coverage). DO-178C Table A-7 Objective 6 defines[Riel3]:

e “Decision - A Boolean expression composed of conditions and zero or more
Boolean operators. If a condition appears more than once in a decision, each
occurrence is a distinct condition.”

2 Structural Coverage Analysis & DO-178C

e “Decision coverage:
— Every point of entry and exit in the program has been invoked at least
once
— and every decision in the program has taken on all possible outcomes at
least once.”

2.2.3 Multiple Condition Coverage

Multiple condition coverage guarantees to find every error that is caused by logical
decisions, because every possible input combination has to be ensured in order to
fulfilled the criterion. Because every combination (True and False) of every condi-
tion has to be tested, a minimum set of 2" test cases needed for a decision with n
conditions. This exponential growth can result in a test suite size that is not feasible
and therefore the criterion is not required by the DO-178C.

Definition 2.3 (multiple condition coverage). [Mye06] defines:

o “Multiple condition coverage:
— “Every point of entry and exit in the program has been invoked at least
once,
— all possible combinations of the outcomes of the conditions within each
decision have been taken at least once.”

2.2.4 Modified Condition/Decision Coverage

Modified condition/decision coverage (MC/DC) is required for level A software. It
was introduced to the aviation industry to address the concerns of testing complex
Boolean expression. Less advanced criteria, like decision coverage, treat a decision
as a single node in the program structure, regardless of its complexity[CM94].

MC/DC requires a minimum of n+1 test cases for an expression with n uncoupled
conditions[KC15]. This linear growth makes MC/DC more applicable than the
multiple conditions coverage, which requires to test every possible combination of
inputs in every decision and therefore has an exponential growth of test cases.

2.2 Structural Coverage Analysis

Definition 2.4 (modified condition/decision coverage). DO-178C Table A-7 Ob-
jective 5[Riel3] defines:

e “Condition - A Boolean expression containing no Boolean operators except for
the unary operator (NOT).

e “Decision - A Boolean expression composed of conditions and zero or more
Boolean operators. If a condition appears more than once in a decision, each
occurrence is a distinct condition.”

o “Modified condition/decision coverage:

— Every point of entry and exit in the program has been invoked at least
once,

— every condition in a decision in the program has taken all possible out-
comes at least once,

— every decision in the program has taken all possible outcomes at least
once, and

— each condition in a decision has shown to independently affect that deci-
sion’s outcome by: (1) varying just that condition while holding fixed all
other possible conditions, or (2) varying just that condition while holding
fixed all other possible conditions that could affect the outcome.”

The most important part of this definition is the demand to show the independent
effect of conditions on their decision. See chapter 3 for the multiple interpretations
of this definition and the technical details of MC/DC.

3 Technical Details of Modified
Condition/Decision Coverage

The most challenging and in the literature ([Chi01],|CGHQ12],[Bha07]) most dis-
cussed part about fulfilling MC/DC is to show the independent effect of each con-
dition in a decision. To show the independence there are at least two cases for each
condition needed where only the outcome of the decision and the condition itself is
toggled. These two cases are also called independent pair. Table 3.1 shows all input
cases for an example decision (A V (B A C)). For instance an independent pair for
condition A are number 2 and 6 because only the value of A and the outcome of the
decision is changing. Similarly, independent pairs for the other conditions can be
found. The minimal sets of cases that show the independent effect of all conditions

and therefore fulfill MC/DC are {2, 3, 4, 6} and {2, 3, 4, 7}.

input: decision: pairs:
Nr. A B C Av(BAC) A B C
1 F F F F 5
2 F F T F 6 4
3 F T F F 7 4
4 F T T T 2 3
5 T F F T 1
6 T F T T 2
7 T T F T 3
8 T T T T

Table 3.1: Unique-Cause MC/DC table with independent pairs for decision
AV (BACQC).

11

3 Technical Details of Modified Condition/Decision Coverage

3.1 Multiple Interpretation of MC/DC

Other the last years the interpretation of what it means to show the independent
effect of a condition has been interpreted in different ways. [Chi0l] defines and
extensively discusses three forms that are briefly introduced in the following.

Unique-Cause MC/DC' is the strongest form of MC/DC and is the original inter-
pretation of the DO-178B. It requires that a single condition and the decision’s
outcome is toggled to show that condition’s independence. That definition implies
that the values of all other conditions are known and that they are guaranteed to be
fixed. If a decision contains strongly coupled conditions, it is not possible to show
coverage. For example, it is not possible to show Unique-Cause MC/DC for the
decision AV (B A—A), because the first condition A is strongly coupled to the third
condition —A and therefore it is not possible to change the value of one condition
while holding the other fixed. That restriction makes Unique-Cause MC/DC not
very useful in practice.

Unique-Cause + Masking MC/DC' expands Unique-Cause MC/DC so that masking
is allowed for strongly coupled conditions. Meaning that all conditions must be
fixed excluding these that are strongly coupled. This definition complies with the
interpretation of [CM94].

Masking MC/DC is the weakest form of MC/DC and allows masking in all cases. A
condition is considered masked in this context, if varying this condition cannot affect
the outcome of a decision. For example, it is sufficient to show the independent effect
of Ain AV (B A C) by holding the subexpression B A C fixed to False even if the
values of B and C are changing. [ChiO1] concludes that this should be the preferred
form of MC/DC because, although Masking MC/DC allows less distinguishable test
cases than Unique-Cause MC/DC, it’s performance in detecting incorrect Boolean
functions is not significantly different. Masking MC/DC is easier to satisfy because
it allows for more independence pairs per condition.

In the position paper CAST-6 [TT01] the Certification Authorities Software Team
(CAST) compares Unique-Cause MC/DC and Masking MC/DC and concludes that
Masking MC/DC meets the intent of the MC/DC objective and is therefore an ac-
ceptable method for meeting MC/DC with applicants striving to meet the objectives
of DO-178B, Level A.

In DO-178C the definition of MC/DC was slightly modified and the amendment *...
(2) varying just that condition while holding fixed all other possible conditions that

could affect the outcome.”(see definition 2.2.4) was added[Pot12] in order to clarify
the acceptance of Masking MC/DC.

12

3.2 MC/DC with Short-Circuit Logic

1 0x40047d <+13>: cmpl $0x0,—0x8(%rbp)

2 0x400481 <+17>: jne 0x40049b <testFunction+43>
3 0x400487 <+23>: cmpl $0x3,—0xc(%rbp)

4 0x40048b <+27>: jge 0x4004a7 <testFunction+55>
5 0x400491 <+33>: cmpl $0x5,—0x10(%rbp)

6 0x400495 <+37>: jne 0x4004a7 <testFunction+55>
7 0x40049b <+43>: movl $0x1,—0x4(%rbp)

8 0x4004a2 <+50>: jmpq 0x4004ae <testFunction+462>
9 0x4004a7 <+55>: movl $0x0,—0x4(%rbp)

10 0x4004ae <+62>: mov —0x4(%rbp),%eax

11 0x4004b1 <+465>: pop Y%rbp

12 0x4004b2 <+66>: retq

Figure 3.1: Object code for example decision A || (B && C).

3.2 MC/DC with Short-Circuit Logic

To evaluate MC/DC by analyzing program traces, that contain only information
about the executed instructions and performed jumps, it is essential to consider how
the compiler translates decisions into the object code. In most modern programming
languages like C/C++ Boolean expressions are evaluated in strict order (left to right)
and by using short circuit logic. For example, the right operand of the &&-operator
is not evaluated if the left operand is False and right operand of the ||-operator
is not evaluated if the left operand is True. In the remainder of this thesis the
symbols && and || are used as the short-circuit operators, while A and V stand for
the traditional logical operators.

Figure 3.1 shows how the decision A || (B && C) is translated to object code in C
using the Clang compiler. Note how every condition is translated into a conditional
jump and short-circuit logic is used, if the target of a jump skips the evaluation of
other conditions. For example, if the jump in line 2 is taken, the other conditional
jumps in line 4 and 6 are not evaluated at all.

Table 3.2 shows the short-circuit behavior for all possible condition inputs. It can be
seen that the cases 5, 6, 7 and 8 are not distinguishable by looking at the evaluated
conditions because of the ||-operator. Cases 1 and 2 show the same behavior with
respect to the &&-operator. This reduction in complexity will be utilized in the
online MC/DC measurement process as described in chapter 6. Besides True and
False a third value, e.g. 7, is needed to express the situation that the condition has
not been evaluated at all due to short-circuit evaluation.

To show the independent effect of each condition as is required in definition 2.2.4
there must be found at least two cases where only the value of this condition differs
and also the value of the outcome of the decision differs (independent pairs). If
condition were not evaluated at all (value of ?) they are not accountable, meaning
that their occurrence does not count as a different value of a condition. When

13

3 Technical Details of Modified Condition/Decision Coverage

input: decision: evaluated:
Nr. A4 B C A||B&&C): A B C
1 F F F F F F 7
2 F F T F F F 7
3 F T F F F T F
4 F T T T F T T
5 T F F T T 7 7
6 T F T T T 7 7
7 T T F T T 7 7
8 T T T T T 7 7

Table 3.2: Short-circuit evaluation for decision A || (B && C).

evaluated: decision: pairs:
Nr. A B C A||B&&C): A B C
1 F ? F 4 3
2 F T F F 4 4
3 F T T T 1
4 T 7 7 T 1,2 2

Table 3.3: All distinguishable cases and independent pairs for
the decision A || (B && C).

the left-hand operand alone determines the outcome of the decision, the right-hand
operand can be considered as masked in sense of Masked MC/DC[CGHQ12]. This
assumption complies with the part of the DO-178C definition: “each condition in
a decision has shown to independently affect that decision’s outcome by: ... (2)
varying just that condition while holding fixed all other possible conditions that
could affect the outcome.”, because a condition that is not evaluated cannot affect
a decision’s outcome.

For example, in table 3.3 cases 1 and 3 show independence for condition B with
respect to Masking MC/DC, because the value of B and the outcome differs while
the other conditions are not changing (A) or respectively were not evaluated at all
(condition C| case 1). In this case all the possible distinguishable cases (1-4) are
needed to show MC/DC of this decision.

14

3.3 Definition of a Decision

3.3 Definition of a Decision

Because the term decision is commonly used synonymously with the term branch
point the CAST position paper CAST-10 was published in 2002 to clarify the mean-
ing of decision in the context of the DO-178C. It states that MC/DC should apply to
all decisions, not just those within a branch point. That means that additionally to
the decision within a branch point all Boolean operations that appear (i.e. in assign-
ment statements) have to be considered. This position prevents that level A and B
software can be coded with all Boolean operators outside of components’ code con-
trol constructs which would weaken the achieved test coverage significantly[T+02].
An example of this kind of cheating is provided in the following:

The decision:

if((B || C) && D) then

can be expressed as:

A =B || C;
E = A && Dy
if E then

In the first case at least four test cases are needed to show MC/DC while the second
case would be covered by just assigning E to both True and False if a decision
would be equal to a branch point. The CAST position paper argues that every
logical structure should be thoroughly exercised, whether it occurs at a branch
point or not.

This position provides two conclusions for this thesis. First the static analysis (sec-
tion 4) has to account all logic structures, not just the branch points. Secondly
logical structure, that maybe cannot be detected or are hardware-based, have to be
evaluated externally.

15

3 Technical Details of Modified Condition/Decision Coverage

1 0 1 0

(a) A && B (b) A || B

Figure 3.2: BDDs for decisions with two conditions with short-circuit evaluation.

3.4 Relation to Object Branch Coverage

In earlier discussion papers published by the RTCA it was suggested that demon-
strating Object Branch Coverage (OBC) implies MC/DC on source code level, if
Boolean operators are restricted to short-circuit evaluation[CK07]. This assump-
tion was thoroughly examined and discussed by Cyrille Comar et al. in an article
called “Formalization and Comparison of MC/DC and Object Branch Coverage
Criteria”[CGHQ12] and concluded not to be true in general.

Object Branch Coverage (OBC) is a coverage criterion that is defined on the object
code level and is fulfilled, if all the branch instructions in the object code were taken
both ways. A descriptive way to visualize the possible ways that can be taken in
object code are Binary Decision Diagrams (BDDs), where every node in a BDD
corresponds to a branch instruction in the object. By examining the BDDs that
express certain decisions it can be shown that OBC does not imply MC/DC. In
order to reduce the complexity and to narrow the problem short-circuit evaluation
is assumed in the following.

To show the independent effect of the conditions in a decision with two conditions
with short-circuit evaluation the three possible different executions equal the min-
imal set of cases that fulfill MC/DC. In figure 3.2 can be seen how these decisions
are executed on object code level with three possible paths. These paths equal the
possible distinguishable cases with short-circuit logic and therefore for decision with
two conditions OBC is equivalent to MC/DC.

To show that OBC does not imply MC/DC the BDDs of decisions containing three or
more conditions can be examined. As shown in figure 3.3a the BDDs of the decision
(A && B) || C can be covered with only three paths. Because the minimal number
of test cases needed for MC/DC is n + 1 the three cases that satisfy OBC cannot
provide MC/DC, which needs at least four test cases. [CGHQ12] points out that
there are certain decision there the implication (OBC = MC/DC) holds depending

16

3.4 Relation to Object Branch Coverage

1 0 1 0

(a) (A&&B) | C (b) C || (A && B)

Figure 3.3: BDDs for decisions with three conditions with short-circuit evalua-
tion.

on the structure of the decision. In figure 3.3b the shown decision is very similar as
the one in 3.3a, however the BDD of this decision needs four paths to fulfill OBC and
these equal exactly those that are needed for MC/DC. In general the implication
holds for decision with BDDs that are trees (with only one possible path from the
root to any condition node). An equivalent property that characterizes cases where
OBC implies MC/DC focusing on the logical structure of the decision is given in
theorem Theorem 3.1 (BDD branch coverage equals OBC in that reference).

Theorem 3.1. Given a decision D, BDD branch coverage implies MC/DC' if, and
only if, when considering the negation normal form D’ of D, for every sub-decision

E of D’, all binary operators in the left-hand-side operand of E, if any, are of the
same kind as E’s operator[BCGT 10)].

Because there is no commonly used coverage criterion defined directly on the object
code level that is equivalent to MC/DC, it is necessary to reconstruct how the
condition on source code level have been assigned during execution in order to
measure MC/DC based on traces.

17

3 Technical Details of Modified Condition/Decision Coverage

3.5 Coverage Analysis at the Object Code Level

Usually MC/DC is measured by instrumenting the source code to gather informa-
tion about the execution and assignment of conditions and decisions. Because it is
required by the DO-178C that the structural coverage analysis has to be performed
on the code that is released, the instrumentation has to be left inside the airborne
code. This is problematic because instrumentation consumes valuable resources.
Additionally is it necessary to perform a source code to object code analysis to show
that every line from the object code is traceable directly to the source code in order
for compliance to DO-178C. If parts of the object code can’t be traced back to the
source code, then additional analysis must be provided[CAS03].

To overcome these problems MC/DC can be measured on object code level by an-
alyzing program traces, which is explained in the following chapters. Additionally
is structural coverage analysis desirable, because “it can support more ‘valid’ cov-
erage as the testing and coverage analysis are conducted on an ‘abstraction’ of the
code that is closer to the final airborne software to be installed than the source

code”[CAS03].

The CAST-17 position paper “Structural Coverage of Object Code”[CAS03] provides
certification authorities’ concerns and position regarding the analysis of structural
coverage at the object code level. It states that structural coverage analysis at the
object code level can be proposed for compliance to the DO-178B; if the same level
of assurance can be provided as the coverage analysis on the source code level.

One of those requirements is the traceability between the object code and the source
code. In the following chapter is shown how static analysis can be used to trace the
source code to object code and create a mapping between conditions and jumps in
the object code. This information can then be used to declare which addresses of
the object code are useful to reconstruct the condition on source code level.

18

4 Watchpoint Declaration by Static Analysis

To measure MC/DC based on the sequence of jumps performed by the CPU the
source and the object code can be statically analyzed in order to find out which
conditions in the source code correspond to which conditional jumps in the object
code. This mapping is necessary because MC/DC is a criterion that is defined on
the source code level and there are no equivalent metrics defined on the object code
level. With this mapping the trace can be evaluated in order to reconstruct how the
conditions were assigned during the execution. For demonstration purposes a simple
code example (see figure 4.1a) is provided, on which the reconstruction process is
explained. The code example shows an if statement, that contains a decision with
three conditions. The conditions have different relational operators to show how
they affect the object code.

4.1 Static Analysis of Source Code

The definition of MC/DC states that every condition in every decision in a program
has to show it’s independent effect. As stated in section 3.3 decisions in the source
code include basic control statements that result in branch points in the program
as well as other Boolean operators, that don’t result in branch points, but they are
decisions nevertheless.

The following program structures in case of the C language can contain decisions
according to [TT02] and have to be detected:

o [If statements

» Loops (while statements, do statements, for statements)

o Switch statements

« Assignment statements containing Boolean expressions that later are used in
a branch point

In order to find such statements a preprocessing parser can be used to transform
the source code in an abstract representation, which contains information about the
statements, their location in the source code and how the statements are assembled.
The C language compiler front-end Clang provides functionalities that transform C

19

4 Watchpoint Declaration by Static Analysis

code into an Abstract Syntax Tree (AST)[LAO4]. In the following is explained how
the AST can be analyzed to find if statements and assignment statements.

1 int testFunction(int a,int b,int c){
2 if(a || (b<3 && c==5)){

3 return 1;

4 Yelse{

5 return 0;

6 }

7

(a) Source code with if statement.

—IfStmt 0x55972de0b308 <line:2:6, line:6:5>

—BinaryOperator 0x55972de0b230 <line:2:9, col:26> 'int' '||'
y

| —ImplicitCastExpr 0x55972de0b218 <col:9> 'int' <L

—ParenExpr 0x55972de0b1f8 <col:14, col:26> 'int'
—BinaryOperator 0x55972de0b1d0 <col:15, col:25> '

| | —ImplicitCastExpr 0x55972de0b108 <col:15> '
| | —DeclRefExpr 0x55972de0b0c0 <col:15> 'int'
| —IntegerLiteral 0x55972de0b0e8 <col:17> 'int'
—BinaryOperator 0x55972deObla8 <col:22, col:25>

—DeclRefExpr 0x55972de0b148 <col:22> 'int
| DeclRefExp 72de0b14 1 ! !

\
\
\
\
\
\
\
\
\
|
\ —IntegerLiteral 0x55972de0b170 <col:25> 'int'

ValueToRValue>

int ' '&&'

| —BinaryOperator 0x55972de0b120 <col:15, col:17> 'int' '<'

int ' <LValueToRValue>
Ivalue ParmVar 0x55972ddb8798
3

Vint ' ——

| —ImplicitCastExpr 0x55972de0b190 <col:22> 'int' <LValueToRValue>

lvalue ParmVar 0x55972de0aeb8
5

(b) Abstract Syntax Tree generated with clang.

condition: relational operator: lin

e: column:

a none 2
b<3 < 2
C == == 2

9
15
22

(c) Substantial information obtained fr

om the AST.

Figure 4.1: Example for an abstract representation of an if statement using

Clang version 4.0.0.

4.1.1 If Statements

Finding an if statement in the AST is relatively simple, because there is a dedicated
node for if statements. Loops and switch statements can be found in the same

way.
The example code contains a decision (a || (b < 3 && ¢ == 5)) in line 2 with the
conditions a, b < 3 and ¢ == 5. The corresponding AST can be seen in figure

4.1b. Note the ”IfStmt” in line 1 and it’s child-nodes containing all the information

20

| —DeclRefExpr 0x55972de0b098 <col:9> 'int' Ivalue ParmVar 0x55972ddb8720 'a' 'int'

|bl

I 1

"int '

"int '

4.1 Static Analysis of Source Code

needed like binary operators. As stated in section 4.2 it is essential to know the
binary operators to correctly reconstruct the assignments based on the executed

program jumps. Figure 4.1c¢ shows what information can be obtained from the
AST.

4.1.2 Assignment Statements

Note: The following approach has been theoretically discussed, but not practically
implemented as part of this thesis.

In case of an assignment statement that contains a Boolean expression the detection
is more complicated. They are only relevant as a decision, if they are later used in
some form of branch point in the program. See figure 4.2 for an example.

Reconstructing the conditions is still possible, because the assignment in line 3
is translated into a conditional jump in the object code, that corresponds to the
condition b. In line 5 the decision is evaluated by the if statement, which translates
to another conditional jump. If b was False, then ¢ was not evaluated at all.
Otherwise equals a the value of ¢. With the conditional jump that evaluates the
value of @ in line 5, it is therefore possible to reconstruct the condition ¢ indirectly.

Additionally, it is necessary to ensure that the value of the assignment has not
changed between the initial statement and the branch point. Further static analysis
can provide such insurance.

1 int testFunction(int b, int c){
2 int a;

3 a =Db&& c;

4

5 if(a){

6 return 1;

7 }else{

8 return 0;

9 }

0

—_

}

Figure 4.2: Source code with assignment statement containing a Boolean ex-
pression.

21

4 Watchpoint Declaration by Static Analysis

4.2 Static Analysis of Object Code

In order to perform a reconstruction of the condition assignments it is required
that every condition on the source code level translates to one specific conditional
jump on the object code level. This assumption holds only if the compiler does not
use any optimization level that influences conditional jumps. For example the gcc
compiler uses on the first optimization level the options —fif-conversion and
—-fif-conversion, that transform conditional jumps into branch-less equivalents.
Instead conditional moves, min, max, set flags and abs instructions are used[Tea).
It is not possible to detect how these kind of instructions are evaluated by analyzing
traces, that only contain the sequence of executed instructions.

Assuming that every condition translates into exactly one conditional jump, their
location in the object code has to be found. Most modern compilers provide features
that emit debugging information e.g. in the DWARF format, that help developers to
debug their code. Besides variable names and data structures it contains information
about the origin of each line of the object code[ET07]. The static analysis of the
source code in section 4.1 gives the location (line, column) of all decisions and
conditions in the source code. By looking into the table (see figure 4.3) contained
in the DWARF debugging format it is possible to map the conditions of the source
directly to conditional jumps in the object code.

The before used example of the decision (a || (b < 3 && ¢ == 5)) is continued in
figure 4.3 and shows the mapping of each program line of the object code and the
corresponding lines and columns in the source code from figure 4.1a. Because the
location of the conditions in the source code is known from the analysis of the AST,
it is now possible to map the conditions to addresses and conditional jumps in the
object code. For example the condition b < 3 that is located at line 2, column 15
can be mapped to the object code address 0x400487. Note in figure 4.4 that this
address contains the compare-instruction cmpl and only the following instruction
is the conditional jump.

Additionally it is necessary to know what kind of conditional jumps are used in
the object code, because there is the possibility that a condition can be translated
into it’s negation. In that case a jump has to be interpreted that the condition was
evaluated as False. For example the clang compiler with the x86-64 instruction
set compiles conditions that contains the relational operator >= into a conditional
jump with either the jge or the j1 instruction. A detected jump in the first case
(jge) means that the condition has been evaluated as True while a detected jump
in the second case (1) means that the condition has been evaluated as False. This
behavior makes it necessary to detect the relational operator on the source code
level as well as the instruction used on the object code level to correctly reconstruct
the assignments by analyzing the executed jumps. The common conditional jump of

22

4.2 Static Analysis of Object Code

the x86-64 and the ARM architecture and their context dependent interpretations
can be seen in table 4.1. These rules are strongly compiler-dependent and only have

been tested thoroughly in the context of this thesis for the clang compiler version
4.0.0..

Address Line Column File

0x400470 1 0 1
0x40047d 2 8 1
0x400481 2 10 1
0x400487 2 15 1
0x40048b 2 18 1
0x400491 2 22 1
0x400495 2 8 1
0x40049b 3 7 1
0x4004a7 5 7 1
0x4004ae 7 1 1
0x4004c0 9 0 1
0x4004c6 9 12 1
0x4004c8 9 12 1

Figure 4.3: Debugging information showing the mapping lines and columns of
the source code from figure 4.1a and program addresses from object code from
figure 4.4 (11lvm-dwarfdump -debug-dump=line a.out).

1 0x400470 <+0>: push %rbp

2 0x400471 <+1>: mov Y%rsp,%rbp

3 0x400474 <+4>: mov Y%edi,—0x8(%rbp)

4 0x400477 <+47>: mov %esi,—0xc(%rbp)

5 0x40047a <+410>: mov Yoedx,—0x10(%rbp)

6 0x40047d <+13>: cmpl $0x0,—0x8(%rbp)

7 0x400481 <+17>: jne 0x40049b <testFunction+43>
8 0x400487 <+423>: cmpl $0x3,—0xc(%rbp)

9 0x40048b <+27>: jge 0x4004a7 <testFunction455>
10 0x400491 <+33>: cmpl $0x5,—0x10(%rbp)

11 0x400495 <+37>: jne 0x4004a7 <testFunction455>
12 0x40049b <+443>: movl $0x1,—0x4(%rbp)

13 0x4004a2 <+50>: jmpq 0x4004ae <testFunction+62>
14 0x4004a7 <+455>: movl $0x0,—0x4(%rbp)

15 0x4004ae <+62>: mov —0x4(%rbp),%eax

16 0x4004b1 <+65>: pop %rbp

17 0x4004b2 <+66>: retq

Figure 4.4: Object code, compiled from the code of figure 4.1a for x86-64 archi-
tecture.

For example, in figure 4.4 the conditional jump jne in line seven corresponds to the
condition a and therefore has no relational operator. Table 4.1 tells that in this case
a detected jump means that the condition has been evaluated as True. However the
same kind of conditional jump in line eleven corresponds to the condition ¢ ==
Because of that detecting the execution of this jump implies that the condition has
been evaluated as False.

23

4 Watchpoint Declaration by Static Analysis

relational operator: architecture: interpretation of jump:

x86-64 ARM
no operator jne bne True
(1=0) je beq False
== je beqg True
jne bne False
< jl blt True
jge bge False
<= jle ble True
jg bgt False
> jg bgt True
jle ble False
>= jge bge True
1 blt False

Table 4.1: Multiple interpretations of jumps in the x86-64 and ARM instructions
sets compiled with clang version 4.0.0.

4.3 Assignment Reconstruction

Knowing the conditional jumps that correspond to conditions in the source code,
makes it possible to reconstruct the assignment of the conditions during an execution
by analyzing the performed jumps. For this analysis watchpoints can be declared.
These watchpoints are the program address of each conditional jump and the target
address of the jump. If that following program address equals the jump that is
described in the conditional jump instruction, a jump has been performed otherwise
it has not. Table 4.1 shows how the information, whether a jump has been performed
can be used to reconstruct the assignment of the condition. In chapter 6 is explained
how the watchpoints and other information about the conditions can be used to
generate online monitors.

condition: relational operator: instruction: interpretation of jump:

a none jne True
b<3 < jge False
c==5 —— jne False

Table 4.2: Example interpretation of detected jumps.

24

5 Offline MC/DC Measurement

After the interesting program addresses (watchpoints) are declared by static analysis
they can be used to analyze program traces that contain the sequence of all exe-
cuted instruction during the execution of a program. In order to measure MC/DC
the assignments of the conditions can be reconstructed and fill the MC/DC-table.
MC/DC-table in this context means all cases based on the reconstructed assign-
ments and the outcome of the decision (see figure 5.1). Because the outcome of
the decision is needed to evaluate the independent effect of a condition, it has to
be be determined by evaluating the decision with the reconstructed assignments.
The coverage can then be measured by iterating through the cases and showing the
independence of each condition by finding independent pairs. A general overview of
this approach is provided in figure 5.1.

Compressed Reconstruct

=
o
Processor ¢
Q
S Trace Data Trace
Rl
& I
Trace

Data Storage

Binary |
Trace

Source _) C-Compiler

Code —] Reconstruct'%on of Condition L MCDC table—> Iterative Coverage
Assignment Measurement
Object Code,
Debug Symbols Watchpoints, MCDC
Y Relational Operators,

Static Analysis Jump Insltructions

Figure 5.1: General overview of offline MC/DC measurement.

The static analysis is described in chapter 4 and needs access to the source code
and the object code including debug symbols. The trace can be gathered through
the trace port of the processor that is executing the program and can be saved in a
data storage after the reconstruction process. IntelPT[Reil3] and ARM DSTREAM

25

5 Offline MC/DC Measurement

[ARM17] are technologies that are capable of doing this. The assignment reconstruc-
tion needs the program addresses (watchpoints) defined by the static analysis as well
as the information about the relational operators and jump instructions to analyze
the recorded trace. After the assignments of the conditions are reconstructed, the
MC/DC table can be filled and MC/DC can be measured iteratively as is explained
in the following.

5.1 Evaluation of Independence

evaluated: decision:
Nr. A4 B C A|l(B&&C):
1 F ? F
2 F T F F
3 F T T T
4 T 7 7 T

Table 5.1: Example MC/DC table for the the decision A || (B && C).

The information needed for MC/DC evaluation are the different assignments of the
conditions and the outcome of each decision in the analyzed program. In the case
of short-circuit evaluation, which is assumed in the following, it is useful to utilize
a three valued logic as described in section 3.2. To measure the coverage of a single
decision each case is compared to all other cases. If there is only one condition
(apart from not evaluated conditions) and the outcome of the decision differs, an
independent pair for this condition has been found.

For example in table 5.1 the independent effect of condition C' can be shown with
test case nr. 2 and 3, because the conditions A (F) and B (T) are the same and only
the condition C' and the outcome of the decision are changing. In the case that some
conditions are not evaluated, the test cases can still be used to show independence.
For example test case nr. 1 and 4 can be used to show the independent effect of
condition A, because A and the outcome are changing and the other conditions are
either not evaluated at all or at least were not assigned with the same value.

After all entries have been compared with each other, the decision is considered
MC/DC-covered, if for every condition at least one independent pair has been found.
Because all test cases have to be compared with each other and every comparison
consists of comparing each condition and the outcome, the runtime is quadratic with
respect to the number of test cases. See section 7.3 for an implementation of this
approach with Python.

26

5.2 Limits of the Offline Approach

5.2 Limits of the Offline Approach

The approach described in this chapter is relatively simple and can be implemented
for various technologies like Intel® PT[Reil3] and ARM DSTREAM[ARM17]. Com-
pared to the approach described in chapter 6 it has the advantage of working without
knowledge about the structure of the decisions. However it contains a bottleneck,
because the trace data that has to be stored in some form of storage space. The
data rate of the trace information is so high that even very high speed storage can
only record a few seconds of program execution.

ARM DSTREAM provides a trace buffer of 4 GB for a recording speed of 10 Gbit/s
which leads to a possible trace recording of less than four seconds [DGH'17].

The traces generated by Intel® PT become big very quickly as well. For example
a CPU benchmark program, that sums up all Integers from 0 to 100 million, takes
less than 0.5 ms on an Intel i3-5005U CPU and generates a reconstructed Intel® PT
trace that is 3.7 GB.

This limitation can be overcome by online reconstruction and monitoring as de-
scribed in the following chapter.

27

6 Online MC/DC Measurement

To overcome the limitations of MC/DC measurement by analyzing recorded traces
offline in the following an approach is proposed to measure MC/DC online by using
FPGA hardware to reconstruct and filter the trace. This challenging task can be
divided into smaller subproblems that are shown in figure 6.1. Besides the decla-
ration of watchpoints by static analysis that has been explained in chapter 4 the
structure of the decisions can be used to generate online monitors that reconstruct
the assignments and can evaluate MC/DC by reconstructing the test cases.

The approach, that is described in the following, has not been realized, because
the technology is currently under development and has not been finished during
the work on this thesis. In order to show the the general feasibility the traces are
generated with Intel® PT and the software back-end of TeSSLa [Leul8]. These parts
are replacements for the trace generation with online trace reconstruction and the
monitoring with FPGA hardware.

Hardware Platform (FPGA)

Trace
Trace Reconstruction Assignment i et Cise
" ——Events=Jp» . —Assignments» Reconstruction,
Data Parallel Trace Reconstruction X
MCDC Evaluation

Data Processing

Processor

A

Binary

. Assignment Monitor
Watchpoints Informations Configuration
o=
oo ==
Generation
Object Code,

Debug Symbols

v Decision Structures

. .
Static Analysis

Figure 6.1: General overview of the proposed method of measuring MC/DC
online using trace data reconstruction and event monitoring.

29

6 Online MC/DC Measurement

Processor with ETU FPGA Standard PC
System Bus R P ¢ USB emmy
i I i H I
M Trace Monitoring i . Setup &_ i
Core 0 Core 1 — Reconstruction Engine :_C'_U]zi:lifl_lf‘it_l?lj _:
A
Display &
Tracer Tracer Trace Reporting
’—) Port
USB
Tracing Bus

Figure 6.2: Overview of the trace data reconstruction setup[DGH'17].

6.1 Online Trace Monitoring

The approach to implement both trace reconstruction and monitoring using FPGA
hardware is currently under research and described in [DGH"17]. In advantage of
prior hardware-supported monitoring frameworks it is possible to use a standard
product, i.e. ARM CoreSight, and to rapidly adjust the monitoring system by using
a flexible configurable FPGA-based event processing platform.

Figure 6.2 shows how a multi core processor provides trace data that can be recon-
structed using FPGA hardware. The cores are communicating through the system
bus and simultaneously sending trace data through the trace bus to the trace port.
This setup with two separated buses allows capturing trace data without affecting
the behavior of the cores or other system components. The trace data, which comes
in a highly compressed format, is then reconstructed using a Program Flow Trace-
based method implemented in FPGA hardware. Prior to the reconstruction process
the binary is statically analyzed and a lookup table for all targets of the conditional
jumps is stored on the FPGA. Because the data rate of the reconstructed trace
would be extremely high, watchpoints (or tracepoints) can be set in order to filter
events with a certain reconstructed address. This filtering process can be part of the
reconstruction process by immediately comparing the reconstructed address to the
address of the predefined watchpoints. This can be achieved by setting an additional
tracepoint flag to the lookup table[DGH*17].

For the evaluation of MC/DC these tracepoints equal the watchpoints that were
gathered during the static analysis (see chapter 4).

30

6.2 Assignment Reconstruction

6.2 Assighment Reconstruction

The static analysis described in chapter 4 provides program addresses of the con-
ditional jumps and their target jump address. When an event with the program
address of a conditional jump arrives, the following executed program address has
to be checked in order to find out whether the jump has been taken. The assignment
then can be reconstructed by interpreting what the meaning of that jump is (see
section 4.3 for details).

6.3 Generate Online Monitors for MC/DC

The reconstructed assignments can be recorded and evaluated in the same way as
described in chapter 5. However it is now possible to build a monitor to evaluate
MC/DC online. The advantage is that no matter how much time the execution
takes, no storage space is needed and the only output is the coverage.

6.3.1 Determining all possible Cases

In order to efficiently determine MC/DC by analyzing traces online it is necessary
to detect the structure of the decisions before running the program and to determine
all possible cases of assignments these decisions can have. As stated in section 3.2
there are less distinguishable cases when short-circuit evaluation is assumed. With
the before reconstructed assignments it is possible to detect which test case was
executed.

The distinguishable cases can be determined by analyzing the structure of the de-
cision and testing all possible input combinations while tracking which of those
were evaluated at all. For the generation of MC/DC monitors the cases must be
enumerated.

6.3.2 MC/DC Monitors

After determining all distinguishable cases it is then possible to declare which of
these are needed to show the independence of certain conditions. Deterministic
finite automatons (DFA) can be used to describe which cases are needed to fulfill
MC/DC. The input symbols are the possible assignments a single test case can
produce. MC/DC is fulfilled as soon as the accepting state is reached. Figure 6.3
shows an example DFA that accepts, if the adequate assignments for MC/DC of the

31

6 Online MC/DC Measurement

decision A&& B is a subset of the input. Every possible input sequence has to be
considered during the creation of the DFA. That means that for a decision with n
distinguishable test cases n! sequences have to be analyzed for MC/DC. Because of
that immense growth of paths in the DFA they are not feasible for decisions with
more than three conditions.

0? 07,10

07,11 N1

07,10,11

Figure 6.3: DFA for MC/DC evaluation of the decision A&&B.

To overcome this problem a more efficient approach has been developed utilizing the
fact that for the evaluation of MC/DC it is necessary to record the incoming cases,
but not their order. The information about, what cases have already been seen, can
be stored efficiently as a set. If a case is detected, it will be added to the set.

In order to evaluate MC/DC this set can be checked against a logical formula that
can be calculated by analyzing the decision. Chapter 3 explains how short-circuit
evaluation reduces the number of possible cases and how the independent pairs for
each condition in a decision can be found. These independent pairs are now used to
calculate the logical formula. For every condition in a decision there is at least one
independent pair needed to show this conditions independence. That idea leads to
a formula that is a conjunction of all possible ways to show independence of each
condition.

Because in the case of the in chapter 3 discussed decision A || (B && C) all cases
are needed to show MC/DC a more complex decision is introduced in table 6.1 that
helps to understand the benefit of using logical formula to evaluate MC/DC. To
show for example the independence of the condition A in (A&&B) || (C && D) one
of the two independent pairs 1,7 and 2,7 have to be shown, which can be expressed
as a logical formula: (casel AcaseT)V (case2 A caseT). The complete logical formula
for MC/DC can be constructed with a conjunction over all conditions, because the

32

6.3 Generate Online Monitors for MC/DC

evaluated: decision: pairs:
Nr. A4 B C D (A&&B)||(C&&D): A B C D
1 F 7?7 F 7 F 7 3
2 F ? T F F 7 3
3 F 7?2 T T T 1 2
4 T F F ? F 7 6
5 T F T F F 7 6
6 T F T T T 4 5
7 T T ? 7 T 12 45

Table 6.1: All distinguishable cases and independent pairs for the decision
(A&L&B) || (C && D).

independence has to be shown for all conditions. For the example decision shown in
table 6.1 the complete formula can be expressed as follows:

((casel A caseT) V (case2 A caseT))A
((cased A caseT) V (cased A caseT))N
((casel A case3) V (cased A caseb)) A
((case2 A case3) V (cased5 N caseb))

See section 7.4 for details how this can be implemented as a monitor with a stream-
based language.

33

7 Implementations

In the following chapter is described how the ideas, that have been previously intro-
duced, can be implemented in order to show the feasibility of MC/DC measurement
by analyzing program traces.

7.1 Trace Generation

There are multiple ways to obtain program traces from the CPU. Because some
of them need dedicated hardware or were not accessible during the work on this
thesis, a GDB script has been used to simulate a trace for training purposes. GDB
is the GNU Project Debugger and is usually used to find bugs by setting breakpoints
and analyzing the execution of program. The GDB script executes a program and
prints each executed steps to a log file. This has shown to work on Intel and ARM
Processors.

Intel Processor Trace (Intel PT) is a feature of modern Intel CPUs and allows
low-overhead execution tracing. It works by capturing information about program
execution on each hardware thread using dedicated hardware facilities so that after
execution completes software can do processing of the captured trace data and re-
construct the exact program flow[Reil3]. Traces generated with IntelPT have shown
to work with the offline approach and as input for the simulation of the online ap-
proach.

7.2 Static Analysis

The static analysis aims as described in chapter 4 to find decision and conditions in
the source code and to map each condition to a conditional jump in the object code.
The analysis of the source code can be done by accessing the Abstract Syntax Tree

(AST) provided by Clang[TealT7a].

35

7 Implementations

7.2.1 LibClang

There are multiple possibilities how to access the AST. The most comfortable way
is using the Python-bindings of LibClang, a high level C interface to Clang.

With LibClang it is possible to describe cursors that equal nodes in AST. These
cursors have attributes like their CursorKind, that can be used to identify i.e. if
statements (see figure 7.1 line 3).

In line 14 can be seen how new cursors, that are children of other cursors can be
created recursively in order to find nested statements.

1 def find_if_stmts (cursor, if_stmts):

2 stmt = IfStmt ()

3 if cursor.kind == IF_STMT:

4 stmt.add_if_location (parse_extent_info (str(cursor.extent)))
5 for 1 in cursor.get_children():

6 if i.kind == COMPOUND_STMT:

7 stmt.add_then_location (parse_extent_info(str(i.extent)))
8

9 if i.kind == BINARY_OPERATOR or i.kind == UNEXPOSED_EXPR:
10 stmt.add_decision_location (parse_extent_info(str(i.extent)))
11

12 if_stmts.append (stmt)

13

14 for ¢ in cursor.get_children():

15 find_if_stmts(c, if_stmts)

16

17 return if_stmts

Figure 7.1: LibClang implementation for finding if statements. Parts of this
code are simplified in order to be more precise.

LibClang works fine for finding simple if statements, but unfortunately LibClang
does not provide full control of the AST, which is necessary to find more complicated
decision that are for example hidden in assignment statements (see section 3.3).

7.2.2 LibTooling/LibASTMatchers

LibTooling is a C++ interface that makes it possible to write tools that have full
access over the AST. The recently introduced LibASTMatcher[Teal7b] can be used
alongside with LibTooling and simplifies the specification of patterns that the AST
is supposed to match. In a domain specific language can be expressed what kind of
nodes are searched and which information should be extracted. A simple example
is provided in figure 7.2.

36

7.2 Static Analysis

1 StatementMatcher IfMatcher =

2 anyOf (

3 ifStmt () .bind("if_stmt"),

4 whileStmt () .bind ("while_stmt")
5)i

Figure 7.2: LibASTMatcher for finding if and while statements in C code.

7.2.3 Reading Debugging Symbols

After finding the decisions and conditions the DWARF[E*07] debugging information
has to be analyzed in order to map each condition to a conditional jump in the
object code. To enable the debugging information including a mapping between
lines/columns in the source code and addresses in the object when using the Clang
compiler the following flags can be set: —-g -Xclang —-dwarf-column—-info

pyelftools is a Python library that provides parsing and analyzing DWARF debug-
ging information. Figure 7.3 shows how it can be implemented. get dwarf info()
returns a DWARFInfo context object, which is the starting point for processing in
pyelftools. It can be iterated to gather all the location information in the .debug info
section.

1 def map_line_column (filename) :

2 line_column_address = []

3 with open(filename, 'rb') as f:

4 elffile = ELFFile (f)

5 dwarfinfo = elffile.get_dwarf_info ()

6

7 for CU in dwarfinfo.iter_ CUs () :

8 lineprog = dwarfinfo.line_program_for_CU (CU)

9 for entry in lineprog.get_entries():

10 line_column_address.append ((entry.state.line,
11 entry.state.column, hex(entry.state.address))
12

13 lines_set = set(line_column_address)

14 sorted_mapping = sorted(lines_set, key=lambda tup: (tup[0], tup[l]))
15 return sorted_mapping

Figure 7.3: Find and sort the mapping between locations in the source code
and addresses in the object code.

37

7 Implementations

7.3 Iterative MC/DC Evaluation

Measuring MC/DC with the offline approach described in chapter 6 is done by
finding all independence pairs in a set of test cases. This can be done by iteratively
comparing all test cases with each other and find out if only one condition and the
outcome of the decision is changing.

Figure 7.5 shows an implementation with Python. measure medc() gets the re-
constructed test cases as vectors with possible entry values of 0, 1, 2 (encoded for
False, 7, True). The last entry of each vector has the value of the outcome of the
decision.

By iterating over all test cases they are compared to each other by calling the
function eval independence with the pair that is supposed to be evaluated. This
function can be seen in figure 7.4. First is checked, if the outcome of the two test
cases are the same, because if they are, they cannot show the independent effect of
any condition (line 2).

After that all condition that change are counted. Note that the conditions, that
were not evaluated in one of the test cases are not counted (line 7). If the amount
of changing condition is exactly 1, this pair of test cases are independence pairs for
this condition and the condition is returned. Otherwise —1 is return to indicate that
no independence pair was found.

With this implementation it is not only possible to evaluate, if a set of test cases
fulfill MC/DC, but also which conditions are missing in case that MC/DC is not
fulfilled.

38

7.3 lterative MC/DC Evaluation

def eval_independence (vector_double) :
1if vector_double[0][-1] == vector_double[1l][-1]:
return -1

1
2
3
4
5 counter = 0
6
7
8

for i in range (0, len(vector_double[0])-1):
if vector_double[0][i] == 1 or vector_double[l][i] == 1:

continue
9 if vector_double[0] [i] != vector_double[1l][i]:
10 counter += 1
11 ind_con = i
12 if counter ==
13 return ind_con
14 else:
15 return -1

Figure 7.4: Evaluating if a pair of test cases shows the independent effect for a
condition.

def measure_mcdc (test_cases) :
ind_cons = []
for 1 in range (0, len(test_cases)):
for j in range(i+l, len(test_cases)):
if eval_independence ([test_cases[i],test_cases[j]]) != -1:
ind_cons.append (eval_independence ([test_cases[i],test_cases[]j]]))

missing_set = set(range(0, len(test_cases[0])-1)) - set(ind_cons)
return missing_set

© 00O Ui W

Figure 7.5: Iterating through the test cases and call eval independence with
every test case pair.

39

7 Implementations

1 #include "CuTest.h"
2 #include <stdio.h>

3

4

5 int exampleFunction(int a, int b, int c) {
6

7 if (a || (b && c)){

8 return 1;

9 }

10 if (a<2 && b){

11 return 0;

12 }

13 return 0;

14 }

15

16 void TestExampleFunction (CuTest xtc) {
17 int actual = exampleFunction (0, 0, 0);
18 CuAssertIntEquals (tc, 0, actual);

19

20 actual = exampleFunction(0, 1, 0);
21 CuAssertIntEquals (tc, 0, actual);

22

23 actual = exampleFunction (0, 1, 1);
24 CuAssertIntEquals(tc, 1, actual);

25

26 actual = exampleFunction(l, 1, 1);
27 CuAssertIntEquals (tc, 1, actual);

28 }

29

30 CuSuitex mathUtilGetSuite () {

31 CuSuite* suite = CuSuiteNew () ;

32 SUITE_ADD_TEST (suite, TestExampleFunction);
33 return suite;

34 }

Figure 7.6: Example C code containing simple unit testing of the function ez-
ampleFunction.

40

7.3 lterative MC/DC Evaluation

Parse Source Code...
Process Debug Informations...

Found Decision: a
Found Condition: (
Found Condition: (
Found Condition: (

0O Uk WN

©

Reconstruct Assignment with trace gdb.log
[['a', 0], ['b' 0], ['c', 11] Outcome:
[['a', 0], ['b', 2], ['c', 0O]] Outcome:
[({'a', 01, ['p"', 21, ['c"', 2]] Outcome:
[['a', 21, ['D', 11, ['c', 111 Outcome:
This Decision is MC/DC-covered.

= = e e
T W N~ O
NN O O -

Ju—
=]

HHAFHE AR

=
[o |

Found Decision: a<2 && b
Found Condition: ('a<2', 10, 10)
Found Condition: ('b', 10, 106)

NN N
N = O ©

Reconstruct Assignment with trace gdb.log :

[['a<2', 2], ['b', 011 Qutcome: 0

[['a<2', 2], ['b', 2]1] Outcome: 2

The independence of the condition ('a<2', 10, 10) cannot be shown based on the test cases.

NN NN N
N OOtk W

HHAFH AR

N N
© oo

MC/DC Coverage: 50.0%

Figure 7.7: Output of the implementation of the offline approach using a gdb
trace and the C code in figure 7.6.

Figure 7.7 shows the output of the implementation of the offline approach. The
coverage of a simple C program, that is shown in figure 7.6, is measured. The C
code contains a function, that is called multiple time with a unit test library called
CuTest.

It can be seen that two decisions are detected and the assignments of the conditions
are reconstructed by analyzing a gdb trace. While the first decision has sufficient
test cases for MC/DC coverage, the second decision is missing a test case to show
the independent effect of the condition “a<2”, which is indicated in line 25. The
MC/DC coverage of 50.0% is calculated by dividing all covered decisions by all
detected decision inside the C code.

41

7 Implementations

7.4 Online Monitors

The online approach described in chapter 6 was implemented as part of this thesis
by using the software interpreter of TeSSLa and trace generated with gdb and Intel
PT, because the trace reconstruction hardware and the TeSSLa hardware interpreter
was not available yet. Figure 7.8 shows, which part of the online approach have been
implemented.

MCDC
: At Test Case
s + Reconstruction, !
Processor gdb-trace, Filter gdb- trace Reconstruction —Assi nments-)c :
™ IntelPT a: Intel PT T cvents > (TeSSLa Software | - © DCIDE S|
¢ . (TeSSLa Software !
Interpreter) e——
1\ """""""" Y N W
Binary . Monitor
Watchpoints A55|gnment Configuration
S Informations
ous—
oo :
Generation
Object Code,
Debug Symbols Decision Structures
v

. .
Static Analysis

Figure 7.8: General overview of which part of the online approach (see figure
6.1) were simulated as part of this thesis.

7.4.1 TeSSlLa

The Temporal Stream-Based Specification Language (short TeSSLa) is designed for
handling large amounts of trace data. TeSSLa reasons over asynchronous input
streams and new streams can be derived by applying functions to the input streams
or other already derived internal streams[DGH*17].

TeSSLa has primitives that are necessary to express typical challenges with stream-
based specifications[Leul8] and are used in the implementations:

o “The last operation takes two steams and returns the previous value of the
first stream at the time stamps of the second.”

o “The default operation adds a value at time zero to a stream if no value is
present.”

42

7.4 Online Monitors

o “The [lift operation lifts a n-ary function f from values to streams.” Lifted
functions that are available are i.e. Boolean functions (and, or) and Integer
functions (+,-, bit shift, comparison).

7.4.2 Assignment Reconstruction

TeSSLa can be used to describe how the assignment reconstruction described in
section 6.2 can be performed. In figure 7.9 an example is shown where the conditional
jump has the address 4200801 and the corresponding jump target address is 4200827
and a performed jump is interpreted as an evaluation as True.

Because of the three valued logic True is encoded as 2 and False is encoded as 0.
If the the condition has not been evaluated, the default value of 1 is given. If a
detected jump is interpreted as an assignment of True or False has to figured out
during the static analysis (see table 4.1).

The function mergeValues(), because the stream c0 would otherwise be set to the
reconstructed Value only for one step. mergeValues() makes it possible to set a
stream to value depending on a condition. This value can only be changed again, if
another condition is true.

def cO:= default (
mergeValues (
if last(pc, pc) == 4200801 && pc == 4200827 then 2,
if last(pc, pc) == 4200801 && pc != 4200827 then 0

), —1)

def mergeValues(a, b):=
if default (time(a), 0) >= default(time(b), 0) then default (a, b)
else default (b, a)

© 00O Ut WN -

Figure 7.9: Condition reconstruction example described with TeSSLa.

7.4.3 Test Case Reconstruction

After figuring out how the conditions where assigned by analyzing the jumps, they
can be used to reconstruct which test case was executed. The example in figure 7.10
shows the test case reconstruction for the simple decision A&& B, which possible
test cases can be seen in table 7.1. Note that the condition B is not relevant, if
the condition A is evaluated as False and therefore B is not evaluated at all due to
short-circuit logic.

43

7 Implementations

Nr. A B (A&&b)
0 F ? F
1 T F T
2 T T T

Table 7.1: All possible test cases for decision (A && B).

1 def caseNumber :=

2 if c0 == 0 then 0O

3 else if c0 == 2 && cl == 0 then 1
4 else if c0 == 2 && cl == 2 then 2
5 else -1

Figure 7.10: Test case reconstruction example described with TeSSLa.

7.4.4 Monitoring

As described in section 6.3 online MC/DC monitoring can be implemented using
sets, which can be checked with a logical formula in order to evaluate MC/DC.
With TeSSLa the sets can be implemented as bit sets, where every bit represents
one predefined case as shown in figure 7.11. Because TeSSLa is stream-based, a set
has to be specified recursively with the last() operator, because a stream-based set
is always depending on the state of the set in the last step. The start value of the
recursion is defined with the default() operator. To add a new entry the function
set_add() is called, that uses a bit shift operator to set the position in the Integer,
where the entry should be stored.

1 def set := default (set_add(last (set, caseNumber), caseNumber), 0)
2

3 def set_add(set, x) := 1if in_set (set, x) then set

4 else set + (1 << x)

Figure 7.11: Defining a set and adding every case that is detected.

In order to check if MC/DC is fulfilled for a decision with the detected cases, the
logical formula can be described with TeSSLa as shown in figure 7.12 for the example
decision (A&&B) || (C && D). The function in_ set() checks if an entry is part of
a bit set by using a shifted Integer containing a 1 at the place of the entry and
comparing it to the set with a bitwise AND operator. The generated stream mcdc
is true as soon as there are a set of test cases discovered that satisfty MC/DC.

44

7.4 Online Monitors

The logical formula from section 6.3.2:

((casel A caseT) V (case2 A caseT))A
((cased A caseT) V (cased A caseT)) N\
((casel A case3) V (cased A caseb)) A
((case2 A case3) V (cased N caseb))

is implemented in figure 7.12

1 def mcdc := ((in_set (set,1) && in_set (set,7)) || (in_set (set,2) && in_set (set,7))) &&
2 ((in_set (set,4) && in_set(set,7)) || (in_set (set,5) && in_set(set,7))) &&
3 ((in_set (set,1l) && in_set (set,3)) || (in_set(set,4) && in_set (set,6))) &&
4 ((in_set (set,2) && in_set(set,3)) || (in_set (set,5) && in_set (set,6)))

5

6 def in_set (set, x) := set & (1 << x) > O

Figure 7.12: Checking MC/DC for the decision (A&&B) || (C && D) by eval-

uation a logical formula over cases in a set.

Implementing the online approach with TeSSLa and simulating it with the TeSSLa
software interpreter has shown the feasibility of the concept. It has to be further

investigated how this can work with the TeSSLa hardware interpreter and with
FPGA hardware.

45

8 Conclusion

This work presents two approaches how MC/DC can be measured by using trace
information as an alternative to state-of-the-art solutions like software instrumenta-
tion. Showing that MC/DC is generally not implied by object branch coverage made
clear that the only way to measure MC/DC based on traces is to figure out how the
condition were assigned during the execution. This can be accomplished by finding
out which conditions in the source code correspond to which conditional jumps in
the object code. With the addresses of the conditional jumps and their jump ad-
dresses it is possible to reconstruct how conditions were assigned during execution.
Because most modern programming languages use short-circuit evaluation, it had
to be shown how MC/DC can still be measured, when conditions were not assigned
at all. The results are that MC/DC with short-circuit evaluation is equivalent to
Masking MC/DC, which is accepted in avionic industry by the DO-178C.

The main contribution of this work is the concept of what information is needed and
how source and object code can be analyzed to gather the needed information. Fur-
thermore it describes how this information can be used to reconstruct assignments
of conditions by evaluating the trace. The reconstructed assignments can be used to
fill a MC/DC-table and to measure MC/DC offline. Alternatively the structure of
the decisions can be used to build monitors that analyze traces online and therefore
have no time limitations.

Overall measuring MC/DC based on jumps is a promising concept that has been
shown to work on simple examples with existing trace-technologies. However there
are some limitations that lie within the concept and further effort has to be done
before the idea can possibly used in practice.

8.1 Limits

Measuring MC/DC based on jumps has some general problems. If the compiler
uses any optimization level, it is more than likely that conditions are not directly
translated to conditional jumps. It is possible that conditional moves, jump tables
or indirect branches are used. Program traces deliver no information how these
instructions are evaluated and so non of these structure can be used to reconstruct
condition by analyzing the trace.

47

8 Conclusion

8.2 Qutlook

The offline approach has been shown to work with IntelPT and small example pro-
grams. It was not possible to try the online approach, because the technology was
not available during the work of this thesis and was only simulated as part of this
work. Online approach should be implemented using the FPGA hardware as soon
as the development of FPGA-based trace reconstruction is finished in order to make
MC/DC measurement possible for long term program executions.

As stated in section 4.1.2 it has to be further investigated how statement assignment
that contain Boolean expressions and later are used in branch points can be detected
with static analysis.

As stated in section 3.5 coverage analysis on object code level complies with the
DO-178C only if the same level of assurance is guaranteed as coverage analysis on
the source code level. This requirement has to be further investigated.

The Python implementations are a good start point to develop are tool that can
be used more easily and has some form visualization in order to show the detected
and covered decisions directly in the source code. Software, that is actually used
in the avionic industry, should be used to evaluate this approach from a practical
perspective.

48

List of Figures

2.1

3.1
3.2
3.3

4.1

4.2

4.3

4.4

5.1
6.1

6.2
6.3

7.1

7.2
7.3

7.4

7.5

7.6

7.7

Requirements and Implementation Overlap[CKO7] 6

Object code for example decision A || (B && C). 13
BDDs for decisions with two conditions with short-circuit evaluation. 16
BDDs for decisions with three conditions with short-circuit evaluation. 17

Example for an abstract representation of an if statement using Clang

version 4.0.0. 20
Source code with assignment statement containing a Boolean expres-
SION. . . . 21

Debugging information showing the mapping lines and columns of the
source code from figure 4.1a and program addresses from object code
from figure 4.4 (11vm-dwarfdump -debug-dump=line a.out). 23
Object code, compiled from the code of figure 4.1a for x86-64 archi-
tecture. oL 23

General overview of offline MC/DC measurement. 25

General overview of the proposed method of measuring MC/DC on-

line using trace data reconstruction and event monitoring. 29
Overview of the trace data reconstruction setup[DGH*17]. 30
DFA for MC/DC evaluation of the decision A&&B. 32
LibClang implementation for finding if statements. Parts of this code
are simplified in order to be more precise. 36
LibASTMatcher for finding if and while statements in C code. 37
Find and sort the mapping between locations in the source code and
addresses in the object code. 37
Evaluating if a pair of test cases shows the independent effect for a
condition. 39
Iterating through the test cases and call eval independence with ev-
ery test case pair. Lo 39
Example C code containing simple unit testing of the function exam-
pleFunction. L 40
Output of the implementation of the offline approach using a gdb
trace and the C code in figure 7.6. 41

49

List of Figures

50

7.8

7.9

7.10
7.11
7.12

General overview of which part of the online approach (see figure 6.1)

were simulated as part of this thesis. 42
Condition reconstruction example described with TeSSLa. 43
Test case reconstruction example described with TeSSLa. 44
Defining a set and adding every case that is detected. 44
Checking MC/DC for the decision (A&&B) || (C && D) by evaluation

a logical formula over casesinaset. 45

List of Tables

3.1

3.2
3.3

4.1

4.2
5.1

6.1

7.1

Unique-Cause MC/DC table with independent pairs for decision AV

(BAC). oo 11
Short-circuit evaluation for decision A || (B && C). 14
All distinguishable cases and independent pairs for the decision A ||
B&&C). . .o 14
Multiple interpretations of jumps in the x86-64 and ARM instructions

sets compiled with clang version 4.0.0. 24
Example interpretation of detected jumps. 24
Example MC/DC table for the the decision A || (B && C). 26
All distinguishable cases and independent pairs for the decision (A&&B)

| (C&& D). . .. 33
All possible test cases for decision (A && B). 44

51

Abbreviations

MC/DC Modified condition/decision coverage

ETU Embedded trace units

FPGA Field programmable gate array

DO-178C Software Considerations in Airborne Systems and Equipment Certifi-

cation
CAST Certification authorities software team
OBC Object branch coverage
BDD Binary decision diagram
AST Abstract syntax tree
DFA Deterministic finite automaton

TeSSLa Temporal Stream-Based Specification Language

53

Bibliography

[ARM13]
[ARM17]

[BCG*10]

[Bha07]

[CAS03]

[CGHQ12]

[Chi01]

[CKO7]

[CMO4]

[DGH*17]

ARM LiMiTeD (Hrsg.): ARM IHI 0029B: CoreSight TM Architecture
Specification v2.0, issue D. ARM Limited, 2013

ARM LimiTED (Hrsg.): DS-5 ARM DSTREAM User Guide Version
5.27. ARM Limited, 2017

BORDIN, Matteo ; COMAR, Cyrille ; GINGOLD, Tristan ; GUITTON,
Jérome ; HAINQUE, Olivier ; QUINOT, Thomas: Object and source cover-

age for critical applications with the couverture open analysis framework.
In: ERTS (Embedded Real Time Sofware and Systems Conference), 2010

BraANsALL, Praful V.: The MCDC paradox. In: ACM SIGSOFT Soft-
ware Engineering Notes 32 (2007), Nr. 3, S. 1-4

CAST: Structural Coverage of Object Code, Position Paper 17 / Certi-
fication Authorities Software Team. 2003. — Forschungsbericht

CoMAR, Cyrille ; GUITTON, Jerome ; HAINQUE, Olivier ; QUINOT,
Thomas: Formalization and comparison of MCDC and object branch
coverage criteria. In: ERTS (Embedded Real Time Software and Systems
Conference), 2012

CHILENSKI, John J.: An investigation of three forms of the modified con-
dition decision coverage (MCDC) criterion / BOEING COMMERCIAL
AIRPLANE CO SEATTLE WA. 2001. — Forschungsbericht

CHILENSKI, J.J. ; KURTZ, J.L.: Object-Oriented Technology Verification
Phase 3 Report—Structural Coverage at the Source and Object Code
Levels / FAA report DOT/FAA/AR-07/20. 2007. — Forschungsbericht

CHILENSKI, John J. ; MILLER, Steven P.: Applicability of modified

condition/decision coverage to software testing. In: Software Engineering
Journal 9 (1994), Nr. 5, S. 193-200

DECKER, Normann ; GOTTSCHLING, Philip ; HOCHBERGER, Chris-
tian ; LEUCKER, Martin ; SCHEFFEL, Torben ; ScHMITZ, Malte ;
WEISS, Alexander: Rapidly Adjustable Non-intrusive Online Monitor-
ing for Multi-core Systems. In: Brazilian Symposium on Formal Methods
Springer, 2017, S. 179-196

55

Bibliography

[E*+07]

[HVCRO1]

[KC15]

[KF99)
[LAO4]

[Leul§]

[Mye06]
[Pot12]

[Reil3]

[Riel3]
[T+01]

[T*02]

[Tea

56

EAGER, Michael J. u.a.: Introduction to the dwarf debugging format.
In: Group (2007)

HAYHURST, Kelly J. ; VEERHUSEN, Dan S. ; CHILENSKI, John J. ; RiI-
ERSON, Leanna K.: A practical tutorial on modified condition/decision
coverage. (2001)

KANDL, Susanne ; CHANDRASHEKAR, Sandeep: Reasonability of
MC/DC for safety-relevant software implemented in programming lan-
guages with short-circuit evaluation. In: Computing 97 (2015), Nr. 3, S.
261-279

KANER, Cem ; FALK, Jack: Testing computer software. Wiley, 1999

LATTNER, Chris ; ADVE, Vikram: LLVM: A compilation framework
for lifelong program analysis & transformation. In: Proceedings of the
international symposium on Code generation and optimization: feedback-
directed and runtime optimization IEEE Computer Society, 2004, S. 75

LEUCKER, Sanchez C. Scheffel T. Schmitz M. Schramm A. M.: TeSSLa:
Runtime Verification of Non-synchronized Real-Time Streams. In: ACM
Symposium on Applied Computing (SAC), 2018. — to appear

MyYERS, Glenford J.: The art of software testing. John Wiley & Sons,
2006

PoTHON, Frederic: DO-178C/ED-12C versus DO-178B/ED-12B:
Changes and Improvements. In: Frederic Pothon (2012)

REINDERS, James: Processor Tracing. Website, 2013. — Online
available https://software.intel.com/en-us/blogs/2013/
09/18/processor—-tracing, accessed: 29.12.2017.

RIERSON, Leanna: Dewveloping safety-critical software: a practical guide
for aviation software and DO-178C compliance. CRC Press, 2013

TeAM, CAST u.a.: Rationale for accepting masking mcdc in certifica-
tion projects. In: Position Paper 6, Tech. Rep. (2001)

TeEAM, FCAS u.a.: What is a” decision” in application of modified
condition/decision coverage and decision coverage (dc). In: Technical
Report position paper (2002)

TEAM, The G.: Options That Control Optimization. Website, . — Online
available https://gcc.gnu.org/onlinedocs/gcc/Optimize—
Options.html

https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Bibliography

[Teal7a]

[Teal7b]

TeEAM, The C.: Clang 7 documentation. Website, 2017. —
https://clang.llvm.org/docs/Tooling.html

TeEAM, The C.: Matching the Clang AST. Website, 2017. —
https://clang.llvm.org/docs/LibASTMatchers.html

57

	Abstract
	Kurzfassung
	Table of Contents
	Introduction
	Outline

	Structural Coverage Analysis & DO-178C
	Verification of Safety-Critical Software
	Structural Coverage Analysis
	Statement Coverage
	Decision Coverage
	Multiple Condition Coverage
	Modified Condition/Decision Coverage

	Technical Details of Modified Condition/Decision Coverage
	Multiple Interpretation of MC/DC
	MC/DC with Short-Circuit Logic
	Definition of a Decision
	Relation to Object Branch Coverage
	Coverage Analysis at the Object Code Level

	Watchpoint Declaration by Static Analysis
	Static Analysis of Source Code
	If Statements
	Assignment Statements

	Static Analysis of Object Code
	Assignment Reconstruction

	Offline MC/DC Measurement
	Evaluation of Independence
	Limits of the Offline Approach

	Online MC/DC Measurement
	Online Trace Monitoring
	Assignment Reconstruction
	Generate Online Monitors for MC/DC
	Determining all possible Cases
	MC/DC Monitors

	Implementations
	Trace Generation
	Static Analysis
	LibClang
	LibTooling/LibASTMatchers
	Reading Debugging Symbols

	Iterative MC/DC Evaluation
	Online Monitors
	TeSSLa
	Assignment Reconstruction
	Test Case Reconstruction
	Monitoring

	Conclusion
	Limits
	Outlook

	List of Figures
	List of Tables
	Abbreviations
	References

