
From 2-Way Nondeterministic Büchi
Automata to Alternating Büchi Automata

Umwandlung: 2-Wege Nichtdeterministische
Büchi-Automaten zu Alternierenden Büchi-Automaten

Bachelorarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Marco Andreas Kabelitz

ausgegeben und betreut von
Prof. Dr. Martin Leucker

mit Unterstützung von
Torben Scheffel

Lübeck, den 19. Februar 2015

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Benutzung

der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, den 19. Februar 2015

iii

Abstract

Automata theory is an integral component of runtime verification, where the transforma-

tion of members from one automata class to another is necessary on a regular basis. In

this thesis, we discuss and implement three different conversion methods for finite state

automata. The first conversion describes the translation of 2-way nondeterministic Büchi

automata into language equivalent alternating Büchi automata. Next, we depict the

complementation of alternating Büchi automata by means of weak alternating automata.

Combining these methods, we investigate the complementation of 2-way nondeterministic

Büchi automata. After their theoretical discussion, we present the implementation of

these conversions in the context of the logic and automata library RltlConv.

v

Zusammenfassung

Die Automatentheorie ist ein wesentlicher Bestandteil der Laufzeitverifikation, in welcher

es häufig notwendig ist, Automaten bestimmter Klassen in Automaten anderer Klassen

umzuwandeln. In dieser Arbeit werden drei unterschiedliche Umwandlungsmethoden

für endliche Automaten besprochen und realisiert. Die erste Umwandlung beschreibt

die Transformation von 2-Wege nichtdeterministischen Büchi-Automaten zu alternieren-

den Büchi-Automaten, welche dieselbe Sprache akzeptieren. Danach schildern wir die

Komplementierung von alternierenden Büchi-Automaten unter Einsatz von schwachen al-

ternierenden Automaten. Die Kombination dieser Konstruktionen führt uns schließlich zur

Komplementierung von 2-Wege nichtdeterministischen Büchi-Automaten. Im Anschluss

an die theoretische Diskussion dieser Methoden präsentieren wir eine Implementierung

im Rahmen der Logik- und Automaten-Biblithek RltlConv.

vii

Contents

1 Introduction 1

2 Basics of Automata Theory 3

2.1 Finite State Automata on Finite Words 3

2.2 Finite State Automata on Infinite Words 14

3 Automata Conversions 23

3.1 From 2-way to Alternation . 24

3.1.1 2NFA to AFA . 24

3.1.2 2NBA to ABA . 33

3.2 Automata Complementation . 42

3.2.1 ABA to Complement WAA . 42

3.2.2 2NBA to Complement WAA . 47

4 Implementation 49

4.1 RltlConv . 49

4.1.1 Motivation for Presented Automata Conversions 50

4.1.2 Embedding of New Conversions in RltlConv 51

4.2 Explanation of Implemented Methods . 53

4.2.1 2NBA to ABA . 53

4.2.2 ABA to Complement WAA . 55

4.2.3 2NBA to Complement WAA . 56

4.3 I/O Examples . 56

5 Conclusion and Outlook 63

Bibliography 65

List of Figures 67

List of Tables 69

Listings 71

Abbreviations 73

ix

Chapter 1

Introduction

The proceeding application of software systems in all areas of work and society gives rise

to an increasing demand for error-free software. Meeting this demand is hindered by the

increasing complexity of these systems themselves as well as by the complexity of their

development processes. Misconceptions in technical design and software errors resulting

from inappropriate implementations cause great expenses to developers and clients and

can lead to unwanted or even dangerous behaviors of software systems.

A famous example for such a harmful malfunctioning is the computerized radiation

therapy machine Therac-25. Between 1985 and 1987, there have been six confirmed cases

of massive radiation overdoses caused by concurrent programming errors (see [8]). These

overdoses led to serious injuries and were even lethal in two cases. With software systems

deeply embedded in such safety-critical areas as health care, power generation and public

transport, we have to diminish the probability of occurrence of such software errors.

One way to reduce these risks is the application of formal verification methods. The idea

is to specify the intended system behavior in a formal description and verify whether this

specification holds for every possible execution of the system or not. This process is called

model checking. Unfortunately, considering all potential executions of a system is quite a

difficult endeavor, especially if the system’s processing is not intended to terminate. So

instead, we content ourselves with monitoring the system as it runs. Step by step, we

validate whether its current state still satisfies the intended behavior. This process is

called runtime verification.

A well known method for specifying a system’s behaviour according to discrete time

steps is the usage of temporal logics like the linear temporal logic (LTL). Here we can

describe in a logical formula, which property the system should fulfill for a certain time

step during the course of its execution. To monitor the system during runtime, we can

1

2 Chapter 1. Introduction

construct a finite state automaton (FSA) from a given temporal logical expression. This

automaton can then process the current state of the system at every time step and decide,

whether this state is intended by the temporal logical formula or not. In practice, such a

monitoring could be implemented as a parallel process on the same device as the original

system or it could exist on a separated physical instance like an FPGA.

There are many different kinds of temporal logics with varying expressive power, so

we need different methods for converting logical formulas to finite state automata.

Furthermore, the automaton offering the most intuitive representation of a logical

formula is not always the most adequate automaton for practical purposes. Sometimes

it is necessary to convert a formula to the desired automaton via various intermediate

automata transformations. We are therefore interested in methods converting certain

types of FSAs into other types of FSAs without changing the original semantics.

In this thesis, we will discuss such automaton-to-automaton conversions. There are three

different methods we will present:

• 2-way nondeterministic Büchi automata to alternating Büchi automata proposed

by Piterman and Vardi in [11].

• Complementation of alternating Büchi automata due to Kupferman and Vardi [6].

• Complementation of 2-way nondeterministic Büchi automata by composition of

the two former constructions.

In Chapter 2, we will provide the automata theoretical framework we build upon in

this thesis. We start by giving a review of finite state automata on finite words. This

will include the definitions of deterministic and nondeterministic automata as well as

the discussion of 2-way and alternating automata. The main part of this chapter will

introduce the reader to the notion of finite state automata on infinite words and ω-regular

languages. We will therefore investigate different kinds of Büchi automata as well as

weak alternating automata and parity automata.

Chapter 3 represents the main part of this thesis. We discuss the automaton conversion

methods stated above by reproducing the results given in [11] and [6] and providing

further explanation of the ideas behind them.

We will then describe an implementation of these conversion methods in Chapter 4.

We introduce the reader to the logic and automata library RltlConv and explain the

embedding of the formerly discussed constructions.

Finally, Chapter 5 will contain our conclusion and an outlook to future tasks related to

this thesis.

Chapter 2

Basics of Automata Theory

Automata theory is one of the basic fields of theoretical computer science. It provides

many powerful tools like finite state automata, pushdown automata, cellular automata

and Turing machines, which can be used for problem analysis in recursion and complexity

theory, the design of compilers and programming languages, text processing, formal

verification, computational immunology or artificial intelligence.

We only want to consider the class of finite state automata (FSAs) in this thesis. Although

the least powerful one of the referred classes, finite state automata bring a lot of useful

properties and a striking conceptual simplicity with them.

In this chapter, we will first give a review of finite state automata on finite words. We

expect the reader to have basic knowledge of regular languages and the concepts of

deterministic and nondeterministic finite automata. Nevertheless, we provide the most

important definitions and properties to fix the notation used throughout this thesis (but

we will go without informal explanations and examples). We will then look into 2-way

finite state automata and alternating automata.

Afterwards, we will expand the notion of FSAs on finite words and introduce the reader

to FSAs on infinite words. We will describe different classes of ω-automata (mainly Büchi

automata) and discuss properties of ω-regular languages. These concepts provide the

basis for the automata conversions described in the following chapters.

2.1 Finite State Automata on Finite Words

In this section, we will describe deterministic and nondeterministic finite state automata

processing finite words. We will then extend these models to 2-way automata as well as

3

4 Chapter 2. Basics of Automata Theory

to alternating automata. Both of these classes will be used in the automata conversions

described in Chapter 3.

Definition 2.1 (Finite word). Let Σ be a finite and nonempty alphabet. A finite word

over Σ is a sequence w = w0w1...wl with l ∈ N0 and wi ∈ Σ for every i ∈ {0, . . . , l}. We

say w to be of length l + 1 and denote this by |w| = l + 1. We also include the empty

word ε in our definition, which represents the unique finite word of length 0.

We denote the language of all finite words over Σ by Σ∗. The language of all nonempty

finite words over Σ is denoted by Σ+.

We refer to the concatenation of the words w, v ∈ Σ∗ by wv ∈ Σ∗.

Following directly from this definition, we get Σ∗ = Σ+ ∪ {ε}.

By having fixed this notation, we can now introduce different classes of finite state

automata on finite words. We start by defining deterministic finite automata. We remark,

that we use the same notation as Piterman and Vardi do in [11].

Definition 2.2 (Deterministic finite automaton [5]). A deterministic finite automaton

(DFA) is a 5-tuple

M = (Σ, S, s0, δ, F)

where

• Σ is the input alphabet,

• S is the finite set of states,

• s0 ∈ S is the start state,

• δ : S × Σ→ S is the transition function, assigning each pair (s, a) with s ∈ S and

a ∈ Σ to another state t ∈ S,

• F ⊆ S is the set of accepting states.

We define the extended transition function δ̂ = S × Σ∗ → S by induction over the length

of w ∈ Σ∗:

δ̂(s, ε) := s

δ̂(s, wa) := δ(δ̂(s, w), a)

2.1. Finite State Automata on Finite Words 5

We say a word w ∈ Σ∗ to be accepted by M if and only if δ̂(s0, w) ∈ F . Otherwise, the

word is said to be rejected. L(M), the language accepted by M , is the set of all words

w ∈ Σ∗ accepted by M , formally written as:

L(M) = {w ∈ Σ∗ | δ̂(s0, w) ∈ F}

A language accepted by a deterministic finite automaton is called a regular language.

The set of regular languages is known to be closed under union, intersection, complement,

concatenation, difference and the Kleene star [5].

Definition 2.3 (Nondeterministic finite automaton [5]). A nondeterministic finite au-

tomaton (NFA) is a 5-tuple

N = (Σ, S, S0, δ, F)

where Σ, S and F are corresponding to the definition of a DFA, and S0 and δ are defined

as follows:

• S0 ⊆ S is the set of start states.

• δ : S ×Σ→ 2S is the transition function, assigning each pair (s, a) with s ∈ S and

a ∈ Σ to an A ∈ 2S, where 2S denotes the power set of S (so A ⊆ S).

We define the extended transition function δ̂ = 2S ×Σ∗ → 2S by induction over the length

of w ∈ Σ∗:

δ̂(A, ε) := A

δ̂(A,wa) :=
⋃

s∈δ̂(A,w)

δ(s, a)

We say a word w ∈ Σ∗ to be accepted by N if and only if δ̂(S0, w)∩F 6= ∅. Just like with

a DFA, we define the language accepted by N as the set of all words over Σ accepted by

N , formally written as:

L(N) = {w ∈ Σ∗ | δ̂(S0, w) ∩ F 6= ∅}

There are some remarks to be made about NFAs. The most important one is, that for

every language accepted by an NFA, there exists a DFA accepting this language as well

(shown by Rabin and Scott in [12] in 1959). Therefore NFAs aren’t more powerful than

DFAs, both are accepting only regular languages.

6 Chapter 2. Basics of Automata Theory

Next, we will define NFAs with ε-transitions as an extension of NFAs. These aren’t any

more powerful than NFAs (and therefore not more powerful than DFAs), but are often

easier to construct than normal NFAs.

Definition 2.4 (Nondeterministic finite automaton with ε-transitions [5]). A nondeter-

ministic finite automaton with ε-transitions (ε-NFA, also called NFA with ε-moves) is a

6-tuple

N = (Σ, ε, S, S0, δ, F)

where ε is a special symbol not occurring in Σ and

Nε = (Σ ∪ {ε}, S, S0, δ, F)

is an ordinary NFA over the alphabet Σ ∪ {ε}.

We say a word w ∈ Σ∗ to be accepted by an ε-NFA N if and only if there exists a word

y ∈ (Σ ∪ {ε})∗ such that

• Nε accepts y and

• w is obtained from y by erasing all occurrences of the symbol ε, that is, w = h(y),

where

h : (Σ ∪ {ε})∗ → Σ∗

is the homomorphism defined by:

h(a) := a, a ∈ Σ

h(ε) := ε

The language accepted by the ε-NFA N is defined as:

L(N) = h(L(Nε))

We will hereafter refer to both NFAs and ε-NFAs as NFAs, meaning, that our notion

of nondeterminism will always include the possibility of ε-moves while discussing the

description of an ordinary NFA.

According to the provided definition, NFAs possess a set of start states. Since Piterman

and Vardi are using automata with single start states in [11], we like to recall that for every

NFA N there exists another NFA N ′ using just a single start state with L(N) = L(N ′).

2.1. Finite State Automata on Finite Words 7

N ′ can be achieved from N by adding a single new state s0 to N , declaring s0 as the

only start state and inserting ε-transitions from s0 to all former start states.

After reviewing these basic types of FSAs, we will now turn our attention to 2-way

nondeterministic finite automata and alternating finite automata. We present extended

definitions of the ones given by Piterman and Vardi in [11].

Definition 2.5 (2-way nondeterministic finite automaton [11]). A 2-way nondeterministic

finite automaton (2NFA) is a 5-tuple

N = (Σ, S, s0, δ, F)

where Σ, S and F are corresponding to the definition of an ordinary NFA, and

• s0 is the single start state,

• δ : S × Σ→ 2S×{−1,0,1} is the transition function, assigning each pair (s, a) with

s ∈ S and a ∈ Σ to a set of pairs (t,∆) with t ∈ S and ∆ ∈ {−1, 0, 1}.

A run of a 2NFA on a finite word w = w0w1...wl is a finite sequence of state-index pairs

ρ = (t0, i0), (t1, i1), . . . , (tm, im) with:

• t0 = s0

• i0 = 0

• tj ∈ S for 0 ≤ j ≤ m

• ij ∈ {0, 1, . . . , l} for 0 ≤ j < m

• im ∈ {0, 1, . . . , l + 1}

• (tj+1, ij+1 − ij) ∈ δ(tj , wij) for 0 ≤ j < m

A run is accepting if and only if im = l + 1 and tm ∈ F . We describe the language

accepted by a 2NFA N as follows:

L(N) = {w ∈ Σ∗ | There exists an accepting run of N over w}

The idea behind a 2NFA is, that the automaton can not only read the input word linearly

from front to back (like an NFA is supposed to), but also can change its reading direction

multiple times. Therefore every transition is enriched with an element of {−1, 0, 1},
indicating whether the automaton takes a step backward, no step at all, or a step forward

8 Chapter 2. Basics of Automata Theory

on the input word. A run can be interpreted as the 2NFA processing a word w for m

steps. At step j, it is in state tj and reads the symbol at position ij . To accept a word,

the automaton needs to read the whole input at least once and has to terminate in an

accepting state.

We already know that nondeterminism does not extend the power of a finite state

automaton over finite words. In [14], Shepherdson shows the same result for 2-way finite

state automata over finite words. Therefore, the class of languages accepted by 2NFAs is

precisely the class of regular languages.

For illustration of the ideas just presented, we give an example of a 2NFA and an

accepting run.

Example 2.1 (2NFA and accepting run). Consider the 2-way nondeterministic finite

automaton N = (Σ, S, s0, δ, F) with Σ = {a, b}, S = {s0, s1, s2, s3}, F = {s2}, and δ

given by the transition table 2.1.

a b

s0 {(s0, 1)} {(s0, 1), (s1,−1)}
s1 {(s2, 1)} {(s3, 1)}
s2 {(s3, 1)} {(s2, 1)}
s3 {(s3, 1)} {(s3, 1)}

Table 2.1: Transition table of the 2NFA N

A graphical representation of this 2NFA is provided in Figure 2.1. N accepts the language

L(N) = {w ∈ {a, b}∗ | w = xay with x ∈ {a, b}∗ and y ∈ {b}+}

which denotes the language of all w ∈ {a, b}∗ containing the symbol a at least once and

ending on a nonempty sequence of b’s only. To do so, the automaton “nondeterministically

guesses” which one of the b’s will be the first one of the b-only suffix and goes one step

back to check whether the symbol previously read was an a or not.

An accepting run for the word ababb ∈ L(N) would be

ρ = (s0, 0), (s0, 1), (s0, 2), (s0, 3), (s1, 2), (s2, 3), (s2, 4), (s2, 5)

which is accepting since tm = s2 ∈ F and im = 5 = l + 1.

We remark, that we can modify the definition of a run of a 2NFA easily to get a definition

of a run of an NFA: A run on a finite word w = w0w1...wl is a finite sequence of state-index

pairs ρ = (t0, i0), (t1, i1), . . . , (tl, il) with tj ∈ S and ij = j for 0 ≤ j ≤ l. Again, we

2.1. Finite State Automata on Finite Words 9

s0start s1 s2

s3

a, b/1

b/− 1 a/1

b/1

b/1

a/1

a, b/1

Figure 2.1: A graphical representation of the 2NFA N

demand t0 = s0 and i0 = 0. We also have (tj+1) ∈ δ(tj , wij) for every j with 0 ≤ j < l.

We say such an NFA run to be accepting if and only if tl ∈ F .

Definition 2.6 (Simple run of a 2NFA). Let ρ = (t0, i0), (t1, i1), . . . , (tm, im) be a run

of a 2NFA. We say ρ to be a simple run if and only if there exists no two state-index

pairs (tj , ij) and (tk, ik) with tj = tk and ij = ik for 0 ≤ j < k ≤ m.

For a non-simple run, there’s a “loop” in the run, visiting a certain state while reading

at the same index of the word twice. A simple run on the other hand is loop free.

Theorem 2.1. A 2NFA N accepts a word w iff N accepts w with a simple run.

Proof.[11] Given an accepting non-simple run ρ of a 2NFA N over a word w, we

will construct an accepting simple run ρ′ over w from ρ. Since ρ is not simple, there

exist some state-index pairs (tj , ij) and (tk, ik) with tj = tk and ij = ik for some

j < k. We delete all state-index pairs (tl, il) from ρ with j < l ≤ k and achieve the

sequence (s0, 0), . . . , (tj , ij), (tk+1, ik+1), . . . , (tm, im). Since (tk+1, ik+1 − ik) ∈ δ(tk, wik)
and δ(tk, wik) = δ(tj , wij), this sequence must still be a valid and accepting run. We

repeat this process as long as there are still loops to be deleted. Since ρ is a finite

sequence, there can only be finitely many loops. So in the end, we get a loop free

accepting run ρ′ of N over w, which complies with the definition of an accepting simple

run. �

So now we know, that whenever a word w is accepted by a 2NFA, w can be accepted by

a simple run. We will use this property for automata constructions in Chapter 3.

10 Chapter 2. Basics of Automata Theory

The next class of finite state automata which will be of an important role in the course

of this thesis is the class of alternating finite automata. Before we are able to discuss

them properly, we need to fix some notation.

Definition 2.7 (Positive Boolean formulas over a set). Let S be a set. We denote the

set of all positive Boolean formulas over S by B+(S) and define it recursively as follows:

true ∈ B+(S)

false ∈ B+(S)

s ∈ B+(S), s ∈ S

ϕ1 ∧ ϕ2 ∈ B+(S), ϕ1, ϕ2 ∈ B+(S)

ϕ1 ∨ ϕ2 ∈ B+(S), ϕ1, ϕ2 ∈ B+(S)

Let ϕ ∈ B+(S) be a positive Boolean formula and S′ ⊆ S. S′ satisfies ϕ if and only if ϕ

evaluates to true when assigning true to all elements in S′ and false to all elements in

S \ S′. If S′ satisfies ϕ, we say S′ to be a model of ϕ. If S′ is a model of ϕ and there

exists no S′′ ⊂ S′ for which S′′ also is a model of ϕ, we say S′ to be minimal model

of ϕ and denote this by S′ |= ϕ. The formula ϕ = true is satisfied by every set, while

ϕ = false cannot be satisfied.

We achieve the dual of a formula ϕ ∈ B+(S), which we will refer to as ϕ̃, by replacing

all ∧ by ∨, true by false and vice versa.

We remark, that the necessity of including true and false explicitly into B+(S) arises

from the exclusion of negations. Otherwise, true and false would be expressible by

(s ∨ ¬s) and (s ∧ ¬s).

Definition 2.8 (Tree, Rooted tree, Σ-labeled tree). Let G = (V,E) be a connected

cycle-free graph. We call G a tree and define dist : V × V → N0 to be a function

assigning each pair of vertices (u, v) to the length of the unique path from u to v in G.

A rooted tree is a directed graph T = (V ′, E′), for which the undirected underlying graph

G = (V ′, E) is a tree and there exists a root vertex vr ∈ V ′, such that for all directed

edges (u, v) ∈ E′ the equation

dist(vr, v)− dist(vr, u) = 1

holds. We say a vertex v to be of depth d(v) = dist(vr, v) in the rooted tree and call all

vertices with an outdegree of deg+(v) = 0 a leaf. For every directed edge (u, v) ∈ E′ we

say u to be the predecessor of v and v to be a successor of u.

2.1. Finite State Automata on Finite Words 11

Given an alphabet Σ, we define a Σ-labeled tree as a tuple (T, r) where T = (V,E) is a

rooted tree and r : V → Σ is a function assigning a symbol of Σ to every vertex in V .

Following from this definition, a directed graph is a rooted tree if all edges are naturally

oriented away from the root vertex vr and all vertices v have an indegree of deg−(v) = 1

(excepted the root itself, which has an indegree of deg−(vr) = 0). The root has no

predecessor, the leaves have no successors and all remaining vertices have exactly one

predecessor and at least one successor.

Definition 2.9 (Alternating finite automaton [11]). An alternating finite automaton

(AFA) is a 5-tuple

A = (Σ, Q, q0, η, F)

where Σ, Q, q0 and F are corresponding to the definition of an ordinary NFA, and the

transition function η : Q× Σ→ B+(Q) assigns each pair (q, a) with q ∈ Q and a ∈ Σ to

a positive Boolean formula over Q.

A run of an AFA on a finite word w = w0w1...wl is a Q-labeled tree ρ = (T, r) with

T = (V,E), r : V → Q, r(vr) = q0 and

∀v ∈ V with r(v) = q and η(q, wd(v)) = ϕ :

∃Q′ ⊆ Q : Q′ |= ϕ, deg+(v) = |Q′| and ∀q′ ∈ Q′ :

∃!(v, w) ∈ E : r(w) = q′

We say a run of an AFA to be accepting if and only if the following condition holds for all

leaves v: If the depth of a leaf is d(v) = l+ 1, r(v) has to be an element of F . Otherwise,

η(r(v), wd(v)) has to be equal to true. We define the language accepted by an AFA A as

follows:

L(A) = {w ∈ Σ∗ | There exists an accepting run of A over w}

We define the dual of an AFA A as the AFA Ã = (Σ, Q, q0, η̃, Q \ F).

Please note, that we changed the naming of the state set from S to Q for this definition,

which will serve a clearer distinction between alternating and non-alternating automata

in the upcoming automata conversions.

Let’s give an informal description of the operating principles of an AFA: There are two

kinds of transitions in an AFA, called existential and universal transitions. An existential

12 Chapter 2. Basics of Automata Theory

transition works just like a nondeterministic transition familiar from NFAs, where we

have the choice of either going into state q0 or into state q1. This can be expressed by

the positive Boolean formula q0 ∨ q1. With a universal transition, there is no such choice,

the automaton has to move to both q0 and q1, which can be interpreted as moving to

q0 and spawning another copy of the AFA moving to q1. This can be expressed by the

positive Boolean formula q0 ∧ q1. Existential and universal transitions may be combined

arbitrarily, therefore the automaton is called alternating.

So when does an AFA accept a word w? If we recall the definition of runs of 2NFAs, we

can take such a run as a path through the automaton, which can only be accepting, if it

ends in an accepting state. But since AFAs have universal transitions, we’re not able to

interpret a run of an AFA as a path. We have to take account of possible branchings

caused by such transitions. Therefore we defined the run of an AFA as a labeled tree,

which is accepting, if and only if all leaves at depth l + 1 are labeled by some accepting

state and all other leaves have to evaluate to true according to the transition function.

One remark on duals of AFAs: It is shown in [2], that the two AFAs A and Ã accept

complementary languages, so L(Ã) = Σ∗ \ L(A).

We will now provide an example of an AFA and an accepting run on this automaton.

Example 2.2 (AFA and accepting run). Consider the following alternating finite state

automaton A = (Σ, Q, q0, η, F) with Σ = {a, b}, Q = {q0, q1, q2, q3}, F = {q2}, and η

given by the transition table 2.2.

a b

q0 q0 ∨ (q1 ∧ q2) q0
q1 q3 true

q2 q3 q2
q3 q3 q3

Table 2.2: Transition table of the AFA A

A graphical representation of the automaton is provided by Figure 2.2. A accepts the

same language as the 2NFA presented on page 8, namely

L(A) = {w ∈ {a, b}∗ | w = xay with x ∈ {a, b}∗ and y ∈ {b}+}

which denotes the language of all w ∈ {a, b}∗ containing at last one a and ending on a

nonempty sequence of b’s only. The automaton “nondeterministically guesses” the last a

in the word and goes into two branches, one checking the suffix of the for containing only

b’s and the other checking if this suffix is at least of length 1.

2.1. Finite State Automata on Finite Words 13

q0start ∨ ∧

q1

q2 q3

true

b

a

a, b

a

b a, b

Figure 2.2: A graphical representation of the AFA A

vr : q0 v1 : q0 v2 : q0 v3 : q0

v4 : q2 v6 : q2

v5 : q1

a b b

a

b

a

Figure 2.3: An accepting run of the AFA A over the word ababb

Figure 2.3 shows a run ρ for the word ababb ∈ L(A), which is accepting, since v6, the

only leaf at depth l + 1, is labeled with q2 ∈ F and for the other leaf v5 we got r(v5) = q1

and η(q1, b) = true.

Again, we know AFAs to be no more powerful than NFAs (shown by Chandra in [2]).

Therefore we got an equality of expressive power for all classes of automata introduced

so far: DFAs, NFAs, ε-NFAs, 2NFAs and AFAs, they all accept the set of regular

languages. This implies, that for every automaton M of one of these classes, there exists

an automaton M ′ for every of the other classes with L(M) = L(M ′). Nevertheless,

two automata from different classes accepting the same regular language can differ

tremendously in their number of states. It is a well known result, that the construction of

a language equivalent DFA to an NFA can in a worst case scenario include an exponential

blowup in the number of states. Vardi shows in [15], that the conversion of a 2-way

automaton to a 1-way automaton involves an exponential blowup as well. Chandra

shows in [2], that the simulation of an AFA using a DFA can even lead to a double

14 Chapter 2. Basics of Automata Theory

exponential growth in the number of states. In Chapter 3, we will describe a method

proposed by Piterman and Vardi in [11] which converts a 2NFA with n states into an

language equivalent AFA with O(n2) states.

2.2 Finite State Automata on Infinite Words

In this section, we will describe finite state automata processing infinite words. While

FSAs on finite words are widely used in text processing and computational immunology,

FSAs on infinite words find application in different areas of formal verification like

runtime verification or model checking. The automata used for these purposes are quite

similar to those automata classes we already discussed in the previous section. The

difference lies in the acceptance behavior, since the reading process of an infinite word

can’t halt at the end of such an input.

Although there are other kinds of FSAs on infinite words, we will content ourselves with

the discussion of different kinds of Büchi automata according to their definitions in [11].

These are the automata we will use in the automata conversions described in Chapter 3.

For an introduction to Muller, Rabin and Streett automata, we refer the reader to [10].

Definition 2.10 (Infinite word). Let Σ be a finite and nonempty alphabet. An infinite

word over Σ is an infinite sequence w = w0w1w2... with wi ∈ Σ for every i ∈ N0. We

say w to be of length |w| = ω.

We denote the language of all infinite words over Σ by Σω.

We write xω = xxx... for the infinite concatenation of a finite word x to itself.

For example, the word w = a(bc)ω ∈ {a, b, c}ω is the infinite word abcbcbcbc... with an

infinite suffix of alternating b’s and c’s.

Definition 2.11 (Nondeterministic Büchi automaton [11]). A nondeterministic Büchi

automaton (NBA) is a 5-tuple

N = (Σ, S, s0, δ, F)

equally defined to a regular NFA.

A run of an NBA over an infinite word w = w0w1... is an infinite sequence of state-index

pairs ρ = (t0, i0), (t1, i1), . . . with tj ∈ S and ij ∈ N0 for j ∈ N0. We demand t0 = s0,

i0 = 0 and (tj+1) ∈ δ(tj , wij) for every j ∈ N0.

2.2. Finite State Automata on Infinite Words 15

Let inf(ρ) denote the set of all states visited infinitely often in ρ. We say a run to be

accepting if and only if inf(ρ) ∩ F 6= ∅. We define the language accepted by an NBA N

as follows:

L(N) = {w ∈ Σω | There exists an accepting run of N over w}

This means that a word w is accepted by an NBA if the automaton visits some state

s ∈ F infinitely often while processing w.

Example 2.3 (NBA and accepting run). Consider the following nondeterministic Büchi

automaton N = (Σ, S, s0, δ, F) with Σ = {a, b}, S = {s0, s1, s2}, F = {s1}, and δ given

by the transition table 2.3.

a b

s0 {s0} {s0, s1}
s1 {s3} {s1}
s2 {s3} {s3}

Table 2.3: Transition table of the NBA N

A graphical representation of the automaton is provided by Figure 2.4. N accepts the

language

L(N) = {w ∈ {a, b}ω | w = x(b)ω with x ∈ {a, b}∗}

which denotes the language of all w ∈ {a, b}ω having an infinite suffix of b’s only. The

automaton “nondeterministically guesses” the first b of this suffix.

s0start s1 s2

a, b

b

b

a

a, b

Figure 2.4: A graphical representation of the NBA N

An accepting run for the word aba(b)ω ∈ L(N) would be

ρ = (s0, 0), (s0, 1), (s0, 2), (s1, 3), (s1, 4), (s1, 5), . . .

which is accepting since inf(ρ) ∩ F = {s1} 6= ∅.

We refer to the set of languages recognized by NBAs as ω-regular languages. In the

previous section, we mentioned DFAs to accept the same set of languages as NFAs. For

Büchi automata, this equality of expressive power of determinism and nondeterminism

16 Chapter 2. Basics of Automata Theory

does not hold. In fact, there exists no deterministic Büchi automaton (DBA) recognizing

the same language as the NBA shown in Example 2.3. Since the set of all DBAs is

a strict subset of the set of all NBAs, it follows, that NBAs have to be strictly more

powerful than DBAs. We won’t be using any DBAs in this thesis, so we go without a

formal definition of them. Additional information on this subject can be found in [10].

Definition 2.12 (2-way nondeterministic Büchi automaton [11]). A 2-way nondetermin-

istic Büchi automaton (2NBA) is a 5-tuple

N = (Σ, S, s0, δ, F)

equally defined to a regular 2NFA.

A run of a 2NBA on an infinite word w = w0w1... is an infinite sequence of state-index

pairs ρ = (t0, i0), (t1, i1), . . . with:

• t0 = s0

• i0 = 0

• tj ∈ S for j ∈ N0

• ij ∈ N0 for j ∈ N0

• (tj+1, ij+1 − ij) ∈ δ(tj , wij) for j ∈ N0

We say a run to be accepting if and only if inf(ρ) ∩ F 6= ∅. We define the language

accepted by a 2NBA N as follows:

L(N) = {w ∈ Σω | There exists an accepting run of N over w}

Example 2.4 (2NBA and accepting run). Consider the following 2-way nondeterministic

Büchi automaton N = (Σ, S, s0, δ, F) with Σ = {a, b}, S = {s0, s1, s2, s3, s4, s5}, F =

{s2}, and δ given by the transition table 2.4.

a b

s0 {(s0, 1)} {(s0, 1), (s1,−1)}
s1 {(s5, 1)} {(s2,−1)}
s2 {(s5, 1)} {(s3, 1)}
s3 {(s4, 1)} {(s4, 1)}
s4 {(s0, 1)} {(s0, 1)}
s5 {(s5, 1)} {(s5, 1)}

Table 2.4: Transition table of the 2NBA N

2.2. Finite State Automata on Infinite Words 17

A graphical representation of the automaton is provided by Figure 2.5. N accepts the

language

L(N) = {w ∈ {a, b}ω | |{i ∈ N0|wiwi+1wi+2 = bbb}| =∞}

which denotes the language of all w ∈ {a, b}ω containing the substring bbb infinitely often.

The automaton “nondeterministically guesses” the first b of such an infix.

s0start s1

s5

s2

s3s4

a, b/1

b/− 1 b/− 1

a/1 a/1

b/1

a, b/1

a, b/1

a, b/1

Figure 2.5: A graphical representation of the 2NBA N

An accepting run for the word (abbba)ω ∈ L(N) would be

ρ = (s0, 0), (s0, 1), (s0, 2), (s0, 3), (s1, 2), (s2, 1), (s3, 2), (s4, 3), (s0, 4), . . .

and the denoted subsequence repeats itself now an infinite number of times with an

additional offset of 5 per repetition on the word positions. This run is accepting since

inf(ρ) ∩ F = {s2} 6= ∅.

Definition 2.13 (Simple run of a 2NBA). Let ρ = (t0, i0), (t1, i1), . . . be a run of a

2NBA. We say ρ to be a simple run if and only if one of the following properties holds:

• For all j ∈ N0, k ∈ N with j < k, either tj 6= tk or ij 6= ik.

• There exist l,m ∈ N such that for all h ∈ N0, p ∈ N with h < p < l + m, either

th 6= tp or ih 6= ip, and for all f ∈ N with f ≥ l, tf = tf+m and if = if+m.

18 Chapter 2. Basics of Automata Theory

The first property describes a run without any loops, while second property describes a

run with exactly one loop that will never be left during the run and that contains no

smaller loops within itself.

Theorem 2.2. A 2NBA N accepts a word w iff N accepts w with a simple run.

Proof.[11] Given an accepting non-simple run ρ of a 2NBA N over a word w, we will

construct an accepting simple run ρ′ over w from ρ. Since accepting states can be visited

in the loops, we are not allowed to delete them completely like we did in the 2NFA case.

Nevertheless, if there is a “non-accepting loop” in ρ (one which does not visit any state

t ∈ F), we can delete this loop with the same justification as in the 2NFA case.

We will now divide ρ into segments. Going through the run, we start a new segment at

every visit of an accepting state. Since ρ is accepting, there have to be infinitely many

visits of accepting states and therefore infinitely many segments. The non-accepting

loops can only be found inside these segments and every segment is of finite length, so

every segment can be made loop free within a finite number of modifications. Afterwards,

we can safely assume that if there exists some j ∈ N0, k ∈ N with j < k such that tj = tk

and ij = ik, there has to be some accepting state visited between step j and step k. Out

of all these j and k, we choose the minimal j and the minimal corresponding k. Now

we construct the sequence ρ′ = (s0, 0), . . . , (tj−1, ij−1), ((tj , ij), . . . , (tk−1, ik−1))
ω. Since

we modified ρ only inside the segments and never changed the first or the last element

of such a segment, ρ′ must still be a valid run of N over w. Visiting the acceptance set

infinitely often between tj and tk−1 makes ρ′ accepting. And since we deleted all loops

except one, ρ′ must be a simple run. �

We can interpret the ρ′ constructed by this proof as going through ρ and staying inside

the first occurring loop visiting an accepting state. So now we know, that whenever a

word w is accepted by a 2NBA, w can be accepted by a simple run.

Definition 2.14 (Alternating Büchi automaton [11]). An alternating Büchi automaton

(ABA) is a 5-tuple

A = (Σ, Q, q0, η, F)

equally defined to a regular AFA.

2.2. Finite State Automata on Infinite Words 19

A run of an ABA on an infinite word w = w0w1... is a possibly infinite Q-labeled tree

ρ = (T, r) with T = (V,E), r : V → Q, r(vr) = q0 and

∀v ∈ V with r(v) = q and η(q, wd(v)) = ϕ :

∃Q′ ⊆ Q : Q′ |= ϕ, deg+(v) = |Q′| and ∀q′ ∈ Q′ :

∃!(v, w) ∈ E : r(w) = q′

We say a run to be an accepting run if and only if all infinite paths in the run tree starting

from the root visit the accepting set F infinitely often and for all finite paths there is a

leaf vertex v with η(v, wd(v)) = true. We define the language accepted by an ABA A as

follows:

L(A) = {w ∈ Σω | There exists an accepting run of A over w}

Example 2.5 (ABA and accepting run). Consider the following alternating Büchi

automaton A = (Σ, Q, q0, η, F) with Σ = {a, b}, Q = {q0, q1, q2, q3, q4, q5, q6}, F =

{q1, q3, q5}, and η given by the transition table 2.5.

a b

q0 (q1 ∧ q3) ∨ q5 q6
q1 q1 q2
q2 q1 q2
q3 q4 q3
q4 q4 q3
q5 q5 q6
q6 q6 q6

Table 2.5: Transition table of the ABA A

A graphical representation of the automaton is provided by Figure 2.6. A accepts the

language

L(A) = {w ∈ {a, b}ω | w = (a)ω or

(w0 = a and |{i ∈ N0|wi = a}| = |{i ∈ N0|wi = b}| =∞)}

which denotes the language of all w ∈ {a, b}∗ which are either the word only containing

a’s or which start with an a and do not have an infinite suffix of either a’s or b’s only.

The automaton “nondeterministically decides” at reading the first a (if there is one) for

which of these cases it’s going to check.

Figure 2.7 shows a run ρ over the word (aab)ω ∈ L(A). The upper branch visits infinitely

many vertices v with r(v) = q1 ∈ F , while the lower branch visits infinitely many vertices

w with r(w) = q3 ∈ F . Therefore, this run is accepting.

20 Chapter 2. Basics of Automata Theory

q0start ∨ ∧

q1 q2

q3 q4

q5q6

a

b

a

b

a

b

b

a

b

a

a
b

a, b

Figure 2.6: A graphical representation of the ABA A

vr : q0 v1 : q5

v2 : q1

v3 : q3

v4 : q2

v5 : q3

v6 : q1

v7 : q4

v8 : q1

v9 : q4

v10 : q2

v11 : q3

. . .

. . .

a

a

a

b

b

a

a

a

a

b

b

a

a

Figure 2.7: An accepting run of the ABA A over the word (aab)ω

When we introduced AFAs in the previous section, we pointed towards the possibility

of creating an AFA Ã from an AFA A with L(Ã) = Σ∗ \ L(A). This was done by

dualization of A. We are able to dualize an ABA as well, but unfortunately, a dualized

ABA does not generally accept the complement language of the original ABA. But with

a modification of our notion of a dualized ABA, we can indeed achieve an automaton

accepting the complement language of an ABA. Though there are other complementation

methods for ABAs, this is a particularly simple one.

Definition 2.15 (Alternating co-Büchi automaton [11]). An alternating co-Büchi au-

tomaton (ACA) is a 5-tuple

A = (Σ, Q, q0, η, F)

equally defined to an ABA.

2.2. Finite State Automata on Infinite Words 21

A run of an ACA over an infinite word is the same as a run of an ABA. We say a run

of an ACA to be accepting if and only if every infinite path in the run tree only contains

a finite number of vertices v with r(v) ∈ F .

Opposite to the acceptance of ABAs, where we need to visit the accepting set infinitely

often on every infinite path, in an ACA we demand to visit the accepting set only finitely

often.

Using this definition, we can complement an ABA A by simply dualizing its transition

function and interpret Ã as an ACA. Then we get L(Ã) = Σω \ L(A). In Chapter 3,

we will discuss a method for the complementation of an ABA which delivers an ABA

instead of an ACA accepting the complement language.

Definition 2.16 (Weak alternating automaton [6]). A weak alternating automaton

(WAA) is a 5-tuple

A = (Σ, Q, q0, η, F)

where Σ, q0, η and F are defined just like in an ABA and

• Q =
⋃n−1
i=0 Qi consists of n ∈ N pairwise disjoint sets of states Qi, which are either

a subset of F (Qi ⊆ F , we call Qi an accepting set) or are completely disjoint from

F (Qi ∩ F = ∅, we call Qi a rejecting set)

• There exists a partial order ≤ of the Qi, such that for every q ∈ Qj and q′ ∈ Qk
with 0 ≤ j, k < n for which q′ occurs in η(q, a) for some a ∈ Σ, we have Qk ≤ Qj.

We define a run of a WAA just the same as a run of an ABA. We say a run to be

accepting, if and only if the final Qi is an accepting set.

Because of the partial ordering, a run has to finally arrive in some Qi which it isn’t going

to leave.

The last class of automata we want to talk about is the class of alternating k-parity

automata (AkPA). Since we won’t need them in the automata conversions described in

this thesis, we will go without a formal definition. An alternating k-parity automaton

is a generalization of an alternating Büchi automaton. While the state set of an ABA

can be partitioned into two disjoint sets F and Q \ F , an AkPAs state set is partitioned

into k disjoint sets Qi, each of them being of a different parity i with i ∈ {1, . . . , k}. Let

p : Q→ N0 denote the function which assigns each state q ∈ Q to the parity of the set

Qi it’s included in. A run of an alternating k-parity automaton ρ is defined just as the

22 Chapter 2. Basics of Automata Theory

run of an ABA and is said to be accepting if and only if the highest parity met infinitely

often is even. We can formulate this acceptance condition as follows:

ρ is accepting ⇔ max(p(inf(ρ))) mod 2 = 0

The only reason we are discussing AkPAs right now, is that while the automata conversion

methods we will discuss in this thesis are working on ABAs, the framework in which we

will implement them works on AkPAs. We want to remark that this is no problem, since

we can interpret Büchi automata as 2-parity automata. Both automata have two disjoint

state sets and we can describe the accepting set F of an ABA as the state set of parity 2

of an A2PA, which will “behave like an accepting set” since the only other parity is 1,

which is an odd parity and therefore not accepting.

At the end of this section, we want to mention that all classes of automata over infinite

words we introduced are of equal expressiveness (except the DBA, as we stated before).

They all accept the ω-regular languages, which are known to be closed under union,

intersection and complementation [10]. Especially the last property will be of importance

for this thesis, since we are discussing complementation methods for ABAs and 2NBAs

in the following chapter.

Chapter 3

Automata Conversions

Finite state automata are useful tools in many areas of modern work life and research.

Depending on the circumstances providing the context for the usage of FSAs, different

kinds of automata may serve more or less straightforward ways to model the situation.

Unfortunately, the automaton offering the most intuitive representation is not always

the most practical tool in terms of processability. We are therefore interested in methods

converting certain types of FSAs into other types of FSAs without changing the original

semantics.

In this chapter, we will consider two different automata conversions. In the first section,

we examine the construction of alternating Büchi automata from 2-way nondeterministic

Büchi automata. In [13], Sánchez and Leucker introduced regular expressions with past

operators and showed how to model these using 2NFAs. We want to transfer this idea to

the context of infinite words and use 2NBAs as a representation of ω-regular expressions

with past operators. Such a modeling can be useful in runtime verification, but since

2NBAs are hard to process, we want to convert them to their 1-way equivalents. Miyano

and Hayashi proposed a method for the conversion of ABAs to NBAs in [9], so the

construction of an ABA from a 2NBA closes the gap between 2NBA and NBA. More

on the motivation for this construction will be discussed in Chapter 4, where we will

describe an implementation of this conversion in the context of the logic and automata

library RltlConv.

The second section describes a method for achieving a weak alternating automaton

accepting the complement language of a provided alternating Büchi automaton. We

will do this by dualizing the ABA to receive an alternating co-Büchi automaton and

construct a WAA simulating accepting runs of this ACA.

23

24 Chapter 3. Automata Conversions

Afterwards, we discuss the composition of the 2NBA to ABA conversion and the ABA

complementation method to achieve a construction capable of complementing a 2NBA.

3.1 From 2-way to Alternation

In this section, we want to describe a method for the conversion of a 2-way nondetermin-

istic Büchi automaton to an alternating Büchi automaton. To do so, we will first take

a detour and discuss the conversion of a 2NFA to an AFA. Afterwards, we extend the

notion of this method to match the context of Büchi automata and infinite words.

Both conversions were proposed by Piterman and Vardi in [11]. We will reproduce their

results, correct some minor formal flaws and provide extended explanations along with

illustrative examples for a better understanding of the depicted ideas. We will not discuss

the correctness proofs of the described automata conversions, but the interested reader

can find these in [11].

3.1.1 2NFA to AFA

Given a 2NFA N with n states, we will construct an AFA A with L(N) = L(A) and

O(n2) states. The construction method we describe has two phases. In the first phase,

we will build a 2NFA N ′ with L(N ′) = L(N) which does not contain any ε-moves. The

second phase will be the conversion of N ′ to a language equivalent AFA A.

Elimination of ε-moves

We recall that for the given 2NFA N = (Σ, S, s0, δ, F) the transition function δ is defined

as δ : S×Σ→ 2S×{−1,0,1}. What we want to achieve is a function δ′ : S×Σ→ 2S×{−1,1}

such that the 2NFA N ′ = (Σ, S, s0, δ
′, F) accepts the same language as N .

The basic idea for the construction of such a function δ′ is the following: We take an

s ∈ S and an a ∈ Σ. Let’s assume that δ(s, a) includes some tuple (s′, 0). This would

represent an ε-move, since the 2NFA would change from state s to state s′ without

changing the symbol a currently read. Let’s further assume, that there exists some

(t,∆) ∈ δ(s′, a) with ∆ ∈ {−1, 1}, representing either a forward or a backward move of

the automaton while changing from state s′ to state t. Speaking in terms of a run of N

over some word w, there would be the possibility of a subsequence (s, i), (s′, i), (t, i+ ∆)

with wi = a. But since the “detour” over s′ doesn’t change the symbol N is reading, we

can skip this ε-move by defining a new transition function which leads from (s, i) directly

3.1. From 2-way to Alternation 25

to (t, i+ ∆). Furthermore, we can define a new transition function δ′, which skips all

possible sequences of ε-moves in a run of N .

To do this, we define a set Csa for every s ∈ S and for every a ∈ Σ. Csa includes all

forward and backward moves N can make reading a after running through a finite (and

possibly empty) sequence of ε-moves starting in state s.

Formally, we define Csa as follows:

Csa =

 (t,∆) ∈ S × {−1, 1}

∣∣∣∣∣∣∣∣
∃ t0t1...tk ∈ S+ with k ∈ N0 such that t0 = s,

(tj , 0) ∈ δ(tj−1, a) for all j with 1 ≤ j ≤ k,
and (t,∆) ∈ δ(tk, a)

We define δ′(s, a) = Csa and get the 2NFA N ′ without ε-moves as described above.

Anatomy of 2-way runs without ε-moves

We will now analyse the structure of a run a 2NFA N = (Σ, S, s0, δ, F) without ε-moves.

Recall that a run of N over a finite word w is a sequence ρ = (s0, 0), (s1, i1), . . . , (sm, im)

with sj ∈ S for 0 ≤ j ≤ m. Since N has no ε-moves we further get ij+1 = ij + ∆ for

0 ≤ j < m and ∆ ∈ {−1, 1}. We say a state-index pair (sj , ij) in ρ to be a forward tuple

if it results from a previous forward step and we call it a backward tuple if it results from

a previous backward step. Formally, this means (sj , ij) is a forward tuple if ij = ij−1 + 1

and a backward tuple if ij = ij−1 − 1. We define (s0, 0) to be a forward tuple.

Since ρ is moving over the word w with every transition taken, we can visualize the

run over time as something Piterman and Vardi call “zigzags”. We can see an ex-

ample of a zigzag in Figure 3.1. The corresponding run is a sequence starting with

(s0, 0), (s1, 1), (s2, 2), (s3, 1), (s4, 2), (s5, 3), . . . and going on from there.

Since the AFA we want to achieve is a 1-way automaton, it will have to somehow

“nondeterministically guess” how the zigzag is going to evolve in time. The main idea of

the construction we’re going to describe is the following: As soon as the AFA reads some

wi, it guesses all future visits of the zigzag run of wi. One of these visits will be the last

occurrence of wi in the zigzag, so the AFA will continue processing w from the according

state. Additionally, it will spawn a new process for each of the future visits, which will

be verifying that the AFA does indeed reach all of these visits when processing w further.

Let’s look at the example in Figure 3.1 again. There are two states in this example in

which w1 is read, namely s1 and s3. Since (s2, 1) ∈ δ(s1, w1) and (s4, 1) ∈ δ(s3, w1), we

will have to make sure in the 1-way run of the AFA that s3 resulted from s2 and that the

26 Chapter 3. Automata Conversions

w0 w1 w2 w3

s0

s1

s2

s3

s4

s5

Figure 3.1: Example of a 2NFA zigzag run

run continuing from s3 to s4 and further is accepting. Therefore, when the AFA reads

w1, it spawns two processes: One is going to verify that s1 leads to s3 and the other one

is going to check if the run going onward from s3 is accepting.

Based on this idea, we can partition the states of the AFA into two different types. We

say a state s ∈ S to be a singleton state. These states are representing the part of the

run which is going forward and for which we have to verify that it is going to accept.

There exists exactly one singleton state s′ for each index i ∈ N0 of w in a run of the

AFA, which corresponds to the last forward tuple (s′, i) in the zigzag run the AFA is

simulating. A pair state (s, t) ∈ S × S is a pair of two states s and t for which (s, i) is

a forward tuple and (t, i) is a backward tuple for some index i in the simulated 2NFA

run. This represents the part of the run which ensures the state s is leading to the state

t. Since the set of states of the AFA includes singleton states as well as pair states, we

define Q = S ∪ (S × S), therefore the blowup in the number of states used in the AFA in

comparison to the number of states in the 2NFA is a quadratic one.

Using this definition, we can describe an AFA run simulating the zigzag run shown in

Figure 3.1. The singleton states following from the example are s0, s1, s4 and s5. The

only pair state is (s2, s3). The AFA run we want to use to simulate the zigzag run is

presented in Figure 3.2.

Now that we have defined the set of states and introduced the concepts of singleton

states and pair states, we will go and describe the transition function η of the AFA we

want to construct. We will do this separately for the transitions at singleton states and

the transitions at pair states.

3.1. From 2-way to Alternation 27

vr : s0 v1 : s1

v3 : (s2, s3)

v2 : s4 v4 : s5 . . .

w0

w1

w1

w2 w3

Figure 3.2: AFA simulation of the 2NFA zigzag run presented in Figure 3.1

Transitions at singleton states

We define the transition function η for singleton states. When the AFA is in a singleton

state t ∈ Q and reads the symbol wi, it will guess all the states of the 2NFA N that will

be reading wi in the simulated zigzag run and which are part of a backward tuple that

is followed by a forward tuple. Since we showed in the former chapter that every word

accepted by a 2NFA can be accepted by a simple run, the number of states reading wi in

the zigzag run is bounded by the number of states in the N . Let’s say there will be k

other states reading wi apart from t itself. We refer to these states according to the order

in which they will appear during the zigzag run as s1, s2, . . . , sk. We further denote their

successors in the zigzag run by t1, t2, . . . , tk. We refer to the successor of t itself by t0.

We can see an example for k = 3 in Figure 3.3. The AFA is supposed to ensure that tj

will lead to sj+1 for 0 ≤ j < k. tk will be the next singleton state, from which on the

automaton will read the rest of the word w and will eventually reach an accepting state.

We will now associate a set Rta with every pair of a state t and a symbol of the alphabet

a. Rta includes all possible state sequences which are of length at most 2n− 1 which do

not contain equal states at two even positions or at two odd positions. The states at the

even positions are part of forward tuples and will be denoted by tj , while the states at

odd positions are part of backward tuples and will be denoted by sj . We also want the

first state in the sequence t0 to be a successor of t when reading a, so (t0, 1) ∈ δ(t, a).

We demand the same for all pairs sj and tj , so (tj , 1) ∈ δ(sj , a) must hold for 1 ≤ j ≤ k.

28 Chapter 3. Automata Conversions

wi−1 wi wi+1 wi+2 wi+3

t
t0

s1
t1

s2
t2

s3
t3

Figure 3.3: Example of an AFA transition at the singleton state t

Formally, we write the following:

Rta =

〈t0, s1, t1, . . . , sk, tk〉

∣∣∣∣∣∣∣∣∣∣∣

0 ≤ k < n

(t0, 1) ∈ δ(t, a)

∀i < j, si 6= sj and ti 6= tj

∀j, (tj , 1) ∈ δ(sj , a)

Now we can define the transition function η of the AFA for all singleton states t and all

symbols a as follows:

η(t, a) =
∨

〈t0,s1,t1,...,sk,tk〉∈Rta

(t0, s1) ∧ (t1, s2) ∧ . . . ∧ (tk−1, sk) ∧ tk

The transition function chooses one of the sequences from Rta nondeterministically. The

included pair states will have to ensure that all predictions about the future of the zigzag

run are justified. Since the AFA has to process w in one linear sweep, a pair state (t, s)

reading wi can only use the suffix wiwi+1...wl to verify that s follows t. But this is no

problem, because the described case of singleton state transitions ensures, that a zigzag

from s to t will never be visiting any indices smaller than i (otherwise, our construction

3.1. From 2-way to Alternation 29

would have done a different split of the zigzag run and wouldn’t have spawned (t, s) in

the first place).

Transitions at pair states

Now that we have defined η for singleton states, we will go on and discuss the transitions

at pair states, which are quite similar. When the AFA is in a pair state (t, s) ∈ Q and

reads the symbol wi, it will guess a segment of the zigzag run which connects t to s. As

we reasoned before, it can only use the suffix wiwi+1...wl to verify this. It does so by

guessing all the states of the 2NFA N that will be reading wi between the visits of t

and s which are part of a backward tuple that is followed by a forward tuple. Again, we

know that the number k of these states has to be bounded by the number of states of N .

We enumerate these as s1, s2, . . . , sk according to the order of their appearance in the

zigzag run. We refer to the successors of these states by t1, t2, . . . tk, the successor of t is

t0. Different than in the case of singleton state transitions, the AFA has to also predict

an additional state reading wi which is part of a backward tuple followed by another

backward tuple. The state of this following backward tuple has to be s, so the last state

guessed has to be some state sk+1 with (s,−1) ∈ δ(sk+1, wi). An example for k = 2 can

be seen in Figure 3.4.

wi−1 wi wi+1 wi+2 wi+3

s
s3

t2
s2

t1
s1

t0
t

Figure 3.4: Example of an AFA transition at the pair state (t, s)

30 Chapter 3. Automata Conversions

We construct a set R
(t,s)
a for every pair state (t, s) and a symbol of the alphabet a.

R
(t,s)
a includes all possible state sequences which are of length at most 2n which do not

contain equal states at two even positions or at two odd positions, just like the sets

Rta we discussed before. We want the first state in the sequence t0 to be a successor of

t when reading a, so (t0, 1) ∈ δ(t, a). We demand the same for all pairs sj and tj , so

(tj , 1) ∈ δ(sj , a) must hold for 1 ≤ j ≤ k. At last, we need (s,−1) ∈ δ(sk+1, a) to be true.

Formally, we express this as follows:

R(t,s)
a =

〈t0, s1, t1, . . . , sk, tk, sk+1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ k < n

(t0, 1) ∈ δ(t, a)

(s,−1) ∈ δ(sk+1, a)

∀i < j, si 6= sj and ti 6= tj

∀i, (ti, 1) ∈ δ(si, a)

We define the transition function η of the AFA for all pair states (t, s) and all symbols a

as follows:

η((t, s), a) =

true If (s,−1) ∈ δ(t, a)∨
〈t0,s1,...,tk,sk+1〉∈R

(t,s)
a

(t0, s1) ∧ (t1, s2) ∧ . . . ∧ (tk, sk+1) Otherwise

The transition function checks if for a pair state (t, s) reading a the prediction (s,−1) ∈
δ(t, a) already holds. If so, the function evaluates to true and the predicted future has

been verified for this branch of the AFA run. Otherwise, the predicted future is not

yet verified, the AFA chooses one of the sequences from R
(t,s)
a nondeterministically and

continues the process on this branch.

Now that η is defined for both singleton and pair states, we will provide an example of

an extended 2NFA zigzag run and the corresponding run tree of the constructed AFA.

Example 3.1 (2NFA zigzag run and corresponding AFA run tree). There are two

accepting runs given in this example. Figure 3.5 shows a 2NFA zigzag run on an input

word w of length 9. For reasons of simplicity the 2NFA holds one unique state si for

every step 0 ≤ i ≤ 30 of this run along with an additional accepting state s31 ∈ F .

Figure 3.6 displays the resulting simulation of the zigzag run by an AFA constructed

according to the method proposed in this subsection. Again, s31 is an accepting (singleton)

state, while η((s20, s21), w4), η((s5, s6), w5), η((s11, s12), w7) and η((s27, s28), w7) are all

defined as true.

3.1. From 2-way to Alternation 31

When the AFA is in state s1 reading the symbol w1, it guesses that there will be one more

state reading w1 in the future, namely s17. It chooses s2 to be the successor of s1 which

will have to ensure that there is some segment of the zigzag run connecting s2 to s17.

Therefore a new branch in the run tree is spawned. The first vertex in this new branch is

labeled by the pair state (s2, s17). The AFA further chooses s18 to be the successor of s17.

Since s18 is a singleton state, the corresponding branch of the AFA run tree will have

end in some accepting state.

As we can see, s18 will indeed lead to the accepting state s31. The branch started for

(s2, s18) on the other hand will have to end in some leaves evaluating to true. After

splitting one more time while reading w3, the branch ends in two leaves labeled by (s5, s6)

and (s11, s12). Since (s6,−1) ∈ δ(s5, w5) and (s12,−1) ∈ δ(s11, w7) (as we can see in the

zigzag run), we indeed have η((s5, s6), w5) = η((s11, s12), w7) = true.

w0 w1 w2 w3 w4 w5 w6 w7 w8

s0
s1

s2
s3

s4
s5

s6
s7

s8
s9

s10
s11

s12
s13

s14
s15

s16
s17

s18
s19

s20
s21

s22
s23

s24
s25

s26
s27

s28
s29

s30
s31

Figure 3.5: Extended example of a 2NFA zigzag run

32 Chapter 3. Automata Conversions

vr : s0

v1 : s1

v2 : s18

v4 : s23

v7 : s24

v11 : s25

v14 : s26

v16 : s29

v19 : s30

v20 : s31

v17 : (s27, s28)

v5 : (s19, s22)

v8 : (s20, s21)

v3 : (s2, s17)

v6 : (s3, s16)

v9 : (s4, s7)

v12 : (s5, s6)

v10 : (s8, s15)

v13 : (s9, s14)

v15 : (s10, s13)

v18 : (s11, s12)

w0

w1
w1

w2
w2 w2

w3 w3 w3
w3

w4 w4 w4

w5 w5

w6
w6 w6

w7

w8

Figure 3.6: The corresponding AFA run tree to the zigzag run shown in Figure 3.5

3.1. From 2-way to Alternation 33

With η completely defined, we have all the parts we need to define the final AFA. As

already stated, the state set of the AFA is the union of all possible singleton and pair

states Q = S∪(S×S). We will neither change the start state s0 nor will any modifications

to the set of accepting states F be done. Using the new transition function η, we define

the AFA as A = (Σ, S ∪ (S × S), s0, η, F).

We recapitulate the achievements of this subsection: Starting from an arbitrary n-state

2NFA N = (Σ, S, s0, δ, F), we first described the conversion of N to another 2NFA

N ′ = (Σ, S, s0, δ
′, F) which does not use any ε-moves and accepts the same language as

N . From there on, we constructed an AFA A = (Σ, S ∪ (S × S), s0, η, F) with O(n2)

states and L(A) = L(N ′) = L(N).

3.1.2 2NBA to ABA

In this subsection we will describe a method for the conversion of a 2NBA to an ABA

accepting the same language. We could try to use the same method we used in the

former subsection for the conversion of 2NFAs to AFAs, but this wouldn’t be an adequate

solution. Other than in the finite case, we have to take account of the two possibilities

that an accepting run of an ABA must either contain an infinite branch visiting some

accepting state infinitely often or ends in a loop visiting at least one accepting state. This

can’t be accomplished by the conversion described before, but with a few modifications

we can achieve a proper construction to match the context of infinite words properly.

Given a 2NBA N with n states, we will construct an ABA A with O(n2) states which

accepts the same language as N , so L(N) = L(A). Like we did in the finite case, we will

remove all ε-moves from N prior to the construction of the alternating automaton.

Elimination of ε-moves

Given a 2NBA N = (Σ, S, s0, δ, F) with δ : S × Σ → 2S×{−1,0,1} we want to construct

another 2NBA N ′ = (Σ, S′, s′0, δ
′, F ′) with δ′ : S′ × Σ → 2S

′×{−1,1} such that L(N) =

L(N ′) holds. In principal, we will use the same idea we already used in the context of

finite words, but there are two problems to be considered. The first one is an ε-move

visiting an accepting state and the second one is a loop of ε-moves visiting some s ∈ F .

We deal with these problems by expanding our state space. For every state s ∈ S, our

new 2NBA N ′ will contain the two states (s,⊥) and (s,>). In a run of N ′, we interpret

the subsequence . . . ((s,⊥), i), ((s′,>), i + ∆), . . . for i ∈ N0 and ∆ ∈ {−1, 1} as the

appearance of an ε-move visiting an accepting state between (s, i) and (s′, i+ ∆) in the

corresponding run of N . We will therefore define all states (s,>) for s ∈ S as accepting

34 Chapter 3. Automata Conversions

states of N ′. On the other hand, . . . ((s,⊥), i), ((s′,⊥), i+ ∆), . . . means that there hasn’t

been any (now eliminated) ε-move visiting F between (s, i) and (s′, i+ ∆).

Additionally, we introduce a single state Acc. This state represents an accepting “sink

state”, which will take care of all loops of ε-move which visit at least one accepting state.

The state space of the new 2NBA is now described completely, so we can define it as

N ′ = (Σ, (S × {⊥,>}) ∪ {Acc}, (s0,⊥), δ′, (F × {⊥}) ∪ (S × {>}) ∪ {Acc}).

We define a set NCsa for every s ∈ S and for every a ∈ Σ. NCsa includes all forward and

backward moves N can make when reading a after running through a finite (and possibly

empty) sequence of ε-moves which started in s and did not visit any accepting states.

NCsa =

 ((t,⊥),∆) ∈ ((S × {⊥})× {−1, 1})

∣∣∣∣∣∣∣∣
∃(t0, . . . , tk) ∈ S+ s.t. t0 = s,

∀1 ≤ j ≤ k, (tj , 0) ∈ δ(tj−1, a), tj 6∈F
and (t,∆) ∈ δ(tk, a)

Furthermore, we define another set ACsa with the same properties as NCsa except for the

fact that at least one state appearing in the ε-move sequence has to be an accepting

state.

ACsa =

((t,>),∆) ∈ ((S × {>})× {−1, 1})

∣∣∣∣∣∣∣∣∣∣∣

∃(t0, . . . , tk) ∈ S+ s.t. t0 = s,

∃j > 0 s.t. tj ∈ F,
∀1 ≤ j ≤ k, (tj , 0) ∈ δ(tj−1, a)

and (t,∆) ∈ δ(tk, a)

To handle situations with loops of ε-moves visiting acceptig states, we introduce the

Boolean variable ACCEPT sa for every s ∈ S and a ∈ Σ. If this variable is set to true,

there exists such a loop starting and ending in s and taking a final forward or backward

move reading a. Formally, we set ACCEPT sa = true if and only if there exists a sequence

of states t0t1...tk ∈ S+ that satisfies all the following conditions:

• t0 = s

• There exist j, l ∈ N0 such that 0 ≤ j ≤ l ≤ k, (tj , 0) ∈ δ(tk, a) and tl ∈ F .

• For all j ∈ N where 1 ≤ j ≤ k, we have (tj , 0) ∈ δ(tj−1, a).

3.1. From 2-way to Alternation 35

Now we define the transition function δ′ of the new 2NBA N ′ as follows:

δ′((s,⊥), a) = δ′((s,>), a) =

{(Acc, 1)} If ACCEPT sa = true

NCsa ∪ACsa Otherwise

δ′(Acc, a) = {(Acc, 1)}

We achieved an ε-move free 2NBA N ′ with L(N) = L(N ′).

The ABA state set

We will now describe the construction of an ABA A from a provided ε-move free 2NBA

N = (Σ, S, s0, δ, F) such that L(A) = L(N) holds. The conversion is quite similar to the

one we described for the context of finite words. We will stick to the idea of singleton and

pair states, but we will enhance them using the symbols ⊥ and > to express promises

of visiting the acceptance set. Specifically, the state (s, t,>) with s, t ∈ S means that

the run segment leading from s to t has to visit at least one accepting state. The state

(s,>) means that the zigzag segment connecting s to the previous singleton state has to

visit some state from F at least once. Both states with ⊥ instead of > do not hold these

promises of visiting an accepting state.

We define the state set of A as Q = (S∪(S×S))×{⊥,>}, which includes all combinations

of singleton states and pair states paired with ⊥ and >. The initial state is q0 = (s0,⊥).

Different than in the 2NFA to AFA conversion, we will allow the ABA to have transitions

from a singleton state to a set of pair states (in the finite context, there always had to

be some other singleton state). This will be necessary to handle the case of the ABA

run ending in an infinite loop. One of the pair states visited in the loop will include the

promise to visit an accepting state of N .

We define the acceptance set of A as F ′ = (S×{>})∪ (F ×{⊥}). The transition function

η will be described in the following two segments. Afterwards, the ABA will be defined

as A = (Σ, Q, q0, η, F
′) = (Σ, (S ∪ (S × S))× {⊥,>}, (s0,⊥), η, (S × {>}) ∪ (F × {⊥})).

36 Chapter 3. Automata Conversions

Transitions at singleton states

We construct the same set Rta for every t ∈ S and a ∈ Σ as we did in the finite context.

Rta =

〈t0, s1, t1, . . . , sk, tk〉

∣∣∣∣∣∣∣∣∣∣∣

0 ≤ k < n

(t0, 1) ∈ δ(t, a)

∀i < j, si 6= sj and ti 6= tj

∀j, (tj , 1) ∈ δ(sj , a)

Again, we will interpret a sequence 〈t0, s1, t1, s2, . . . , tk−1, sk, tk〉 as a sequence of pair

states (t0, s1), (t1, s2), . . . , (tk−1, sk) and as a singleton state tk. All these pair states are

segments of the zigzag run connecting t0 to tk. In a state q ∈ Q of the ABA, tk will be

annotated either with ⊥ or with >. In the latter case, there has to be some pair state

(tj , sj+1) with 0 ≤ j < k in the sequence which is also annotated by >, promising that

there is some visit to an accepting state while going from tj to sj+1. In fact, there could

be more than one pair state in the sequence promising to visit an accepting state, but

since we talk about a finite sequence and therefore finitely many visits of F , we can

safely say there’s just one pair state annotated by > and all the other pair states are

annotated by ⊥.

For every k ∈ N0 with 0 ≤ k < n we consider all possible sequences of ⊥ and > of length

k+ 1. We construct the set αRk to include all those sequences in which, if the last element

is >, than there has to be exactly one other element to be >. Otherwise, all elements

are ⊥.

αRk =

{
〈α0, . . . , αk〉 ∈ {⊥,>}k+1

∣∣∣∣∣ If αk = > then ∃!i s.t. 0 ≤ i < k and αi = >
If αk = ⊥ then ∀ 0 ≤ i < k, αi = ⊥

}

Combining the Rta and the αRk we are able to deal with the case of singleton states

connecting to another singleton state. What is still left to do is to take care of the case

of the 2NFA run ending in an infinite loop. To guess such a loop, the ABA will have

to predict two sequences of pair states. The first one describes the zigzag run leading

from the singleton state to the first state in the loop. The second sequence describes the

loop itself. We can see an example of such a situation in Figure 3.7. When in singleton

state t, the ABA estimates the pair states (t0, s1), (t1, s2) to lead to the start of the loop

and the pair states (t2, s3), (t3, s2) to describe the loop itself. This corresponds to the

sequences 〈t0, s1, t1, s2〉 and 〈t2, s3, t3, s2〉. Both do not contain any state twice at odd or

twice at even positions. Furthermore, both sequences end on the same state s2.

3.1. From 2-way to Alternation 37

wi−1 wi wi+1 wi+2 wi+3

t
t0

s1
t1

s2
t2

s3
t3

s2
t2

loop

Figure 3.7: Example of an ABA transition at the singleton state t guessing an infinite
loop starting in s2 while reading wi

Formally, we require the first state of the first sequence to be a valid successor of t when

reading a symbol a ∈ Σ, so (t10, 1) ∈ δ(t, a). The first state of the second sequence has to

be a successor of the last state of the first sequence, so (t20, 1) ∈ δ(s1k+1, a). Each sequence

itself must define a valid sequence of pair states, so for every spi with p ∈ {1, 2}, tpi has to

be a successor, so we get (tpi , 1) ∈ δ(spi , a). At last, we demand the last states of both

sequences to be equal, so s1k+1 = s2k+1 has to hold. We denote the set holding all the

sequences satisfying these conditions for some t ∈ S and a ∈ Σ by Lta.

Lta =

〈
〈t10, s11, t11, . . . , s1k, t1k, s1k+1〉,
〈t20, s21, t21, . . . , s2l , t2l , s2l+1〉

〉
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ k < n, 0 ≤ l < n

(t10, 1) ∈ δ(t, a), (t20, 1) ∈ δ(s1k+1, a)

∀i < j, s1i 6= s1j and t1i 6= t1j

∀i < j, s2i 6= s2j and t2i 6= t2j

∀i,∀p, (tpi , 1) ∈ δ(spi , a)

s1k+1 = s2l+1

One of the states in the second sequence always has to be an accepting state, otherwise

there would be no visit to F in the infinite loop and the ABA run could not be accepting.

Like we argued for the αRk , one visit to F is sufficient, so we define our sequences of ⊥

38 Chapter 3. Automata Conversions

and > as follows:

αLl = {〈α0, . . . , αl〉 ∈ {⊥,>}l+1 | ∃!i s.t. αi = >}

Now we got all the definitions we need to describe the transition function η for singleton

states. When the ABA reaches a singleton state (t,⊥) or (t,>) and reads a symbol

a ∈ Σ, it will nondeterministically guess whether it will reach another singleton state or

if it will enter a loop. After doing so, it will guess a sequence of states (or two sequences

of states, depending on the former guess) and a sequence of ⊥ and >. Formally, the

transition function for singleton states is defined as follows:

η((t,⊥), a) = η((t,>), a) =

(∨
Rtα,α

R
k

(t0, s1, α0) ∧ . . . ∧ (tk−1, sk, αk−1) ∧ (tk, αk)

)
∨

(∨
Ltα,α

L
l

(
(t10, s

1
1,⊥) ∧ . . . ∧ (t1k, s

1
k+1,⊥) ∧

(t20, s
2
1, α0) ∧ . . . ∧ (t2l , s

2
l+1, αl)

))

Transitions at pair states

The transition function for pair states has only one difference to the one in the finite

context which is the annotation of the states with ⊥ and >. The set R
(t,s)
a is defined

identically to the eponymous sets in the 2NFA to AFA conversion.

R(t,s)
a =

〈t0, s1, t1, . . . , sk, tk, sk+1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ k < n

(t0, 1) ∈ δ(t, a)

(s,−1) ∈ δ(sk+1, a)

∀i < j, si 6= sj and ti 6= tj

∀i, (ti, 1) ∈ δ(si, a)

If a pair state (t, s) ∈ (S × S) is annotated with >, we have to verify that there was

indeed a visit to F on the segment of the zigzag run connecting t to s. Of course, if

t ∈ F or s ∈ F , the promise is already kept. Based on these conditions, we define a set

of sequences of ⊥ and >.

αRs,t,k =

{
〈α0, . . . , αk〉 ∈ {⊥,>}k+1

∣∣∣∣∣ If s 6∈ F and t 6∈ F then ∃!i s.t. αi = >
Otherwise ∀ 0 ≤ i ≤ k, αi = ⊥

}

3.1. From 2-way to Alternation 39

The transition function of the ABA will now have to choose a sequence of states and

sequence of ⊥ and >. We define η for pair states as follows:

η((t, s,⊥), a) =

true If (s,−1) ∈ δ(t, a)∨
R

(t,s)
a

(t0, s1,⊥) ∧ (t1, s2) ∧ . . . ∧ (tk, sk+1,⊥) Otherwise

η((t, s,>), a) =

true

If (s,−1) ∈ δ(t, a) and

(s ∈ F or t ∈ F)∨
R

(t,s)
a ,αRs,t,k

(t0, s1, α0) ∧ . . . ∧ (tk, sk+1, αk) Otherwise

The transition function η is now completely defined (and therefore the ABA is, too).

Since the details of this definition are quite technical, we want to illustrate the main

ideas by providing a detailed example of a 2NBA zigzag run ending in an infinite loop.

We will then discuss the corresponding ABA run tree.

Example 3.2 (2NBA zigzag run with loop and corresponding ABA run tree). There

are two accepting runs given in this example. Figure 3.8 shows a 2NBA zigzag run on

an input word w of infinite length. The states s2, s8 and s10 are accepting states, so

{s2, s8, s10} ⊆ F . The 2NBA runs into an infinite loop when reading w1 in s5. So the

run subsequence

(s5, 1), (s6, 2), (s7, 3), (s8, 4), (s9, 3), (s10, 2), (s11, 1), (s12, 2)

repeats itself infinitely often. Since s8 and s10 are visited an infinite number of times,

the 2NBA run itself is indeed accepting.

In Figure 3.9 wee see the simulation of the zigzag run by the ABA. As we can see, the

run tree is finite. This results from the zigzag run ending in an infinite loop. When

reading w1 in singleton state (s1,⊥), the automaton guesses this loop to start in s5 while

reading the same symbol. It further predicts that s11 will also read w1 inside the loop.

Now the automaton has to guess the successors of these three states processing w1. It

chooses the successor of s5 to be s6, the successor of s11 to be s12 and the successor of

the current state s1 to be s2. So there have to be three processes: A pair state (s2, s5, α)

connecting the current state to the start of the loop and the two pair states (s6, s11, β)

and (s12, s5, γ) which are defining the loop. Let’s take a closer look at these states to

determine how to choose α, β and γ from {⊥,>} to ensure the acceptance of the run.

40 Chapter 3. Automata Conversions

w0 w1 w2 w3 w4

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s5

s6

loop

Figure 3.8: Example of a 2NBA zigzag run ending in an infinite loop

The pair state (s2, s5, α) describes the segment leading from the last singleton state (s1,⊥)

to the start of the loop. Since it is of finite length and is not repeated in the zigzag run,

there can only be a finite number of visits to the acceptance set. Therefore the pair state

can’t make a difference in the acceptance of the total run and we don’t have to bother

with the question of possible accepting states in this segment. It follows that, although

there is a visit to the accepting state s2, α is set to ⊥. The following pair state (s3, s4,⊥)

doesn’t have to include an accepting state as well. Since (s4,−1) ∈ δ(s3, w3), we get the

transition η((s3, s4,⊥), w3) = true and are done with this branch.

The loop itself is described by (s6, s11, β) and (s12, s5, γ), which means that there has to

be some visit to an accepting state in the induced segments. In fact, there are two such

states in the segment (namely s7 and s10), but guessing only one of them is sufficient

for the acceptance of the run tree. So the ABA sets a promise in (s6, s11, β), which

means β = > and therefore γ = ⊥. Since (s5,−1) ∈ δ(s12, w2), we get the transition

η((s12, s5,⊥), w2) = true and don’t have to look further at this branch.

Now we investigate (s6, s11,>). Since none the two states s6 and s11 is an accepting

state, the promise has to be passed on to a following state. The ABA guesses (s7, s10,>)

3.1. From 2-way to Alternation 41

vr : (s0,⊥) v1 : (s1,⊥) v3 : (s3, s11,>)

v2 : (s2, s5,⊥)

v4 : (s12, s5,⊥)

v5 : (s3, s4,⊥)

v6 : (s7, s10,>) v7 : (s8, s9,⊥)
w0

w1

w1

w1

w2

w2 w3

Figure 3.9: The corresponding ABA run tree to the zigzag run shown in Figure 3.8

to be the successor. Because of s10 ∈ F , the promise is satisfied reaching this state. But

since s10 is no valid successor to s7 in the 2NBA, there has to be another pair state

following on (s7, s10,>). The ABA takes another guess and chooses (s8, s9,⊥). Although

s8 is an accepting state itself, the promise for this branch has already been fulfilled in

the former pair state, so the acceptance of s8 is not considered in the ABA run. We see

that (s9,−1) ∈ δ(s8, w4), so the last branch we had to consider ends with the transition

η((s8, s9,⊥), w4) = true.

All leaves of the finite run tree ended in some pair state which is (in combination with

the corresponding symbol wi) defined as true by the transition function η. Therefore the

ABA run is indeed accepting.

We summarize the accomplishments of this subsection: Starting from an arbitrary

n-state 2NBA N = (Σ, S, s0, δ, F), we first described the conversion of N to another

2NBA N ′ = (Σ, S′, (s0,⊥), δ′, F ′) which does not use any ε-moves and accepts the

same language as N . From there on, we constructed an ABA A = (Σ, Q, q0, η, F
′) =

(Σ, (S′ ∪ (S′ × S′))× {⊥,>}, ((s0,⊥),⊥), η, (S′ × {>}) ∪ (F ′ × {⊥})) with O(n2) states

and L(A) = L(N ′) = L(N).

42 Chapter 3. Automata Conversions

3.2 Automata Complementation

In this section, we will discuss a complementation method for alternating Büchi automata

proposed by Kupferman and Vardi in [6]. Our ambition is to construct a weak alternating

automaton accepting the complement language of the original ABA. We will henceforth

refer to this WAA as the Complement WAA. This conversion will include a quadratic

blowup in the number of states.

We already described the conversion of a 2NBA to an ABA in the former section of this

chapter, which included a quadratic blowup in the number of states as well. Therefore,

the composition of the 2NBA to ABA and the ABA to Complement WAA conversions

provides a complementation method for 2NBAs including a biquadratic blowup. In [11],

Piterman and Vardi reasoned about a way to omit the quadratic blowup in the ABA to

Complement WAA part when the ABA itself was constructed according to their 2NBA

to ABA conversion. So the overall complementation of the 2NBA will be achieved with

a quadratic blowup in the number of states.

3.2.1 ABA to Complement WAA

Given an ABA A = (Σ, Q, q0, η, F), our goal is the construction of a Complement WAA

A′ = (Σ, Q′, q′0, η
′, F ′). To achieve this, we first dualize the transition function of A to

get an alternating co-Büchi automaton Ã. From there, we want to build A′ capable

of simulating accepting runs of Ã. Overall, we want the construction to ensure that

Σω \ L(A) = L(Ã) = L(A′) holds.

Before we can describe the conversion of Ã to A′, we have to discuss some properties of

the runs of ACAs.

Memoryless runs

In Chapter 2, we described the run of an ACA as a labeled tree (T, r) with T = (V,E),

in which each vertex is labeled by a state of the automaton. Our definition includes

the possibility of a set of vertices V l
q ⊆ V of same depth l in the tree to be labeled

by the same state q from the ACA state set Q. If we merge all the vertices from

V l
q into one single vertex vlq of depth l and labeled by q, we end up with a graph

in which all vertices of same depth are labeled differently. We denote this graph by

Gr′ = (V ′, E′) with vertex set V ′ = {vlq | ∃v ∈ V with d(v) = l and r(v) = q} and edge

set E′ = {(ulq, vl
′
q′) | ∃(u, v) ∈ E with u ∈ U lq, v ∈ V l′

q′ }. The function r′ : V ′ → Q labels

each vertex vlq by the corresponding state q. Combined, we say the tuple (Gr′ , r
′) to be a

3.2. Automata Complementation 43

memoryless run of the ACA. The acceptance conditions stays the same, so a memoryless

run is accepting if and only if for every (possibly infinite) path in the run there are

finitely many vertices labeled by accepting states.

In [4], Emerson and Jutla show that whenever an ACA accepts a word w, it also has

to accept w by means of a memoryless run. It will therefore be sufficient to discuss

memoryless runs exclusively for the rest of this section. We remark, that the graph Gr′

of a memoryless run is no tree, but a directed acyclic graph (DAG), since vertices are

now allowed to have multiple predecessors. We will therefore talk about “run DAGs”

instead of “run trees”.

Anatomy of memoryless runs

Let (Gr, r) with Gr = (V,E) be an accepting memoryless run of the ACA Ã (we also

say Gr to be an accepting run DAG). For simplicity, we will refer to the vertex vlq ∈ V
by the tuple (q, l). A vertex (q′, l′) is reachable from another vertex (q, l) if and only if

there is a finite sequence successive vertices that starts with (q, l) and ends with (q′, l′).

We further say a vertex (q, l) to be an α-vertex iff q is an accepting state. We denote the

number of states in the ACA by |Q| = n.

We make two observations. First, for any given depth l in Gr (which we will also call

a level l in Gr), there can be at most n vertices. This arises from the fact that more

than n vertices would imply that there have to be two vertices labeled by the same state,

which is not possible by construction of Gr. The second observation is, that there are

only finitely many α-vertices on each path in Gr, since (Gr, r) is an accepting run.

Consider a DAG G ⊆ Gr. We call a vertex (q, l) endangered in G if and only if there

are only finitely many vertices reachable from (q, l). This means, that (q, l) can’t be a

member of any infinite path. We further say a vertex to be safe in G iff every vertex that

is reachable from (q, l) is not an α-vertex. This implies in particular that no α-vertex

can be a safe vertex.

We will now define an infinite hierarchy of DAGs G0 ⊇ G1 ⊇ G2 ⊇ . . . inductively:

• G0 = Gr

• G2i+1 = G2i \ {(q, l) | (q, l) is endangered in G2i}

• G2i+2 = G2i+1 \ {(q, l) | (q, l) is safe in G2i+1}

Note that, if a graph G2i is finite, all the following graphs G2i+j with j ∈ N must be

empty. We provide an example for such a DAG hierarchy.

44 Chapter 3. Automata Conversions

Example 3.3 (DAG hierarchy). Consider the DAG G0 shown on the far left side in

Figure 3.10. There are three “columns” of vertices in this graph. The column in the

middle contains filled circles which are representing α-vertices, while the unfilled circles

in the outer columns aren’t labeled by accepting states. The “rows” on the other hand are

corresponding to the symbols of the input word w, meaning all states of the lth row are

reading the symbol wl.

G0 contains an infinite number of infinite paths. Each of these paths visit at most two

(and therefore finitely many) α-vertices. The DAG is therefore an accepting run DAG.

Except for the unique infinite path going through the vertices in the left column, all paths

are finally staying in the right column.

As we can see, G1 equals G0, since there are no endangered vertices in initial graph. In

G2, we removed all safe vertices from G1. This results in the vanishing of the complete

column on the right, since for all these vertices there aren’t any reachable α-vertices.

G2 now has an infinite number of α-vertices with no more reachable vertices, which are

therefore endangered. Removing these α-vertices, we achieve G3. This graph consists

solely of a single infinite path, which contains no α-vertices except for its very first vertex.

So these states are safe and no part of G4. Since G4 is finite, all vertices in this graph

have to be endangered. Therefore, all graphs Gi with i ≥ 5 are empty.

G0 = G1 G2 G3 G4

Figure 3.10: Example of a DAG hierarchy. The filled circles represent the α-vertices.
The graphs Gi with i ≥ 5 are empty.

Kupferman and Vardi show in [6], that the graph G2n has to be finite for every run

DAG Gr and therefore G2n+1 and all following graphs have to be empty. We will not

reproduce their proof, but give an informal summary of their argumentation.

3.2. Automata Complementation 45

Consider an infinite accepting run DAG Gr = G0. As we saw in Example 3.3, G0 does

not have to contain any endangered vertices, so we assume G1 = G0 without loss of

generality. Now there have to be some safe vertices in G1, because otherwise all vertices

would be reaching another α-vertex and Gr wouldn’t be accepting. There also can’t

be finitely many safe vertices in G1, since in this case these vertices would have been

endangered in G0. So there is an infinite number of safe vertices in G1. It may well

be that these vertices are all merging into a single infinite path (also seen in Example

3.3). Now there has to be some level l ∈ N0 in G2, such that for every level l′ greater

than or equal to l there are at most n− 1 vertices (we recall, that the DAG can at most

have n vertices on every level). Assuming G2 isn’t finite, Piterman and Vardi repeat

this procedure, always having some level in G2i for i ∈ N0 with at most n− i vertices.

Therefore, in G2n, there has to be some level without any vertices, which means that

G2n has to be finite and all following graphs in the hierarchy have to be empty.

Since G2n+1 always has to be empty, we conclude that every vertex (q, l) of the run DAG

has to have a unique index i with 0 ≤ i ≤ n in such a way that it is either endangered in

G2i or safe in G2i+1. We use this to define the rank of a vertex (q, l) as follows:

rank(q, l) =

2i If (q, l) is endangered in G2i

2i+ 1 If (q, l) is safe in G2i+1

We denote the set {0, 1, . . . , k} by [k] and refer to its subset of all odd members by

[k]odd. So it follows, that for every vertex (q, l) of a run DAG, rank(q, l) ∈ [2n] must

hold. Per definition, no α-vertex (q′, l′) can be a safe vertex of any graph and therefore

rank(q′, l′) 6∈ [2n]odd.

We remark, that if a vertex (q′, l′) is reachable from another vertex (q, l), the non-strict

inequality rank(q′, l′) ≤ rank(q, l) must hold. Since there are only finitely many ranks

(2n at most), it follows that for every infinite path in the DAG, there has to be some

vertex (q, l) of an odd rank for which all reachable states (q′, l′) on the path are of the

same rank, so rank(q, l) = rank(q′, l′).

As we have seen, if an ACA has an accepting memoryless run (Gr, r) on an infinite word

w, the run DAG Gr is highly structured by the concept of ranks we just presented. The

fact, that vertices in Gr can only reach vertices of a lower or equal rank, will be used to

define the states of the WAA we’re about to construct in a partial ordering. Another

important fact is, that the ordering of the vertices by rank includes the separation of

sets including α-vertices (which are of an even rank) and sets containing no α-vertices at

all (which are of an odd rank). This will be used to construct the acceptance set of the

WAA.

46 Chapter 3. Automata Conversions

Construction of the WAA

Given the alternating co-Büchi automaton Ã = (Σ, Q, q0, η̃, F), we construct the language

equivalent weak alternating automaton A′ = (Σ, Q′, q′0, η̃
′, F ′) as follows:

• Q′ = Q× [2n]

The state set of A′ is the combination of all original ACA states with all possible

ranks. Being in state (q, i) while reading the lth letter of the input word means that

A′ guesses the rank of (q, l) in an accepting run DAG to be i. Since we combine n

states with 2n ranks, we get a quadratic blowup in the number of states.

• q′0 = (q0, 2n)

We assume the highest possible rank for the start state q0 of Ã, so that we don’t

limit the number of accepting ACA runs that can be simulated by A′ by choosing

the starting rank too low.

• η̃′ : Q′ × Σ→ B+(Q′)

To describe the transition function of A′, we first define the function

release : B+(Q)× [2n]→ B+(Q′)

as follows: release maps a positive Boolean formula ϕ over the states of Ã and a

rank i ∈ [2n] to a positive Boolean formula ϕ′ over the states of A′. This happens

by replacing every atom q in ϕ by the logical disjunction of all states (q, i′) from

A′ with 0 ≤ i′ ≤ i. An example provided in [6] looks as follows:

release(q3 ∧ q5, 2) = ((q3, 2) ∨ (q3, 1) ∨ (q3, 0)) ∧ ((q5, 2) ∨ (q5, 1) ∨ (q5, 0))

Now we can the define the actual transition function of the WAA for some state

(q, l) ∈ Q′ and some symbol a ∈ Σ:

η̃′((q, l), a) =

release(η̃(q, a), l) If q 6∈ F or l is even

false If q ∈ F and l is odd

This means, that if the automaton guessed an α-vertex to be of an odd rank, it

already guessed wrong and is not simulating an accepting ACA run. Otherwise,

the corresponding transition function of Ã is applied to q and a. This simulates

the behavior of Ã by providing a positive Boolean formula ϕ ∈ B+(Q). From there,

release(ϕ, l) is used to guess the ranks of the states reading the next symbol of

the input word.

3.2. Automata Complementation 47

• F ′ = Q× [2n]odd

We define all states of A′ being of an odd rank to be accepting. This means, that

an accepting run of A′ has to contain infinitely many states of an odd rank on

every infinite path.

A formal proof of the correctness of this construction can be found in [6]. Informally,

we can see that A′ indeed is a WAA, since there is the partial ordering of the states

provided by their ranks. Further, the transition function only leads from a certain state

to following states of the same or some lower rank. So the infinite run finally has to “get

trapped” at some rank and it can only be accepting if this rank is odd. This means,

that at some point, the simulated run DAG of the ACA Ã stops visiting vertices of even

ranks. Since all α-vertices are ranked by an even number, this corresponds to Ã only

visiting finitely many α-vertices in its accepting run DAG.

We showed how to complement an ABA by means of a Complement WAA. The blowup

in the number of states in this automata conversion is quadratic. Next, we will use

this knowledge in combination with the construction presented in 3.1.2 to describe a

complementation method for 2NBAs.

3.2.2 2NBA to Complement WAA

Consider a 2NBA N = (Σ, S, s0, δ, F). We could complement N by using the 2NBA to

ABA conversion discussed in 3.1.2 and use the ABA complementation method described

in 3.2.1 on the resulting ABA. Each of these two conversions involves a quadratic blowup

in the number of states, so the overall blowup of this composition would be a biquadratic

one. In [11], Piterman and Vardi show a way to avoid the second quadratic factor. We

will reproduce their argumentation in the following paragraphs.

Starting with N , we use the 2NBA to ABA conversion to achieve a language equivalent

ABA A. Dualizing A’s transition function, we achieve the ACA Ã = (Σ, Q, q0, η̃,F). So

far, we did nothing new and got a quadratic blowup in the number of states of N . The

critical point comes in the conversion of Ã to the WAA A′: We know from the previous

constructions, that the state set of Ã consists of singleton states and pair states, so

Q = (S ∪ (S × S)) ∪ {⊥,>}. We further know, that pair states aren’t members of the

acceptance set F and that only pair states are reachable from a pair state. This means,

that in an accepting run DAG Gr of Ã, there are no α-vertices reachable from any vertex

labeled by a pair state. Therefore, all these vertices have do be endangered in Gr = G0,

so 0 is the only possible rank for these vertices. Since they can only have one rank and

never reach singleton states, we can pass on ranking the pair states at all.

48 Chapter 3. Automata Conversions

We will now define the Complement WAA A′ = (Σ, Q′, q′0, η̃
′, F ′) as follows:

• Q′ = (S × {⊥,>} × [2n]) ∪ (S × S × {⊥,>})

With |S| = n, the quadratic blowup from the 2NBA to ABA conversion arises

from the construction of the O(n2) pair states. But since we don’t rank the pair

states, we only have to consider the blowup resulting from the combination of the

O(n) singleton states with 2n ranks. This results in O(n2) ranked states, which

are added to the O(n2) pair states. So we end up with O(n2) states in total (and

therefore omit the biquadratic blowup of the “primitive” method).

• q′0 = (s0,⊥, 2n)

Again, we start with the former start state with a rank of 2n.

• η̃′ : Q′ × Σ→ B+(Q′)

The function release is defined in the same way as introduced in 3.2.1. To describe

the transition function, we have to distinguish between the transition of ranked

singleton state (s, α, l) ∈ (S × {⊥,>} × [2n]) and the transition of a pair state

(t, s, α) ∈ (S × S × {⊥,>}). Given a symbol a ∈ Σ, we define η̃′ as follows:

η̃′((s, α, l), a) =

release(η̃((s, α), a), l) If (s, α) 6∈ F ′ or l is even

false If (s, α) ∈ F ′ and l is odd

η̃′((t, s, α), a) = η̃((t, s, α), a)

If the current state is a pair state, we do exactly the same the ACA Ã would do.

Otherwise, we proceed as described in 3.2.1.

• F ′ = (S × {⊥,>} × [2n]odd) ∪ (S × S × {⊥,>})

We say the states of an odd rank to be accepting for the same reasons as before.

Since the pair states can’t be the labels of α-vertices in an accepting run DAG of

Ã either, we define them as accepting, too.

We have now constructed a Complement WAA A′ to the 2NBA N with a quadratic

blowup in the number of states. At this point, we have finished the discussion of the

automata conversions we aimed to present in this thesis. The next chapter will concern

the implementation of these methods and provides examples of automata resulting from

them.

Chapter 4

Implementation

Automata conversions aren’t discussed solely for the achievement of theoretical insight,

they can also be of relevance for practical purposes. In runtime verification, we formulate

the intended behavior of a system S as a temporal logical expression. This expression

is transformed into a finite state automaton, which evaluates at every discrete time

step whether an implementation of S is still satisfying the intended behavior or not.

Pragmatically, we call the FSA monitoring S a monitor.

Usually, the FSA we transformed a temporal logical formula immediately into, tends

not to be an adequate automaton for practical monitoring intentions. We rather have

to convert it to another, more suitable kind of FSA, often using multiple intermediate

conversions. In the end, we get a “chain of conversions” leading from the temporal logical

expression we started with to the final monitor.

In this chapter, we will describe an implementation of the automata conversions presented

in this thesis. We will start with an introduction to RltlConv, a logic and automata

library capable of constructing monitors from formulas of different temporal logics. We

will then discuss the embedding of our conversion methods into RltlConv. Afterwards,

we investigate some of the algorithmic details of our implementation.

4.1 RltlConv

RltlConv is a logic and automata library developed at the Institute for Software En-

gineering and Programming Languages of the University of Lübeck. It features the

interpretation of temporal logical or (ω-)regular expressions in form of finite state au-

tomata and provides various automata conversion methods for the achievement of runtime

monitors.

49

50 Chapter 4. Implementation

So far, RltlConv supports monitor construction for formulas from the set of LTL, RLTL

(regular linear temporal logic, introduced by Leucker and Sánchez in [7]) and (ω-)regular

expressions. The library is still under construction and it’s range of functions grows

steadily over time, like it did in the course of this thesis.

A typical use case looks as follows: We want to achieve a monitor by passing a system’s

intended behavior to the library in form of an LTL expression. This will be interpreted

as an ABA, which will then be converted into a language equivalent NBA. From this

NBA, there will be a conversion into an NFA, which also means a change of context

from languages of infinite words to languages of finite words. This step is necessary

for the construction of practically usable monitors, but it’s discussion is beyond the

scope of this thesis (for more information on this topic, see the construction proposed by

Bauer, Leucker and Schallhart in [1]). The NFA will then be determinized and afterwards

converted into a deterministic Moore machine, which can be used to monitor a system’s

behavior during runtime. Overall, the chain of conversions for this example looks as

follows:

LTL→ ABA→ NBA→ NFA→ DFA→ DMoore

4.1.1 Motivation for Presented Automata Conversions

In Chapter 3, we described the conversion of 2NBAs to ABAs. The motivation to

implement this method in RltlConv is the following: There is a direct transformation

from regular expressions with past operators (as defined by Sánchez and Leucker in

[13]) to 2NFAs. If we extend this notion to the context of infinite words, we are able to

achieve a 2NBA from an ω-regular expression with past operators. As the previously

described use case suggests, all intermediate steps leading from an ABA to a deterministic

Moore machine (and therefore a practical monitor) are already implemented in RltlConv.

The implementation of the 2NBA to ABA conversion gets us one step closer to the

construction of monitors based on ω-regular expressions using past operators. The chain

of conversions looks as follows:

ω-RegEx with past→ 2NBA→ ABA→ NBA→ NFA→ DFA→ DMoore

We note that, up to the present day, the first step of this chain (the construction of

2NBAs) is not supported in RltlConv and therefore the monitor construction based on

ω-regular expressions using past operators is not yet possible.

Since the description of a system’s intended behavior using ω-regular expressions with

past operators does not appear to be an intuitive process, we’d rather use temporal logics

4.1. RltlConv 51

with past to do so. As an example, Sánchez and Leucker introduced the regular linear

temporal logic with past (pRLTL for short) in [13]. pRLTL formulas can be transformed

into 2-way alternating 3-parity automata (2A3PAs), which will then be converted into

NBAs using a conversion method proposed by Dax and Klaedtke in [3]. Since this

conversion involves the complementation of 2NBAs, we have given a motivation to

implement the 2NBA to Complement WAA conversion presented in the former chapter

of this thesis.

4.1.2 Embedding of New Conversions in RltlConv

RltlConv is mostly written in the object-oriented, functional programming language

Scala. All the code produced in the course of this thesis can be found in the two

files Apa.scala and Nba.scala, which are both located inside the project package

de.uni luebeck.isp.rltlconv.automata. The only other files referenced by

our code, which are Common.scala and PosBool.scala, can be found in the same

package. Figure 4.1 shows all the classes modified or referenced during the implementation

of the new automata conversions presented in this thesis.

Figure 4.1: Overview of modified and referenced classes inside the automata package.
While we modified the classes Apa and Nba by implementing additional methods, we
only referenced multiple classes from the file PosBool.scala and Common.scala

without changing any of the original RltlConv code.

52 Chapter 4. Implementation

The source file Apa.scala includes the class Apa, which represents alternating parity

automata in RltlConv. The APAs described in this class may be of an arbitrary parity

k ∈ N and can be 1-way as well as 2-way automata. As we already stated in Chapter 2,

there are no alternating Büchi automata in RltlConv. Instead, we interpret an ABA as a

A2PA in which the ABA’s accepting set F equals the A2PA’s set Q2 (and therefore the

ABA’s Q \ F equals the A2PA’s Q1). This way, we can simulate ABAs using the class

Apa.

We implemented two methods in Apa. The first one is toComplementAba, which

is called on an instance A of Apa and returns another instance A′ of Apa such that

L(A′) = Σω \ L(A). The construction of A′ follows the ABA complementation method

discussed in 3.2.1 (where we achieved a Complement WAA, which matches the return value

of A′ being an ABA, since ABAs are a generalization of WAAs). The complementation

only works for ABAs, so toComplementAba will only be executed if all parities in A
are elements of {1, 2}.

The second method added to the Apa class is toComplementNba. This method simply

executes toComplementAba and calls the already existing toNba on the resulting

Complement WAA. We therefore end up with an NBA accepting the complement

language of the original ABA.

In Nba.scala, we find the class Nba, which is the RltlConv representation of both 1-way

and 2-way NBAs. We implemented four new methods in Nba. First, twoWayToAba

converts a 2NBA into an equivalent ABA using the construction presented in 3.1.2. In

fact, the conversion works on a 1-way NBA as well.

The second method is twoWayToOneWay. This is the composition of twoWayToAba

and the already implemented toNba, so it converts a 2NBA into an equivalent 1-way

NBA.

The third method, twoWayToComplementAba, constructs the Complement WAA of

a 2NBA. We could achieve such a conversion by the composition of twoWayToAba

and Apa.toComplementAba, but this would involve an biquadratic blowup in the

number of states of the original 2NBA. Instead, we avoid the quadratic factor of the

ABA complementation step by implementing the 2NBA to Complement WAA conversion

discussed in 3.2.2.

Finally, in eliminateTwoWay, we check whether the calling NBA is a 1-way or a 2-way

automaton. In the latter case, it is converted into a 1-way NBA by calling twoWayToAba

first and executing toNba on the resulting ABA.

4.2. Explanation of Implemented Methods 53

4.2 Explanation of Implemented Methods

We will now explain the functionality of our implementation in more detail. The three

automata conversion described in this thesis are represented by Nba.twoWayToAba,

Apa.toComplementAba and Nba.twoWayToComplementAba, so we will discuss

these methods one by one.

4.2.1 2NBA to ABA

The 2NBA to ABA conversion, as we discussed it earlier in 3.1.2, is implemented in

Nba.twoWayToAba. All functions mentioned in this subsection are solely defined in

the scope of this method. The first part of the conversion, which was described as the

elimination of ε-moves, can be skipped, since the 2NBAs in RltlConv are already ε-move

free.

We will now go through the different phases of the implemented ABA construction. The

title of each phase can also be found as a headline in the Scala code, so our explanations

can be easily attributed to the corresponding part of the implementation. As usually, we

refer to the 2NBA by N and to the ABA by A.

- build states:

We start by doing a depth first search in the 2NBA, which shall provide us with the set

of all states in N which are reachable from one of its start states. We take the Cartesian

product of the reachable states to get state pairs. Now we enhance the single states as

well as the state pairs once with ⊥ and once with >, to achieve the actual singleton and

pair states of the ABA.

- build start states:

In RltlConv, 2NBAs can have a set of start states instead of just a single start state.

Furthermore, the start states of APAs (and therefore ABAs) are represented by a positive

Boolean formula over the set of states. So we build the initial states of the ABA as a

logical disjunction over all the singleton states, which are both enriched by ⊥ and for

which the corresponding 2NBA state is a start state.

- build colors:

We refer to parities as “colors” in RltlConv. We assign the color 2 to every accepting

singleton state in A, while all the other states get the color 1.

- build singleton state sequences:

In this phase, we construct the sequence sets Rta for all states t of N and for all symbols a

of the alphabet. We do this by recursively adding states to an initially empty list as long

54 Chapter 4. Implementation

as the resulting list is still a valid sequence in the sense of the Rta conditions presented in

3.1.2. If we have no more valid possibilities of adding another state, we trace back. After

the construction of the Rta sets, we build the corresponding Lta sets. We recall, that a set

Lta contains pairs of sequences, for which each single sequence must be a member of the

corresponding Rta. So instead of starting an exhaustive search of the set of states again,

we check all pairs of sequences in Rta for the conditions of Lta.

- build pair state sequences:

We build the R
(t,s)
a sequence sets. We do this by simply taking all the Rta sequences and

check for every state s of N whether a sequence extended by s is a valid R
(t,s)
a sequence

(and therefore s an appropriate sk+1 candidate).

- build singleton state alpha sequences:

The singleton state alpha sequences with respect to some state t from N and some symbol

a from the alphabet are Rta and Lta sequences in which every state is enriched by > or ⊥.

This enrichment happens according to the corresponding αRk and αLl sequences and is

done recursively. We remark, that while Rta and Lta contain sequences of states from N ,

the singleton state alpha sequences consist of states of A.

- build pair state alpha sequences:

We build the pair state alpha sequences in a similar way we build the singleton state

alpha sequences before. All sequences in R
(t,s)
a are recursively enriched by > and ⊥

according to the conditions given by αRs,t,k.

- build singleton state transitions:

For every 2NBA state t and every symbol from the alphabet a, we construct the transition

η((t,⊥), a) = η((t,>), a) as a positive Boolean formula over the state set of A. We do this

the following way: For every singleton state alpha sequence with respect to t and a, we

take the logical conjunction of all sequence members and therefore receive a representing

positive Boolean formula for every sequence. Now we build the logical disjunction over

all these formulas and get the proper transition as described in 3.1.2.

- build pair state transitions:

The pair state transitions are build in a similar way to the singleton state transitions.

Since η((t, s,⊥), a) η((t, s,>), a) are not defined equally, we have to distinguish these

cases according to 3.1.2.

- build ABA:

We assemble all the parts we built in the previous phases and construct the ABA A. We

also call the RLTLConv minimization function toReducedApa on A.

4.2. Explanation of Implemented Methods 55

4.2.2 ABA to Complement WAA

Now we investigate the implementation of the ABA complementation method presented

in 3.2.1. We refer to the original ABA by A, to the ACA by Ã and to the resulting

Complement WAA by A′.

- build coABA:

We start with the construction of the ACA Ã, which happens by dualization of A’s

transition function. The dualization itself is implemented as a recursive function, which

takes a positive Boolean formula over A’s state set and breaks it down into single logical

conjunctions and disjunctions. There we can substitute every ∧ by ∨, true by false,

and vice versa. We remark that, though RltlConv does not support co-Büchi acceptance

conditions, there is no problem in describing the structure of an ACA as an ABA and

therefore model it as an object of class Apa.

- build states:

For every state in Ã, there are 2n ranked versions of this state in the Complement WAA

A′ (where n is the number of states in Ã). This means, that there is one state in A′ for

every element of the Cartesian product of the states in Ã and {0, 1, . . . , 2n}.

- build start states:

The start states of A′ are all the states of rank 2n for which the corresponding state in

Ã is a start state. Since the starting conditions for ABAs are described as a positive

Boolean formula over the state set in RltlConv, we have to recursively break down this

formula to get its atoms and therefore the proper start states.

- build colors:

We set all states in A′ of odd rank to be accepting, while all states of an even rank are

not accepting.

- build transitions:

The function release maps a positive Boolean formula ϕ over the states of Ã and a rank

i ∈ {0, 1, . . . , 2n} to a positive Boolean formula ϕ′ over the states of A′. This happens

by replacing every atom q in ϕ by the logical disjunction of all states (q, i′) from A′ with

0 ≤ i′ ≤ i. From there on, the construction of the transitions of A′ is straightforward

according to 3.2.1.

- build cABA:

We create the Complement WAA A′ (which is of class Apa) using the elements we

constructed previously. We use toReducedApa to minimize A′.

56 Chapter 4. Implementation

4.2.3 2NBA to Complement WAA

The implementation of this construction is quite similar to the one presented in the

former subsection. Since we start with a 2NBA this time, we first have to convert it into

an ABA (using the previously described Nba.twoWayToAba) to enable the construction

of an ACA.

The main difference to the method described in 4.2.2 is that only the singleton states are

ranked, which has to be considered in the coloring of the states and in the construction

of the transitions. In exchange for this extra effort, the additional quadratic blowup in

the number of states of the ACA can be avoided.

4.3 I/O Examples

We will now present some examples describing the usage of the implemented automata

conversions in RltlConv. As we stated before, the construction of 2NBAs from ω-regular

expressions is not yet supported, so we will have to pass the automata descriptions

directly to the library.

The following file 2NbaExample.txt encodes the same automaton we presented in the

Example 2.1 on page 8. Although we introduced this automaton in Chapter 2 as an

example for 2NFAs, we will now interpret the same structure as a 2NBA. We also remark,

that the non-accepting “sink” state s3 as well as all transitions involving this state are

not defined in 2NbaExample.txt. RltlConv is able to handle undefined transitions

and since our conversions invoke blowups in the number of states, we try to reduce this

number as far as possible without changing the language accepted by the automaton.

Listing 4.1: Content of 2NbaExample.txt

2NBA {

ALPHABET = ["(a)", "(b)"]

STATES = [s0, s1, s2: ACCEPTING]

START = [s0]

DELTA(s0, "(a)") = [s0: FORWARD]

DELTA(s0, "(b)") = [s0: FORWARD, s1: BACK]

DELTA(s1, "(a)") = [s2: FORWARD]

DELTA(s2, "(b)") = [s2: FORWARD]

}

4.3. I/O Examples 57

As we can see, the description includes the automaton type, the used alphabet, the state

set (where accepting states s ∈ F are indicated by s: ACCEPTING), the set of start

states and a listing of all defined transitions. Every forward transition (t, 1) ∈ δ(s, a) is

represented by DELTA(s, "(a)")= [t: FORWARD], while every backward transition

(t,−1) ∈ δ(s, a) is represented by DELTA(s, "(a)")= [t: BACK].

Now that we prepared a 2NBA, we want to use RltlConv to convert it into automata of

other kinds. We start RltlConv on a Unix system using the shell script rltlconv.sh

(there is also a batch file rltlconv.bat for Windows). To pass 2NbaExample.txt

to RltlConv and make it recognize this as an automaton, we have to locate the input file

and the shell script in the same folder and execute the following in our command line

interface:

Listing 4.2: Interpretation of 2NbaExample.txt as an automaton

$ sh rltlconv.sh @2NbaExample.txt --automaton

The output to this call is exactly the same as the content of 2NbaExample.txt, which is

not surprising, since we didn’t invoke any conversion method yet. To test our implemented

method twoWayToAba, we add --APA to the previous call.

Listing 4.3: Conversion of the 2NBA example into an ABA

$ sh rltlconv.sh @2NbaExample.txt --automaton --APA

APA {

ALPHABET = ["(a)", "(b)"]

STATES = [s0_bottom:1, s0_s1_bottom:1, s2_bottom:2, q0:2]

START = s0_bottom

DELTA(s0_bottom, "(a)") = s0_bottom OR (s0_s1_bottom AND

s2_bottom)

DELTA(q0, ?) = q0

DELTA(s0_s1_bottom, "(b)") = q0

DELTA(s2_bottom, "(b)") = s2_bottom

DELTA(s0_bottom, "(b)") = s0_bottom

}

For every state in the resulting automaton, we can see the parity of the subset this state

is contained in. For example, s0_bottom:1 denotes that the singleton state (s0,⊥)

is of parity 1, which implies (s0,⊥) 6∈ F . (s2,⊥) on the other hand is of parity 2 and

therefore accepting. Since there are only these two parities, the APA constructed by

RltlConv is indeed an ABA.

58 Chapter 4. Implementation

In DELTA(s0_bottom, "(a)") we can see that the transition function in this con-

structed automaton maps to positive Boolean formulas over the state set. In this specific

case, we have an AND-term nested in an OR-expression.

Another point worth mentioning is the existence of the state q0:2. This state arises from

the APA minimization provided by RltlConv, which leads all APA transitions evaluating

to true into an infinite loop over an accepting sink state (which is equivalent to the run

branch as ending in true). The question mark in the transition DELTA(q0, ?)= q0

tells us that this transition is independent of the current symbol of the input word.

Encoded automata are hard to read, so we want to get a graphical representation of

the ABA we just constructed. RltlConv provides a method for automated graphical

illustration based on the open-source graph visualization software Graphviz1. All we

have to do, is to add the flag --pdf to our call and redirect the result into an arbitrarily

named PDF file.

Listing 4.4: Creating graphical output of the resulting ABA

$ sh rltlconv.sh @2NbaExample.txt --automaton --APA --pdf >

ABA.pdf

The graphical representation resulting from this call can be seen in Figure 4.2.

s0_bottom:1

"(b)"

OR"(a)"

s0_s1_bottom:1 q0:2"(b)"

s2_bottom:2

"(b)"

?

START AND

Figure 4.2: Graphical representation of the constructed ABA. ABA.pdf, automatically
rendered by RltlConv.

This automaton is not minimal in its number of states. A language equivalent ABA

could be achieved by deleting the states (s0, s1,⊥) and q0, which would replace the

transition δ((s0,⊥), a) = (s0,⊥) ∨ ((s0, s1,⊥) ∧ (s2,⊥)) by the transition δ((s0,⊥), a) =

(s0,⊥) ∨ (s2,⊥). Since there would be no more alternation involved, this minimized

1http://www.graphviz.org/

4.3. I/O Examples 59

structure could even be interpreted as an NBA. However, the minimization of ABAs in

general is no trivial task and extends the scope of this thesis.

We will now construct the Complement WAA of our 2NBA example. To call the proper

RltlConv method, we use the flag --COMPABA. Since the encoded version of the resulting

automaton is considerably larger than in the 2NBA to ABA example, we take a pass on

displaying the command line output. Instead, we go directly for a graphical representation

which can be seen in Figure 4.3.

Listing 4.5: Conversion of the 2NBA example into the Complement WAA

$ sh rltlconv.sh @2NbaExample.txt --automaton --COMPABA

--pdf > COMPABA.pdf

Not only can we observe a quadratic blowup in the number states, we also find a noticeable

more complex pattern in the transitions of the new automaton. Again, the automaton

seen in Figure 4.3 already underwent the minimization process provided by RltlConv.

Still, this construction represents a vast improvement to the 2NBA complementation

using an ABA as an intermediate step. Of course, we can simulate this process using our

newly implemented methods as well. We use the following command:

Listing 4.6: Conversion of the 2NBA example into the Complement WAA with an inter-

mediate step of an ABA

$ sh rltlconv.sh @2NbaExample.txt --automaton --APA

--COMPABA --pdf > BIGCOMPABA.pdf

The graphical representation of this automaton can be seen in Figure 4.4. Clearly, the

language equivalent Complement WAA shown in Figure 4.3 is significantly more succinct.

Nevertheless, we think considering this larger Complement WAA to be worthwhile, since

it shows the layered structure of the Complement WAAs in quite an obvious way. These

layers arise from the ranking of the states and from the release function used in the

definition of the transition function.

Now that we have provided examples for every automata conversion method we imple-

mented, we approach the end of this thesis. The last chapter will summarize the work

we have done and point out questions as well as open implementation tasks arisen in the

course of our writing.

60 Chapter 4. Implementation

s0
_b
ot
to
m
_0
:1

"(
b)
"

A
N
D

"(
a)
"

s0
_b
ot
to
m
_2
:1

A
N
D

"(
a)
"

O
R

"(
b)
"

s2
_b
ot
to
m
_0
:1

"(
b)
"

q0
:2

"(
a)
"

s0
_b
ot
to
m
_4
:1

O
R

"(
b)
"

A
N
D

"(
a)
"

s0
_b
ot
to
m
_1
:2

O
R

"(
b)
"

A
N
D

"(
a)
"

s2
_b
ot
to
m
_2
:1

"(
a)
"

O
R

"(
b)
"

s2
_b
ot
to
m
_4
:1

"(
a)
"

O
R

"(
b)
"

s0
_b
ot
to
m
_3
:2

A
N
D

"(
a)
"

O
R

"(
b)
"

s0
_s
1_
bo
tto
m
:2

"(
a)
"

?

ST
A
RT

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

F
ig
u
r
e
4
.3
:

G
ra

p
h
ic

al
re

p
re

se
n
ta

ti
on

of
th

e
co

n
st

ru
ct

ed
C

om
p
le

m
en

t
W

A
A

re
n
d
er

ed
b
y

R
lt

lC
on

v
.

W
e

u
se

d
th

e
im

p
ro

ve
d

m
et

h
o
d

d
es

cr
ib

ed
in

3.
2.

2,
w

h
ic

h
im

p
li

es
a

q
u

a
d

ra
ti

c
b
lo

w
u

p
in

th
e

n
u

m
b

er
o
f

st
a
te

s
o
f

th
e

2
N

B
A

.

4.3. I/O Examples 61

s0
_s
1_
bo
tto
m
_1
:2

q0
:2

"(
a)
"

s0
_s
1_
bo
tto
m
_3
:2

"(
a)
"

s0
_s
1_
bo
tto
m
_6
:1

"(
a)
"

s0
_s
1_
bo
tto
m
_5
:2

"(
a)
"

s0
_s
1_
bo
tto
m
_2
:1

"(
a)
"

s0
_b
ot
to
m
_4
:1

O
R

"(
b)
"

A
N
D

"(
a)
"

s0
_b
ot
to
m
_1
:2

O
R

"(
b)
"

A
N
D

"(
a)
"

s0
_s
1_
bo
tto
m
_8
:1

"(
a)
"

s0
_s
1_
bo
tto
m
_7
:2

"(
a)
"

s0
_s
1_
bo
tto
m
_0
:1

"(
a)
"

s0
_b
ot
to
m
_8
:1

O
R

"(
b)
"

A
N
D

"(
a)
"

s0
_b
ot
to
m
_0
:1

"(
b)
"

A
N
D

"(
a)
"

s0
_b
ot
to
m
_2
:1

A
N
D

"(
a)
"

O
R

"(
b)
"

s0
_b
ot
to
m
_3
:2

O
R

"(
b)
"

A
N
D

"(
a)
"

?

s2
_b
ot
to
m
_0
:1

"(
a)
"

"(
b)
"

s0
_s
1_
bo
tto
m
_4
:1

"(
a)
"

s2
_b
ot
to
m
_6
:1

"(
a)
"

O
R

"(
b)
"

s0
_b
ot
to
m
_5
:2

O
R

"(
b)
"

A
N
D

"(
a)
"

s2
_b
ot
to
m
_4
:1

"(
a)
"

O
R

"(
b)
"

s0
_b
ot
to
m
_7
:2

A
N
D

"(
a)
"

O
R

"(
b)
"

s2
_b
ot
to
m
_8
:1

"(
a)
"

O
R

"(
b)
"

s2
_b
ot
to
m
_2
:1

"(
a)
"

O
R

"(
b)
"

s0
_b
ot
to
m
_6
:1

A
N
D

"(
a)
"

O
R

"(
b)
"

ST
A
RT

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

O
R

F
ig
u
r
e
4
.4
:

G
ra

p
h

ic
al

re
p

re
se

n
ta

ti
on

of
th

e
co

n
st

ru
ct

ed
C

om
p

le
m

en
t

W
A

A
re

n
d

er
ed

b
y

R
lt

lC
on

v
.

W
e

d
id

n
ot

u
se

th
e

im
p

ro
ve

d
m

et
h

o
d

d
es

cr
ib

ed
in

3.
2.

2,
b

u
t

u
se

d
th

e
in

te
rm

ed
ia

te
st

ep
of

an
A

B
A

in
st

ea
d

.
T

h
is

im
p

li
es

a
b

iq
u

ad
ra

ti
c

b
lo

w
u

p
in

th
e

n
u

m
b

er
of

st
at

es
of

th
e

or
ig

in
al

2N
B

A
.

W
e

ca
n

ob
se

rv
e

th
e

la
ye

re
d

st
ru

ct
u

re
of

th
e

C
om

p
le

m
en

t
W

A
A

s
re

su
lt

in
g

fr
o
m

K
u

p
fe

rm
a
n

’s
a
n

d
V

a
rd

i’
s

co
n

st
ru

ct
io

n
ve

ry
cl

ea
rl

y
in

th
is

ex
a
m

p
le

.

Chapter 5

Conclusion and Outlook

In this thesis, we presented and implemented three different automata conversion methods.

The first one described the construction of a language equivalent alternating Büchi

automaton from a 2-way nondeterministic Büchi automaton. The other two methods

described the complementation of ABAs as well as 2NBAs by means of weak alternating

automata.

Although these conversions perform well for input automata of “reasonable size” and

don’t have huge blowups in the number of states, the complexity of the transitions in

the resulting automata increases alarmingly. We will therefore need to investigate these

conversions further and try to decrease the number of states as well as the complexity of

the transitions.

One example, where we could start such an attempt of minimization, is the upper bound

to the ranks presented in 3.2.1. In [6], Kupferman and Vardi show all vertices in an

accepting run DAG to be of some rank i ∈ [2n]. They never mention this bound to be

tight. In other words, it is unclear whether there exist accepting run DAGs for which

G2n is finite while G2n−1 isn’t. For all examples we created in the course of this thesis,

n + 1 ranks were sufficient. If this bound should turn out to be tight, the number of

states in the resulting Complement WAA could be halved.

Apart from these matters of efficiency, there are multiple features that have yet to be

implemented in RltlConv. As we already mentioned before, there is no transformation

from ω-regular expressions with past operators to 2NBAs. There is also no conversion of

2ABAs or 2A3PAs to NBAs, which would be helpful in the monitor construction based

on pRLTL expressions.

63

Bibliography

[1] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime Verification for

LTL and TLTL. ACM Trans. Softw. Eng. Methodol., 20(4):14, 2011.

[2] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J.

ACM, 28(1):114–133, January 1981.

[3] Christian Dax and Felix Klaedtke. Alternation Elimination by Complementation

(Extended Abstract). In Logic for Programming, Artificial Intelligence, and Rea-

soning, 15th International Conference, LPAR 2008, Doha, Qatar, November 22-27,

2008. Proceedings, volume 5330 of Lecture Notes in Computer Science, pages 214–229.

Springer, 2008.

[4] E. Allen Emerson and Charanjit S. Jutla. Tree Automata, Mu-Calculus and

Determinacy (Extended Abstract). In 32nd Annual Symposium on Foundations of

Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE

Computer Society, 1991.

[5] Dexter Kozen. Automata and Computability. Undergraduate Texts in Computer

Science. Springer, 1997.

[6] Orna Kupferman and Moshe Y. Vardi. Weak Alternating Automata Are Not That

Weak. ACM Trans. Comput. Log., 2(3):408–429, 2001.

[7] Martin Leucker and César Sánchez. Regular Linear-Time Temporal Logic. In TIME

2010 - 17th International Symposium on Temporal Representation and Reasoning,

Paris, France, 6-8 September 2010, pages 3–5. IEEE Computer Society, 2010.

[8] Nancy G. Leveson and Clark Savage Turner. An Investigation of the Therac-25

Accidents. IEEE Computer, 26(7):18–41, 1993.

[9] Satoru Miyano and Takeshi Hayashi. Alternating Finite Automata on Omega-Words.

Theor. Comput. Sci., 32:321–330, 1984.

[10] Madhavan Mukund. Finite-state automata on infinite inputs. In Modern Applications

of Automata Theory, pages 45–78. 2012.

65

66 Bibliography

[11] Nir Piterman and Moshe Y. Vardi. From Bidirectionality to Alternation. Theor.

Comput. Sci., 295:295–321, 2003. (Preprint submitted to Elsevier Science, 21.

November 2001).

[12] M. O. Rabin and D. Scott. Finite Automata and Their Decision Problems. IBM J.

Res. Dev., 3(2):114–125, April 1959.

[13] César Sánchez and Martin Leucker. Regular Linear Temporal Logic with Past.

In Verification, Model Checking, and Abstract Interpretation, 11th International

Conference, VMCAI 2010, Madrid, Spain, January 17-19, 2010. Proceedings, volume

5944 of Lecture Notes in Computer Science, pages 295–311. Springer, 2010.

[14] J.C. Shepherdson. The Reduction of Two-Way Automata to One-Way Automata.

IBM Journal of Research and Development, 3(2):198–200, April 1959.

[15] Moshe Y. Vardi. A Note on the Reduction of Two-Way Automata to One-Way

Automata. Inf. Process. Lett., 30(5):261–264, 1989.

List of Figures

2.1 Example of a 2NFA . 9

2.2 Example of an AFA . 13

2.3 Example of an accepting run of an AFA 13

2.4 Example of an NBA . 15

2.5 Example of a 2NBA . 17

2.6 Example of an ABA . 20

2.7 Example of an accepting run of an ABA 20

3.1 Example of a 2NFA zigzag run . 26

3.2 Example of a zigzag run simulation by an AFA 27

3.3 Example of an AFA singleton state transition 28

3.4 Example of an AFA pair state transition 29

3.5 Extended example of a 2NFA zigzag run 31

3.6 Corresponding AFA run tree . 32

3.7 Example of an ABA singleton state transition in case of an infinite loop . 37

3.8 Example of a 2NBA zigzag run ending in an infinite loop 40

3.9 Corresponding ABA run tree . 41

3.10 Example of a DAG hierarchy . 44

4.1 Overview of modified and referenced classes inside the automata package . 51

4.2 ABA constructed from a 2NBA and rendered by RltlConv 58

4.3 Complement WAA constructed from a 2NBA and rendered by RltlConv . 60

4.4 Complement WAA constructed from a 2NBA with the intermediate step
of an ABA . 61

67

List of Tables

2.1 Example of a 2NFA transition table . 8

2.2 Example of an AFA transition table . 12

2.3 Example of an NBA transition table . 15

2.4 Example of a 2NBA transition table . 16

2.5 Example of an ABA transition table . 19

69

Listings

4.1 Content of 2NbaExample.txt . 56

4.2 Interpretation of 2NbaExample.txt as an automaton 57

4.3 Conversion of the 2NBA example into an ABA 57

4.4 Creating graphical output of the resulting ABA 58

4.5 Conversion of the 2NBA example into the Complement WAA 59

4.6 Conversion of the 2NBA example into the Complement WAA with an
intermediate step of an ABA . 59

71

Abbreviations

2ABA 2-way Alternating Büchi Automaton

2AkPA 2-way Alternating k-Parity Automaton

2NBA 2-way Nondeterministic Büchi Automaton

2NFA 2-way Nondeterministic Finite Automaton

ABA Alternating Büchi Automaton

ACA Alternating Co-Büchi Automaton

AFA Alternating Finite Automaton

AkPA Alternating k-Parity Automaton

DAG Directed Acyclic Graph

DBA Deterministic Büchi Automton

DFA Deterministic Finite Automton

DMoore Deterministic Moore Machine

FSA Finite State Automaton

LTL Linear Temporal Logic

NBA Nondeterministic Büchi Automaton

NFA Nondeterministic Finite Automaton

pRLTL Regular Linear Temporal Logic with past

RegEx Regular Expression

RLTL Regular Linear Temporal Logic

WAA Weak Alternating Automaton

73

	1 Introduction
	2 Basics of Automata Theory
	2.1 Finite State Automata on Finite Words
	2.2 Finite State Automata on Infinite Words

	3 Automata Conversions
	3.1 From 2-way to Alternation
	3.1.1 2NFA to AFA
	3.1.2 2NBA to ABA

	3.2 Automata Complementation
	3.2.1 ABA to Complement WAA
	3.2.2 2NBA to Complement WAA

	4 Implementation
	4.1 RltlConv
	4.1.1 Motivation for Presented Automata Conversions
	4.1.2 Embedding of New Conversions in RltlConv

	4.2 Explanation of Implemented Methods
	4.2.1 2NBA to ABA
	4.2.2 ABA to Complement WAA
	4.2.3 2NBA to Complement WAA

	4.3 I/O Examples

	5 Conclusion and Outlook
	Bibliography
	List of Figures
	List of Tables
	Listings
	Abbreviations

